
PROGRAM SYNTHESIS FOR DECLARATIVE SYSTEMS

Haoxian Chen

A DISSERTATION
in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in

Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

2023

Supervisor of Dissertation

Boon Thau Loo, Professor, Computer and Information Science

Graduate Group Chairperson

Mayur Naik, Professor, Computer and Information Science

Dissertation Committee:

Mayur Naik, Chair, Professor of Computer and Information Science

Andre Scedrov, Professor of Mathematics, Professor of Computer and Information Science

Vincent Liu, Assistant Professor of Computer and Information Science

Yuepeng Wang, Assistant Professor in School of Computing Science, Simon Fraser University

PROGRAM SYNTHESIS FOR DECLARATIVE SYSTEMS

COPYRIGHT

2023

Haoxian Chen

Licensed under a Creative Commons Attribution 4.0 License.

To view a copy of this license, visit:

http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Boon Thau Loo, for his

guidance and support over my PhD study at Penn. I could not have undertaken this

journey without his mentoring.

My committee consists of Mayur Naik, Andre Scedrov, Vincent Liu, and Yuepeng

Wang. I am grateful for their feedback and suggestion on this dissertation, as well as

their valuable guidance on my general research, presentation, and career planning.

I would also like to thank all my collaborators during my PhD study, in partic-

ular Mukund Raghothaman, who taught me a lot of important skills in research

and technical writing in my first project. Other projects are very enjoyable and

educational for me too. And I was fortunate to have such opportunities to learn

from a group of amazing researchers, including Anduo Wang from Temple Univer-

sity, Behnaz Arzani, Kevin Hsieh from Microsoft Research, Chenyuan Wu, Andrew

Zhao, Gerald Whitters, Mohammad Javad Amiri, Lan Lu and Brendan Massey from

UPenn.

I have spent a wonderful time at Penn. I enjoy the conversations and discussions

with my lab mates at the NetDB group, DSL seminar, and the department: Qizhen

Zhang, Hui Lyu, Lei Shi, Max Demoulin, Nik Sultana, Chenyuan Wu, Mohammad

Javad Amiri, Gerald Whitters, Lan Lu, Tao Luo, Heena Nagda, Bhavana Mehta, Le-

shang Chen, Xinyi Chen, Elizabeth Dinella, Hangfeng He, Yishuai Li, Yao Li, Danni

Ma, Kelvin K.W. Ng, Pardis Pashakhanloo, Xuejie Si, YinjunWu, Jiali Xing, Yi Zhang,

Ke Zhong, and many others.

I want to thank my buddies Xing Yue and Dong Shi. We went to graduate school

at the same time in the US. Hanging out and chatting with them helps me release

pressure from work and stay positive in life.

Finally, I want to thank my family, especially my parents, my partner Deng Miao,

iii

and my cat Ruan-ruan. Their love and companion have kept my spirits and moti-

vation high during graduate school. This dissertation would not have been possible

without their emotional support.

This dissertation is supported by NSF under Grant CCF-2107429, CCF-2107261,

CCF-2124431, CNS-2104882, CNS-2104882, CNS-2107147, NSERCDiscovery Grant,

and U.S. Office of Naval Research under award numbers N00014-20-1-2635 and

N00014-18-1-2618.

iv

ABSTRACT

PROGRAM SYNTHESIS FOR DECLARATIVE SYSTEMS

Haoxian Chen

Boon Thau Loo

Formal methods are essential in assuring system correctness. However, formal

specification languages have steep learning curves, thus hindering broader appli-

cation to system development in practice. To address this problem, we propose

NetSpec, a tool that generates system specification via intuitive example-based in-

terface, DeCon, a high-level language for Ethereum smart contracts that provides

unified interfaces for contract implementation and specification, and DCV, a safety

verification tool for DeCon.

NetSpec aims to be i) highly expressive, capable of synthesizing network speci-

fications with complex semantics; ii) scalable, by virtue of using a novel stochastic

search algorithm to efficiently explore an unbounded solution space, and iii) robust,

avoiding the need for exhaustive input-output examples by actively generating new

examples. Our experiments demonstrate that NetSpec can synthesize a wide range

of specifications used in network verification, analysis, and implementations. Fur-

thermore, NetSpec improves upon existing approaches in terms of expressiveness,

efficiency, and robustness to examples.

DeCon, a specification language for Ethereum smart contracts, models a con-

tract as a set of relational tables that store transaction records, driven by the ob-

servation that smart contract operations and contract-level properties can be nat-

urally expressed as relational constraints. This relational representation enables

convenient specification of contract properties, facilitates run-time monitoring of

potential property violations, and brings clarity to debugging via data provenance.

DeCon programs are compiled into executable Solidity programs, with instrumen-

tation for run-time property monitoring. Our case studies demonstrate that DeCon

v

can implement realistic smart contracts such as ERC20 and ERC721 digital tokens.

The evaluation shows that DeCon has comparable efficiency with the open-source

reference implementation, incurring 14% median gas overhead for execution, and

another 16% median gas overhead for run-time verification.

DCV is a sound and fully automatic verification tool for DeCon contracts. It

proves safety properties by mathematical induction and can automatically infer in-

ductive invariants without annotations from the developer. Our evaluation shows

that DCV is effective in verifying smart contracts adapted from public repositories,

and can verify contracts not supported by other tools. Furthermore, DCV signifi-

cantly outperforms baseline tools in verification time.

vi

TABLE OF CONTENTS

1 Introduction 1

2 Declarative specification language 4

3 Synthesizing specifications from input-output examples 7

3.1 Introduction . 7

3.2 Illustrative Example . 10

3.3 Problem formulation . 18

3.4 Synthesis Algorithm . 20

3.5 Handling Incomplete Examples . 30

3.6 Implementation . 32

3.7 Evaluation . 33

3.8 Related Work . 46

3.9 Conclusion . 48

4 Declarative smart contracts 49

4.1 Introduction . 49

4.2 Illustrative example . 52

4.3 Language . 59

4.4 Compilation to Solidity . 63

4.5 Case studies . 72

4.6 Evaluation . 77

4.7 Related Work . 81

4.8 Conclusion and future work . 83

5 Safety verification of declarative smart contracts 85

vii

5.1 Introduction . 85

5.2 Illustrative Example . 87

5.3 Program Transformation . 93

5.4 Verification Method . 99

5.5 Evaluation . 102

5.6 Related work . 105

5.7 Conclusion . 107

6 Conclusion and future work 109

A Proof 111

A.1 Proof sketch for completeness . 111

viii

LIST OF TABLES

3.1 Example of scoring a partial program Pr. It contains a partial rule

r, where only two fields in the head are determined, thus only two

columns are generated by this rule. Precision is 0.86 because 6 out

of the 7 output tuples are desired (in O∪πc(O)). Recall is composed

of two parts, the complete tuples (3 in green box), and the partial

tuples (3 in red box). The recall on the partially generated output is

discounted by factor 0.5 because only 2 out of 4 columns are gener-

ated. Putting them together, the total recall is 3+3×0.5
6

= 0.75. . . . 25

3.2 Benchmark specifications. The features of recursion, aggregation,

and UDFs are highlighted in the “Features” columns. 35

3.3 Synthesis results for benchmarks where the original examples are

sufficient. The effort of specifying examples is described by the num-

ber of input-output instances and the total number of rows in all in-

stances. Both synthesis time and output sizes are average across 10

runs. NS., Fa., and GS. stand for NetSpec, Facon and GenSynth re-

spectively. In the “Time” column, × means the tool terminates and

finds no solution, and TO means the tool times out after 20 min-

utes. For benchmarks where the tool is inapplicable, the time and

size entries are left empty. 38

ix

3.4 Active learning results for benchmarks that needs example augmen-

tation. NetSpec runs active learning to augment the input-output

examples and finds the validated solutions. In the “#Queries” col-

umn, “med.” and “max” stand for median and maximum. Column

“Time” shows the average end-to-end time. “TO” means timing out

after 1 hour. Column “Output size” reports the size of the synthe-

sized specification, measured in the number of Datalog rules. 41

3.5 Learning specifications from program communication traces. Col-

umn “#T” measures the number of input output messages in the

execution trace, column “#R” measures the number of rules of the

reference specification, column “#Queries” measure the median and

maximum number of queries posted by NetSpec, across 10 repeated

experiments, and column “Time” shows the average end-to-end ac-

tive learning time. 44

4.1 Overhead of Solidity programs generated by DeCon, compared to

reference implementations. Column #Rules shows the number of

rules in the declarative smart contracts. 77

4.2 Run-time verification overhead. Column Size and Gas show the

overhead in byte-code size (KB) and gas cost (K) respectively, com-

pared to the DeCon contract without instrumentation. 80

5.1 Benchmark properties. 103

5.2 Verification efficiency measured in time (seconds). TO stands for

time-out after 1 hour. Unknown means the verifier cannot verify the

contract property. Errors from solc are caused by a known software

issue [15]. Solc-verify fails to analyze part of the OpenZeppelin li-

braries, and thus returns error. 104

x

LIST OF ILLUSTRATIONS

1.1 System development flow: from design, verification, to implemen-

tation. This dissertation proposes two systems, NetSpec and DeCon,

each tackling particular stages for different application domains. Net-

Spec synthesizes declarative specifications from input-output exam-

ples for system protocols. DeCon takes declarative specification for

Ethereum smart contracts, performs verification (DCV), and gener-

ates implementation in Solidity codes. 2

2.1 Abstract syntax of specifications in NetSpec. Input relation (I), out-

put relation (O), user-defined functions (F), and aggregation (A) are

application-specific. 4

2.2 Declarative specification for shortest-path routing protocol. 5

3.1 Architecture of NetSpec. 10

3.2 A small network topology as a weighted directed graph (left), its

relational representation (middle), and the expected output (right). 11

3.3 NetSpec synthesis procedure. On the left is the input table link.

The highlighted blue boxes show the three intermediate programs

leading up to the final solution. The tables underneath describe their

respective outputs. 14

3.4 Two solutions of the routing protocol specified with incomplete ex-

amples. The difference is highlighted. 17

3.5 NetSpec solves more benchmarks as the number of random samples

in active learning increases. 40

3.6 Randomly drop examples. 42

4.1 Provenance of a violation of negative balance 58

xi

4.2 Syntax of relation declarations and annotations 60

4.3 Syntax of rules . 61

4.4 Provenance tree for tuples. 74

5.1 Overview of DCV. 87

5.2 The voting contract as a state transition system. 90

xii

CHAPTER 1

INTRODUCTION

Formal specifications are vital for assuring system correctness. In networking sys-

tems, formal specification of the network topology, communication protocols, and

execution environment are used to perform a wide range of quality assurance tasks,

including verification [59, 30, 33, 116, 117], analysis [29, 82, 37], and debug-

ging [43, 122]. In cloud management, cluster administrators who wish to as-

certain reachability of nodes must specify the desired behavior using declarative

queries [29, 82]. In distributed systems, programmers who wish to verify certain

system properties rely on formal specifications of a wide range of protocols, includ-

ing inter-domain routing [117, 59, 33], consensus protocols [24, 106], and security

protocols [44]. Furthermore, various domain specific languages [92, 81, 54, 32]

rely on formal specifications expressed in logic as a basis for generating actual im-

plementations, thereby bridging the specifications-implementation divide.

Despite their promising benefits, formal specifications have not yet gained main-

stream adoption in practice. Today, it remains challenging for a network practi-

tioner to write these formal specifications in the first place. It is even harder to

ensure that the specifications capture all aspects of the network. Formal languages

have steep learning curves, and it is difficult to find engineers who are simultane-

ously well-versed in network operations and formal methods. Consequently, despite

the progress in tools for network verification and analysis, undertaking these tasks

still necessitates a formal methods expert who can at least write the desired prop-

erties or model the network in formal specification languages.

On the other hand, even with written specifications, keeping them consistent

with evolving systems is also challenging. System designers and the engineering

1

Inductive synthesis

Input-output examples

Declarative specification

Verification

Implementation

Query

DeCon

NetSpec

DCV

Figure 1.1: System development flow: from design, verification, to implementa-

tion. This dissertation proposes two systems, NetSpec and DeCon, each tackling

particular stages for different application domains. NetSpec synthesizes declara-

tive specifications from input-output examples for system protocols. DeCon takes

declarative specification for Ethereum smart contracts, performs verification (DCV),

and generates implementation in Solidity codes.

team need to communicate carefully to make sure the implementation is faithful to

the specification.

This dissertation proposes to improve the efficiency of the system specification

process from two angles: learning a system specification from input-output exam-

ples, and generate system implementation automatically from specification.

Figure 1.1 shows the proposed system development process. A system designer

may first propose a system design via input-output examples, e.g., message ex-

changes between system nodes. Then an inductive program synthesizer generates

declarative system specification consistent with these input-output examples. Given

the system design specification, together with property specification, formal verifi-

cation tools can be applied to look for bugs or prove properties for the system.

2

NetSpec focuses on the specification generation phase. It is an inductive pro-

gram synthesis tool that generates declarative specifications for general network

protocols from protocol input-output examples. To mitigate the under-specified

situation, that is, some critical examples are missing, NetSpec augments the exam-

ple set by generating additional input example, and querying the user to annotates

the correct output. If the verification is successful, the specification is then auto-

matically compiled into executable codes as system implementation. Otherwise,

the verifier returns a counter example to the user to revise the system design.

For emerging areas where a lot of new applications are being developed, the

efficiency of the design and implementation cycle can be improved by introducing

a high level language that is both formal and executable.

We apply this idea to the domain of Ethereum smart contracts, and propose De-

Con, a declarative language for smart contract implementation and specification.

It generates efficient executable programs from the high-level declarative specifica-

tion. DeCon also supports both run-time and static verification of safety properties.

The rest of the dissertation is organized as follows. Chapter 2 gives a brief intro-

duction of declarative programming. Chapter 3 introduces NetSpec, an example-

based specification synthesis tool for network protocols. Chapter 4 introduces De-

Con, a declarative language for Ethereum smart contracts. Chapter 5 introduces

DCV, an automatic verification tool for DeCon contracts, targeting safety invari-

ants. Chapter 6 concludes this dissertation and discusses future work.

3

CHAPTER 2

DECLARATIVE SPECIFICATION LANGUAGE

This chapter provides a formal definition of the declarative specification language

used in this dissertation. The design of the language is motivated by two key goals:

the ability to express a wide range of system specifications, and the ability to lever-

age a variety of network verifiers, analyzers, and implementations.

(input relation) I

(output relation) O

(function) F

(aggregation) A ∈ { min, max, count }

(variable) x

(body literal) b ::= I(x̄) | !I(x̄) | O(x̄) | F(x̄)

(head argument) a ::= x | A(x)

(head literal) h ::= O(ā)

(rule) r ::= h :- b1, ..., bn
(specification) p ::= { r1, ..., rn }

Figure 2.1: Abstract syntax of specifications in NetSpec. Input relation (I), out-

put relation (O), user-defined functions (F), and aggregation (A) are application-

specific.

Figure 2.1 presents the abstract syntax of specifications. We elucidate it using

our running example of the shortest-path routing specification shown in Figure 2.2.

A specification is a program whose inputs and outputs are a set of relations. In our

routing example, the input relations include link, which represents the network

topology, as well as common predicates such as in (list membership). The output

4

// compute available paths

r1: path(x, y, p, c) :- link(x, y, c), p=[x, y].

r2: path(x, y, x::p1 ,c1+c2) :- link(x, z, c1),

path(z, y, p1, c2), !(x in p1).

// select the minimum cost path

r3: minCost(x, y, min<c>) :- path(x, y, _, c).

r4: bestPath(x, y, p, mc) :- path(x, y, p, mc),

minCost(x, y, mc).

Figure 2.2: Declarative specification for shortest-path routing protocol.

relations include bestPath, which represents the shortest path between every pair

of nodes in the input network, as well as relations such as path and minCost which

hold intermediate results needed to compute bestPath.

A specification comprises a set of rules that specify how to compute the out-

put relations from the input relations. Our routing example comprises four rules

denoted r1 through r4. Each rule is a Horn clause of the form:

Rh(x̄h) :- R1(x̄1), ..., Rn(x̄n)

where the x̄i’s are vectors of variables of appropriate arity. Each rule is read from

right-to-left as a universally quantified implication: for all variable valuations x̄, if

each of tuples R1(x̄1), ..., Rn(x̄n) are derivable, then so is Rh(x̄h).

For instance, rule r4 in our routing example states that if path(x, y, p,mc) and

minCost(x, y,mc) are derivable, then so is bestPath(x, y, p,mc). This rule also de-

picts a basic logic operation: conjunction (i.e., join). On the other hand, disjunction

(i.e., union) is expressed by means of different rules with the same head relation, as

illustrated by rules r1 and r2which denote the base case and inductive step, respec-

tively, for computing the path relation. These two rules also illustrate recursion—an

operation commonly needed in network specifications to specify reachability prop-

erties.

5

The features described thus far constitute the declarative logic programming

language Datalog [20]. However, Datalog is inadequate to express real-world net-

work specifications with rich functionality. The specification language of NetSpec

therefore extends Datalog with three additional kinds of operations: negation (de-

noted !), aggregation (e.g., min and count), and user-defined functions, which in-

clude common utility functions such as :: (list prepend) and + (integer addition).

Specifications are executable programs: execution begins with all output rela-

tions initialized to empty, and proceeds by repeatedly evaluating the rules until the

output relations stop changing. The syntactic restrictions described above ensure a

deterministic result regardless of the order in which rules are evaluated. However,

note that the presence of recursion together with user-defined functions can lead

to non-termination (e.g., by recursively applying integer addition).

An important benefit of this declarative specification is its suitability for a variety

of networking tasks. They can be verified using SDN verifiers such as Vericon [30]

and FlowLog [92], and routing verifiers such as Batfish [59] and FSR [117]; They

can be analyzed using network analysis tools such as NOD [82],Tiros [29] and ExS-

PAN [125]. Lastly, they can be compiled to distributed implementations in Network

Datalog [81] and FlowLog [92].

In Chapter 3, we will show how to synthesize these declarative specifications

from input-output examples. In Chapter 4, we adopt this declarative specification

language for smart contracts, and show how to perform run-time verification and

code generation based on this declarative specification. Chapter 5 shows the how

to perform automatic safety verification for such declarative smart contracts.

6

CHAPTER 3

SYNTHESIZING SPECIFICATIONS FROM

INPUT-OUTPUT EXAMPLES

3.1 Introduction

This chapter presents NetSpec, a specification-by-example (SBE) toolkit that aims to

automatically synthesize formal specifications of network protocols in logic. NetSpec

aims to make formal network analysis more accessible to network programmers,

who do not necessarily have expertise in formal methods. In the SBE paradigm,

programmers provide input-output examples of their protocol designs. These de-

signs can be handwritten or derived from actual runtime communication traces.

NetSpec then applies program synthesis techniques to automatically yield the logical

specifications which are amenable to verification [116] or generation of distributed

implementations [81].

Our choice of logic as a basis for NetSpec is motivated by the fact that many

formal network models trace their roots to logical specifications. In particular, we

target an extension of the declarative logic programming language Datalog [20],

which is popular in the literature on network verification [59, 54, 30, 116, 117],

analysis [92, 29, 82], debugging [122, 43], and implementation [92, 81, 24, 106].

Thus, our logical specifications can be seen as declarative programs in themselves:

the input comprises facts about a network (e.g., topology, VM configurations, etc)

or incoming messages (e.g., route requests), while the output comprises actual net-

work state (e.g., the shortest path, the reachable VM pairs, etc) or outgoing mes-

sages (e.g., route updates).

7

We envision NetSpec being used in a variety of settings:

1. rapid prototyping of a protocol design by compiling the synthesized logical spec-

ifications into distributed implementations.

2. verifying network protocols at design time by providing input-output examples

that can be proof-checked based on its synthesized logical specifications. When

a design bug is revealed by a verifier, the user can correct the design by adding

new examples.

3. taking a legacy program and deriving its logical specifications from runtime ex-

ecutions for subsequent verification or software analysis. When a verifier finds a

counter-example, it can be used to test against the legacy program. If the legacy

program exhibits undesired behavior, a real bug is caught. Otherwise, the logical

specifications is inaccurate, and can be refined by adding the counter-example

to NetSpec.

To this end, NetSpec provides key features that advance upon state-of-the-art

programming-by-example approaches and enable it to effectively address the above

use-cases. We next elucidate each of these features:

• Expressivity. NetSpec supports expressive features necessitated by complex se-

mantics involved in network specifications. These features include recursion, ag-

gregation, and user-defined functions (UDFs). None of the existing techniques for

synthesizing declarative programs support this combination of features, which

precludes them from targeting many common network specifications, e.g., rout-

ing protocols and consensus protocols.

• Scalability. NetSpec uses a novel best-first search algorithm that incrementally

proceeds from simple to complex programs, with the ability to rapidly backtrack,

which enables to efficiently explore an unbounded search space and produce

succinct specifications. In contrast, existing techniques either require the user

to bound the search space [78, 98] (e.g., by providing the maximum number

of operators), or suffer in terms of efficiency by exploring a large number of

8

incorrect programs [87].

• Robustness. NetSpec is robust to the quality of input-output examples. Ap-

proaches based on programming-by-example rely on the user to craft a complete

set of examples in order to learn the correct program. However, it is easy to

miss corner cases when providing these examples manually. NetSpec proactively

detects the incompleteness in the specified examples, and generates new input

queries to the example provider—a network operator or a legacy implementa-

tion. These new inputs, together with the provider’s answers as the outputs, im-

prove the example quality and enable NetSpec to unambiguously learn a correct

program.

We have developed a prototype of NetSpec and evaluate it on a suite of 26

benchmarks that encompass a wide range of network protocols in different sub-

domains, including network analysis, software-defined networking (SDN), sensor

networks, routing protocols, and consensus protocols. Our experiments demon-

strate that NetSpec can faithfully synthesize most logical specifications in under a

few seconds, with the most complex one in slightly more than 1 minute. In contrast,

state-of-the-art tools GenSynth [87] and Scythe [118] cannot synthesize bench-

marks requiring either aggregation or user-defined functions (10 out of 26), and

benchmarks requiring recursion or user-defined functions (11 out of 26), respec-

tively. Moreover, the specifications synthesized by NetSpec can be directly compiled

into declarative networking [92, 81] for distributed implementations.

To validate NetSpec on actual implementations, we further demonstrate that

NetSpec is able to synthesize logical specifications from actual program execution

traces derived from popular open-source SDN controller implementations written

in Floodlight [58] and POX [97], highlighting its ability to synthesize specifications

for large-scale programs.

Contributions. To summarize, the key technical contributions of this chapter are

as follows:

9

Final

Specification

EXAMPLE
AUGMENTATION

PROGRAM

SYNTHESIZER

User

Legacy

App

Input-Output

Examples

OR

Candidate
Specifications
1

2 5

3

4

Figure 3.1: Architecture of NetSpec.

• We propose a novel synthesis algorithm to efficiently synthesize highly expressive

network specifications from input-output examples. The specifications, expressed

in first-order relational logic, have a variety of uses including verifying, analysing,

and generating implementations.

• Since programming-by-example approaches are susceptible to missing examples,

we develop a novel example generation algorithm to supplement synthesis. It

queries the example provider for new examples that guide the synthesis algorithm

to an unambiguous specification.

• We realize our approach in a tool NetSpec and evaluate it on diverse bench-

marks and use-cases. NetSpec is able to correctly synthesize a wide-range of

network protocols within seconds and is robust to missing examples. Moreover,

we demonstrate that NetSpec outperforms state-of-the-art synthesis approaches

in terms of its expressiveness, and in the quality of its synthesized programs.

3.2 Illustrative Example

In this section, we illustrate the end-to-end operation of NetSpec using the short-

est path routing protocol as an example. The overall architecture of NetSpec is

depicted in Figure 3.1. In Sections 3.2.1, 3.2.2, and 3.2.3, we describe the input-

output examples, the synthesis algorithm, and the example augmentation process

respectively.

10

a

c b

d

2

2

4

6

Figure 3.2: A small network topology as a weighted directed graph (left), its rela-

tional representation (middle), and the expected output (right).

3.2.1 Problem Specification

NetSpec takes two kinds of input: (1) A set of input-output example pairs, where

each pair is consist of a set of input tables, and a set of output tables. These tables

are relational, where each row is interpreted as relational tuples in Datalog. (2)

Optionally, a list of user-defined functions and aggregators that could appear in the

output specification. And NetSpec returns a logical specification, in the syntax of

Datalog, that is consistent with the input-output examples. In the remainder of

this paper, we will use “specification” and “program” to refer to NetSpec’s output

interchangeably.

Figure 3.2 depicts such an example for our shortest path routing protocol. In

this example, one input-output pair is provided. The input table is named link, de-

scribing the network topology as a weighted graph. And the output table is named

bestPath, specifying an optimal path for each pair of source and destination nodes.

Functions including list initialization (l = [x, y]), concatenation (x :: l), and mem-

bership checking (x in l), and aggregators (min and max) are also provided.

