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ABSTRACT

Despite the emergence of probabilistic logic programming (PLP)
languages for data driven applications, there are currently no
debugging tools based on provenance for PLP programs. In this
paper, we propose a novel provenance model and system, called
P3 (Provenance for Probabilistic logic Programs) for analyzing
PLP programs. P3 enables four types of provenance queries: tra-
ditional explanation queries, queries for finding the set of most
important derivations within an approximate error, top-K most
influential queries, and modification queries that enable us to
modify tuple probabilities with fewest modifications to program
or input data. We apply these queries into real-world scenar-
ios and present theoretical analysis and practical algorithms for
such queries. We have developed a prototype of P3, and our
evaluation on real-world data demonstrates that the system can
support a wide-range of provenance queries with explainable
results. Moreover, the system maintains provenance and execute
queries efficiently with low overhead.

1 INTRODUCTION

In many data intensive applications, there has been a paradigm
shift towards probabilistic and statistical reasoning. In some cases,
it is in support of programs that rely on probability distributions.
Probabilistic reasoning is used as a basis to trade off performance
and accuracy, when collecting and aggregating readings from
sensors. In other cases, probabilistic reasoning is dictated by
use of external libraries, typically involving programs that rely
on outputs of machine learning libraries which are intrinsically
probabilistic.

Consequently, over the past few years, there is an emergence
of probabilistic logic programming (PLP) languages. Many of these
languages use database-style declarative conjunctive rules that
are loosely based on Datalog semantics with extensions to handle
probability. These include SLP [21], Datalogp [7], PRISM [28],
ICL [23], ProbLog [24]. A common thread across these systems
is that they allow both data and rules to be probabilistic, and
are based on Sato’s distribution semantics [27] among possible
worlds under a given probability distribution. These languages
cover the bulk of PLP languages in use today.

In addition, some PLP languages are used as machine learn-
ing models, such as Markov Logic Networks (MLN) [26] and
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Probabilistic Soft Logic (PSL) [3]. These PLP programs are com-
bined with probabilistic graphical models (PGM), or converted
to weighted Boolean formulas [6], for inference and learning.
Beyond these languages, BAYONET [9], which introduces their
own flavor of probabilistic network programming language.

Despite the proliferation of declarative PLP languages, there
are currently no tools that enable us to debug and analyze pro-
grams. Given the declarative feature, a natural question to ask is
whether data provenance [11] can be used for debugging these
declarative data-driven systems. However, prior provenance work
falls short in enabling debugging capabilities for PLP programs
because they are geared primarily towards traditional relational
databases. The most obvious candidate is provenance in proba-
bilistic databases [25]. However, these systems do not work for
PLP programs, given that only tuples are labeled with indepen-
dent probabilities while the operators in SQL remain determin-
istic. This is unlike PLP programs where the rules (and hence
the operators used for executing these rules) are probabilistic.
Consequently, systems that support provenance in probabilistic
databases do not work on queries or programs with uncertainty
built into the algorithm rather than the underlying data.

In this paper, we present a model and system called P3 (Prove-
nance for Probabilistic logic Programs). P3 enables a novel form
of provenance, which we term probabilistic provenance. P3 is
aimed at the first class of declarative PLP programs described
above. All of these languages consist of programs that are a union
of weighted conjunctive rules with recursion (without negation),
and adhere to the possible world semantics. A representative
example of this language that we use throughout our paper is
ProbLog, although the approach can be generalized to similar
languages. In ProbLog, tuples and rules are labeled with prob-
abilities. ProbLog-like languages encompasses a wide range of
PLP programs that involve reasoning with uncertainty over data.
To the best of our knowledge, our work is the first one providing
a comprehensive case study on using probabilistic provenance
for PLP analysis.

By allowing PLP programs to be analyzable using probabilis-
tic provenance, P3 enables a whole series of novel provenance
queries not previously possible, including (1) showing the deriva-
tion graphs that explain tuples and their probability values; (2)
finding the set of most important derivations for a derived tuple
based on its provenance; (3) finding the top-K most influential
variables (including base tuples and rules) for a derived tuple
based on its provenance; and (4) supporting modification queries,
where we can answer how to modify variables’ probabilities to



efficiently change the derived tuple probability to a target score
with small cost.
The key contributions of this paper are as follows:

o Probabilistic provenance model. We propose a provenance
based approach to reason PLP programs with semantics similar
to ProbLog. Provenance is maintained through both graph-
based representation (provenance graph) and algebraic repre-
sentation (provenance polynomials).

e Probabilistic provenance queries. We demonstrate how
the provenance model can enable provenance queries to an-
swer explanation, derivation, influence and modification ques-
tions about derived tuples. We further demonstrate how these
queries can generate meaningful results in the presence of
cycles in recursive rules.

e Implementation and evaluation. We have implemented P3,
and evaluated the system over use cases based on real-world
data. Through our use cases, we also demonstrate how P3 can
help debug and fix errors in ProgLog programs. Our results
demonstrate that P3 can enable a range of novel provenance
queries with low overhead at maintenance and query time.