From this data, NetSpec automatically synthesizes the declarative logical speci-

fication shown in Figure 2.2. We have expressed the specification using the syntax

11

for Datalog, which we briefly review in Chapter 2. The first two rules specify paths

between pairs of nodes and their associated costs: rule r1 specifies a network link

as a one-hop path, and rule r2 specifies the transitive case. In particular, x::p1

prepends node x to the head of path p1, and !(x in p1) checks that x is not in path

p1, to avoid generating loops and to enforce termination. Rules r3 and r4 select the

path with the minimum cost as the output best path.

This specification provides a high-level abstraction for verifying route conver-

gence properties [117] and explaining route derivations [125]. Similarly, logical

specification of other routing protocols can also be used to reason about network

connectivity under different network dynamics [82, 59].

Despite the simplicity of the final specification, several aspects of the synthesis

problem make it challenging in practice. First, the search space is enormous. For

example, the rule r2 contains 13 variable occurrences, so that there are 13! ≈ 109

ways of filling in its variables even after the rest of the rule structure is fixed. Fur-

thermore, interaction between the rules makes the problem non-compositional, and

techniques which synthesize one rule at a time become inapplicable [90, 52]. Fi-

nally, because input-output examples often under-specify the target concept and

because of the undecidability of program equivalence [20], it is difficult to deter-

mine whether the synthesized specification correctly captures the user’s intent.

3.2.2 Synthesis by Optimization

We organize the synthesis algorithm as an optimization problem and illustrate the

process in Figure 3.3. Each node in the figure represents a candidate program, and

its outgoing edges indicate each of its possible offspring. We highlight critical steps

that lead to the final program and defer details of the algorithm to the next two

sections.

Conceptually, we consider three possible modifications to each candidate pro-

gram: introducing rules, introducing literals within a rule, and introducing aggrega-

12

tion operators. In the rest of this section, we first describe the overall search strategy

for applying the modifications, and then outline each one of the three modification

steps.

Search strategies. The objective function of the optimization problem is based on

two measures of success on a candidate program s:

score(s) = precision(s)× recall(s) (3.1)

In particular, given the set of expected output tuples Oexp, and a candidate spec-

ification s that produces set of output tuplesOret, we calculate precision(s) = |Oexp∩

Oret|/|Oret|, which is the fraction of tuples producedwhich are expected, and recall(s) =

|Oexp ∩Oret|/|Oexp|, which is the fraction of expected tuples which are produced by

the candidate specification. The score(s) is discounted by a γ(s) metric that is a

fraction of columns whose column values are all known given s.

Starting with an empty program, with score 0, the synthesis algorithm repeat-

edly generates offspring programs by applying all mutation strategies, and adds

these offspring into a set of candidate programs. The next program to mutate is

sampled from offspring that have higher scores, or the whole set of candidate pro-

grams when no offspring has a higher score.

In Figure 3.3, the input relation link generates 3 of the 6 expected bestPath tu-

ples in Programs 1 and 2. For instance, the rule bestPath(x,y,p,c):- link(x,y,c),

p=[x,y] has a recall of 0.5 and a precision of 0.75, and has the highest score among

all candidate programs. A red color bestPath tuple denoting the shortest path from

a to c is incorrect and needs to be fixed. Moreover, some bestPath tuples are missing.

In subsequent steps, the candidate program with the highest score is successively

modified to include the transitive rule for paths, and the aggregation operation to

select the optimum weight path. Eventually, the red tuple is corrected, the miss-

ing tuples generated, and we converge on the best paths that matches the given

input-output examples.

We next describe the three modification steps that can be applied to the current

13

Figure 3.3: NetSpec synthesis procedure. On the left is the input table link. The

highlighted blue boxes show the three intermediate programs leading up to the

final solution. The tables underneath describe their respective outputs.

14

best candidate program. Each modification is described by referencing the gener-

ated candidate programs (1–4) in Figure 3.3.

Modification 1: Introducing new rules. The algorithm begins by enumerating

single rule programs which produce at least one expected output tuple. The same

rule generation algorithm is also invoked when the intermediate program fails to

produce a desired output tuple, i.e., it has imperfect recall (less than 1). Each

synthesized rule is chosen so that it produces at least one desirable tuple which is

currently missing. These rules are synthesized by repeatedly introducing literals

(modification 2) to the set of minimal rules, which contain only one head literal

and one body literal, until it produces at least one expected output tuple.

We illustrate this process for the running example in Figure 3.3. Midway through

running the best-first search algorithm after two refinement steps, the precision and

recall of the best candidate program are 0.75 and 0.5 respectively. At this point, the

best candidate program is only able to generate one-hop best paths by virtue of the

rule bestPath(x,y,p,c):- link(x,y,c),p=[x,y] (Program 2). New rules need to be

added so that one can generate outputs for paths that are two-hops and beyond,

and this is done by adding the recursive rule that contains bestPath in the rule

body. Upon adding this new rule, the recall of the resulting output (Program 3)

is increased to 1 although the precision is still not yet 1 (pending one additional

modification to introduce aggregates).

Modification 2: Rule refinement by introducing literals. If the precision of a

candidate program is less than 1, the algorithm adds new constraints to its rules

by introducing literals, or by augmenting them with aggregation operations. By

adding new literals to its rules, the algorithm produces an offspring program s′

which produces a subset of the output tuples produced by the original program s.

To provide some intuition on rule refinement, we consider the scenario shown in

Figure 3.3 where the current best candidate is the partial rule bestPath(x,y,_,c):-

link(x,y,c) (Program 1). Since the third column of the output relation has not yet

15

been specified, the algorithm scores this partial rule by only comparing the remain-

ing columns to the reference output. Intuitively, the partial rule mispredicts the

cost of the (a,c) path, so that the program has a precision of 0.5 and a recall of

0.75. This score is additionally discounted by a factor of γ = 0.75 to account for

incompleteness in output and bias the rule search towards faster rule completion.

At this point, the rule refinement adds a literal p = [x, y] where [] is a path con-

catenation function which is one of the candidate user-defined functions provided

to the synthesis algorithm. Interestingly, with this refinement, while precision is

unchanged in the resulting output (Program 2), γ increases to 1 and all column

values are known.

Observe that this process of adding literals provides flexibility in supporting ar-

bitrary functions because it makes no assumptions about the underlying semantics.

It is also highly efficient because it only considers one literal at a time, instead of

arbitrary combinations of literals.

Modification 3: Aggregation operators. The final way tomodify a program output

is to apply an aggregation operation to produce one of its output columns. Consider

the rule r3 which finds the length of the shortest path between x and y. Informally,

the aggregation operator min first groups the output tuples by their source and

destination nodes, (x,y), and then aggregates over all possible values of c for which

a path exists: path(x,y,_,c). In Figure 3.3, after adding the min aggregate to a

candidate (Program 3), the algorithm converges upon the final solution (Program

4).

3.2.3 The Example Augmentation Process

The synthesis algorithm discovers all programs which are consistent with the input-

output examples up to a maximum depth. When the provided input-output ex-

amples only partially constrain the possible solutions, the algorithm may discover

multiple solutions, all of which are consistent with the data. We show two pos-

16

Figure 3.4: Two solutions of the routing protocol specified with incomplete exam-

ples. The difference is highlighted.

sible solutions to the shortest path routing program in Figure 3.4, and highlight

their difference in yellow. In general, dealing with under-constrained specifications

is a major outstanding challenge in programming-by-example (PBE) systems, and

solution disambiguation is an important contribution of this paper.

One reason for the difficulty of disambiguation is that the equivalence checking

problem for Datalog programs is undecidable [20]. To address this, NetSpec em-

ploys the idea of differential testing from program analysis [86] to repeatedly run

the two programs with randomly perturbed inputs. In our example, by modifying

the link costs, one obtains an input which reveals the difference between the two

programs. We can then request the user to provide the ground truth for this new

example, which will in turn eliminate at least one of the candidate solutions. The

process repeats until only one program remains, or NetSpec fails to generate a dis-

tinguishing input among the programs. In this latter case, NetSpec produces the

simplest program as the final solution. Because the enumeration process is biased

towards smaller programs, and because the tie-breaking routine favors the syntac-

tically smallest solution, in practice NetSpec produces small programs that are also

readily interpretable and resistant to over-fitting.

17

3.3 Problem formulation

The specification synthesis problem is defined as follows. Given a set of input tu-

ples I, a set of output tuples O, and a set of library functions F , return a Datalog

(Chapter 2) program p such that p(I) = O, and p is constructed using the relations

in I and O, and functions in F .

Note that to ensure well-founded semantics (Datalog programs with negations

should be stratified [20, Chapter 15]), NetSpec only applies negations to input rela-

tions or functions, e.g., to function in in rule r2. In addition, to keep the synthesis

task tractable, NetSpec applies the following syntactic restrictions to each rules:

1. Each rule can have at most 2 literals of the same relation. For example, a rule

h(x,w) : −p(x, y), p(y, z), p(z, w) would not be generated by NetSpec because

it has 3 literals of relation “p”.

2. A negation literal can have at most 2 bound variables. For example, literal

!p(a, b, c)would not be added to rules, because it has 3 bound variables (a, b, c).

But literal !p(a, b, _) could be added.

3. At most one aggregation is used in each program.

4. Aggregation can only be applied in the head of a rule. For instance, applying

min in rule r3 yields the minimum cost c over all paths between each pair of

nodes x and y in the input network.

5. A user-defined function’s result can only be used in the head of a rule, e.g.,

the result of + in rule r2.

18

Algorithm 1 Synth(I, O, F). Given a set of input tuples I, expected output tuples

O, and a library of functions F , produces all consistent programs.

1. Initialize the set of solutions, S := ∅, the set of candidate programs,Q := {P0},

and the current program P := P0, where P0 is the empty program.

2. While Q ̸= ∅, do:

(a) Let Offspring(P) = {P ′
1, P

′
2, . . . } be the offspring of P , computed accord-

ing to Equation 3.2.

(b) Update the set of solutions, and add all remaining programs for further

enumeration:

S := S ∪ {P ′ ∈ Offspring(P) | score(P ′) = 1}, and

Q := (Q \ P) ∪ {P ′ ∈ Offspring(P) | score(P ′) > 0}.

(c) Sample the next program to explore:

HS := {P ′ ∈ Offspring(P) | score(P ′) > score(P)}

HR := {P ′ ∈ Offspring(P) | recall(P ′) > recall(P)}

P :=


Sample(HS, P) if HS ̸= ∅

Sample(HR, P) else if HR ̸= ∅

Sample(Q,P) otherwise.

3. Return S.

19

3.4 Synthesis Algorithm

Offspring(P) = OD(P) ∪OC(P) ∪OA(P), where (3.2)

OD(P) =

AddRule(P) if recall(P) < 1, and

∅ otherwise,

OC(P) =

ExtRule(P) if precision(P) ≤ 1, and

∅ otherwise, and

OA(P) =


MkAgg(P) if precision(P) ≤ 1 and

recall(P) = 1, and

∅ otherwise.

We present the top-level synthesis procedure in Algorithm 1. It takes only a

set of input tuples (I), and a set of output tuples (O), and we will explain how

to support multiple instances of input-output example pairs in section 3.4.4. As

described in Section 3.2, it models an optimization problem in the Datalog program

space, where each state is a program. And the objective function score(p) is defined

as the product of precision(p) and recall(p).

At each iteration, the algorithm explores the program space by mutating the

current program P , which gives rise to several offspring (step 2a). Offspring(P) is

defined in equation 3.2, where the D, C, and A subscripts indicate the generation

of offspring by adding new rules (disjunctions), extending existing rules (conjunc-

tions), and by applying aggregation operators, respectively. The conditions to apply

each of these mutation strategy are based on the semantics of Datalog. Both adding

clause in a conjunction rule, and aggregate the output of current program, mono-

tonically decrease the size of program output (number of tuples), thus may improve

precision, but may also lower recall at the same time. Thus they are only applied

when the program has imperfect precision. Adding a rule, on the contrary, mono-

20

tonically increase the size of program output, and could potentially improve recall,

but lower precision at the same time. Therefore it is only applied when the program

has imperfect recall. In addition, we assume the program space where only one ag-

gregator is used, thus we wait until all necessary rules are added to reach perfect

recall before applying aggregation.

In step 2b, offspring with score 1 are added to the solution set S. Offspring with

score 0 implies that it produces no desired output (P (I)∩O = ∅). Such offspring are

discarded, based on the previous observation that, applying ExtRule orMkAgg to a

program monotonically decreases the output size of the program. This means that

further extending any rule of this program would not produce any desired output,

except adding new rules. In addition, we assume that in all solution programs, every

non-aggregate rule directly contributes to some output in O. Therefore, only rules

with non-zero score (P (I) ∩ O ̸= ∅) are added into the set of candidate programs

(Q) for further mutations.

In step 2c, the next program to explore is sampled probabilistically. When there

are offspring with higher score or higher recall, these offspring will always be cho-

sen as the next program to explore. Otherwise, it samples from the whole set of

candidate programs Q. The sub-routine Sample(Q,P) is described in algorithm 2.

Borrowing the idea in simulated annealing, it iteratively samples a candidate P ′ ∈ Q

uniformly, and accept it with probability computed by equation 3.3. Intuitively,

when a candidate program has higher score than current program, it is accepted

with probability 1. Otherwise, it is accepted with probability between 0 to 1, de-

pending on how worse its score compared to the current program.

The rest of this section describes each of these mutation strategies, and formal

properties of the synthesis algorithm.

3.4.1 Adding and extending Rules

The AddRule(P) procedure enumerates all minimal rules and generate offspring by

21

Algorithm 2 Sample(Q,P). Given a set of candidate programs Q, the current pro-

gram P , return a program P ′ ∈ Q.
For k ∈ {1, 2, ..., Kmax}, do:

1. Uniformly sample a program P ′ from Q.

2. Compute acceptance probability of P ′:

s0 := score(P), s1 := score(P ′)

T := 1− k

Kmax

Pr[accept P ′] :=

1 if s1 > s0

exp(− s0−s1
T

) otherwise
(3.3)

3. If Pr[accept P ′] ≥ random(0, 1):

• return P ′

22

adding one minimal rule to P . A minimal rule is a rule that has only one literal in

the body, and the head only have one field bound to the body, with all remaining

fields being empty place holders (“_”). In the short-path routing example, one of

the minimal rules is:

r_0: bestPath(x,_,_,_) :- link(x,_,_).

Let MinimalRules be the set of all minimal rules obtained from the given input and

output relations, AddRule(P) is defined as:

AddRule(P) := {(P ∪ r)|r ∈ MinimalRules} (3.4)

Next we introduce “ExtRule(P)” procedure, which further contains two atomic

operations on a rule, namely “AddLiteral(r)” and “AddBinding(r)”. They are defined

as:

AddLiteral(r) = {r ∧ l|r ∈ P, l ∈ L} (3.5)

where L is the set of all literals whose relation is from the set of all input relations,

output relations, and user-defined functions, and contains only empty place holders

“_”. r ∧ l represents a new rule by adding literal l in conjunction with r’s body.

Continuing on the example on shortest-path routing, one of the new rules generated

by “AddLiteral(r0)” is:

r_1: bestPath(x,_,_,_) :- link(x,_,_), bestPath(_,_,_,_).

where bestPath(_, _, _, _) is a literal instantiated from the output relation bestPath.

Next, “AddBinding(r)” is defined as follow:

AddBinding(r) ={r ∧ (v1 = v2)|v1, v2 ∈ r (3.6)

∧ dom(v1) = dom(v2)}

where v1, v2 ∈ r means that variable v1 and v2 appear in the rule r, and dom(v) is

the domain of variable v, as specified in the schema of the literal where v appears.

As an example, we show one of the rules generated by “AddBinding(r1)”:

23

r_2: bestPath(x,_,_,_) :- link(x,z,_), bestPath(z,_,_,_).

where the second variable in literal link is bound with the first variable in literal

bestPath in the body. Note that instead of explicitly add a predicate that match two

variables as: bestPath(x, _, _, _) : −link(x, v1, _), bestPath(v2, _, _, _), v1 = v2., we

rename v1 and v2 to z for brevity.

Putting them together, “ExtRule(P)” generates all programs resulted from ap-

plying either “AddLiteral” or “AddBinding” to any one of the rules in program P .

“ExtRule(P)” is defined as:

ExtRule(P) ={(P \ r) ∪ r′|r ∈ P, (3.7)

r′ ∈ (AddLiteral(r) ∪ AddBinding(r))

3.4.2 Evaluating partial programs

When applying AddRule(P) and ExtRule(P), we will have partial rules in the pro-

gram queue. By partial rule we mean rules that have empty place holders in the

head. We further define partial programs as programs that contains at least one

partial rule.

As an example, consider the four-place bestPath(x, y, p, c) relation, and a

partial rule as the following:

rp1: bestPath(x, y, _, _) :- link(x, z, _), bestPath(z, y, _, _).

Notice that this rule only produces the first two columns of the output relation, the

source node and and the destination node, but does not produce the remaining two

columns, the optimum path, and its length.

As a consequence, programs with these partial rules, such as P∪{rp1}, cannot be

directly compared to the entire reference output O, and we are instead only able to

compare its first two columns to πsrc,dest(O), borrowing the notation for projections

from relational algebra.

24

Table 3.1: Example of scoring a partial program Pr. It contains a partial rule r,

where only two fields in the head are determined, thus only two columns are gen-

erated by this rule. Precision is 0.86 because 6 out of the 7 output tuples are desired

(in O ∪ πc(O)). Recall is composed of two parts, the complete tuples (3 in green

box), and the partial tuples (3 in red box). The recall on the partially generated

output is discounted by factor 0.5 because only 2 out of 4 columns are generated.

Putting them together, the total recall is 3+3×0.5
6

= 0.75.

This leads us to the following definition of precision and recall for partial pro-

grams Pr:

precisiond(Pr) =
|Pr(I) ∩ (O ∪ πc(O))|

|P (I)|
, (3.8)

O′ = {t ∈ (O \ P (I))| πc(t) ∈ P (I)}

recalld(Pr) =
|P (I) ∩O|+ γ|O′|

|O|
(3.9)

where πc is the projection operator that project to the columns that have been bound

on the partial rule’s head, The set O′ is the subset O that are not in P (I), but

whose projection on columns c appear in P (I), we visualize this set computation in

Table 3.1.

25

3.4.3 Introducing Aggregation Operations

Algorithm 3 MkAgg(P). Produces offspring of P by introducing aggregation oper-

ators.

1. Let F be the family of aggregation operations, and Let C be the set of all

columns in output relation R.

2. For each operator op ∈ F , for each subset Cagg ⊆ C, and for each aggregation

column f ∈ C \ Cagg, construct the offspring program P ′: First rename the

output relation R of P to Rbase, and let Crem be the remaining columns C \

Cagg \ {f}. Then add the following two rules.

Ropt(Cagg, fopt) :- Rbase(Cagg, fopt, _),

fopt = op f: Rbase(Cagg, f, _).

R(Cagg, fopt, Crem) :- Ropt(Cagg, fopt),

Rbase(Cagg, fopt, Crem).

3. Return all offspring produced in Step 2.

Algorithm 3 describes MkAgg Procedure. Recall the third program in our run-

ning example of Figure 3.3:

r1: bestPath(x, y, p, c) :- link(x, y, c), p = [x, y].

r2: bestPath(x, y, x::p, c1 + c2) :- link(x, z, c1),

bestPath(x, y, p, c2), !(x in p1).

This program correctly predicts the reachability relation, but it produces additional

incorrect paths, i.e., it has perfect recall but imperfect precision. In this case, NetSpec

attempts to remedy the situation by introducing aggregation operators. It intro-

duces two new rules, which may be informally interpreted as follows: The first rule

selects a subset of columns (in this case, the source node x and the destination

node y), and performs an aggregation on another column (in this case, computing

26

the minimum of all path weights which share the source and destination nodes).

The second rule then selects the values of the remaining columns which lead to

this maximization or minimization objective. Thus, after mutation, the following

program is added to the queue:

r1: path(x, y, p, c) :- link(x, y, c), p = [x, y].

r2: path(x, y, x::p, c1 + c2) :- link(x, z, c1),

bestPath(x, y, p, c2), !(x in p1).

r3: minPath(x, y, mc) :- path(x, y, _, mc),

mc = min c: path(x, y, _, c).

r4: bestPath(x, y, p, mc) :- minPath(x, y, mc),

path(x, y, p, mc).

3.4.4 Supporting multiple input-output example pairs

So far our algorithm description is based on one set of input tuples (I) and one set of

output tuples (O). To support multiple instances of examples, NetSpec introduces

an additional field ‘InstanceID’ to every tuple, which indicates the particular exam-

ple instance that the tuple belongs to. Tuples across different instances are then

combined into one set of input tuples (I), and one set of output tuples (O), respec-

tively. During the rule search process, NetSpec only generates rules that bind all

‘InstanceID’ fields to one single variable. For example, a rule generated by NetSpec

would look like the following:

h(v1,v2,i) :- p1(v1,v3,i), p2(v3,v2,i).

where all variables for ‘InstanceId’ field are bound to the same name i. Thus, the

synthesis problem with multiple example instances is reduced to one with single

instance, which is solved by Algorithm 1.

27

3.4.5 Soundness and completeness

Theorem 3.4.1 (Soundness). Given a set of input tuples and a set of output tuples

(I,O), when NetSpec terminates, its output S satisfies the following property:

∀p ∈ S, p(I) = O. (3.10)

Proof sketch. In algorithm 1, a program p is added to solution set S if and only if

score(p) = 1 (step 2b). To prove Theorem 3.4.1 suffice to show that:

score(p) = 1 =⇒ p(I) = O (3.11)

where score(p) is defined in equation 3.1. By the definition, when score(p) = 1,

program output p(I) has perfect precision and recall on the reference output O.

This implies that p(I) = O.

Next, we state the completeness property. We first define the program space,

using the following definitions:

Definition 3.4.2 (Empty program). Program p is an empty program if and only if it

consists of no rule.

Definition 3.4.3 (Successor relation). Let→ be a binary relation on the set of Datalog

programs:

p→ q ⇐⇒ q ∈ Offspring(p) (3.12)

Let→∗ be a binary relation on the set of Datalog programs:

p→∗ q ⇐⇒ p→ p1 → ...→ pn → q (3.13)

where n ≥ 0.

Definition 3.4.4 (Output-contributing rule). Given a set of input tuples and a set

of output tuples (I,O), a rule r in a program p is an output-contributing rule if r’s

evaluation result on input I intersects with O.

28

A special case is for programs with aggregations (either argMax or argMin). If

r’s output is aggregated, then r’s result is compared with renamed tuples in O,

whose relations are renamed as r’s output relation. In the shortest-path example

(Figure 2.2), path relation is aggregated into bestPath, when determining if r1 is

contributing to output, we rename relations of tuples in O from bestPath to path,

and then check intersection. If r is an aggregation rule, because NetSpec introduces

an aggregation (min or max) rule and a selection rule simultaneously to achieve

argMin or argMax semantics, r’s output is interpreted as the derivation result of

both aggregation and selection rules. If the shortest-path example, r3 and r4 are

introduced simultaneously, and they are both considered output-contributing rules

if the derivation results of r4 intersects with O.

All solutions of NetSpec contain only output-contributing rules. Because, during

the rule extension phase in algorithm 1, a candidate program is discarded if the

newly extended rule does not produce desired output.

Definition 3.4.5 (Program space). Given a set of input tuples and a set of output

tuples (I,O), and a set of user-defined functions, let Pc be the set of Datalog programs

that contain only output-contributing rules (definition 3.4.4). The program space is

defined as programs in Pc that are descendants of the empty program p0:

{p ∈ Pc| p0→∗ p} (3.14)

Theorem 3.4.6 (Weak completeness). For all input-output tables (I,O), if there exists

a program p in the program space (definition 3.4.5), such that p terminates on input

I within a time bound T , with output O, then NetSpec always returns a solution set S,

which contains at least one such program p. Otherwise, it returns an empty solution

set S = ∅.

This is completeness theorem is “weak” because it assumes a smaller program

space (programs where each rule derives some output tuples, definition 3.4.5) than

29

the full program space {p|p0 →∗ p}. Appendix A.1 shows the proof sketch of

Theorem 3.4.6.

3.5 Handling Incomplete Examples

We now describe the example augmentation process. Given an initial set of input-

output examples, when multiple satisfying programs are found, NetSpec searches

for a new input example that can differentiate these candidate programs, and asks

the user to specify the expected output for this new input example. By actively

querying the user for feedback, this allows the system to robustly learn programs

even from a set of initially under-specified examples.

Algorithm 4 Sample(). Samples new input tuples for disambiguation.

1. Initialize the set of input tuples I := ∅.

2. For each input relation R:

(a) Uniformly sample the number of tuples, n ∈ {1, 2, . . . , nmax}, where nmax

is the upper bound on the size of the sampled tables.

(b) Sample n tuples, t1, t2, . . . , tn, where each ti = (c1, c2, . . . , ck), all con-

stants being uniformly sampled, and where k is the arity of the relation

R.

(c) Insert t1, t2, . . . , tn into IR.

3. Return I.

We describe the core example sampling process in Algorithm 4. In particular, in

step 2a), nmax is the maximum of the table sizes in the initial example input I. In

step 2b), constants are uniformly sampled from the set of all constants, that appear

in the initial example input I.

30

Given a set of candidate programs P1, P2, . . . , Pn which are consistent on the ini-

tial example input I (i.e., P1(I), P2(I), ..., Pn(I) match the initial example output),

we repeatedly run the sample procedure to obtain k new example inputs, I1, I2, . . . ,

Ik. We then choose an example input Iq ∈ {I1, I2, . . . , Ik} for the user to label the

corresponding example output, as follows:

Iq = argmax
Ij

(−
∑
O

pO log(pO)), (3.15)

where O ranges over the set of example outputs {P1(Ij), P2(Ij), . . . , Pn(Ij)}, and pO

is the fraction of the candidate programswhich produceO as output. Bymaximizing

the entropy of the new example, we eliminate as many programs as possible after

user feedback. We illustrate this using n = 4 candidate programs and k = 3 sampled

examples {I1, I2, I3} 1 such that:

1. The programs are consistent on I1. Then,O ranges over a singleton set of outputs

and pO = 1, so the score of I1 is −(1 · 1 · log(1)) = 0.

2. The programs are 50-50 split on I2. Then, O ranges over a set of two distinct

outputs and pO = 0.5, so the score of I2 is −(2 · 0.5 · log(0.5)) ∼ 0.69.

3. Each program produces a unique output on I3. Then, O ranges over a set of four

distinct outputs and pO = 0.25, so the score of I3 is −(4 · 0.25 · log(0.25)) ∼ 1.38.

Thus, I3 would be selected as the new example, which corresponds with the in-

tuition that user feedback would eliminate the most (i.e. 3 out of 4) candidate

programs.

We repeat this procedure until the remaining programs can no longer be distin-

guished by the sampled inputs. This approach is similar to the query-by-committee

method [103] and enables NetSpec to rapidly converge to the final solution.

Theorem 3.5.1. Assume NetSpec is always able to disambiguate candidate programs,

and that the user always gives correct answers to NetSpec’s queries, if there exists a so-
1Concrete examples: https://github.com/HaoxianChen/netspec/blob/master/docs/

active-learning-example.md

31

https://github.com/HaoxianChen/netspec/blob/master/docs/active-learning-example.md
https://github.com/HaoxianChen/netspec/blob/master/docs/active-learning-example.md

lution p in the program space (Definition 3.4.5), then NetSpec always returns solutions

that are logically equivalent to p after active-learning.

Proof sketch. By theorem 3.4.6, p is always in the solution set S after every iter-

ation of synthesis. By the assumption that NetSpec is always able to disambiguate

candidate programs, a new queries will always be generated to differentiate p from

other solutions, until all programs in S are logically equivalent. Therefore, when

NetSpec terminates, all solutions are logically equivalent to p.

3.6 Implementation

NetSpec is implemented in Scala and comprises∼ 3.5K lines of code. 2 It uses Souf-

fle [110] as the backend Datalog interpreter to validate the candidate specifications.

In this section, we discuss implementation details regarding how NetSpec handles

non-terminating candidate specifications, and how it synthesizes specifications with

constants.

Handling non-terminating specifications. During the synthesis process, NetSpec

could encounter non-terminating specifications in the presence of recursion and

user-defined functions. For example, consider the following candidate which NetSpec

encounters in the process of synthesizing the routing example in Section 3.2.1:

// compute available paths

r1: path(x,y,p,c) :- link(x,y,c), p=[x,y].

r2: path(x,y,x::p1,c1+c2) :- link(x,z,c1),

path(z,y,p1,c2).

This specification does not terminate when the input network topology represented

by the link relation contains a cycle, since both :: (list prepend) and + (integer

addition) used in the recursive rule r2 generate new values every time the rule is
2NetSpec is available at: https://github.com/HaoxianChen/netspec

32

https://github.com/HaoxianChen/netspec

evaluated. NetSpec handles such specifications by halting the specification inter-

preter after a timeout period, and considers their output to be empty.

Generating constants in specifications. Many network specifications in practice

require constants. For example, in an SDN firewall specification, the controller ap-

plication monitors and responds only to a certain port. Such a specification cannot

be synthesized without the use of constants. On the other hand, naively adding con-

stants into the specification can lead to over-fitting it to the provided input-output

examples.

To distinguish specifications where constants are fundamentally needed from

those which can be realized symbolically, NetSpec employs a fail-over mechanism:

it embarks by only searching for symbolic specifications; when it exhausts the candi-

date program queue and fails to find a solution, it switches to use constants from the

input-output examples. In experiments where NetSpec learns specifications from

execution traces (Section 3.7.3), all firewall applications monitor certain ports on a

dedicated switch. On their traces, the fail-over mechanism is triggered and NetSpec

synthesizes specifications with constants on the switch and port field.

3.7 Evaluation

Our evaluation aims to answer the following four questions:

1. Expressivity. Is NetSpec able to synthesize a wide range of network specifica-

tions correctly, and how does its coverage compare to state-of-the-art synthesis

tools?

2. Efficiency. Can NetSpec synthesize a network specification in reasonable time

(on the order of seconds)?

3. Robustness. Is NetSpec robust to input-output example quality, in particular,

can it handle incomplete examples?

33

4. Scalability. Can NetSpec learn specifications from examples derived from a large

volume of execution traces? Note that this question goes beyond performance

to also capture NetSpec’s ability to debloat legacy applications.

Benchmarks. 3 We survey the use of declarative specifications from literature,

and organize them into five categories: network analysis, SDN, sensor networks,

consensus protocols, and routing protocols. Network analysis refers to prior work

on formalizing reachability and other correctness properties in networks [29, 82,

92]. SDN specifications are from works on verifying correctness of controller pro-

grams [30, 92]. Sensor network specifications are based on a declarative sensor

network system [50]. Consensus protocols [24] and distributed routing are based

on declarative specifications targeted for distributed execution [81, 50], and verifi-

cation [59, 54, 117]. Table 3.2 shows the list of benchmark specification and their

characteristics.

Input-Output example generation. To provide examples free of bias to any synthe-

sizer, we manually read through the documentations for each benchmark protocol,

and come up with input-output examples that cover all the use scenarios described

in the documentations. The example size is measured by the number of input-

output example instances (i.e. groups of input-output tables), and the number of

total tuples (i.e., number of rows in relational tables) in all instances, as shown in

the “#Examples” column in Table 3.3.

Result validation. A synthesis result is correct if it is identical to the reference

specification after two modifications: (1) variable renaming, and (2) removing re-

dundant predicates and rules (if any). We manually validate all experiment results.

Reference [14] illustrates how each benchmark is validated, and has synthesis re-

sults of all experiments. Modification (1) dominates the validation process and a

few results require modification (2). In the remainder of this section, we refer to
3The full list of benchmarks: https://github.com/HaoxianChen/netspec/tree/master/

benchmarks

34

https://github.com/HaoxianChen/netspec/tree/master/benchmarks
https://github.com/HaoxianChen/netspec/tree/master/benchmarks

Table 3.2: Benchmark specifications. The features of recursion, aggregation, and

UDFs are highlighted in the “Features” columns.

Category Specification
Features Relation

recur. agg. UDF input output

Network reachable ✓ 1 1
analysis path ✓ ✓ 1 1

path-cost ✓ ✓ 1 1
publicIP 4 1
subnet 4 1
sshTunnel ✓ 1 1
protection 3 1
locality 3 1

SDN learning-switch 2 3
l2-pairs 2 3
stateless-firewall 3 2
stateful-firewall 5 3
firewall-l3 6 3
firewall-l3-stateful 5 3

Consensus 2pc ✓ 5 2
protocol paxos-acceptor 3 3

paxos-proposer 4 1
paxos-quorum ✓ ✓ 2 1
paxos-maxballot 2 1
paxos-decide 2 1

Routing shortest-path ✓ ✓ ✓ 1 1
protocol least-congestion ✓ ✓ ✓ 1 1

ospf ✓ ✓ 2 1
bgp ✓ ✓ 2 1
tree ✓ ✓ 1 1
min-admin ✓ ✓ 2 1
rip ✓ ✓ 3 1

Sensor evidence 2 1
network store 2 1

temperature-report 6 2

Wireless dsdv ✓ 4 1
routing dsr-rreq 2 2

dsr-rreq 2 2
dsr-rerr 3 1

35

such results as validated solutions.

The rest of the section are structured as follows. In Section 3.7.1, we evaluate

NetSpec’s expressivity and efficiency by comparing with state-of-the-art program

synthesis tools. In Section 3.7.2, we evaluate NetSpec’s robustness to input-output

example quality, on benchmarks with insufficient examples. In Section 3.7.3, we

evaluate NetSpec’s scalability on execution traces that consist of thousands of ex-

amples.

3.7.1 Synthesis Expressivity and Efficiency

We first evaluate expressivity and synthesis efficiency given sufficient examples. We

compare NetSpec to two state-of-the-art tools, Facon [45] and GenSynth [87].

Applicable benchmarks. Like NetSpec, both Facon and GenSynth operate on rela-

tional input-output data. However, they are less expressive: neither tools support

UDFs and aggregation. Therefore, we only run these tools on benchmarks that

they apply to. In addition, some of the original benchmark specifications may have

insufficient examples, i.e. missing corner cases and resulting in incorrect specifi-

cations. To evaluate synthesis efficiency and compare with baselines that do not

augment examples, this section focuses on benchmarks with sufficient examples for

this experiment (Table 3.3), where NetSpec returns validated solutions for at least

8 out of 10 repeated runs. We will revisit applications with insufficient examples in

Section 3.7.2.

In addition, GenSynth does not support multiple instances of examples. We

therefore combine the multiple instances into a single instance by unioning tuples

that belong to the same relation into the same table. We avoid introducing spurious

correlations across the original instances by renaming constants appropriately. Note

that this process is challenging to automate since certain constants (e.g. port num-

bers) are global and must not be renamed. This highlights the benefit of supporting

multiple example instances as well as constants in NetSpec.

36

Performance metric. We measure NetSpec’s expressivity in terms of coverage of

different network specifications from the areas of network analysis, SDN, sensor net-

works, consensus protocols, and routing protocols. To evaluate synthesis efficiency,

we measure the end-to-end synthesis time, on a server with 32 2.6GHz cores and

125GB memory. Both NetSpec and Facon run in single thread. GenSynth, however,

often runs indefinitely long in single thread, due to its high degree of nondetermin-

ism. Therefore, we run GenSynth in 8-thread mode in order to obtain results within

20 minutes each.

Results. Table 3.3 summarizes our overall results. Focusing on the first two criteria

of expressivity and efficiency, our main takeaways are as follows:

Expressivity. NetSpec successfully synthesizes all 23 benchmarks in Table 3.3,

spanning different types of network protocols. On the other hand, due to lim-

ited language feature support, competing solutions such as Facon [45] and Gen-

Synth [87] support only 9 benchmarks. In addition, Facon fails to synthesize the

locality benchmark because it lies outside of Facon’s program search space, which

only contains Datalog rules where each relation appears at most once. Both Fa-

con and GenSynth fails to synthesize learning-switch benchmark due to the lack of

support for negation.

Efficiency. NetSpec is highly efficient. NetSpec finishes most benchmarks within

one minute, with the exception of path-cost and the RIP protocols, which takes 92

seconds and 3 minutes respectively. On the other hand, Facon is only able to syn-

thesize 8 out of 10 applicable benchmarks, and in fact, two benchmarks timed out

after 20 minutes. Compared to GenSynth, NetSpec consistently finishes faster on

all applicable benchmarks, except reachable and sshTunnel, where NetSpec takes

6 seconds and 3 seconds longer respectively. This is impressive since NetSpec runs

in single thread whereas GenSynth in 8.

Benefits of component-based synthesis. Our benchmarks also showcase the ben-

efits of synthesis in a component-based fashion. We describe case studies based

37

Table 3.3: Synthesis results for benchmarks where the original examples are suffi-

cient. The effort of specifying examples is described by the number of input-output

instances and the total number of rows in all instances. Both synthesis time and

output sizes are average across 10 runs. NS., Fa., and GS. stand for NetSpec, Facon

and GenSynth respectively. In the “Time” column, ×means the tool terminates and

finds no solution, and TO means the tool times out after 20 minutes. For bench-

marks where the tool is inapplicable, the time and size entries are left empty.

Category Specification Examples Synthesis time (s) Output size (#rules)
#Inst. #Rows NS. Fa. GS. NS. Fa. GS.

Network reachable 1 42 17 1 11 2 2 2
analysis path 1 15 23 2

path-cost 3 17 92 2
publicIP 1 17 5 5 12 1 1 1
sshTunnel 1 25 11 1 8 2 2 3
locality 5 21 2 x 14 1 1

SDN learning-switch 4 15 6 x x 3
stateless-firewall 2 9 2 1 66 3 3 3
firewall-l3 14 76 12 TO 199 5 6

Consensus paxos-acceptor 5 14 7 4
protocol paxos-quorum 2 19 36 1

paxos-maxballot 1 8 3 3
paxos-decide 2 5 1 1

Routing shortest-path 1 10 14 4
protocol least-congestion 1 15 24 4

ospf 1 14 8 3
bgp 1 11 4 3
rip 1 18 180 4

Sensor evidence 1 5 1 1 4 1 1 1
network store 1 7 1 1 6 1 1 1
Wireless dsr-rrep 2 5 2 2
routing dsr-rreq 2 6 1 1

dsr-rerr 1 6 1 1

38

on two protocols: PAXOS (paxos-* in the Table 3.3) and DSR (dsr-*) in Table 3.3.

The original specification of PAXOS lies contains two layers of aggregations (first

count the votes to determine which ballot has a quorum, and then decide a value

by choosing the one with the maximum ballot value). In normal circumstances,

this is beyond NetSpec’s search capabilities since it can only synthesize programs

with at most one layer of aggregations. However, by breaking PAXOS into different

components, synthesis is not only possible but done efficiently.

DSR, on the other hand, can be synthesized as one monolithic protocol. Yet, by

breaking its synthesis into component modules, it significantly reduce the number

of examples to sufficiently specify the protocol. DSR handles three different kinds

of input messages independently, thus it gives the opportunity to break down the

synthesis task into independent modules. For example, when synthesizing a rule

to process route request message, the synthesizer does not need to consider any

input value of a route error message. On the other hand, if examples for all types

of message handling are combined together, although NetSpec can still efficiently

find a solution, but it will generate a lot of invalid solutions (consistent with input-

output examples but not equivalent to the reference solution) due to the larger

program space. We note that component-based synthesis strategy for DSR is not

only complete, but also highly efficient.

3.7.2 Robustness to Insufficient Examples

We evaluate NetSpec’s robustness to insufficient examples on two kinds of bench-

marks: (1) benchmarks with insufficient examples (Table 3.4); (2) benchmarks

with sufficient original examples, but some of the examples are randomly dropped

to test NetSpec’s limit (Figure 3.6).

Handling insufficient examples. For each benchmark in Table 3.4, we run NetSpec

with active learning, which iteratively queries the user with extra input examples,

until it finds no ambiguities in the examples.

39

1 10 100
1,000

10,000
100,000

1,000,000

Random samples

0

5

10

Su

cc
es

s b
en

ch
m

ar
ks

Figure 3.5: NetSpec solves more benchmarks as the number of random samples in

active learning increases.

To determine the number of random samples in active learning phase (Sec-

tion 3.5), we gradually increase the sample number from one to a million, and

measure the number of benchmarks solved by NetSpec. Due to the randomness

of the active learning algorithm, a benchmark is determined successful if NetSpec

returns validated solutions in all 10 repeated experiment runs.

Figure 3.5 shows the results, where NetSpec’s performance saturates at 100K

samples, with 15 out of 18 benchmarks succeeding. The remaining three bench-

marks involve the most complex specifications. They timed out and return incorrect

specifications (consistent with input-output examples but different from the refer-

ence). The time bound is introduced because NetSpec is designed for interactive

use. Recall that the active-learning phase involves multiple iterations of specifica-

tion synthesis and new input example generation, whose output is annotated by

protocol designers. Since increasing the sampling parameter beyond 100K does

not reduce the end-to-end time (i.e. does not helping to solve more benchmarks

within the time budget), we use 100K as the number of random samples for our

remaining experiments, and the default value for this parameter. Users could also

determine this parameter value for problems in their domains via the same experi-

40

ment procedure.

Table 3.4: Active learning results for benchmarks that needs example augmentation.

NetSpec runs active learning to augment the input-output examples and finds the

validated solutions. In the “#Queries” column, “med.” and “max” stand for median

and maximum. Column “Time” shows the average end-to-end time. “TO” means

timing out after 1 hour. Column “Output size” reports the size of the synthesized

specification, measured in the number of Datalog rules.

Category Specification # Examples # Queries Time (s) Output size
#Inst.#Rows med. max (#rules)

Network subnet 7 27 3 6 43 1
analysis sshTunnel 1 25 2 4 243 2

protection 2 19 3 11 45 1
locality 5 21 9.5 16 154 1

SDN learning-switch 4 15 6.5 10 65 3
l2-pairs 6 23 7.5 10 90 4
stateful-firewall 15 78 18.5 26 367 5
firewall-l3-stateful 13 68 12.5 15 189 4

Consensus 2pc 8 129 30 48 TO 2
protocol acceptor 5 14 19.5 26 430 4

proposer 7 26 31.5 35 723 2
Routing ospf 1 14 5.5 9 2,736 3
protocol bgp 1 11 6 10 2,945 3

tree 1 15 2 3 1,841 4
min-admin 1 8 6 8 1,591 3
rip 1 18 4 8 TO 4

Wireless dsdv 6 23 17.5 28 TO 4
Sensor temperature-report 10 34 42.5 52 474 2

Table 3.4 shows the detailed statistics of the active learning experiments. The

number of queries varies across different benchmarks, with the median ranging

from 2 to 42.5. Similarly, the end-to-end time ranges from 43 seconds to 2,945

seconds across benchmarks.

41

1 2 3 4 5 6
Drop examples

0

2

4

6

Qu

er
ie

s

(a) subnet queries

1 3 5 7 9 11 13
Drop examples

0
2
4
6
8

10
12

Qu

er
ie

s

(b) firewall-l3 queries

1 2 3 4 5 6 7 8
Drop examples

0
10
20
30
40
50

Qu

er
ie

s

(c) temp. report queries

1 2 3 4 5 6
Drop examples

0
10
20
30
40
50

Ti
m

e
(s

)

(d) subnet time

1 3 5 7 9 11 13
Drop examples

0

50

100

150

200

Ti
m

e
(s

)

(e) firewall-l3 time

1 2 3 4 5 6 7 8
Drop examples

0

500

1000

1500

Ti
m

e
(s

)

(f) temp. report time

Figure 3.6: Randomly drop examples.

For the three benchmarks (2pc, rip, and dsdv) that timed out, their relations

compose a much larger program space (rules with many predicates and aggrega-

tors), and thus more examples are needed to unambiguously specify a program.

This results in too many iterations in active learning, which is a limitation of input-

output example based interface. Synthesizing correct specifications for them re-

quire either reducing the number of queries or improving synthesis efficiency, which

remains an interesting avenue of future work.

Randomly omitted examples. We further stress test NetSpec by randomly drop-

ping examples. Three benchmarks with at least seven examples are chosen for this

experiment. For each of them, examples are dropped incrementally until reaching

the most extreme case, where every output relation appears in only one example

instance. Otherwise, an output relation is missed from all examples, and NetSpec

would skip synthesizing rules for the relation, thus returning an incomplete pro-

gram.

42

Figure 3.6 presents the distributions of the number of queries and the end-to-end

active learning times for each benchmark across ten repeated runs. The number

of queries shows positive correlation with the number of dropped examples with

one exception. Benchmark “temperature-report” shows weaker correlation because

each active learning run takes more queries (40± 5) than the original example set

size (9). Hence, the impact of dropping examples is weaker than benchmarks where

the overall number of queries are smaller.

For relationship between end-to-end time and the number of dropped examples,

“firewall-l3” shows strong positive correlation. The “temperature-report” shows no

such correlation, which is expected since its query numbers is not correlated with

the number of dropped examples (Figure 3.6c). On the other hand, for the “sub-

net” benchmark, although the number of dropped examples has strong correlation

with the number of queries (Figure 3.6a), the correlation with time (Figure 3.6d)

is weaker. This is because the end-to-end time is dominated by the synthesis time

of the final few runs (where examples are almost sufficient). The earlier runs are

fast because, with just a few examples left, NetSpec can quickly find superficial

solutions and query new examples. When examples are sufficient, the solution be-

comes much more complex (more literals in a rule). This complexity, coupled with

the randomness of the synthesis algorithm, leads to larger variation in synthesis

time.

In the “subnet” and “temperate-report” benchmarks, NetSpec recovers validated

specifications consistently (100%), even under extreme cases where only 1 is ex-

ample is left. “Firewall-l3”, on the other hand, fails when examples for particular

message types are all dropped. For instance, if no example responds to ARP pack-

ets, then all candidate programs would just ignore ARP packets, because NetSpec

discard rules that derive no reference output, although the reference program ac-

tually handles ARP packets. In practice, however, it is rare that a protocol designer

provides no examples for a typical type of output at all.

43

Overall, NetSpec’s active learning mechanism is effective in improving example

quality and finding validated solutions. General differential testing of programs is

a hard problem. However, by separating protocol logic from implementation de-

tails, declarative specifications drastically reduce the search space to differentiate

alternative specifications. By exploiting the simplicity of declarative specifications,

NetSpec’s simple random testing mechanism is able to effectively disambiguate al-

ternative protocol specifications.

Table 3.5: Learning specifications from program communication traces. Column

“#T” measures the number of input output messages in the execution trace,

column “#R” measures the number of rules of the reference specification, col-

umn “#Queries” measure the median and maximum number of queries posted by

NetSpec, across 10 repeated experiments, and column “Time” shows the average

end-to-end active learning time.

Program LOC #T #R #Queries Time (s)

med. max

Floodlight stateless firewall 216 895 5 8 9 188

Floodlight stateful firewall 233 121 7 23 25 468

POX l3 stateless firewall 97 185 5 10 12 79

POX l3 stateful firewall 107 4,591 6 22.5 26 505

POX learning-switch 98 334 4 6 10 2,295

3.7.3 Learning from Program Traces

In our final experiment, we explore NetSpec’s ability to directly synthesize from

actual execution traces as input-output examples. The benefits of this approach are

two-fold. First, for code refactoring or program analysis, the generated specifica-

tions expose the essential logic of the program, and can serve as a formal model

44

for further analysis. Second, the logic specifications can be compiled into a more

compact and less bloated program for execution.

Trace collection. We collect program communication traces from two popular SDN

platforms, POX [97] and Floodlight [58], on which we run controller programs

and collect its communication traces with the switches in the network. We select

SDN platforms as a basis for this experiment due to readily available open-source

implementations that match our benchmarks.

To generate input-output examples, we generate representative traffic loads that

we inject into each SDN controller program. Based on the inputs, we capture the

outputs by observing the SDN programs. For instance, for learning switches, all

hosts send probe packets to establish full connectivity in the network. For firewalls,

we divide the network into two zones, one protected by the firewall, and the other

serving as the external network. We then randomly pick hosts from either side of the

network to establish TCP sessions. We validate the functionality of the firewall by

checking that only sessions initiated from internal hosts are successfully established.

Trace collection is done by running the controller programs in both POX and

Floodlight on the Mininet [88] emulator. All Mininet topologies are setup on a 16-

node, 8-switch, tree topology network. For each run, we collect the controller’s

input-output traces as it interacts with Mininet switches (via incoming/outgoing

packets and flow modifications). In all our experiments, we observe that this setup

suffices to collect enough examples for NetSpec to learn a validated specification,

with additional queries to user.

We implemented a trace collector on both POX and Floodlight that collects the

controller’s input and output messages at run-time and the state changes to the

program. The statemonitor works as follows. Within each application’s input packet

handler, we inspect all the accessible global variables. We then record any changes

to such global variables. We exclude the known global constructs that are irrelevant

to each application’s execution logic, like loggers.

45

Table 3.5 summarizes the results. We make the following observations. First,

NetSpec is able to correctly synthesize the intended specifications for all applica-

tions. Second, even though traces contain up to 4,500 communication messages,

additional queries are needed to augment the examples. This observation shows

the practicability of NetSpec’s example augmentation mechanism in helping user

uncover corner cases. Third, even for non-trivial SDN applications with hundreds of

lines of code, NetSpec is able to generate compact specifications with less than seven

rules. Finally, the synthesis times are in the order of hundreds of seconds, except

“learning-switch” at 2,295 seconds, despite the need to analyze actual communi-

cation traces with up to 4591 examples, and generate multiple queries, indicating

the efficiency and scalability of our approach.

3.8 Related Work

Programming by example. NetEgg [124] enables programming SDN policies by

example timing diagrams. NetEgg demonstrates via actual user studies that a programming-

by-example paradigm can result in higher programming productivity and fewer

errors. The key distinction is that NetSpec synthesizes the actual control plane pro-

gram in the target DSL, which generates the data plane configurations, whereas

NetEgg directly generates the data plane configurations. This target DSL can be

used to verify and check for errors in the control plane program, whereas NetEgg

can only provide counter-examples to indicate that the input examples are incorrect.