2 BACKGROUND

Given our choice of ProbLog as a representative example, we first
provide an introduction to the salient features of the language.
ProbLog’s syntax is based on Datalog, with the main difference
being that all base tuple clauses and rule clauses are labeled
with probabilities. A ProbLog program specifies a probability
distribution over all possible non-probabilistic subprograms of
the ProbLog program. The semantics of ProbLog is defined by
the success probability of a query, which is the probability that
the queried tuple succeeds among these subprograms.

rid p1: H(O) :- B1(),B2(),...,Bn().
tid p2: B1().

Figure 1: ProbLog syntax

Figure 1 summarizes the ProbLog syntax. There are two types
of clauses: a weighted conjunctive rule (first line in Figure 1
where H() means the rule head, and B1(),B2(), ..., Bn() are
relations in the rule body), and a probabilistic base tuple (second
line in Figure 1). Each conjunctive rule has a rid, labeled with a
probability (p1 in Figure 1) of being true. Each base tuple has a
tid, labeled with a probability score of existence (p2 in Figure 1).

2.1 Running Example

As a running example used throughout the paper, we consider
the Acquaintance ProbLog program shown in Figure 2. The
program computes all pairs of people who may know each other.

rl 0.8: know(P1,P2) :-

live(P1,C), live(P2,C), P1!=P2.
r2 0.4: know(P1,P2) :-

like(P1,L), like(P2,L), P1!=P2.
r3 0.2: know(P1,P3) :-

know(P1,P2), know(P2,P3), P1!=P3.
t1 1.0: live("Steve","DC").
t2 1.0: live("Elena","DC").
t3 1.0: live("Mary","NYC").
t4 0.4: like("Steve","Veggies").
t5 0.6: like("Elena","Veggies").
té6 1.0: know("Ben","Steve").

Figure 2: Acquaintance ProbLog rules and base tuples

know("Ben","Elena")

Derivation 1
Derivation 2
know("Steve","Elena") || know("Ben","Steve")
| live("Steve","DC") || live("Elena","DC") || like("Steve","Veggies") || like("Elena","Veggies") |

Figure 3: Provenance graph of know("Ben","Elena") with
annotated derivations

In the Acquaintance program, people who live in the same
place (r1) or like the same item (r2) may know each other with
some probability. The Acquaintance relationship can also be
transitive with some probability (r3). Given the program in Fig-
ure 2, our P3 system demonstrates how we can derive more
Acquaintance relations based on existing relations. For exam-
ple, we can infer whether know("Ben", "Elena") can be derived
by querying the tuple, and also derive the probability that Ben
knows Elena.

Beyond inferring probability values, P3 will enable the follow-
ing classes of queries:

o Probability explanations. Figure 3 is a provenance graph
which explains how know("Ben", "Elena") is derived. There
are two derivations in Figure 3, annotated by two types of
arrows. They share some paths to derive the tuple. We can use
provenance queries to answer which derivation contributes
more to the tuple probability.

o Change modification. After getting the probability score of
know("Ben", "Elena"), we may be dissatisfied with its score,
and would like to increase or decrease it, either by changing
base tuple values or rule weights. To minimize disruption, we
would like make the fewest possible changes. A provenance
query may be used to find out the variable that influences
the derivation of know("Ben", "Elena") most, so that if we
would like to modify its probability values with the fewest
number of variable changes, we can start with the most influ-
ential variables. Likewise, we can also use provenance queries
to determine the fewest number of modifications to rules.

2.2 ProbLog Semantics

As is shown in Figure 1, each clause ¢; (whether a base tuple
or rule) is labeled with a probability p;. These probabilities are
mutually independent. A ProbLog program T = {p1 : ¢1,* -+ ,pn :
cn} defines a probability distribution over logic programs L C
Lt ={c1,--+ ,cn} as follows:

P =[]p [] (-po (1)
c;eL  c¢;eLr\L

where L denotes one non-probabilistic subprogram, also called
one possible world. The success probability P(q|T) of a query ¢
in a ProbLog program T is defined as:

1, 30:L=q0

0, otherwise

P(qIL) = { @)



P(q,L|T) = P(q|L) - P(L|T) ©)

P(IT) = )] P(gLIT) @)

LCLt

The success probability of query g corresponds to the probability
that the query g has a proof, given the probability distribution
over logic programs. As mentioned in [24], the success probability
of a ProbLog query can be computed as the probability of a
Boolean monotone DNF (Disjunctive Normal Form) formula of
binary variables being true, which is an NP-hard problem [29].
The DNF formula is obtained by SLD-resolution [8], and then
represented by binary decision diagrams (BDDs) [4] in order to
compute its probability efficiently.