NetSpec mitigates one inherent weakness of NetEgg in its reliance on the user to

provide all possible examples that meet the scenarios. Facon [45] is a programming-

by-example tool for synthesizing SDN programs. NetSpec employs a more scalable

synthesis strategy, targets a more general logical model, and can handle more com-

plex protocols and incomplete examples.

Network configuration synthesis. Taking high-level routing policies as input, Net-

46

Complete [54] synthesizes BGP configurations that comply with these policies, and

Genesis [112] synthesizes forwarding tables in multi-tenant networks. Avenir [40]

synthesizes SDN data plane operations from high-level forwarding specifications.

Propane [32] compiles high-level routing policies into distributed router BGP con-

figurations. In contrast, NetSpec uses input-output examples, or execution traces

from legacy programs, as input, and generate executable protocol specifications

that are consistent with given input-output examples.

Config2Spec [35] takes network configurations and a failuremodel as input, and

generates network policies that should hold for all possible concrete data planes de-

rived from the given configurations and failure model. On the other hand, NetSpec

generates executable specifications (analysis rules), instead of the static policies

(facts derived from analysis rules). NetSpec can complement Config2Spec when

analysis tools for the interested policies are not available. NetSpec takes the con-

crete data plane and the set of satisfied policies as input, and generates data plane

analysis rules that can be applied to all concrete data planes. For example, in sec-

tion 3.7.1, we show that NetSpec can generate reachability analysis rules similar to

what is used by Config2Spec when inferring reachability policies.

Datalog and logic program synthesis. A large body of work has proposed tech-

niques to synthesize logic programs [52] from input-output examples. With the ex-

ception of GenSynth, existing techniques require the user to syntactically constrain

the search space by means of specifications such as mode declarations (e.g. ILASP

[78]), meta-rules (e.g. Metagol [51]), candidate rules (e.g. ALPS [104] and ProSynth

[98]), or templates (e.g. NTP [99] and δILP [56]). NetSpec does not require the

user to provide any such specifications, but with the trade-off to require more input-

output examples to fully specify an intended program. However, with the help of

active-learning, as our evaluation demonstrates, NetSpec synthesizes more general

programs than GenSynth, and is more efficient and robust.

Network verification and domain-specific languages. There is significant prior

47

work on network verification [73, 59, 33, 116, 117] and DSLs for networking [92,

60, 74, 30]. NetSpec generates a logical network specification that can be verified

using existing techniques. Hence, verification should be viewed as a complementary

technology to NetSpec. The same benefits of having a restricted language, such as

scalable synthesis and automated example augmentation, apply to other DSLs as

well.

3.9 Conclusion

NetSpec addresses a long-standing problem in network verification: the widening

gap between formal models and actual implementations. As a step towards closing

the gap, we have proposed a new specification by example (SBE) toolkit where users

can build formal models of their network protocols from input-output examples

either supplied by the network designer or extracted from a legacy implementa-

tion. Our synthesized models are declarative logic programs which are amenable

to formal verification and even generation of distributed implementations.

Our initial forays and experimental results are promising. The SBE approach can

efficiently synthesize a wide range of network protocols, and is robust to missing

examples. NetSpec should be viewed as a first step towards understanding the SBE

paradigm and its application in different domains of networking, with limitations

in the size of synthesized specifications and complexities. In the future, we plan to

explore how to synthesize more complex specifications, methods for parallelizing

the synthesis algorithms to handle larger specifications, and how SBE can interact

with different formal verification techniques.

48

CHAPTER 4

DECLARATIVE SMART CONTRACTS

4.1 Introduction

Smart contracts are programs stored and executed on blockchains. They have been

used in a wide range of blockchain-enabled distributed applications to manage dig-

ital assets, including auctions [67], financial contracts [36], elections [85], trading

platforms [94], and permission management [27]. Unfortunately, today’s smart

contracts are error-prone and this has led to significant financial losses resulting

from attacks such as Dice2win [95], King of Ether [10], Parity Multisig Bug [113],

Accidental [38] and DAO [9, 105].

Several analysis and verification techniques have been proposed for known vul-

nerabilities of smart contracts such as re-entrancy attack and transaction-order de-

pendency over the past few years [115, 63, 96, 21, 115, 101]. However, when it

comes to high-level properties that are specific to individual smart contracts, today

programmers typically have to rely on hand-written assertions [3], which is hard to

maintain and error-prone. For example, for a smart contract that manages digital

tokens, one may want to make sure that all account balances add up to the total

supply of tokens. To monitor this property during run-time, one has to instrument

the code to maintain a state that keeps track of the sum of all account balances, and

add assertions about their equivalence wherever either account balances or token

supplies are updated.

To make smart contracts easier to analyze and verify, we introduce DeCon, a

declarative programming language for smart contract implementation and prop-

erty specification. DeCon is based on Datalog (Chapter 2), a logic programming

49

language. Datalog frees programmers from low-level implementation details, e.g.

data structures, algorithms, etc., and allows them to reason about the contract on

specification level, via inference rules [34]. In addition, such relational representa-

tion serves as a high-level abstraction of the contract, which enables efficient formal

analysis and verification [107, 121].

A typical smart contract provides two kinds of interfaces: transactions and views.

Transactions are function calls that alter the contract states, e.g., a token transfer

that updates both sender and recipient balance. Views are read-only functions that

return particular states of the contract, e.g., the balance of an account.

Smart contract properties and operations can be naturally mapped to relational

logic. For example, transactions, the main element in smart contracts, can be mod-

eled as relational tables, where table schema contains transaction parameters, e.g.,

sender, recipient, and amount. Similarly, the balance of each account can be ex-

pressed as sum aggregation on transaction records and looking up an account bal-

ance can be expressed as a constraint on the address column of the balance table.

Given this relational view of transactions, committing a transaction can be in-

terpreted as appending a new row to the corresponding table. The commit and

abortion logic of a pending transaction is specified by declarative rules based on

Datalog. Views can be specified as declarative queries on these tables. For example,

an account balance is its total income subtracted by total expense, each of which is

a query on relevant transaction records.

Contract properties are also specified as inference rules. They are interpreted

as property violation queries, a special kind of views, and are expected to be al-

ways empty during correct executions. For example, if a smart contract forbids

overspending, then a query on accounts with negative balances should always be

empty. Such unification of implementation and property specification language

saves programmers’ effort to learn another language to formally specify properties.

DeCon complies declarative specifications into executable Solidity [2] programs

50

that runs on blockchains, e.g., Ethereum, and monitors the specified properties at

run-time. When a property (violation) view is derived non-empty after executing a

pending transaction, the transaction is aborted. Such automatic code generation not

only saves implementation effort, but also eliminates the gap between the program

specification and implementation, providing stronger guarantee on the verification

result.

The key insight to generate efficient executable code from declarative specifica-

tions is that smart contract transactions are executed in sequence. In other words,

new rows are appended to the transaction tables one at a time. Therefore, DeCon

borrows the idea of incremental view maintenance in databases [66] to generate

efficient update procedure. On committing a new transaction, instead of evaluating

the queries on the whole tables, only the difference in query results are computed

and applied to existing views.

In addition, DeCon is easy to debug with data provenance [39]. Provenance is a

mechanism for explaining how certain tuples or facts are derived, right down to the

input values. In an imperative language like Solidity [2], dependency information

is difficult to be captured automatically (through data-flow analysis). In contrast,

inference rules in DeCon give explicit dependency information, where each tuple

can be directly attributed to one rule, thus providing more clarity to the execution

process.

The key contributions of this chapter are as follows:

• We design DeCon, a declarative language that unifies smart contract imple-

mentation and specification. We demonstrate its expressiveness via case stud-

ies on representative smart contracts and their high-level correctness proper-

ties.

• We design an algorithm to compile these high-level specifications into exe-

cutable Solidity programs, with instrumentation for run-time verification.

51

• We implement and experimentally evaluate DeCon. Evaluation shows that the

generated executable code has comparable efficiency with equivalent open-

source implementation of the same contract (14% median gas overhead),

and the overhead of run-time verification is moderate (16% median gas over-

head). The prototype implementation and evaluation benchmarks will be

open-sourced for future studies and comparisons.

The rest of this chapter is organized as follows. Section 4.2 motivates DeCon

using a wallet example. The declarative smart contract language is presented in

Section 4.3. Section 4.4 demonstrates how to translate declarative rules into an

executable Solidity program. The expressiveness of DeCon is demonstrated in Sec-

tion 4.5 using two case studies. Section 4.6 experimentally evaluates DeCon. Sec-

tion 4.7 discusses related work, and Section 4.8 concludes the chapter.

4.2 Illustrative example

In this section, we show how to use DeCon to implement a smart contract, specify its

properties, and debug via provenance using a Wallet smart contract that manages

digital tokens.

4.2.1 Contract Implementation

A smart contract offers two kinds of interfaces: transactions and views. Transactions

are the function calls that update the contract states. Views, on the other hand, are

read-only functions that return one or more contract states.

In declarative smart contracts, transaction records are the only states. Transac-

tions are modeled as relational tables. A new row is appended to the table when

a new transaction is committed, with column entries storing the transaction pa-

rameters. Transaction rules, i.e., the condition on which a new transaction can be

52

committed, are specified as declarative rules. Finally, views are specified as declar-

ative queries over the transaction tables.

We use theWallet example, shown in Listing 4.1, to explain how relational tables

and declarative rules can be specified. The Wallet contract manages token trans-

actions between Ethereum addresses, where the contract owner can mint or burn

tokens to addresses, and different addresses can transfer tokens to each other.

1 // Transaction event triggers

2 .decl recv_mint(p:address, amount:int)

3 .decl recv_burn(p:address, amount:int)

4 .decl recv_transfer(from:address, to:address, amount:int)

5

6 // Views

7 .decl *totalSupply(n:int)

8 .decl balanceOf(p:address, n:int)[0]

9 .public totalSupply,balanceOf

10

11 // Transaction rules

12 .decl mint(p: address, amount: int)

13 .decl burn(p: address, amount: int)

14 .decl transfer(from: address, to: address, amount: int)

15

16 r1: mint(p,n):-recv_mint(p,n),msgSender(s),owner(s),n>0.

17 r2: burn(p,n):-recv_burn(p,n),msgSender(s),owner(s),balanceOf(p,m),

n<=m.

18 r3: transfer(s,r,n):-recv_transfer(s,r,n),balanceOf(s,m),n>=m.

19

20 // View rules

21 r4: totalSupply(n):-allMint(m),allBurn(b),n:=m-b.

22 r5: balanceOf(p,s):-totalOut(p,o),totalIn(p,i),s:=i-o.

53

23

24 // Auxiliary relations and rules ...

25 .decl totalIn(p: address, n: int)[0]

26 .decl totalOut(p: address, n: int)[0]

27 r6: transfer(0,p,n) :- mint(p,n).

28 r7: transfer(p,0,n) :- burn(p,n).

29 r8: totalOut(p,s):-transfer(p,_,_),s=sum n:transfer(p,_,n).

30 r9: totalIn(p,s):-transfer(_,p,_),s=sum n:transfer(_,p,n).

31

32 .decl *allMint(n: int)

33 .decl *allBurn(n: int)

34 r10: allMint(s) :- s = sum n: mint(_,n).

35 r11: allBurn(s) :- s = sum n: burn(_,n).

Listing 4.1: Wallet smart contract

Relations and interfaces. Lines 1 to 14 declare the relations, with schema in the

parenthesis, and, optionally, primary key indices in the bracket (e.g., balanceOf on

line 8). Primary keys uniquely identify a row in the table. For instance, balanceOf

records the balance of each account, and thus has unique account column. Without

explicit specification, all columns are treated as primary keys. Relation totalSupply

(line 7) is a singleton relation, a kind of relation that contains only one row and is

annotated by a star symbol.

Given these relation declarations, transaction and view interfaces are generated.

First, transaction interfaces are generated from relations with recv_ prefix, where

the the input parameters define the schema and a boolean return value indicates

the success of the transaction. For example, relation recv_mint is translated into the

following interface in Solidity, the target executable language:

function mint(address p, int amount) returns (bool);

Second, view functions are generated from the relations that appear in the public

54

interface annotations (line 9). The input parameters are the primary keys, and

output is the remaining values. Note that a singleton relation, e.g., totalSupply,

becomes a function without parameters since it has no primary keys. If all columns

are primary keys, then the function returns a boolean value indicating the existence

of the row. For example, balanceOf(p:address, n:int)[0] is translated into the

following function interface:

function balanceOf(address p) returns (int);

Rules and functions. The rest of the program shows the rules that process transac-

tions and define the views. Each rule is of the form <head> :- <body>, interpreted

as follows. For all valuation of the variables that satisfies all constraints in the body,

generate a row as specified in the head. For example, r1 on line 16 says that a

mint transaction can only be sent by the contract owner, and the amount should

always greater than 0. This rule is compiled into the following Solidity code (with

simplification):

function mint(address p, int n) (returns bool) {

bool ret = false;

if (msg.sender == owner && n>0) {

// call functions to update dependent views...

ret = true;

}

return ret;

}

When a mint transaction is committed, r5 will be triggered through a chain of

rules (r1->r6->r9->r5). It specifies the balance of an account p, as the total in-

come totalIn(p,i) subtracted by the total expense totalOut(p,o), with totalIn

and totalOut further defined by r8 and r9, respectively. This rule is compiled into

two Solidity functions, each updates balanceOf[p] when either totalIn or totalOut

is updated.

55

function updateBalanceOfOnTotalIn(address p, int i) {

int o = totalOut[p];

balanceOf[p] = i-o;

}

function updateBalanceOfOnTotalOut(address p, int o) {

int i = totalIn[p];

balanceOf[p] = i-o;

}

To get the balance of a given account, one could call balanceOf, a view function

that takes the account address as parameter, and returns an integer value as the

account balance. In DeCon, relational tables are stored in maps, mapping primary

keys to values in remaining columns. This view function is generated as follows.

function balanceOf(address p) public view returns (int) {

// Read the row by primary key p

BalanceOfTuple memory balanceOfTuple = balanceOf[p];

// Return the value

return balanceOfTuple.n;

}

4.2.2 Specification and Run-time Verification

In DeCon, properties are specified the same way as views, but with additional an-

notation in order for DeCon to know what to monitor at run-time. For example, in

the wallet contract, one may want to make sure that all account balances are always

non-negative, which can be specified as follows.

.decl negativeBalance(p:address,n:int)[0]

.violation negativeBalance

r14: negativeBalance(p,n) :- balanceOf(p,n), n < 0.

56

Rule r14 specifies the violation instance of the property: for each row in balanceOf

table with n<0, insert a row (p,n) in negativeBalance table. During the execution

of the transaction, the negativeBalance table is incrementally updated when its de-

pendent relations are updated, the same as other views.

A property is satisfied if and only if the violation table is empty. The keyword

.violation annotates that every row in the negativeBalance table is a property vio-

lation instance. Given such annotations, DeCon instruments the program to check

the emptiness of all violation tables before each transaction is committed.

Note that properties are monitored on the granularity of transactions. As we

show in Section 4.4, due to the underlying update procedure, transient violations

could occur during the execution of a transaction, but disappear at the end. There-

fore, instead of aborting right after a violation tuple is derived, a transaction is only

aborted if, at the end of its execution, any violation table remains non-empty. Such

interpretation allows programmers to reason at the transaction level, without wor-

rying about the underlying update procedure. The violation checking at the end of

each transaction is performed using checkViolations() function.

function checkViolations() {

if negativeBalance is not empty:

revert("Negative balance.")

// check other violations ...

}

4.2.3 Debugging via Provenance

Data provenance is a feature of declarative programs that records the data flow

from input to output and enables rule-wise debugging.

Suppose the original program has an incorrect r2, which misses a predicate to

check that the account has enough balance to be burnt. The incorrect version of r2

57

balanceOf(0x01,-20)

totalIn(0x01,100) totalOut(0x01,120)

r5

r8

burn(0x01,50)totalOut(0x01,70)

r2'

recv_burn(0x01,50)

Figure 4.1: Provenance of a violation of negative balance

is shown as r2’ in the following.

r2’: burn(p,n):-recv_burn(p,n),msgSender(s),owner(s).

An account with balance n would have negative balance if more than n tokens are

burnt. Suppose during an execution, the account 0x01 is detected to have nega-

tive balance of −20. To understand why this violation happens, one could query

the violation tuple’s provenance tree, as shown in Figure 4.1. The provenance tree

is read from top to bottom. On the top is a tuple balanceOf(0x01,-20) that trig-

gers the violation in negativeBalance. Below shows that it is derived by r5, based

on totalIn(0x01,100) and totalOut(0x01,120), which are the total tokens received

and sent by address 0x01. The tuple totalOut(0x01,120) is further derived by r8.

This back tracing continues for another step until one finds the derivation of r2’ is

incorrect, which suggests that the condition balanceOf(p,m),m>=n should be added.

With this provenance, programmers can debug contracts in a visual and interactive

manner.

58

4.3 Language

A DeCon contract consists of three elements: relations, rules, and relation annota-

tions. A relation declaration specifies the name of a relational table and its schema.

Each relational table can store either transaction records, with the transaction pa-

rameters being the column values, or views, the summary information of these

transaction records. A rule specifies either the conditions on which a new transac-

tion gets approved or the derivation of a view from the transaction records. Finally,

relation annotations specify whether a relational table is a public view or a violation.

Public views are compiled into public interfaces that take the relation’s primary keys

as parameters, and return the remaining values in the matching row. Violation will

be monitored during run-time, and a transaction is reverted if the violation relation

is non-empty after the transaction execution.

4.3.1 Relation Declarations and Annotations

The formal syntax of relation declarations and annotations is defined in Figure 4.2.

It is based on the Datalog language (Chapter 2), with special language extensions

for smart contracts.

Schema. Schema of a relation is specified as a list of ci : Ti, where ci is the column

name for the ith column, and Ti is the data type.

Primary keys. Primary keys K are a list of indices in the relation schema. Primary

key specification is optional. If a simple relation is specified without primary keys,

then all columns are treated as primary keys. Primary keys uniquely identify a row

in each table. On inserting a new row, if an existing row has the same primary key,

the existing row is replaced by the new row.

Singleton relations are relations with only one row, which are annotated with ∗ in

the specification. When a new row of a singleton relation is inserted, it replaces the

existing row.

59

(Type) T := int |uint |bool |address

(Schema) S := c1 : T1, c2 : T2, ...

(Primary keys) K := k1, k2, ...

(Reserved relation) RS

(Singleton relation) SG := .decl ∗ r(Schema)

(Simple relation) SP := .decl r(Schema)[K]

(Transaction relation) TR := .decl recv_[r](Schema)

(Relation) R := RS|SG|SP

(Annotation) A := .public R | .violation R

Figure 4.2: Syntax of relation declarations and annotations

Transaction relations are relations with prefix recv_. As explained in the next

section, when used in a rule, these relations are treated as an event trigger, and are

compiled into smart contract interfaces that handle incoming transaction requests.

Reserved relations. The following relations are reserved to handle smart contract

specific constructs:

• msgSender(a:address) stores the address of message sender.

• msgValue(v:uint) stores the values of Ethers sent along a message.

• send(to:address, n:uint32) triggers a transaction that sends n token to another

account.

• constructor(*) is translated into the constructor function, with schema being

function parameters.

60

(V ariable) x

(Aggregation) Agg := sum | max | min | count

(Function) F := +| − | × |÷

(Condition) C := > | < | >= | <= | == |! =

(Transaction relation) TR := recv_[r]

(Other relation) R

(Head literal) h := R(X̄)

(Body literal) b := R(X̄) | C(X̄) | y = F (X̄) | y = Agg x : R(X̄)

(Transaction Rule) Tx := h : − TR(X̄), b1, ..., bn

(V iew Rule) V := h : − b1, ..., bn

Figure 4.3: Syntax of rules

4.3.2 Rules

As shown in Figure 4.3, we distinguish two kinds of rules: transaction rules and

view rules. A transaction rule contains a transaction relation in its body. Transaction

relations are relations with a prefix recv_ in names. These rules are only fired on

receiving the corresponding transaction request, and the transaction is approved

if rest of the constraints in the rule body are satisfied. A view rule, on the other

hand, does not contain any transaction relations. It is evaluated whenever one of

the relations in the body is updated.

Syntax restrictions. DeCon does not support recursions. That is, no dependency

loop exists between any two relations. The dependency relationship in DeCon is

defined as follows.

61

Definition 4.3.1 (Relation dependency). Relation Ra is dependent on relation Rb, if

there exists a view rule where Ra is in the head and Rb is in the body, or a transaction

rule where Ra is in the head, and Rb is a transaction relation (with a prefix recv_) in

the body.

Rule semantics. A rule is evaluated as follows. For each variables valuation π that

satisfies the rule constraint, generate the head tuple with all variables assigned to its

corresponding values in π. A variable valuation is a mapping from the set of variable

names V to the variable domain D (π : V → D). Rule constraint is a conjunction of

all body literal constraints. As described in Figure 4.3, there are four kinds of body

literals. For literals in the form of relational tuples R(X̄), the constraint is satisfied

if row X̄ exists in the relational table R. Other kinds of literals (i.e., conditions,

functions, and aggregations) are directly interpreted as constraints on the variables.

Take r5 in the wallet example (listing 4.1) for instance.

r5: balanceOf(p,s):-totalOut(p,o),totalIn(p,i),s:=i-o.

This rule is interpreted as follows: "for all values of variable p, o, i such that there

exists a tuple totalOut(p, o) and totalIn(p, i), derive the head tuple balanceOf(p, s),

where s = i− o".

Aggregation literal Agg x : R(X̄) computes the aggregate for all rows in relation

R that satisfy the rule constraint. For example, in the wallet example (listing 4.1),

line 31 shows a rule with aggregation.

r8:totalOut(p,s):-transfer(p,_,_),s=sum n:transfer(p,_,n)

For each unique value of p in the first column of transfer table, this rule computes

the sum of the third column for rows in transfer table that has the value p in the

first column. In other words, this rule groups the table by the first column, and then

computes the sum of the third column within each group.

62

4.4 Compilation to Solidity

DeCon translates a set of declarative rules into an executable Solidity program that

(1) processes transactions following the conditions in transaction rules, (2) updates

views incrementally as new transactions are committed, and (3) monitors property

violations.

The compilation process involves three major steps.

(1) Abstract update functions. First, each rule is translated into a set of abstract

update functions, each of which performs incremental updates to the head relation

when one of the body relations is updated. These functions are abstract in that they

do not implement concrete data structures. For example, recall that in the wallet

contract in Section 4.2, the following rule processes mint transactions:

r1: mint(p,n):-recv_mint(p,n),msgSender(s),owner(s),n>0.

It is translated into the following abstract update function:

1 on insert recv_mint(p,n) {

2 search owner where {

3 address s = owner.p;

4 search msgSender where s==msg.sender {

5 if(n>0) {

6 insert mint(p,n)

7 }}}}

This update function is triggered when a mint transaction is received, as indicated

by the event trigger tuple recv_mint(p,n). The remaining two relational literals,

owner(s) and msgSender(s), are translated into nested search statements (line 2

and line 4). A search statement has the form (search R where C do S), where R is

the relational table, C is the set of constrains on rows, and S is the statement to

execute for each row that satisfies the constraints in C. The condition literal (n>0)

is translated into an if statement (line 5). If all prior conditions are satisfied, we

63

arrive at line 6, where the rule head is inserted.

(2) Data structures. These abstract functions are then translated into concrete

Solidity statements, where the search statements become efficient join algorithms

on concrete data structures, and update functions for dependent views are called

after an insert statement.

(3) Instrumentation. In the last step, the Solidity program is instrumented to

monitor property violations, and abort the transaction if any violation has been

detected by the end of transaction execution.

4.4.1 Abstract Update Function Generation

There are two kinds of updates that could trigger a rule: tuple insertion and tuple

deletion. We use Insert(e) and Delete(e) to denote the update trigger on inserting

and deleting a tuple e, respectively. Note that both a tuple and a literal have the

form R(X̄). It is called a tuple when X̄ has concrete values, and called literal in

a rule, where X̄ is symbolic. In the following discussion of update triggers we use

literal and tuple interchangeably.

Given a rule r, let B(r) be the set of all relational literals in r’s body, and e be

the transaction relation in r if r is a transaction rule, the set of update triggers T (r)

are defined as:

T (r) :=


⋃

l∈B(r)

{Insert(l), Delete(l)} r is View

{Insert(e)} r is Tx rule
(4.1)

If r is a view rule, then it can be triggered by updates of any relation in its body.

Otherwise, r is a transaction rule, and it is only triggered on receiving a transaction

request.

For each rule r, and for each update triggers in T (r), an abstract update function

is generated by UpdateFunction(r, t), presented in algorithm 5. It first initializes

the set of grounded variables by variables in the trigger literal. Grounded variables

64

Algorithm 5 UpdateFunction(r, t). Given a rule r, and a trigger t, returns an update

object.

1. Initialize the set of grounded variables G := t.variables.

2. Literals other than the trigger L := {r.body \ t}.

3. Update procedure S := Update(r.head, L, t, G).

4. Return (on t do S)

are variables that are constrained to a constant value. Variables in a trigger literal

are considered grounded because the update function is always triggered by the

insertion or deletion of a concrete tuple. In step(3), update procedure S is generated

by a sub-routine Update, which is presented in algorithm 6. Finally, it returns the

abstract update function in the form of (on t do S), where t is the update trigger

and S is the update procedure.

As shown in Algorithm 6, Update(h,L, t,G) performs recursion on L, the list of

literals in the rule body, with every recursion translating one literal to a layer of

code block, nested within the code block generated by the previous literals.

In particular, it performs pattern matching on input L, a list of literals to be

translated. If L is empty, which means all body literals have been translated, an

update statement consistent with the update trigger is returned. Otherwise, L has

the form head :: tail. It first adds all variables in head into the set of grounded

variables, and then generates the inner code blocks S by recursively calling itself on

tail and the updated set of grounded variables G′. Depending on the form of head,

the current layer of code block is generated in different ways. By the syntax of the

language in Section 4.3, head could take one of the following forms:

• A relational literal R(X̄). Given the set of grounded variables G, the search con-

65

Algorithm 6 Update(h, L, t, G). Given a rule head h, a list of body literals L, an up-

date trigger t, and the set of grounded variables G, return statements that perform

the incremental update.
match L:

case Nil => match t

case Insert => return Insert(h)

case Delete => return Delete(h)

case head :: tail =>

Add grounded variables G′ := G ∪ {x|x ∈ head}

Inner statements S := Update(h, tail, t,G’)

match head:

case R(X̄) =>

Derive constraints C := Constraint(R(X̄), G)

return (Search R where C do S)

case C(X̄) => return (If C Then S)

case y = F (X̄) => return (y = F (X̄) :: S)

case y = Agg x : R(X̄) =>

return (y = Agg x : R(X̄) :: S)

66

straints for rows in R is generated as follows.

Constraints(R(X̄), G) :=
∧
{(R[i] == v)|v ∈ G, v ∈ X̄,

i = X̄. indexOf(v)}

where R[i] == v means filtering rows in table R whose i-th column equals to v.

• A condition literal C(X̄), in which case, the condition is directly used in the same

way as an If condition, with the inner code block S placed within the If statement.

• A function or aggregation. In either case, the literal is directly translated into an

assignment statement, followed by the inner code block S.

Aggregations. The evaluation results of aggregation functions are maintained in-

crementally. Sums are incremented by n when a row with aggregate value n is

inserted, and decremented by n when a row is deleted. Similarly, counts are incre-

mented by 1 on row insertion, and decremented by 1 on row deletion. Maximums

and minimums are slightly different. When a new row is inserted with value n, if

n is greater than the current maximum, the maximum is updated to n. When the

current maximum row is deleted, the maximum is updated as the second maximum

value. Thus, it requires maintaining a sorted list of values. Minimum is maintained

in a similar fashion.

4.4.2 Concrete Data Structures and Instructions

Given the abstract functions generated from each rule, the next step is to generate

concrete and efficient data structures and search algorithms in the Solidity lan-

guage.

Data structures. Each relational table R, except singleton relations, is translated

into a mapping from its primary keys to a structure that stores the rest of the column

values:

67

struct RTuple {

bool valid;

T1 field1;

T2 field2;

...

};

mapping(k1 => k2 => ... => kn => RTuple) R;

Note that hash-maps in Solidity by default map all keys to zero. Therefore, a valid

bit (valid) is introduced to indicate the existence of a tuple. Columns other than

primary keys are the structure members. If all columns are primary keys, then its

structure only contains a valid bit.

Singleton relations are directly stored in a structure with columns being the

structure members.

Join index. Join index is built for each search statement in the abstract update

program. Given a search statement Search R where C do S in the abstract update

program, if all primary keys of R are constrained to constant values, no join index

is generated. The matching entry can be directly looked up by primary keys.

On the other hand, if, in some rule, not all primary keys of R are constrained to

constant values, a join index is built as a map from the constrained keys to a list of

unconstrained keys.

Suppose relation R1(k1, k2, v1) has two primary keys k1 and k2. As described

above, tableR1 is stored as amap from primary keys to remaining values (mapping(k1=>k2=>R1Tuple)).

Given a search statement Search R1 where R1[0]==k1 do S, where only one primary

key k1 is constrained, the join index for R1 is built as the following.

struct R1KeyTuple {

bool valid;

T2 k2;

68

}

mapping(k1 => R1KeyTuple[]) R1Index;

where R1Index maps k1 to a list of R1KeyTuple, which stores value of the other

primary key k2. During the join execution, to iterate all rows in R1 that satisfy

R1[0] == k1, it first looks up all k2 in R1KeyTuple[k1], and then for each k2, get the

value in R1[k1][k2].

Update dependent views. An insert or delete statement in the abstract update

function is translated into two sets of Solidity instructions: (1) update the cor-

responding data structure; and (2) call the update functions for the dependent

relations (Definition 4.3.1).

Inserting a relational tuple t1 directly updates the map, as well as the join index

if one exists. If a tuple t0 with the same primary keys exists, all dependent views

are updated by first calling deletion updates on t0, and then the insertion updates

on t1. Insertion update refers to functions triggered by tuple insertion, and deletion

update refers to functions triggered by tuple deletion. Otherwise, insertion updates

are directly called. Since a Solidity mapping maps all keys to value zero by default,

a tuple exists if its valid bit is set to true.

Deleting a relational tuple resets its valid bit to false. Then deletion updates are

called for all dependent relations.

In this way, when a new transaction is committed, all dependent views are up-

dated through this chain of update propagation. Since there is no recursion, i.e.,

dependency loop between relations, allowed in DeCon, update propagation is guar-

anteed to terminate.

Logging. Every committed transaction is logged via events [5] in Solidity. These

logs constitute all states of a DeCon contract, which enables offline analysis for

further insights and potential bugs.

69

4.4.3 Run-time Verification

Properties are specified as declarative rules that derive violation instances. Such

relations are annotated with the keyword violation.

Note that properties are checked on the granularity of transactions, whichmeans

transient violations that occur during the transaction execution but disappear at the

end are not counted as violations. Such transaction-level property interpretation

allows programmers to reason about the contract at the transaction level, without

worrying about the underlying update procedure.

As an example of transient violations, consider again the wallet contract in Sec-

tion 4.2, and a property that all account balances add up to the total supply. The

property can be specified as shown in Listing 4.2.

.violation unequalTotalSupply

r12: totalBalance(s) :- sum n: balanceOf(_,n).

r13: unequalTotalSupply(n,m):-totalSupply(n),

totalBalance(m),n!=m.

Listing 4.2: All account balances add up to total supply.

During the execution of a mint transaction, the totalSupply and the totalBalance

are updated in sequence, which leads to a violation when one is updated before

another, but the violation disappears when both are updated.

Given this notion of transient violations, instead of aborting the transaction right

after a violation tuple is derived, the checking procedure is deferred to the end of

transaction execution. If any violation view is non-empty, the transaction is aborted.

Note that a Solidity mapping do not record its size. So a separate array of mapping

keys are maintained and iterated for valid violation tuples.

70

4.4.4 Provenance generation

To debug a violation, programmers can use data provenance to visualize the deriva-

tion process of a violation tuple. As shown in Figure 4.1, provenance is a directed

graph with two kinds of vertices: tuples and rules. Edges from a tuple vertex to a

rule vertex denote tuple reads, and edges from a rule vertex to a tuple vertex denote

tuple derivations.

To generate this provenance graph during the rule evaluation procedure, two

kinds of additional records are logged: tuple read Read(tuple, rid) and tuple deriva-

tion Write(rid,tuple), where rid is a unique identifier for each rule. Read(tuple,rid)

is interpreted as an edge from tuple to the rule indexed by rid, and, conversely,

Write(rid,tuple) is an edge from rule rid to tuple.

Note that in Solidity, a failed transaction reverts all instructions, including log-

ging. When a transaction is reverted due to a property violation, the provenance

logs would also be reverted. Therefore, to generate provenance for a violation tu-

ple, the transaction needs to be executed in a local debugging environment instead

of the deployment blockchain. This practice also saves storage space on the public

blockchain.

4.4.5 Optimizations

To improve gas and storage efficiency, two optimizations have been applied to the

generated codes.

Join order. Body literals in a rule are sorted by their iteration cost in an increasing

order. First are reserved relations and singleton relations, since they need no itera-

tion. Second are the relations whose primary keys have all appeared in proceeding

literals. These literals can be searched via a direct mapping look-up, thus requiring

no iterations either. Next are the rest of the relations, which are translated into

loops. Finally come condition and function literals.

71

Storage space. Storage space on a blockchain is precious due to the high syn-

chronization cost. Deriving relations on-demand, that is, delaying evaluating an

inference rule until it is used, can save storage space, but may incur performance

overhead. To achieve a balanced trade-off between time and space, DeCon only

proactively derives and stores relations annotated as public views or violations, as

well as relations that are read during their derivation. Other relations are derived

on-demand. For example, in the wallet contract in Section 4.2, relation mint only

serves as an update trigger for dependent rules, which is never queried during the

update of public views or violations. Therefore, when a mint tuple is generated

by r1, it only triggers the update for dependent rules, but it is not written to the

persistent storage.

4.5 Case studies

In this section we demonstrate the expressiveness of DeCon and the explainability

of data provenance via case studies on two typical smart contracts. For brevity, only

a subset of rules are discussed. 1

4.5.1 ERC20

ERC20 [57] is a token standard for fungible tokens. Similar to the wallet contract in

Section 4.2, it also supports token transfers between users. In addition, it specifies

an allowancemechanism, where users can allow other users to transfer their tokens,

up to the amount set by the account owner. The allowance mechanism can be

specified as follows.

r1: transferFrom(sender,receiver,spender,n) :-

recv transferFrom(sender, receiver, n),

/* Sender has enough balance. */

1The full declarative implementations are in presented in the supplementary files.

72

balanceOf(sender,m), m>=n,

/* Operator has enough allowance. */

msgSender(spender),

allowance(sender,spender,l),l>=n.

On receiving a transferFrom transaction, in addition to checking that the owner

has enough balance (m>=n), the rule also requires themessage sender to have enough

allowance to spend tokens on owner’s behalf. The relation transferFrom represents

transactions where the spender sends n tokens from the owner to the recipient.

The allowance of a spender on an account is specified as follows.

r2: spentTotal(o,s,m) :- transferFrom(o,_,s,_),

m = sum n: transferFrom(o,_,s,n).

r3: allowance(o,s,n) :- allowanceTotal(o,s,m),

spentTotal(o,s,l), n := m-l.

The relation spentTotal accounts the amount of tokens m that spender s has spent on

behalf of the owner o. And allowance is derived by subtracting the total spending

from the total allowance, an amount approved by the owner (defined in another

rule).

Given the definition of allowance and the spentTotal, we can specify a property

that a spender never overspends as the following:

.violation overSpent

overSpent(o,s,n,m) :- allowanceTotal(o,s,n),

spentTotal(o,s,m), m>n.

DeCon then generates instrumentation to monitor this property at run-time.

Explain allowance changes via data provenance. Suppose the programmer made

a mistake in specifying spentTotal:

r2’: spentTotal(o,s,m):-transferFrom(o,_,s,_),

m = sum n: transferFrom(_,_,s,n).

73

allowance(a,s,10)

r3

allowanceTotal(a,s,100)
spent(a,s,90)

r2

spent(a,s,80)
transferFrom(b,s,r,10)

(a) al-

lowance(a,s,10)

transferFrom(a,s,r,tokenId)

r4

ownerOf(tokenId,a)
approved(tokenId,a)

r5

approve(b,s,tokenId)

(b) transfer-

From(a,s,r,tokenId)

Figure 4.4: Provenance tree for tuples.

The error is in the sum literal, where transferFrom records should be grouped by

both owner o and spender s, instead of just the spender.

When a spender account s wants to transfer 20 tokens from account a to b, by

submitting a transaction transferFrom(a, s, r, 20), it is reverted. DeCon explains that

it is because the condition l >= n in r1 is false, which means the spender s does

not have sufficient allowance to transfer tokens on a’s behalf.

To understand why the spender only have 10 allowance to a’s account, one could

get the provenance of the tuple allowance(a,s,10), as shown in Figure 4.4a. On top

of the provenance tree, allowance(a,s,10) is derived by r3, from the fact that the

total allowance is 100 (allowanceTotal(a,s,100)), and that a has spent 90 already

(spent(a,s,100)). To see why spent(a,s,100) is derived, the programmer continues

expanding its provenance tree. A bug is revealed at this step, where a transaction

from address b to r is accounted for s’s allowance on address a, which points to the

bug in r2′.

74

4.5.2 ERC721

ERC721 [55] is a smart contract standard for non-fungible tokens (NFTs). A main

transaction for ERC721 tokens is transfer, which records the transfer of a token

from sender to recipient at a particular time. The transaction time is included to

specify the following views.

First is the view function ownerOf. Given the transfer relation, the owner of a

token is defined as follows.

latestTransfer(tokenId,s,r,t) :- transfer(tokenId,s,r,t),

t = max s: transfer(tokenId,_,_,s).

ownerOf(tokenId, p):-latestTransfer(tokenId,_,p,_),p!=0.

where the first rule selects the latest transfer record for tokenId, and the next rule

specifies that if the recipient of the latest transfer is non-zero, it is the owner of the

token.

Next is the exist relation. A token exists if it is minted and is not burnt. In

ERC721 contracts, burning a token emits a transfer record from its owner to zero

address. So exist is defined as:

exists(tokenId, true) :-

latestTransfer(tokenId,_,to,_), to!=0.

The rule checks that a token’s latest transfer recipient is a non-zero address, which

means it is not burnt.

To ensure every existing token has an owner, we could specify the following

property:

.violation tokenNoOwner

tokenNoOwner(tokenId) :- ownerOf(tokenId,o), o==0.

which defines a property violation as entries in the ownerOf table with 0 owner

address.

75

Explain an unexpected token transfer via data provenance. Suppose the owner

wants to understand why one of her tokens has been transferred away in a transac-

tion transferFrom(a,s,r,tokenId), she expands the provenance tree for the transac-

tion, which is shown in Figure 4.4b. On top of the provenance tree is a transferFrom

tranaction, approved by the following rule:

r4: transferFrom(sender, receiver, tokenId) :-

recv transferFrom(sender, receiver, tokenId),

/* Sender owns the token. */

ownerOf(sender,tokenId)

/* Operator is approved to move the token. */

msgSender(operator), approved(tokenId,operator).

where approved(tokenId, operator)means that the token tokenId has been approved

to use by operator. This approval is set by the token owner.

Suspicious about the approved(tokenId,a) tuple, the owner continues to expand

the provenance tree, and finds that it is derived from the following rule:

r5: approved(tokenId,operator) :-

approve(_,operator,tokenId).

and the tuple approve(b,s,tokenId), which means account b, a previous owner, has

approved this token to operator s before transferring this token to a. Here, she finds

the bug: r5 does not check that the address that approves the token should be the

token owner. The rule should have been updated as follows instead:

r5’: approved(tokenId,operator) :- owner(tokenId, owner),

approve(owner,operator,tokenId).

76

Table 4.1: Overhead of Solidity programs generated by DeCon, compared to refer-

ence implementations. Column #Rules shows the number of rules in the declara-

tive smart contracts.

Contract # Rules
Byte-code size (KB)

Transaction
Gas cost (K)

Ref. DeCon Ref. DeCon Diff

Wallet 12 3 3
mint 36 62 70%
burn 36 47 29%
transfer 52 38 -26%

Crowdsale 11 4 3

invest 38 33 -12%
close 38 47 25%
withdraw 26 29 14%
claimRefund 29 33 13%

SimpleAuction 13 2 4
bid 69 115 66%
withdraw 24 47 101%
auctionEnd 54 56 4%

ERC721 13 10 11
transferFrom 59 42 -28%
approve 49 75 53%
setApprovalForAll 27 27 2%

ERC20 18 5 6
transfer 52 55 6%
approve 47 50 7%
transferFrom 43 50 15%

median: 14%

4.6 Evaluation

We implement a prototype compiler for DeCon in Scala that generates Solidity pro-

grams with instrumentation for run-time verification. We first evaluate the compiler

by comparing its output, without instrumentation, with reference contract written

in Solidity. Next, we evaluate the overhead of run-time verification on these con-

tracts and their properties.

77

4.6.1 Overhead to reference implementations

Reference smart contracts. We collect five reference smart contract implementa-

tions from public repositories and prior research. Wallet is the example shown in

Section 4.2. CrowdSale is from prior research paper [96]. Auction is from Solidity

documentation [4]. ERC20 (fungible tokens) and ERC721 (non-fungible tokens)

are two of the most popular kinds of smart contract deployed on Ethereum, 2 and

we use the implementation from the OpenZepplin library [1].

Declarative smart contract implementation. We implement declarative counter-

parts for all reference contracts with the same interfaces and functionalities without

instrumentation for run-time verification or provenance. These contracts consist of

10 to 18 rules (column #Rules in Table 4.1).

Although DeCon can specify all the high-level logic of the these contracts, we

note that the generated Solidity code has the following difference from the refer-

ence implementations. First, the reference CrowdSale contract is implemented as

two separate contracts. As DeCon does not yet support contract composition, the

compiler outputs a stand-alone smart contract with all the functionalities. For the

ERC721 contract, there is a safeTransferFrom interface, whichwraps the transferFrom

function with a check: if the recipient is also a smart contract, it should implement

the onERC721Received interface. The current implementation of DeCon does not yet

support such checking procedure, which relies on calling the built-in functions of

Solidity, so this interface is omitted.

Measurement metrics. Wemeasure twometrics: (1) the size of EVM byte-code de-

ployed on the blockchain; and (2) the gas cost for each transaction. EVM byte-code

is generated by the Truffle [8] compiler. To measure gas cost, we first deploy the

smart contract on Truffle’s local blockchain, and then populate the smart contract
2According to https://etherscan.io, at the time of writing this paper, there are about 502,000

ERC20 tokens and 50,000 ERC721 tokens on Ethereum.

78

https://etherscan.io

states by sending transactions from N test accounts, which results in N entries in

the contract states. Then we call each transaction interface again and record gas

cost reported by Truffle. We find thatN (10 to 1000) does not impact gas cost. This

is because all contracts use hash-maps to store contract states. If the hash-collision

rate is low, the number of instructions is constant to the size of the hash-map, and

thus the gas cost remains constant. Therefore, we report the gas cost measured

with N = 10.

Results. As shown in Table 4.1, the median gas overhead to reference implementa-

tion is 14% across 16 transactions, with 3 of them have even lower gas cost between

−28% to −12%. In the extreme case, the withdraw transaction from SimpleAuction

shows 101% gas overhead.

In terms of byte-code size, DeCon’s compiler output is slightly greater than the

reference programs, with a 2KB (SimpleAuction) maximum increase. Note that on

CrowSale, DeCon’s output is smaller than the reference contract. This is because

the reference implements two separate contracts, while the program generated by

DeCon compiler has all functions implemented in one contract.

Contract features that are not yet supported. During the search of benchmarks,

we find some contracts use features that are not yet supported by DeCon. For ex-

ample, the voting contract from Solidity documentation [7] checks voting loop in

a recursive manner. Although recursion can be naturally expressed in DeCon lan-

guage, the execution of recursion functions requires non-trivial reasoning to ensure

termination and gas efficiency, and is therefore not yet supported by DeCon. In ad-

dition, certain functions that lie outside of relational logic, including checking in-

terfaces of another contract (e.g. safeTransferFrom in ERC721), and cryptographic

functions[6], are not yet supported, but they can be incorporated into DeCon via

user-defined functions in the future.

79

Table 4.2: Run-time verification overhead. Column Size andGas show the overhead

in byte-code size (KB) and gas cost (K) respectively, compared to the DeCon contract

without instrumentation.

Contract Property Size Transaction Gas

Wallet No negative balance 2

mint 14%

burn 14%

transfer 17%

Crowdsale No missing funds 2

invest 50%

close 24%

withdraw 22%

claimRefund 33%

Simple

Auction
Refund once 2

bid 2%

withdraw 60%

auctionEnd 4%

ERC721 Every token has owner 1

transferFrom 5%

approve 3%

setApprovalForAll 8%

ERC20
Account balances add up

to total supply
1

transfer 96%

approve 13%

transferFrom 109%

median: 16%

80

4.6.2 Run-time verification overhead

We measure run-time verification overhead by first specifying properties for each

contract, which are generated as instrumentation in the output Solidity program.

These instrumented programs are then compared to DeCon programs without in-

strumentation, on byte-code size and gas usage.

Contract properties are specified as follows. First, as shown in the example in

Section 4.2, the wallet contract is monitored for negative account balances. The

Crowdsale contract allows participants to invest in a crowd funding project with a

particular funding target. The property specifies that the total amount of raised

fund should equal to all participants’ investments. In simple auction, bidders trans-

fer their fund on every bid, and get refunds when the auction is ended. A property

specifies that every bidder can claim refund at most once. In ERC721, the property

specifies that all existing tokens should have a valid owner (non-zero address). In

ERC20, all account balances should add up to the total supply of tokens.

Results. Table 4.2 shows the overhead of run-time verification. Byte-code sizes

are increased by no more than 2 KB. Gas usage overhead varies across different

transactions, with the median being 16%. Wallet and ERC721 contracts show small

overhead, where transaction gas consumption increases by no more than 17% and

8%, respectively. Crowdsale and Simple Auction contract come with larger over-

head. The highest increase in their transaction gas usage are 50% and 60%. The

ERC20 contract shows the biggest overhead, where the transferFrom transaction

shows 109% increase.

4.7 Related Work

In this section, we survey several lines of research that are related to our work.

Run-time verification. Similar to DeCon, Solythesis [79] also specifies properties

as invariants and generates instrumentation for run-time monitoring. It applies to

81

general smart contracts implemented in Solidity, whereas DeCon targets declarative

contracts only. By restricting the scope on declarative contracts, both specification

and monitoring can be performed in a more straightforward manner. Invariants

become violation queries, where joins are analogous to existential quantifiers, and

aggregations to universal quantifiers. Detection becomes query evaluation, which

reuses the same procedure for contract execution.

SODA [47] is a framework for implementing generic attack detection algorithms.

Unlike DeCon, where the monitoring procedure is automatically generated from

specification, the detection algorithms in SODA are implemented manually.

Sereum [100] monitors reentrancy attacks online via taint analysis. Azzopardi

et al. [28] monitors contract execution against legal contract logic. These two work

targets specific vulnerabilities and properties on Solidity smart contracts, whereas

DeCon monitors user-specified properties on declarative contracts.

Static analysis and verification. Static analysis has been applied to detect generic

vulnerabilities such as reentrancy attacks [65, 80], integer bugs [114, 108], trace

vulnerability [93], and event-ordering bugs [75]. Securify [115] translates the

EVM byte-code into stratified Datalog, and checks vulnerability patterns using off-

the-shelf Datalog solvers.

Alt et al. [23] translates Solidity program into SMT formulas and use off-the-

shelf SMT solver to verify contract properties. Zeus [72] leverages abstract inter-

pretations and symbolic model checking to verify correctness and fairness of smart

contracts.

Symbolic execution [83, 115, 21, 76, 42, 89, 22, 96] is another popular tech-

nique for smart contract verification. Oyente [83] detects generic predefined vul-

nerabilities including reentrancy, transaction order dependency, mishandled excep-

tions, etc. Verx [96], on the other hand, allows programmers to specify contract-

specific properties in temporal logic.

Fuzzing has also been applied to smart contracts. For example, ContractFuzzer [71]

82

tests smart contracts for security vulnerabilities. Echidna [62] generates tests that

triggers assertion violations. ILF [69] and Harvey [123] focus on improving code

coverage.

Unlike these work, DeCon monitors properties online, which incurs run-time

overhead, but does not suffer from false-positives or false-negatives. In addition,

DeCon targets declarative smart contracts, while these tools analyze Solidity or

EVM byte-code. Although targeting different languages, the underlying verification

techniques can also be applied to DeCon and benefit from its higher-level abstrac-

tion. We believe this is an exciting direction for future research.

Domain-specific languages. Scilla [102] is a intermediate-level language for smart

contracts that offers type safety and support for verification. KEVM [70] defines the

formal semantics of EVM, and has been used to verify contracts against ERC20 stan-

dards. In contrast, DeCon focuses on the high level abstraction of smart contracts

and specification of contract-specific properties. BitML [31] is a high-level language

for Bitcoin smart contracts. Based on process calculus, it translates contracts into

Bitcoin transactions. DeCon, on the other hand, is based on relational logic and

targets Ethereum smart contracts.

4.8 Conclusion and future work

We present DeCon, a declarative programming language for smart contract imple-

mentation and property specification. In DeCon, smart contracts are specified in a

high-level and executable manner, thus providing opportunities for efficient analysis

and verification, bringing clarity to transaction execution via data provenance. Con-

tracts implemented in DeCon demonstrate comparable efficiency to open-source

reference implementation. Furthermore, run-time verification adds moderate gas

overhead.

Our initial experience with DeCon suggests a few exciting future directions.

83

First, we find interesting contracts that require additional language features, in-

cluding contract composition, recursion, user-defined functions, etc. Second, there

are extreme cases where DeCon compiler generates contracts with non-negligible

overhead to the reference hand-written code. DeCon compiler needs further opti-

mization to generate more efficient executable code. Third, to save the overhead of

run-time verification, we can leverage the high-level abstraction of DeCon programs

to perform static verification.

84

CHAPTER 5

SAFETY VERIFICATION OF DECLARATIVE

SMART CONTRACTS

5.1 Introduction

This chapter introduces DCV, the safety verifier for DeCon smart contracts.

Most existing solutions for smart contract verification directly verify the imple-

mentation [17, 68, 84, 72, 96]. These solutions have worked very well on verifying

transaction-level properties, e.g., pre/post conditions, integer overflow, etc. How-

ever, when it comes to contract-level properties, where an invariant needs to hold

across an infinite sequence of transactions, these approaches suffer from low effi-

ciency due to state explosion issues. Some solutions [61, 26] trade soundness for

efficiency, verifying properties up to a certain number of transactions.

On the other hand, in model-based verification approaches, a formal model of

the smart contract is specified separately from the implementation. Given such a

formal model and the implementation, two kinds of verification are performed: (1)

does the formal model satisfy the desired properties [91, 41]? (2) is the implemen-

tation consistent with the formal model [48]? This verification approach is more

efficient, because the formal model typically abstracts away implementation details

that are irrelevant to the verification task. However, a separate model needs to be

written in addition to the implementation, and is typically in a formal language that

is unfamiliar to software engineers.

In DCV, we propose an alternative verification approach based on DeCon (Chap-

ter 4), an executable specification of smart contracts. A DeCon contract is a declar-

85

ative specification for the smart contract logic in itself, making it more efficient to

reason about than the low-level implementation in Solidity. It is also executable, in

that it can be automatically compiled into a Solidity program that can be deployed

on the Ethereum blockchain. When verification is completed, the automatic code

generation saves developers’ effort to manually implement the contract following

the specification. The high-level abstraction and executability make DeCon an ideal

target for verifying contract-level properties.

We implement a prototype, DCV (DeCon Verifier), for verifying declarative smart

contracts. DCV performs sound verification of safety invariants using mathemati-

cal induction. A typical challenge in induction is to infer inductive invariants that

can help prove the target property. A key insight is that the DeCon language ex-

poses the exact logical predicates that are necessary for constructing such inductive

invariants, which makes inductive invariant inference tractable.

As another benefit of using DeCon as the verification target, DeCon provides

uniform interfaces for both contract implementation and property specification. It

models the smart contract states as relational databases, and properties as violation

queries against these databases. Thus, both the smart contract transaction logic and

properties can be specified in a declarative and succinct way. With DCV, developers

can specify both the contract logic and its properties in DeCon, and have it verified

and implemented automatically.

This chapter makes the following contributions.

• A sound and efficient verificationmethod for smart contracts, targeting contract-

level safety invariants that is based on a declarative specification language and

induction proof strategy (Sections 5.3, 5.4).

• A domain-specific adaptation of the Houdini algorithm [77] to infer inductive

invariants for induction proof (Section 5.4).

• An open-source verification tool for future study and comparison.

86

State transition
system

Safety invariant

Smart contract Proof by induction

Verified + Invariant

Unknown

Violation query

Figure 5.1: Overview of DCV.

• Evaluation that compares DCV with state-of-the-art verification tools, on ten

representative benchmark smart contracts. DCV successfully verifies all bench-

marks, is able to handle benchmarks not supported by other tools, and is

significantly more efficient than baseline tools. In some instances, DCV com-

pletes verification within seconds when other tools timeout after an hour (Sec-

tion 5.5).

5.2 Illustrative Example

Figure 5.1 presents an overview of DCV. It takes a smart contract and a property

specification (in the form of a violation query) as input, both of which are written

in the DeCon language (Section 4.3). The smart contract is then translated into a

state transition system, and the property is translated into a safety invariant on the

system states. DCV then proves the transition system preserves the safety invariant

by mathematical induction. In our implementation, theorem proving is performed

by Z3 [19], an automatic theorem prover.

If the proof succeeds, the smart contract is verified to be safe, meaning that the

violation query result is always empty, and an inductive invariant is returned as a

safety proof. Otherwise, DCV returns “unknown”, meaning that the smart contract

may not satisfy the specified safety invariant.

In the rest of this section, we use a voting contract (Listing 5.1) as an example to

87

illustrate the work flow of DCV. This example is adapted from the voting example

in Solidity [16], simplified for ease of exposition.

5.2.1 A Voting Contract

Listing 5.1 shows a voting contract written in DeCon. In DeCon, transaction records

and contract states are modeled as relational tables (lines 1-10). These decla-

rations define table schemas in relational databases, where each schema has the

table name followed by column names and types in a parenthesis. Optionally, a

square bracket annotates the index of the primary key columns, meaning that these

columns uniquely identify a row. For example, the relation votes(proposal: uint,

c: uint)[0] on line 5 has two columns, named proposal and c, and both have type

uint. The first column is the primary key. If no primary keys are annotated, all

columns are interpreted as primary keys, i.e., the table is a set of tuples.

A special kind of relation is singleton relation, annotated by ∗. Singleton rela-

tions only have one row, e.g., winningProposal in line 8.

By default all relational tables are initialized to be empty, except relations an-

notated by the init keyword (line 12). These relations are initialized by the con-

structor arguments passed during deployment.

Each transaction is written in the form of a rule used in Datalog programs: head

:- body. The rule body consists of a list of relational literals, and is evaluated to

true if and only if all relational literals are true. If the rule body is true, the head

is inserted into the corresponding relational table. For example, the rule in line 15

specifies that a vote transaction can be committed if there is no winner yet, the

message sender is a voter, and the voter has not voted yet. The literal recv_vote(p)

is a transaction handler that evaluates to true on receiving a vote transaction re-

quest. Rules that contain such transaction handlers (literal with a recv_ prefix in

the relation name) are called transaction rules.

Inserting a new vote(v,p) literal triggers updates to all its direct dependent

88

1 /* Declare relations. */

2 .decl recv_vote(proposal: uint)

3 .decl vote(p: address, proposal: uint)

4 .decl isVoter(v: address, b: bool)[0]

5 .decl votes(proposal: uint, c: uint)[0]

6 .decl wins(proposal: uint, b: bool)[0]

7 .decl voted(p: address, b: bool)[0]

8 .decl *winningProposal(proposal: uint)

9 .decl *hasWinner(b: bool)

10 .decl *quorumSize(q: uint)

11 .init isVoter

12 /* Transaction where voter v cast a vote to proposal p. */

13 vote(v,p) :- recv_vote(p), msgSender(v), hasWinner(false),

14 voted(v, false), isVoter(v, true).

15 /* Count votes for each proposal p. */

16 votes(p,c) :- vote(_,p), c = count: vote(_,p).

17 /* A proposal wins by reaching a quorum. */

18 wins(p, true) :- votes(p,c), quorumSize(q), c >= q.

19 hasWinner(true) :- wins(_,b), b==true.

20 winningProposal(p) :- wins(p,b), b==true.

21 voted(v,true) :- vote(v,_).

22 /* Safety invariant: at most one winning proposal. */

23 .decl inconsistency(p1: uint, p2: uint)[0,1]

24 .violation inconsistency

25 inconsistency(p1,p2) :- wins(p1,true),wins(p2,true),p1!=p2.

Listing 5.1: A smart contract for voting, written in DeCon [46] langauge.

89

Figure 5.2: The voting contract as a state transition system.

rules. A rule is directly dependent on a relation R if and only if a literal of relation

R is in its body. In this case, relation wins and voted are updated next. The chain

of dependent rule updates go on until no further dependent rules can be triggered,

and the transaction handling is finished.

On the other hand, if the body of a transaction rule is evaluated to false on

receiving a transaction request, then no dependent rule is triggered, and the trans-

action is returned as failed.

Line 31 specifies a safety property in the form of a violation query. If the rule is

evaluated to true, it means that there exists two different winning proposals, indi-

cating a violation to the safe invariant that there is at most one winning proposal.

Such violation query rule is expected to be always false during the execution of a

correct smart contract.

5.2.2 Translating DeCon Contract to State Transition System

In order to verify the DeCon contract against the safety invariant, the declarative

rules are translated into a state transition system. Figure 5.2 illustrates part of

the transition system translated from the voting contract in Listing 5.1, where all

relational tables are the states, and every smart contract transaction commit results

90

in a state transition step.

The middle portion of Figure 5.2 shows a state after i transactions from one of

the initial states, where proposal p1 has two votes, proposal p2 has one vote, and

there is no winner yet.

Two outgoing edges from this state are highlighted. Suppose the quorum size

Q in this example is three. On the top is the transaction vote(p1), where p1 gets an-

other vote, making it reach the quorum and become the winner. The edge annotates

the conditions for this transaction to go through (only a fraction of the condition is

shown in the figure due to space limit). It is translated from the transaction rule r

in Listing 5.1 line 15 (recv_vote(p1) ∧ ¬hasWinner ∧ ...), as well as r’s dependent

rules from line 19 to 26 (votes [p1] ≥ Q ∧ ...). This edge leads to a new state where

proposal p1’s votes is incremented by one, and it becomes the winner, which is also

translated from line 19 to 26.

Similarly, the bottom right shows another transaction where proposal p2 gets a

vote, but hasWinner remains False since there is no proposal reaching the quorum.

Section 5.3.2 formally describes the algorithm to translate a DeCon smart con-

tract into a state transition system.

Property. The violation query rule (line 31) is translated into the following safety

invariant: ¬[∃p1, p2. wins(p1) ∧ wins(p2) ∧ p1 ̸= p2], It says that there do not exist

proposals p1 and p2 such that the violation query is true, which means that there is

at most one winning proposal.

5.2.3 Proof by Induction

Given the state transition system translated from the DeCon smart contract, the

target property prop(s) is proven by mathematical induction. In particular, let S be

the set of states in the transition system, andE be the set of transaction types. Given

s, s′ ∈ S, e ∈ E, let init(s) indicate whether s is in the initial state, and tr(s, e, s′)

indicate whether s can transition to s′ via transaction e. The mathematical induction

91

is as follows:

ProofByInduction(init, tr, prop) ≜ Base(init, prop) ∧ Induction(tr, prop)

Base(init, prop) ≜ ∀s ∈ S. init(s) =⇒ prop(s)

Induction(tr, prop) ≜ ∀s, s′ ∈ S, e ∈ E. inv(s) ∧ prop(s)

∧tr(s, e, s′) =⇒ inv(s′) ∧ prop(s′)

(5.1)

where inv(s) ∧ prop(s) is an inductive invariant inferred by DCV such that prop(s)

is proved to be an invariant of the transition system.

To find such an inductive invariant, DCV first generates a set of candidate in-

variants using predicates extracted from transaction rules in the DeCon contract,

and then applies the Houdini algorithm [77] to find the inductive invariant. The

detailed steps are as follows:

(1) Extract predicates from all transaction rules. Take the transaction rule in line

15 as an example. The following predicates can be extracted from it: ¬hasWinner,

¬voted[v], isV oter[v].

(2) Generate candidate invariants. Given the extracted predicates, candidate

invariants are generated in the form, ∀x ∈ X. ¬init(s) =⇒ ¬p(s, x), where X

is the set of all possible values of the local variables (variables other than the state

variables) in predicate p(s, x). And p(s, x) is one of the predicates extracted from

the transaction rules. ¬init(s) is introduced as the premise of the implication so

that the candidate invariant is trivially implied by the system’s initial constraints.

Having ¬p(s, x) in the implication conclusion is based on the heuristics that in order

to prove safety invariants, the lemma should prohibit the system from making an

unsafe transition.

For example, the following invariant is generated following the above pattern:

∀u ∈ Proposal . wins [u] =⇒ hasWinner (5.2)

The invariant expresses that if any proposal u ∈ Proposal is marked as winner, the

92

predicate hasWinner must also be true.

(3) Infer inductive invariants. Given the set of candidate invariants, DCV applies

the Houdini algorithm [77] and returns the formula in Equation 5.2 as an inductive

invariant. Applying the inductive invariant inv to the induction procedure (Equa-

tion 5.1), the target property can be proven.

5.3 Program Transformation

5.3.1 Declarative Smart Contracts as Transition Systems

This section introduces the algorithm to translate a DeCon smart contract into a

state transition system ⟨S, I, E, Tr⟩ where

• S is the state space: the set of all possible valuations of all relational tables in

DeCon.

• I ⊆ S is the set of initial states that satisfy the initial constraints of the system.

All relations are by default initialized to zero, or unconstrained if they are

annotated to be initialized by constructor arguments.

• E is the set of transaction types. Each element in E correspond to a type of

transaction in DeCon (analogous to a transaction function definition in Solid-

ity).

• Tr ⊆ S × E × S is the transition relation, generated from DeCon rules.

Tr(s, e, s′) means that state s can transit to state s′ via transaction e.

In the rest of this section, we introduce the algorithm to generate the transition

relation from a DeCon smart contract.

93

5.3.2 Transition Relation

The transition relation Tr is defined by a formula tr : S × E × S 7→ Bool. Given

s, s′ ∈ S, e ∈ E, s can transition to s′ in one step via transaction type e if and only if

tr(s, e, s′) is true. Equation 5.3 defines tr as a disjunction over the set of formulas en-

coding each transaction rule. R is the set of rules in the DeCon contract. Γ is a map

from relation to its modeling variable, e.g., the relation vote(proposal:uint,c:uint)[0]

is mapped to votes : uint 7→ uint. Recall from Section 4.3 that transaction rules are

rules that listen to incoming transaction and is only triggered by the incoming trans-

action request. Therefore, r.trigger is the literal with recv_ prefix in r’s body.

tr ≜
∨

r∈TransactionRules

[EncodeDeConRule(r, R,Γ, r.trigger) ∧ e = r.TxName] (5.3)

Algorithm 7 EncodeDeConRule(r, R,Γ, τ).
Input: (1) a DeCon rule r, (2) the set of all DeCon rules R, (3) a map from

relation to its modeling variable Γ, (4) a trigger τ , the newly inserted literal that

triggers r’s update.

Output: A boolean formula over S × S, encoding r’s body condition, and all

state updates triggered by inserting r’s head literal.

1: Body ← EncodeRuleBody(Γ, τ, r)

2: Dependent ← {EncodeDeConRule(dr,R,Γ, τ ′) | (dr, τ ′) ∈

DependentRules(r, R)}

3: (H,H ′)← GetStateVariable(Γ, r.head)

4: Update ← H ′ = GetUpdate(H, r, τ)

5: TrueBranch ← Body ∧ Update ∧ (
∧

d∈Dependent d)

6: FalseBranch ← ¬Body ∧ (H ′ = H)

7: return TrueBranch ⊕ FalseBranch

The procedure EncodeDeConRule is defined by Algorithm 7. We explain it using

the voting contract in Listing 5.1 as an example.

94

It takes four inputs: (1) a DeCon rule r, (2) the set of all DeCon rules R, (3) a

map from relation to its modeling variable Γ, (4) and a trigger τ , the newly inserted

literal that triggers r’s update. In particular, a trigger τ takes the form insert

[literal] or delete [literal]. It is used to inform the subroutine EncodeRuleBody

how a relation is updated, and that the rest of the rule body in r needs to be encoded

as a logical formula. For example, when a new vote transaction is received, the

trigger τ is insert recv_vote(p), where p is the transaction parameter.

In step 1, r’s body is encoded as a boolean formula, BodyConstraint , by calling

a procedure EncodeRuleBody (Section 5.3.3). Take the rule for vote transaction in

Listing 5.1 line 15 as an example. Its body is encoded as:

¬hasWinner ∧ ¬hasVoted [v] ∧ isVoter [v]

Step 2 first selects direct dependent rules of r from the set of all DeCon rules

R, by calling a subroutine DependentRules(r ,R). It returns a set of tuple (dr, τ ′),

where dr is a direct dependent rule of r, and τ ′ is the corresponding trigger for dr.

A rule dr is directly dependent on rule r if and only if r’s head relation appear in dr’s

body. For example, rules in line 19 and 26 of Listing 5.1 are directly dependent on

the vote transaction rule in line 15. For the next trigger τ ′, literal insertion results

from a new relational tuple being derived from one of the rules. For example, if the

rule for transaction vote is evaluated to true, the next trigger τ ′ is insert vote(v,p).

Literal deletion happens when literals with primary keys are inserted: inserting such

literals implicitly deletes the literals with the same primary keys, if exist. Next, for

each direct dependent rule dr of r and trigger τ ′, it gets dr’s encoding by recursively

calling itself on dr and τ ′.

Step 3 generates state variables for the head relation, whereH is for the current

step, and H ′ is for the next transition step. Step 4 generates the head relation

update constraint: H ′ equals inserting or deleting r’s evaluation result from H.

95

GetUpdate(H , r , τ) is defined as follows:

GetUpdate(H, r, τ) =

H.insert(r.head), if r is agg. rule ∨ τ = insert _

H.delete(r.head), if r is join rule ∧ τ = delete _

If r is an aggregation rule, the update is directly encoded as insertion since new

aggregation results implicitly overwrites the old ones. If r is a join rule, and the

trigger τ is a tuple deletion, then r’s join result with the deleted tuple needs to be

deleted as well. Otherwise, τ is an insertion, and the update for relation r.head is

also an insertion. Suppose we are in the recursion step for encoding the votes rule

in line 19, its update constraint is generated as: votes ′ = Store(votes , p, votes [p]+1),

where the votes for proposal p is incremented by one.

Step 5 generates the constraint where r’s body is true, in conjunction with the

update constraint and all dependent rules’ constraints. Step 6, on the other hand,

generates constraints where r’s body is false, no dependent rule is triggered, and the

head relation remains the same. Step 7 returns the final formula as an exclusive-or

of the true and false branches, which encodes r’s body and how its update affects

other relations in the contract.

5.3.3 Encoding Rule Bodies

The procedure EncodeRuleBody is defined by two sets of inference rules. The first

judgment of the form Γ, τ ⊢ r ↪→ ϕ states that a DeCon rule r is encoded by a

boolean formula ϕ under context Γ and τ . The second judgment of the form Γ, τ ⊢

Pred ⇝ ϕ states that a predicate Pred is encoded by a formula ϕ under context Γ

and τ . The contexts (Γ and τ) of both judgement forms are defined the same as the

input of Algorithm 7.

The judgment Γ, τ ⊢ r ↪→ ϕ is defined by the following inference rules:

Γ, τ ⊢ R(x̄)⇝ ϕ

Γ, τ ⊢ H(ȳ) : -R(x̄) ↪→ ϕ
(Join1)

96

Γ, τ ⊢ Pred⇝ ϕ1 Γ, τ ⊢ H(ȳ) : - Join ↪→ ϕ2

Γ, τ ⊢ H(ȳ) : -Pred, Join ↪→ ϕ1 ∧ ϕ2
(Join2)

A Join rule is encoded as a conjunction of the predicates, each of which is encoded

from a literal in the rule body. The encoding of individual literals is introduced later

in this section.
τ = insert_ s′ = Γ(H)[k̄].value+ n

Γ, τ ⊢ H(ȳ) : -R(x̄), s = sum n : R(z̄) ↪→ s = s′
(Sum-insert)

τ = delete_ s′ = Γ(H)[k̄].value− n

Γ, τ ⊢ H(ȳ) : -R(x̄), s = sum n : R(z̄) ↪→ s = s′
(Sum-delete)

τ = insert_ ϕ := c = Γ(H)[k̄].value+ 1

Γ, τ ⊢ H(ȳ) : -R(x̄), c = count : R(z̄) ↪→ ϕ
(Count-insert)

τ = delete_ ϕ := c = Γ(H)[k̄].value− 1

Γ, τ ⊢ H(ȳ) : -R(x̄), c = count : R(z̄) ↪→ ϕ
(Count-delete)

Unlike Join rules, aggregation rules (Sum andCount) have separate inference rules

for tuple insertion and deletion. Because the relation between new and old aggrega-

tion results needs to be encoded. In these reference rules, k̄ represents the primary

keys of relation H, extracted from the array ȳ, and Γ(H)[k̄].value reads the current

aggregate result. Note that, unlike the Join rules, the literal R(x̄) here does not

join with the aggregation literal, because it is only introduced to obtain valid val-

uations for the rule variables (every row in table R is a valid valuation). For each

valid valuation, the aggregator computes the aggregate summary for the matching

rows in table R (Section 4.3).

τ = insert_ m′ = Γ(H)[k̄].value ϕ := (n > m′ ∧m = n)⊕ (n ≤ m′)

Γ, τ ⊢ H(ȳ) : -R(x̄),m = max n : R(z̄) ↪→ ϕ
(Max)

τ = insert_ m′ = Γ(H)[k̄].value ϕ := (n < m′ ∧m = n)⊕ (n ≥ m′)

Γ, τ ⊢ H(ȳ) : -R(x̄),m = min n : R(z̄) ↪→ ϕ
(Min)

For Max and Min aggregation rules, DCV only encodes the their update for tuple

insertions, based on the assumption that they only apply to transaction relations (ta-

bles that stores the transaction records), which are append only and has no primary

keys. In other words, they have no tuple deletion.

97

This assumption is made for two reasons. First, updatingMax andMin for tuple

deletion is complicated, because if the current maximum or minimum is deleted,

the next biggest or smallest element needs to be fetched and become the new aggre-

gation result. Such update requires storing the whole table and even maintaining

sorted table entries. Second, Ethereum has strict limits on the computation and

storage of each smart contract and its transactions. Maintaining maximum and

minimum for tables with delete operation is too expensive to execute on Ethereum.

We survey smart contracts in public repositories and find no contract with such logic.

Therefore, DCV adds such assumption and greatly simplify the rule encoding.

Encoding individual literals. Following are the inference rules for judgment: Γ, τ ⊢

Pred ⇝ ϕ, which encodes individual literals.

τ.rel = R
Γ, τ ⊢ R(x̄)⇝ τ = R(x̄)

(Lit1)
τ.rel ̸= R

Γ, τ ⊢ R(x̄)⇝ Γ(R)[k̄] = v̄
(Lit2)

where k̄ represents the primary keys in relational literal R(x̄), extracted from x̄,

and v̄ represents the remaining fields in x̄.

Γ, τ ⊢ C ⇝ C
(Condition)

Γ, τ ⊢ y = F (x̄)⇝ y = F (x̄)
(Function)

Recursions. DCV assumes that on every new incoming transaction request, there

is at most one new tuple derived by each rule, and that there is no recursion in the

rules.

Recursion means that there is a mutual dependency between rules. A rule ra is

dependent to another rule rb (ra → rb) if and only if rb’s head relation appears in

ra’s body, or there exists another rule rc such that ra → rc ∧ rc → rb.

This assumption keeps the size of the transition constraint linear to the number

of rules in the Decon contract, thus making the safety verification tractable. We find

this assumption holds for most smart contracts in the financial domain, and is true

for all of the ten benchmark contracts in our evaluation.

Multi-contract Interactions. Multi-contract interaction is specified implicitly by

DeCon rules that join relations from different contracts. Such interactions are per-

98

formed via message passing. Unlike prior work that check for message handling

errors, DCV assumes the message delivery and handling is always successful, and

instead focuses on the functional correctness. Note that such interactions are lim-

ited to functions without mutual recursions. Mutual recursions are not supported

because it breaks the atomicity assumption of a transaction. To illustrate, suppose

contract A’s transaction calls contract B’s transaction Foo, which in turn calls another

transaction of contract A. In this case, two transactions of contract A are executed

in parallel, breaking the atomicity of transactions.

5.3.4 Safety Invariant Generation

Each violation query rule qr in a DeCon contract is first encoded as a formula ϕ

such that Γ, τ ⊢ qr ↪→ ϕ. Note that the context Γ is the same mapping used in

the transition system encoding process. The second context, trigger τ , is a reserved

literal check(), which triggers the violation query rule after every transaction.

Next, the safety invariant is generated from ϕ as follows:

Prop ≜ ¬(∃x ∈ X. ϕ(s, x))

where X is the state space for the set of non-state variables in ϕ. The property

states that there exists no valuations of variables in X such that the violation query

is non-empty. In other words, the system is safe from such violation.

5.4 Verification Method

5.4.1 Proof by Induction

Given a state transition system ⟨S, I, E, Tr⟩ transformed from the Decon contract,

DCV uses mathematical induction to prove the target property prop. The induction

procedure is defined in Equation 5.1, where init and tr are the Boolean formulas

99

that define the set of initial states I and the transition relation Tr. The rest of this

section introduces the algorithm to infer the inductive invariant inv used by the

induction proof.

Algorithm 8 Procedure to find inductive invariants.
Input: a transition system ts, a map from relation to its modeling variable Γ,

and a set of DeCon transaction rules R.

Output: an inductive invariant of ts.

1: function FindInductiveInvariant(C,ts)

2: for inv in C do:

3: if refuteInvariant(inv, C, ts) then

4: return FindInductiveInvariant(C \ inv, ts)

5: end if

6: end for

7: return
∧

ci∈C ci

8: end function

9: P ←
⋃

r∈R ExtractPredicates(r,Γ)

10: C ← GenerateCandidateInvariants(P)

11: return FindInductiveInvariant(C, ts)

Algorithm 8 presents the procedure to infer inductive invariants. It first extracts

a set of predicates P from the set of transaction rules R (Section 5.4.2). Then it

generates a set of candidate invariants using predicates in P , following two heuris-

tic patterns (Section 5.4.3). Finally, it invokes a recursive subroutine FindInduc-

tiveInvariant to find an inductive invariant.

The procedure FindInductiveInvariants is adopted from the Houdini algo-

rithm [77]. It iteratively refutes candidate invariants in C, until there is no candi-

date that can be refuted, and returns the conjunction of all remaining invariants.

The subroutine refuteInvariant is defined in Equation 5.4, which refutes a candidate

invariant if it is not inductive.

100

refuteInvariant(inv, C, ts) ≜ ∨¬(ts.init =⇒ inv)

∨¬[(
∧

c∈C c) ∧ ts.tr =⇒ inv′]
(5.4)

where inv′ is adopted by replacing all state variables in inv with their corresponding

variable in the next transition step.

A property of this algorithm is that, given a set of candidate invariants C, it

always returns the strongest inductive invariant that can be constructed in the form

of conjunction of the candidates in C [77].

5.4.2 Predicate Extraction

Algorithm 9 ExtractPredicate(r, Γ).
Input: a transaction rule r, a map from relation to its modeling variable Γ.

Output: a set of predicates P .

1: τ ← r.trigger

2: P0 ← {p | l ∈ r.body,Γ, τ ⊢ l⇝ p}

3: P1 ← {p ∧ q | p ∈ P0, q ∈ MatchingPredicates(p, r)}

4: return P0 ∪ P1

Algorithm 9 presents the predicate extraction procedure. It first transforms each

literal in the transaction rule into a predicate, and puts them into a set P0.

Some predicates in P0 do not contain enough information on their own, e.g.,

predicates that contain only free variables. Because the logic of a rule is established

on the relation among its literals (e.g. two literals sharing the same variable vmeans

joining on the corresponding columns). On the contrary, predicates that contain

constants, e.g. hasWinner == true, convey the matching of a column to a certain

concrete value, and can thus be used directly in candidate invariant construction.

Therefore, in the next step, each predicate p in P0 is augmented by one of its

matching predicates in matchingPredicates(p, r), which is the set of predicates in

101

rule r that share at least one variable with predicate p. This set of augmented

predicates is P1. Finally, the union of P0 and P1 is returned.

5.4.3 Candidate Invariant Generation

Given the set of predicates in P , DCV generates candidate invariants in the following

patterns:

{∀x ∈ X. ¬init(s) =⇒ ¬p(s, x) | p ∈ P}

{∀x ∈ X. ¬init(s) ∧ q(s, x) =⇒ ¬p(s, x) | p, q ∈ P}

whereX is the set of non-state variables in the body of the formula. ¬init(s) is used

as the implication premise so that the whole formula can be trivially implied by

the transition system’s initial constraints. Having ¬p as the implication conclusion

is based on the observation that, in order to prove safety invariants, a lemma is

needed to prevent the system from unsafe transitions. In the second pattern, we

add another predicate q ∈ P0 in the implication premise to make the pattern more

robust.

5.5 Evaluation

Benchmarks. We survey public smart contract repositories [13, 18, 16], and gather

10 representative contracts as the evaluation benchmarks. Each selected contract

either has contract-level safety specifications annotated, or has proper documen-

tation from which we can come up with a contract-level safety specification. They

cover a wide range of application domains, including ERC20 [57] and ERC721 [55],

the two most popular token standards. Table 5.1 shows all contract names and their

target properties.

Baselines. We use solc [2] and solc-verify [68] as the comparison baselines. Solc is

a Solidity compiler with a built-in checker to verify assertions in source programs.

102

Table 5.1: Benchmark properties.

Benchmarks Properties

wallet No negative balance.

crowFunding No missing fund.

ERC20 Account balances add up to totalSupply.

ERC721 All existing token has an owner.

ERC777 No default operators is approved for individual account.

ERC1155 Each token’s account balances add up to that token’s totalSupply.

paymentSplitter No overpayment.

vestingWallet No early release.

voting At most one winning proposal.

auction Each participant can withdraw at most once.

It has been actively maintained by the Ethereum community, and version 0.8.13 is

used for this experiment. Solc-verify extends from solc 0.7.6 and performs auto-

mated formal verification using strategies of specification annotation and modular

program verification. We have also considered Verx [96] and Zeus [72], but neither

is publicly available.

Experiment setup. We modify certain functionalities and syntax of the benchmark

contracts so that they are compatible with all comparison tools. In particular, the

delegate vote function of the voting contract contains recursion, which is not yet

supported by DeCon, and is thus dropped. In addition, solc and solc-verify do

not support inline assembly analysis. Therefore, inline assembly in the Solidity

contracts are replaced with native Solidity code. Minor syntax changes are also

made to satisfy version requirements of the two baseline tools.

With these modifications, for each reference contract in Solidity, we implement

its counterpart in DeCon. Then we conduct verification tasks on three versions of

benchmark contracts: (1) DeCon contracts with DCV, (2) reference Solidity con-

103

tracts with solc and solc-verify, and (3) Solidity contracts generated from DeCon

with solc and solc-verify. For each set of verification tasks, we measure the verifi-

cation time and set the time budget to be one hour. All experiments are performed

on a server with 32 2.6GHz cores and 125GB memory.

Table 5.2: Verification efficiency measured in time (seconds). TO stands for time-

out after 1 hour. Unknown means the verifier cannot verify the contract property.

Errors from solc are caused by a known software issue [15]. Solc-verify fails to

analyze part of the OpenZeppelin libraries, and thus returns error.

Benchmarks #Rules LOC DCV Solc Solc-verify

reference DeCon reference DeCon

wallet 12 67 1 1 unknown 4 unknown

crowFunding 14 85 1 1 error unknown 7

ERC20 19 389 1 26 error error 8

ERC721 13 520 1 TO TO error 8

ERC777 31 562 1 TO unknown 10 unknown

ERC1155 18 645 3 12 TO 6 8

paymentSplitter 6 166 1 TO TO 4 unknown

vestingWallet 7 113 1 TO unknown 9 4

voting 6 36 1 error 2 unknown unknown

auction 13 146 54 error TO unknown unknown

Results. Table 5.2 shows the evaluation results. DCV verifies all but two contracts in

one second, with ERC1155 in three seconds and auction in 54 seconds. In particular,

the properties for the voting and auction contract are not inductive, and thus require

inductive invariant generation. Auction takes more time because it contains more

rules and has a more complicated inductive invariant.

On the other hand, solc only successfully verifies four reference contracts, with

comparable efficiency. It times out on four contracts, and reports SMT solver in-

104

vocation error on another two. This error has been an open issue according to the

GitHub repository issue tracker [15], which is sensitive to the operating system and

the underlying library versions of Z3.

Similarly, solc-verify verifies five reference contracts, and reports unknown on

three others. It also returns errors on two contracts because it cannot analyze cer-

tain parts of the included OpenZepplin libraries, although the libraries are written

in compatible Solidity version.

For Solidity contracts generated from DeCon, solc verifies one and solc-verify

verifies five. The performance difference between the reference version and the

DeCon-generated version is potentially caused by the fact that DeCon generates

stand-alone contracts that implement all functionalities without external libraries.

On the other hand, DeCon implements contract states (relations) as mappings from

primary keys to tuples, which may incur extra analysis complexity compared to the

reference version.

In summary, DCV is highly efficient in verifying contract-level safety invariants,

and can handle a wider range of smart contracts compared to other tools. By taking

advantage of the high-level abstractions of the DeCon language, it achieves signif-

icant speedup over the baseline verification tools. In several instances, alternative

tools timeout after an hour or report an error, while DeCon is able to complete

verification successfully.

5.6 Related work

Verification of Solidity smart contracts. Solc [84], Solc-verify [68], Zeus [72],

Verisol [119], and Verx [96] perform safety verification for smart contracts. Similar

to DCV, they infer inductive invariants to perform sound verification of safety prop-

erties. They also generate counter-examples as a sequence of transactions to dis-

prove the safety properties. SmartACE [120] is a safety verification framework that

105

incorporates a wide variety of verification techniques, including fuzzing, bounded

model checking, symbolic execution, etc. In addition to safety properties, Smart-

Pulse [111] supports liveness verification. It leverages the counterexample-guided

abstraction refinement (CEGAR) paradigm to perform efficient model checking, and

can generate attacks given an environment model.

DCV differs from these work in that it uses a high-level executable specification,

DeCon, as the verification target. Such high-level modeling improves verification

efficiency, but it also means that DCV can only apply to smart contracts written in

DeCon, which is a new language, while the other tools can work on most existing

smart contracts in Solidity.

The Move Prover [53] (MVP) is a formal verifier for smart contracts written

in the Move language [12]. Similar to DCV, MVP also verifies safety properties

of smart contracts. However, they target different languages and blockchain plat-

forms. DCV is based on DeCon, which is declarative and more abstract, while Move

is imperative. In addition, Move contracts work on the Diem blockchain, while De-

Con currently supports Ethereum and Solidity. Despite the differences, we believe

DCV could also benefitMove. An interesting future direction would be to implement

a Move compiler for DeCon, so that DeCon can serve as a declarative specification

for smart contracts on the Diem blockchain, while Move as the implementation lan-

guage can provide better support for other verification tasks.

Formal semantics of smart contracts. KEVM [48] introduces formal semantics for

smart contracts, and can automatically verify that a Solidity program (its compiled

EVM bytecode) implements the formal semantics specified in KEVM. This verifi-

cation is also sound, but it focuses on the functional correctness of each Solidity

function, instead of the state invariants across multiple transactions.

Formal semantics of EVM bytecode have also been formalized in F* [64] and

Isabelle/HOL [25]. Scilla [102] is a type-safe intermediate language for smart con-

tracts that also provides formal semantics. They offer precise models of the smart

106

contract behaviors, and support deductive verification via proof assistants. However,

working with a proof assistant requires non-trivial manual effort. On the contrary,

DCV provides fully automatic verification.

Vulnerability detection. Securify [115] encodes smart contract semantic informa-

tion into relational facts, and uses Datalog solver to search for property compliance

and violation patterns in these facts. Oyente [83] uses symbolic execution to check

generic security vulnerabilities, including reentrancy attack, transaction order de-

pendency, etc. Maian [11] detects vulnerabilities by analyzing transaction traces.

Unlike the sound verification tools, which require some amount of formal specifica-

tion from the users, these work require no formal specification and can be directly

applied to any existing smart contracts without modification, offering a quick and

light-weight alternative to sound verification, although may suffer from false posi-

tives or negatives.

Fuzzing and testing. Fuzzing and testing techniques have also been widely ap-

plied to smart contract verification. They complement deductive verification tools

by presenting concrete counter-examples. ContractFuzzer [71] instruments EVM

bytecodes to log run-time contract behaviors, and uncovers security vulnerabili-

ties from these run-time logs. Smartisan [49] uses static analysis to predict ef-

fective transaction sequences, and uses this information to guide fuzzing process.

SmartTest [109] introduces a language model for vulnerable transaction sequences,

and uses this model to guide the search path in the fuzzing phase.

5.7 Conclusion

We present DCV, an automatic safety verification tool for declarative smart con-

tracts written in the DeCon language. It leverages the high-level abstraction of

DeCon to generate succinct models of the smart contracts, performs sound verifi-

cation via mathematical induction, and applies domain-specific adaptations of the

107

Houdini algorithm to infer inductive invariants. Evaluation shows that it is highly

efficient, verifying all 10 benchmark smart contracts, with significant speedup over

the baseline tools.

108

CHAPTER 6

CONCLUSION AND FUTURE WORK

Declarative specification is a powerful tool for system design and verification. The

abstraction makes it easy to analyze and verify high-level design properties. At the

same time, program synthesis technique automates the implementation process,

improving system implementation efficiency.

This dissertation addresses two challenges in the adoption declarative system

specification. NetSpec focuses on improving the system specification efficiency. It

automates the network specification process via input-output example based pro-

gram synthesis technique. To make the tool robust to incomplete input-output ex-

amples, it further introduces active learning that queries the user for additional

examples.

DSC introduces declarative program in an emerging domain: Ethereum smart

contracts. It makes the specification and verification of smart contracts easier via

a high-level declarative language. And it makes the implementation more efficient

by generating executable programs from the specification automatically.

There are many open and exciting questions remain to be answered in the fu-

ture. First is the interaction between program synthesis and program verification.

Given a correctness specification of a network protocol, and input-output examples

that describe the execution logic of the protocol design, can we synthesize a proto-

col that satisfies both the input-output examples and the correctness properties?

Second, could we utilize the declarative specification of smart contract to gen-

erate gas efficient implementation? Executing smart contracts on the blockchain is

expensive, and gas cost has been one of the most important optimization metric for

smart contracts. Database query execution plan generation is one of the most suc-

109

cessful application of performance optimization for declarative specification (SQL).

It is an interesting direction to explore opportunities to optimize smart contract gas

consumption based on their declarative specification.

110

APPENDIX A

PROOF

A.1 Proof sketch for completeness

We first present the following lemmas, and their proof sketches. With these lemmas,

we then prove the completeness property, defined in Theorem 3.4.6.

Lemma A.1.1. Given a set of input tuples and a set of output tuples (I, O), if all rules

in a program p are output contributing rules (Definition 3.4.4), then Score(p) > 0.

Let OutCtrb(p) denotes that all rules in program p are output-contributing rules,

the lemma is defined as:

OutCtrb(p) =⇒ Score(p) > 0 (A.1)

Proof sketch. By the semantics of Datalog, a program’s output is the union of

all rules’ output. Thus p(I) ∩ O ̸= ∅. By the definition of Score, we have that

Score(p) > 0.

Lemma A.1.2. Given a set of input tuples and a set of output tuples (I, O), if all rules

in a program p are output-contributing rules, then for every p’s predecessors, all rules

are also output-contributing rules:

∀q → p,OutCtrb(p) =⇒ OutCtrb(q) (A.2)

Proof. We enumerate all ways to generate offspring (q → p):

1. If p ∈ AddRule(q) (equation 3.4), and let r0 be the minimal rule added in p,

we have p = q ∪ r0. Given OutCtrb(p), that is, all rules in p produces some

desired output in O, and p = q ∪ r0, we have OutCtrb(q).

111

2. If p ∈ ExtRule(q) (equation 3.7), let r be the rule in q that have been extended

as r′ in p. Let r(I) and r′(I) denote the direct derivation output of r and r′ on

input I, respectively.

(a) Given OutCtrb(p), and that r′ ∈ p, we have that r′(I) ∩O ̸= ∅.

(b) By the semantics of Datalog, adding a predicate to a rule monotonically

reduces the output of the rule. Thus we have r′(I) ⊆ r(I).

(c) Given that r′(I)∩O ̸= ∅, and that r′(I) ⊆ r(I), we have that r(I)∩O ̸= ∅.

(d) Given that all other rules in q are also in p, we have that OutCtrb(q).

3. If p ∈ MkAgg(q), given that NetSpec only introduces argMax and argMin

aggregations, p(I) ⊆ q(I).

(a) For rules r ∈ q whose output are aggregated and renamed as r′ ∈ p, be-

cause NetSpec introduces only argMax and argMin aggregations, r′(I) ⊆

r(I).

(b) Following the same reasoning from 2c) to 2d), we have that OutCtrb(q).

Lemma A.1.3. Given a set of input tuples and a set of output tuples (I, O), if all rules

in a program p are output-contributing rules, then there exists a lineage of programs

p0 → p1 → p2 → ... → pn → p, such that p0 is the empty programs, and p1, ..., pn

contain only output-contributing rules:

Lineage(p) :=OutCtrb(p) =⇒

∃p1, ..., pn, [(p0 → p1 → ...→ pn → p)

∧ ∀i ∈ {1, ..., n},OutCtrb(pi)]

∀p,Lineage(p) (A.3)

112

Proof sketch. We prove by well-founded induction on the successor relation→ on

the program space (Definition 3.4.3). → is a well-founded relation on program

space, because rules or literals cannot be taken away from a program indefinitely.

To prove ∀p,Lineage(p) it is suffice to show that:

∀p, [∀q → p,Lineage(q)] =⇒ Lineage(p) (A.4)

If OutCtrb(p) is true, then by Lemma A.1.2, we have that ∀q → p,OutCtrb(q).

By the antecedent of the induction hypothesis (equation A.4), we have that there

exists a lineage of programs p0 → p1 → ... → q, and ∀i ∈ 1, ..., n,OutCtrb(pi) ∧

Score(pi). Let pn+1 = q, and given that q → p, we have that Lineage(p).

By well-founded induction, we have that ∀p,Lineage(p).

Lemma A.1.4 (Termination). For all finite set of input tuples and output tuples (I,O),

NetSpec always terminates.

Proof sketch. We first show that the search space of NetSpec is finite. First, suppose

there are NR input relations, then according to the syntax constraints in Chapter 2,

each rule contains at most 2NR literals. Second, in offspring generation, we only

add a rule to a candidate program if it has imperfect recall. In the worst case, each

rule generates a tuple in O. Therefore, a program contains at most |O| rules.

LetEn be the set of all programs that have been popped fromQn at the beginning

of iteration n. Let P be the search space of NetSpec. We construct a function on

iteration number n: f(n) = |P |−|En|. We then show that f(n) >= 0 and f(n+1) <

f(n). By the principle of well-founded induction, NetSpec terminates.

Proof sketch for weak completeness (Theorem 3.4.6). We first prove the case

where valid solution exists. We prove by induction on iterations in Algorithm 1.

We use subscript n to denote the state variable values at the beginning of the nth

iteration, e.g., Qn is the set of candidate programs at the beginning of iteration n.

Given a solution p, and by Lemma A.1.3, we have that there exists a lineage of

programs: p0 → p1 → p2 → ... → pk → p, such that p0 is the empty programs, and

113

p1, ..., pk contain only output-contributing rules.

Induction hypothesis: In every iteration, either p is in the solution set Sn, or one

of p’s ancestors in the lineage from p0 to p is in the set of candidate programs Qn:

∀n, p ∈ Sn ∨ (∃i ∈ {0, 1, 2, ..., k}, pi ∈ Qn) (A.5)

Base case: In iteration 0, by algorithm 1 step 1, Q is initialized with only the empty

program p0. Thus induction hypothesis holds.

Induction: Suppose in the nth iteration, the induction hypothesis holds, which im-

plies either of the following:

1. If p ∈ Sn, by algorithm 1 step 2b, we have Sn ⊆ Sn+1. This implies that

p ∈ Sn+1. Thus induction hypothesis holds in iteration n+ 1.

2. Otherwise, ∃i ∈ {0, 1, 2, ..., k}, pi ∈ Qn. We discuss by two cases on the value

of the current program Pn:

(a) If Pn ̸= pi, by step 2b, every program in Qn is copied into Qn+1 except P ,

thus pi remains in Qn+1. Induction hypothesis holds in iteration n+1.

(b) Otherwise, Pn = pi.

i. In step 2a, all offspring of pi are generated. By the definition of the

successor relation→ (Definition 3.4.3), pi+1 ∈ Offspring(pi).

ii. By Lemma A.1.1 and Lemma A.1.3, Score(pi+1) > 0.

iii. In step 2b, all offspring with score greater than 0 is added to Qn+1.

Given Score(pi+1) > 0, we have that pi+1 ∈ Qn+1. Induction hypoth-

esis holds in iteration n+1.

This induction hypothesis, in conjunction with the termination condition that

Q = ∅, implies that p ∈ S when NetSpec terminates.

For the second case, when no valid solution exists, by Theorem 3.4.1 (sound-

ness) and Lemma A.1.4 (termination), we have that NetSpec will terminate with

S = ∅.

114

BIBLIOGRAPHY

[1] Openzeppelin contracts. https://github.com/OpenZeppelin/

openzeppelin-contracts/tree/master/contracts/token. [Cited on

page 78]

[2] Solidity. https://docs.soliditylang.org, . [Cited on pages 50, 51,

and 102]

[3] Smtchecker and formal verification. https://docs.soliditylang.org/en/

v0.8.12/smtchecker.html#assert, . [Cited on page 49]

[4] Simple auction. https://docs.soliditylang.org/en/v0.5.3/

solidity-by-example.html#simple-open-auction, . [Cited on page

78]

[5] Solidity events. https://docs.soliditylang.org/en/v0.8.13/abi-spec.

html?highlight=events#events, . [Cited on page 69]

[6] Safe remote purchase. https://docs.soliditylang.org/en/v0.5.3/

solidity-by-example.html#safe-remote-purchase, . [Cited on page 79]

[7] Voting. https://docs.soliditylang.org/en/v0.5.3/

solidity-by-example.html#voting, . [Cited on page 79]

[8] Truffle. https://trufflesuite.com. [Cited on page 78]

[9] The dao. https://etherscan.io/address/

0xbb9bc244d798123fde783fcc1c72d3bb8c189413, 2016. [Cited on page

49]

[10] King of the ether throne — post-mortem investigation. https://www.

kingoftheether.com/postmortem.html, 2016. [Cited on page 49]

115

https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/token
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/token
https://docs.soliditylang.org
https://docs.soliditylang.org/en/v0.8.12/smtchecker.html##assert
https://docs.soliditylang.org/en/v0.8.12/smtchecker.html##assert
https://docs.soliditylang.org/en/v0.5.3/solidity-by-example.html##simple-open-auction
https://docs.soliditylang.org/en/v0.5.3/solidity-by-example.html##simple-open-auction
https://docs.soliditylang.org/en/v0.8.13/abi-spec.html?highlight=events##events
https://docs.soliditylang.org/en/v0.8.13/abi-spec.html?highlight=events##events
https://docs.soliditylang.org/en/v0.5.3/solidity-by-example.html##safe-remote-purchase
https://docs.soliditylang.org/en/v0.5.3/solidity-by-example.html##safe-remote-purchase
https://docs.soliditylang.org/en/v0.5.3/solidity-by-example.html##voting
https://docs.soliditylang.org/en/v0.5.3/solidity-by-example.html##voting
https://trufflesuite.com
https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413
https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413
https://www.kingoftheether.com/postmortem.html
https://www.kingoftheether.com/postmortem.html

[11] Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings of

the 34th Annual Computer Security Applications Conference, ACSAC ’18, page

653–663, New York, NY, USA, 2018. Association for Computing Machinery.

ISBN 9781450365697. doi: 10.1145/3274694.3274743. URL https://

doi.org/10.1145/3274694.3274743. [Cited on page 107]

[12] The move team: The move programming language. https://diem.github.

io/move/, 2020. [Cited on page 106]

[13] Openzeppelin. https://github.com/OpenZeppelin/

openzeppelin-contracts, 2022. [Cited on page 102]

[14] Netspec synthesis result validation. https://github.com/HaoxianChen/

netspec/blob/master/synthesis-validation, 2022. [Cited on page 34]

[15] Cannot replicate smtchecker example output. https://github.com/

ethereum/solidity/issues/13073, 2022. [Cited on pages x, 104, and 105]

[16] Solidity by example. https://docs.soliditylang.org/en/v0.8.17/

solidity-by-example.html, 2022. [Cited on pages 88 and 102]

[17] Smtchecker and formal verification. https://docs.soliditylang.org/en/

v0.8.17/smtchecker.html, 2022. [Cited on page 85]

[18] Verx smart contract verification benchmarks. https://github.com/

eth-sri/verx-benchmarks, 2022. [Cited on page 102]

[19] Z3. https://github.com/Z3Prover/z3, 2022. [Cited on page 87]

[20] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases:

The Logical Level. Pearson, 1st edition, 1994. [Cited on pages 6, 7, 12, 17,

and 18]

116

https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1145/3274694.3274743
https://diem.github.io/move/
https://diem.github.io/move/
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/HaoxianChen/netspec/blob/master/synthesis-validation
https://github.com/HaoxianChen/netspec/blob/master/synthesis-validation
https://github.com/ethereum/solidity/issues/13073
https://github.com/ethereum/solidity/issues/13073
https://docs.soliditylang.org/en/v0.8.17/solidity-by-example.html
https://docs.soliditylang.org/en/v0.8.17/solidity-by-example.html
https://docs.soliditylang.org/en/v0.8.17/smtchecker.html
https://docs.soliditylang.org/en/v0.8.17/smtchecker.html
https://github.com/eth-sri/verx-benchmarks
https://github.com/eth-sri/verx-benchmarks
https://github.com/Z3Prover/z3

[21] Elvira Albert, Pablo Gordillo, Benjamin Livshits, Albert Rubio, and Ilya

Sergey. Ethir: A framework for high-level analysis of ethereum bytecode. In

Int. symposium on automated technology for verification and analysis (ATVA),

pages 513–520. Springer, 2018. [Cited on pages 49 and 82]

[22] Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez, and Al-

bert Rubio. Safevm: a safety verifier for ethereum smart contracts. In ACM

SIGSOFT Int. Symposium on Software Testing and Analysis (ISSTA), pages

386–389, 2019. [Cited on page 82]

[23] Leonardo Alt and Christian Reitwiessner. Smt-based verification of solidity

smart contracts. In International Symposium on Leveraging Applications of

Formal Methods, pages 376–388. Springer, 2018. [Cited on page 82]

[24] Peter Alvaro, Tyson Condie, Neil Conway, Joseph M Hellerstein, and Russell

Sears. I do declare: Consensus in a logic language. ACM SIGOPS Operating

Systems Review, 2010. [Cited on pages 1, 7, and 34]

[25] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. Towards

verifying ethereum smart contract bytecode in isabelle/hol. In Proceedings

of the 7th ACM SIGPLAN International Conference on Certified Programs and

Proofs, pages 66–77, 2018. [Cited on page 106]

[26] Pedro Antonino and AW Roscoe. Formalising and verifying smart con-

tracts with solidifier: a bounded model checker for solidity. arXiv preprint

arXiv:2002.02710, 2020. [Cited on page 85]

[27] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. Medrec:

Using blockchain for medical data access and permission management. In

Int. Conf. on Open and Big Data (OBD), pages 25–30. IEEE, 2016. [Cited on

page 49]

117

[28] Shaun Azzopardi, Gordon J Pace, and Fernando Schapachnik. On observing

contracts: deontic contracts meet smart contracts. In Legal Knowledge and

Information Systems, pages 21–30. IOS Press, 2018. [Cited on page 82]

[29] John Backes, Sam Bayless, Byron Cook, Catherine Dodge, Andrew Gacek,

Alan J Hu, Temesghen Kahsai, Bill Kocik, Evgenii Kotelnikov, Jure Kukovec,

et al. Reachability analysis for aws-based networks. In International Confer-

ence on Computer Aided Verification, 2019. [Cited on pages 1, 6, 7, and 34]

[30] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky, Aleksandr

Karbyshev, Mooly Sagiv, Michael Schapira, and Asaf Valadarsky. Vericon:

towards verifying controller programs in software-defined networks. In Pro-

ceedings of the 35th ACM SIGPLAN conference on programming language de-

sign and implementation, 2014. [Cited on pages 1, 6, 7, 34, and 48]

[31] Massimo Bartoletti and Roberto Zunino. Bitml: a calculus for bitcoin smart

contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, pages 83–100, 2018. [Cited on page 83]

[32] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David

Walker. Don’t mind the gap: Bridging network-wide objectives and device-

level configurations. In Proceedings of the 2016 ACM SIGCOMM Conference,

2016. [Cited on pages 1 and 47]

[33] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A general ap-

proach to network configuration verification. In Proceedings of the Conference

of the ACM Special Interest Group on Data Communication, 2017. [Cited on

pages 1 and 48]

[34] Aaron Bembenek, Michael Greenberg, and Stephen Chong. Formulog: Dat-

alog for smt-based static analysis. Proceedings of the ACM on Programming

Languages, 4(OOPSLA):1–31, 2020. [Cited on page 50]

118

[35] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin

Vechev. Config2spec: Mining network specifications from network config-

urations. In 17th {USENIX} Symposium on Networked Systems Design and

Implementation ({NSDI} 20), 2020. [Cited on page 47]

[36] Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. Findel: Secure

derivative contracts for ethereum. In International Conference on Financial

Cryptography and Data Security, pages 453–467. Springer, 2017. [Cited on

page 49]

[37] Nikolaj Bjørner and Karthick Jayaraman. Checking cloud contracts in mi-

crosoft azure. In International Conference on Distributed Computing and In-

ternet Technology, 2015. [Cited on page 1]

[38] Ryan Browne. ’accidental’ bug may have frozen $ 280million worth of digital

coin ether in a cryptocurrency wallet. https://www.cnbc.com/2017/11/08/

accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.

html, 2017. [Cited on page 49]

[39] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. Why and where: A

characterization of data provenance. In International conference on database

theory, pages 316–330. Springer, 2001. [Cited on page 51]

[40] Eric Hayden Campbell, William T Hallahan, Priya Srikumar, Carmelo Cas-

cone, Jed Liu, Vignesh Ramamurthy, Hossein Hojjat, Ruzica Piskac, Robert

Soulé, and Nate Foster. Avenir: Managing data plane diversity with control

plane synthesis. In NSDI, 2021. [Cited on page 47]

[41] Franck Cassez, Joanne Fuller, and Horacio Mijail Antón Quiles. Deductive

verification of smart contracts with dafny. In International Conference on

Formal Methods for Industrial Critical Systems, pages 50–66. Springer, 2022.

[Cited on page 85]

119

https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.html
https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.html
https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen-280-worth-of-ether-on-parity-wallet.html

[42] Jialiang Chang, Bo Gao, Hao Xiao, Jun Sun, Yan Cai, and Zijiang Yang. scom-

pile: Critical path identification and analysis for smart contracts. In Int. Conf.

on Formal Engineering Methods, pages 286–304. Springer, 2019. [Cited on

page 82]

[43] Ang Chen, Yang Wu, Andreas Haeberlen, Wenchao Zhou, and Boon Thau

Loo. The good, the bad, and the differences: Better network diagnostics

with differential provenance. In Proceedings of the 2016 ACM SIGCOMM

Conference, 2016. [Cited on pages 1 and 7]

[44] Chen Chen, Limin Jia, Hao Xu, Cheng Luo, Wenchao Zhou, and Boon Thau

Loo. A program logic for verifying secure routing protocols. In Interna-

tional Conference on Formal Techniques for Distributed Objects, Components,

and Systems, 2014. [Cited on page 1]

[45] Haoxian Chen, Anduo Wang, and Boon Thau Loo. Towards example-guided

network synthesis. In Proceedings of the 2nd Asia-Pacific Workshop on Net-

working, 2018. [Cited on pages 36, 37, and 46]

[46] Haoxian Chen, Gerald Whitters, Mohammad Javad Amiri, Yuepeng Wang,

and Boon Thau Loo. Declarative smart contracts. In ESEC/FSE ’22, 2022.

[Cited on page 89]

[47] Ting Chen, Rong Cao, Ting Li, Xiapu Luo, Guofei Gu, Yufei Zhang, Zhou Liao,

Hang Zhu, Gang Chen, Zheyuan He, et al. Soda: A generic online detection

framework for smart contracts. In NDSS, 2020. [Cited on page 82]

[48] Xiaohong Chen, Daejun Park, and Grigore Roşu. A language-independent

approach to smart contract verification. In International Symposium on Lever-

aging Applications of Formal Methods, pages 405–413. Springer, 2018. [Cited

on pages 85 and 106]

120

[49] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and

Sang Kil Cha. Smartian: Enhancing smart contract fuzzing with static and

dynamic data-flow analyses. In 2021 36th IEEE/ACM International Confer-

ence on Automated Software Engineering (ASE), pages 227–239. IEEE, 2021.

[Cited on page 107]

[50] David Chu, Lucian Popa, Arsalan Tavakoli, JosephMHellerstein, Philip Levis,

Scott Shenker, and Ion Stoica. The design and implementation of a declara-

tive sensor network system. In Proceedings of the 5th international conference

on Embedded networked sensor systems, 2007. [Cited on page 34]

[51] Andrew Cropper and Stephen H. Muggleton. Metagol system.

https://github.com/metagol/metagol, 2016. URL https://github.

com/metagol/metagol. [Cited on page 47]

[52] Andrew Cropper, Sebastijan Dumancic, and Stephen H. Muggleton. Turning

30: New ideas in inductive logic programming. In Proceedings of the Inter-

national Joint Conference on Artificial Intelligence (IJCAI), 2020. [Cited on

pages 12 and 47]

[53] David Dill, Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Meng Xu, and

Emma Zhong. Fast and reliable formal verification of smart contracts with

the move prover. In International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, pages 183–200. Springer, 2022. [Cited

on page 106]

[54] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin Vechev.

Netcomplete: Practical network-wide configuration synthesis with autocom-

pletion. In 15th {USENIX} Symposium on Networked Systems Design and

Implementation ({NSDI} 18), 2018. [Cited on pages 1, 7, 34, and 47]

121

https://github.com/metagol/metagol
https://github.com/metagol/metagol

[55] William Entriken, Dieter Shirley, Jacob Evans, and Nastassia Sachs. Eip-721:

Non-fungible token standard. https://eips.ethereum.org/EIPS/eip-721.

[Cited on pages 75 and 102]

[56] Richard Evans and Edward Grefenstette. Learning explanatory rules from

noisy data. Journal of Artificial Intelligence Research, 61, 2018. [Cited on

page 47]

[57] Vitalik Buterin Fabian Vogelsteller. Eip-20: Token standard. https://eips.

ethereum.org/EIPS/eip-20. [Cited on pages 72 and 102]

[58] Floodlight. 2020. http://www.projectfloodlight.org/floodlight/.

[Cited on pages 9 and 45]

[59] Ari Fogel, Stanley Fung, Luis Pedrosa, MegWalraed-Sullivan, Ramesh Govin-

dan, Ratul Mahajan, and Todd Millstein. A general approach to network

configuration analysis. In 12th {USENIX} symposium on networked systems

design and implementation ({NSDI} 15), 2015. [Cited on pages 1, 6, 7, 12,

34, and 48]

[60] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto, Jen-

nifer Rexford, Alec Story, and David Walker. Frenetic: A network program-

ming language. ACM Sigplan Notices, (9), 2011. [Cited on page 48]

[61] Joel Frank, Cornelius Aschermann, and Thorsten Holz. {ETHBMC}: A

bounded model checker for smart contracts. In 29th USENIX Security Sym-

posium (USENIX Security 20), pages 2757–2774, 2020. [Cited on page 85]

[62] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce.

Echidna: effective, usable, and fast fuzzing for smart contracts. In Pro-

ceedings of the 29th ACM SIGSOFT Int. Symposium on Software Testing and

Analysis, pages 557–560, 2020. [Cited on page 83]

122

https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
http://www.projectfloodlight.org/floodlight/

[63] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. Foundations and

tools for the static analysis of ethereum smart contracts. In Int. Conf. on

Computer Aided Verification, pages 51–78. Springer, 2018. [Cited on page

49]

[64] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic

framework for the security analysis of ethereum smart contracts. In Interna-

tional Conference on Principles of Security and Trust, pages 243–269. Springer,

2018. [Cited on page 106]

[65] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam

Rinetzky, Mooly Sagiv, and Yoni Zohar. Online detection of effectively call-

back free objects with applications to smart contracts. Proceedings of the ACM

on Programming Languages, 2(POPL):1–28, 2017. [Cited on page 82]

[66] Ashish Gupta, Inderpal Singh Mumick, and Venkatramanan Siva Subrah-

manian. Maintaining views incrementally. ACM SIGMOD Record, 22(2):

157–166, 1993. [Cited on page 51]

[67] AdamHahn, Rajveer Singh, Chen-Ching Liu, and Sijie Chen. Smart contract-

based campus demonstration of decentralized transactive energy auctions. In

2017 IEEE Power & energy society innovative smart grid technologies conference

(ISGT), pages 1–5. IEEE, 2017. [Cited on page 49]

[68] Ákos Hajdu and Dejan Jovanović. solc-verify: A modular verifier for solidity

smart contracts. In Working conference on verified software: theories, tools,

and experiments, pages 161–179. Springer, 2019. [Cited on pages 85, 102,

and 105]

[69] Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and Mar-

tin Vechev. Learning to fuzz from symbolic execution with application to

123

smart contracts. In Proceedings of the 2019 ACM SIGSAC Conf. on Computer

and Communications Security, pages 531–548, 2019. [Cited on page 83]

[70] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu,

Philip Daian, Dwight Guth, Brandon Moore, Daejun Park, Yi Zhang, Andrei

Stefanescu, and Grigore Rosu. Kevm: A complete formal semantics of the

ethereum virtual machine. In 2018 IEEE 31st Computer Security Foundations

Symposium (CSF), pages 204–217, 2018. doi: 10.1109/CSF.2018.00022.

[Cited on page 83]

[71] Bo Jiang, Ye Liu, and WK Chan. Contractfuzzer: Fuzzing smart contracts

for vulnerability detection. In 2018 33rd IEEE/ACM Int. Conf. on Automated

Software Engineering (ASE), pages 259–269. IEEE, 2018. [Cited on pages 82

and 107]

[72] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus: ana-

lyzing safety of smart contracts. In Ndss, pages 1–12, 2018. [Cited on pages

82, 85, 103, and 105]

[73] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and

P Brighten Godfrey. Veriflow: Verifying network-wide invariants in real time.

In 10th {USENIX} Symposium on Networked Systems Design and Implementa-

tion ({NSDI} 13), 2013. [Cited on page 48]

[74] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feam-

ster, and Russ Clark. Kinetic: Verifiable dynamic network control. In

12th {USENIX} Symposium on Networked Systems Design and Implementa-

tion ({NSDI} 15), 2015. [Cited on page 48]

[75] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Sax-

ena. Exploiting the laws of order in smart contracts. In ACM SIGSOFT Int.

124

symposium on software testing and analysis (ISSTA), pages 363–373, 2019.

[Cited on page 82]

[76] Johannes Krupp and Christian Rossow. {teEther}: Gnawing at ethereum to

automatically exploit smart contracts. In USENIX Security Symposium, pages

1317–1333. USENIX, 2018. [Cited on page 82]

[77] Shuvendu K Lahiri and Shaz Qadeer. Complexity and algorithms for mono-

mial and clausal predicate abstraction. In International Conference on Auto-

mated Deduction, pages 214–229. Springer, 2009. [Cited on pages 86, 92,

93, 100, and 101]

[78] Mark Law, Alessandra Russo, and Krysia Broda. The ilasp system for in-

ductive learning of answer set programs. arXiv preprint arXiv:2005.00904,

2020. [Cited on pages 8 and 47]

[79] Ao Li, Jemin Andrew Choi, and Fan Long. Securing smart contract with

runtime validation. In Proceedings of the 41st ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 438–453, 2020.

[Cited on page 81]

[80] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe.

Reguard: finding reentrancy bugs in smart contracts. In Int. Conf. on Soft-

ware Engineering: Companion (ICSE-Companion), pages 65–68. IEEE, 2018.

[Cited on page 82]

[81] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E Gay, Joseph M

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion

Stoica. Declarative networking. Communications of the ACM, 2009. [Cited

on pages 1, 6, 7, 9, and 34]

[82] Nuno P Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and

George Varghese. Checking beliefs in dynamic networks. In 12th {USENIX}

125

Symposium on Networked Systems Design and Implementation ({NSDI} 15),

2015. [Cited on pages 1, 6, 7, 12, and 34]

[83] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Ho-

bor. Making smart contracts smarter. In ACM SIGSAC Conf. on computer and

communications security (CCS), pages 254–269, 2016. [Cited on pages 82

and 107]

[84] Matteo Marescotti, Rodrigo Otoni, Leonardo Alt, Patrick Eugster, Antti EJ

Hyvärinen, and Natasha Sharygina. Accurate smart contract verification

through direct modelling. In International Symposium on Leveraging Appli-

cations of Formal Methods, pages 178–194. Springer, 2020. [Cited on pages

85 and 105]

[85] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. A smart contract for

boardroom voting with maximum voter privacy. In International conference

on financial cryptography and data security, pages 357–375. Springer, 2017.

[Cited on page 49]

[86] William M McKeeman. Differential testing for software. Digital Technical

Journal, 1998. [Cited on page 17]

[87] Jonathan Mendelson, Aaditya Naik, Mukund Ragothaman, and Mayur Naik.

Gensynth: Synthesizing datalog programs without language bias. Proceed-

ings of the Conference on Artificial Intelligence (AAAI), 2021. [Cited on pages

9, 36, and 37]

[88] Mininet. http://mininet.org/. [Cited on page 45]

[89] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo

Grieco, Josselin Feist, Trent Brunson, and Artem Dinaburg. Manticore: A

user-friendly symbolic execution framework for binaries and smart contracts.

126

http://mininet.org/

In 2019 34th IEEE/ACM Int. Conf. on Automated Software Engineering (ASE),

pages 1186–1189. IEEE, 2019. [Cited on page 82]

[90] StephenMuggleton and Luc De Raedt. Inductive logic programming: Theory

and methods. The Journal of Logic Programming, 19, 1994. [Cited on page

12]

[91] Zeinab Nehai, Pierre-Yves Piriou, and Frederic Daumas. Model-checking of

smart contracts. In Int. Conf. on Blockchain, pages 980–987. IEEE, 2018.

[Cited on page 85]

[92] Tim Nelson, Andrew D Ferguson, Michael JG Scheer, and Shriram Krishna-

murthi. Tierless programming and reasoning for software-defined networks.

In 11th {USENIX} Symposium on Networked Systems Design and Implementa-

tion ({NSDI} 14), 2014. [Cited on pages 1, 6, 7, 9, 34, and 48]

[93] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Ho-

bor. Finding the greedy, prodigal, and suicidal contracts at scale. In computer

security applications Conf., pages 653–663, 2018. [Cited on page 82]

[94] Benedikt Notheisen, Magnus Gödde, and Christof Weinhardt. Trading stocks

on blocks-engineering decentralized markets. In International Conference on

Design Science Research in Information System and Technology, pages 474–

478. Springer, 2017. [Cited on page 49]

[95] Zhiniang Peng. Not a fair game – fairness analysis of dice2win. https:

//blogs.360.net/post/Fairness_Analysis_of_Dice2win_EN.html,

2018. [Cited on page 49]

[96] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen,

and Martin Vechev. Verx: Safety verification of smart contracts. In 2020

IEEE symposium on security and privacy (SP), pages 1661–1677. IEEE, 2020.

[Cited on pages 49, 78, 82, 85, 103, and 105]

127

https://blogs.360.net/post/Fairness_Analysis_of_Dice2win_EN.html
https://blogs.360.net/post/Fairness_Analysis_of_Dice2win_EN.html

[97] POX. 2020. https://github.com/noxrepo/pox. [Cited on pages 9 and 45]

[98] Mukund Raghothaman, Jonathan Mendelson, David Zhao, Mayur Naik, and

Bernhard Scholz. Provenance-guided synthesis of datalog programs. Pro-

ceedings of the ACM on Programming Languages, 2020. [Cited on pages 8

and 47]

[99] Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable prov-

ing. In Proceedings of the Advances in Neural Information Processing Systems

(NeurIPS), 2017. [Cited on page 47]

[100] Michael Rodler, Wenting Li, Ghassan O Karame, and Lucas Davi. Sereum:

Protecting existing smart contracts against re-entrancy attacks. In Network

and Distributed Systems Security (NDSS), 2019. [Cited on page 82]

[101] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maf-

fei. ethor: Practical and provably sound static analysis of ethereum smart

contracts. In ACM SIGSAC Conf. on Computer and Communications Security

(CCS), pages 621–640, 2020. [Cited on page 49]

[102] Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton

Trunov, and Ken Chan Guan Hao. Safer smart contract programming with

scilla. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–30,

2019. [Cited on pages 83 and 106]

[103] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In

Proceedings of the 5th Annual Workshop on Computational Learning Theory

(COLT’92), 1992. [Cited on page 31]

[104] Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos Koutris,

and Mayur Naik. Syntax-guided synthesis of Datalog programs. In Proceed-

ings of the Joint Meeting on European Software Engineering Conference and

128

https://github.com/noxrepo/pox

Symposium on the Foundations of Software Engineering (ESEC/FSE), 2018.

[Cited on page 47]

[105] David Siegel. Understanding the dao attack. 2016. [Cited on page 49]

[106] Atul Singh, Tathagata Das, Petros Maniatis, Peter Druschel, and Timothy

Roscoe. Bft protocols under fire. In NSDI, 2008. [Cited on pages 1 and 7]

[107] Yannis Smaragdakis and Martin Bravenboer. Using datalog for fast and easy

program analysis. In International Datalog 2.0 Workshop, pages 245–251.

Springer, 2010. [Cited on page 50]

[108] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. Verismart:

A highly precise safety verifier for ethereum smart contracts. In Symposium

on Security and Privacy (SP), pages 1678–1694. IEEE, 2020. [Cited on page

82]

[109] Sunbeom So, Seongjoon Hong, and Hakjoo Oh. {SmarTest}: Effectively

hunting vulnerable transaction sequences in smart contracts through lan-

guage {Model- Guided} symbolic execution. In 30th USENIX Security Sym-

posium (USENIX Security 21), pages 1361–1378, 2021. [Cited on page 107]

[110] Souffle. 2020. https://souffle-lang.github.io/index.html. [Cited on

page 32]

[111] Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu Lahiri, and Isil

Dillig. Smartpulse: automated checking of temporal properties in smart

contracts. In 2021 IEEE Symposium on Security and Privacy (SP), pages 555–

571. IEEE, 2021. [Cited on page 106]

[112] Kausik Subramanian, Loris D’Antoni, and Aditya Akella. Genesis: Synthe-

sizing forwarding tables in multi-tenant networks. In Proceedings of the 44th

129

https://souffle-lang.github.io/index.html

ACM SIGPLAN Symposium on Principles of Programming Languages, 2017.

[Cited on page 47]

[113] Parity Technologies. Parity security alert. 2017. [Cited on page 49]

[114] Christof Ferreira Torres, Julian Schütte, and Radu State. Osiris: Hunting for

integer bugs in ethereum smart contracts. In Proceedings of the 34th Annual

Computer Security Applications Conf., pages 664–676, 2018. [Cited on page

82]

[115] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian

Buenzli, and Martin Vechev. Securify: Practical security analysis of smart

contracts. In ACM SIGSAC Conf. on Computer and Communications Security

(CCS), pages 67–82, 2018. [Cited on pages 49, 82, and 107]

[116] Anduo Wang, Prithwish Basu, Boon Thau Loo, and Oleg Sokolsky. Declara-

tive network verification. In International Symposium on Practical Aspects of

Declarative Languages. Springer. [Cited on pages 1, 7, and 48]

[117] AnduoWang, Limin Jia, Wenchao Zhou, Yiqing Ren, Boon Thau Loo, Jennifer

Rexford, Vivek Nigam, Andre Scedrov, and Carolyn Talcott. Fsr: Formal

analysis and implementation toolkit for safe interdomain routing. IEEE/ACM

Transactions on Networking, 2012. [Cited on pages 1, 6, 7, 12, 34, and 48]

[118] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly

expressive SQL queries from input-output examples. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, 2017. [Cited on page 9]

[119] Yuepeng Wang, Shuvendu K Lahiri, Shuo Chen, Rong Pan, Isil Dillig, Cody

Born, Immad Naseer, and Kostas Ferles. Formal verification of workflow poli-

cies for smart contracts in azure blockchain. InWorking Conference on Verified

130

Software: Theories, Tools, and Experiments, pages 87–106. Springer, 2019.

[Cited on page 105]

[120] Scott Wesley, Maria Christakis, Jorge A Navas, Richard Trefler, Valentin

Wüstholz, and Arie Gurfinkel. Verifying solidity smart contracts via commu-

nication abstraction in smartace. In International Conference on Verification,

Model Checking, and Abstract Interpretation, pages 425–449. Springer, 2022.

[Cited on page 105]

[121] John Whaley, Dzintars Avots, Michael Carbin, and Monica S Lam. Using

datalog with binary decision diagrams for program analysis. In Asian Sym-

posium on Programming Languages and Systems, pages 97–118. Springer,

2005. [Cited on page 50]

[122] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou, and Boon Thau

Loo. Automated network repair with meta provenance. In Proceedings of

the 14th ACM Workshop on Hot Topics in Networks, 2015. [Cited on pages 1

and 7]

[123] Valentin Wüstholz and Maria Christakis. Harvey: A greybox fuzzer for smart

contracts. In ACM Joint Meeting on European Software Engineering Conf. and

Symposium on the Foundations of Software Engineering (ESE/SFSE), pages

1398–1409, 2020. [Cited on page 83]

[124] Yifei Yuan, Dong Lin, Rajeev Alur, and Boon Thau Loo. Scenario-based pro-

gramming for sdn policies. In Proceedings of the 11th ACM Conference on

Emerging Networking Experiments and Technologies, 2015. [Cited on page

46]

[125] Wenchao Zhou, Micah Sherr, Tao Tao, Xiaozhou Li, Boon Thau Loo, and Yun

Mao. Efficient querying and maintenance of network provenance at internet-

131

scale. In Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data, 2010. [Cited on pages 6 and 12]

132

	Introduction
	Declarative specification language
	Synthesizing specifications from input-output examples
	Introduction
	Illustrative Example
	Problem formulation
	Synthesis Algorithm
	Handling Incomplete Examples
	Implementation
	Evaluation
	Related Work
	Conclusion

	Declarative smart contracts
	Introduction
	Illustrative example
	Language
	Compilation to Solidity
	Case studies
	Evaluation
	Related Work
	Conclusion and future work

	Safety verification of declarative smart contracts
	Introduction
	Illustrative Example
	Program Transformation
	Verification Method
	Evaluation
	Related work
	Conclusion

	Conclusion and future work
	Proof
	Proof sketch for completeness