The reason we choose ProbLog semantics to be the focused of
this paper is as follows:

e Sato’s distribution semantics or possible worlds semantics [5]
is widely used in probabilistic databases, where the base tuple
score has a meaningful semantics - probability. In ProbLog,
the rule weight also means the probability that the rule is true.

e Provenance in probabilistic databases is intuitively easy to be
extended in ProbLog’s syntax and semantics.

e Alternative PLP languages (such as PRISM, ICL, SLP, and
Datalogp) that adhere to the Sato’s distribution semantics im-
pose extra constraints such as mutual exclusion constraint for
rule bodies of the same rule head, and do not allow for recur-
sion. However, ProbLog is more general and expressive, and it
supports recursive rules which is necessary in network data
applications. Hence, provenance support for ProbLog naturally
carries forward to these alternative languages.

Note that while we focus on ProbLog, given ProbLog’s general-
ity, the concepts that we introduce in this paper can be generally
applied to any declarative probabilistic programs that are based
on union of conjunctive rules.

3 PROVENANCE MODEL

In this section, we introduce the provenance model used in P3.
Traditionally, provenance can have both graph representation
(provenance graph) and algebraic representation (provenance
polynomials). P3 provides both types of representations, and as
we will see later, different representations support different types
of provenance queries.

3.1 Provenance Graph

Given a ProbLog-like PLP program, we model its provenance as
a directed graph G(V, E), which describes the data dependencies
(see Figure 3 as an example).

The vertex set V in G consists of tuple vertices and rule exe-
cution vertices. An oval denotes a rule execution vertex, and a
rectangle denotes a tuple vertex. We also annotate the associated
probability for each tuple vertex and rule execution vertex. For
a concise graph representation, we omit the probability values
in the example provenance graph, but they are maintained as an
associated attribute and can be queried.

The edge set E consists of unidirectional edges that represent
data dependencies between tuple vertices and rule execution
vertices. An edge is always pointing from a tuple vertex t to a
rule execution vertex r, or from a rule execution vertex r to a
tuple vertex t. The former indicates ¢t is an input of r, and the
latter means ¢t is derived through r. The provenance graph G
shows the complete derivation history of teh PLP program. For a

queried tuple g (derivable from the PLP program), it provenance
is the a subgraph of G rooted by ¢’s corresponding tuple vertex.

For PLP programs containing recursive rules, it may generate
cycles during the derivations. A cycle appears when a derived
tuple can also be an input tuple in one of its own derivations. How-
ever, we prove that the cycles in the graph can be removed with-
out affecting computing the success probability of the queried
tuple g (See Section 3.3 for details).

Figure 3 shows a simple provenance graph for Acquaintance
example. Intuitively, we can find two derivations of tuple
know("Ben","Elena") in the graph. know("Ben", "Elena") is
derived through rule r3 when both know("Ben", "Steve") and
know("Steve","Elena") are true. Then there are two ways to
derive know("Steve", "Elena"): through r1 or through r2. The
two derivations also share some paths.

3.2 Provenance Maintenance

The provenance maintenance for PLP shares similarities with that
of ExSPAN engine [31]: we perform an automatic rule rewrite of
the PLP program to create and maintain provenance information
at runtime as a side-computation along with the evaluation of the
original PLP program. During this process, our system naturally
maintains provenance as a graph: the direct dependencies of the
tuple and rule executions (i.e., the edges in the provenance graph)
are captured and stored in relational tables.

More concretely, each rule rid p H() :- B1(),...,Bn().
is rewritten into three rules at compile time L
HO) :- B1O,...,Bn().
prov(H(),p,rid) :- B1(),...,Bn().
rule(rid, (B1(),...,Bn())) :- B1(),...,Bn().

The first rule performs the original tuple derivation; the second
rule records the dependency between the rule execution and
its input tuples (i.e., B1(), ., Bn()); the final rule records
that the derived tuple H() has a derivation from this particular
rule execution. In addition, we further identify rules labeled with
probabilities and associate the rule execution vertices with their
corresponding probabilities. For example, consider rule r1 in
Figure 2, its execution results in two dependencies (captured

in the prov and rule table respectively): know(P1 ,P2)£r1
and r1«(live(P1,C), live(P2,C)). These are reflected in
Derivation 1 in Figure 3.

The maintenance of provenance only adds a reasonable con-
stant cost for each rule evaluation, and is expected to have limited
impacted on the scalability of the program or application.

3.3 Provenance Querying

With the captured direct dependencies (i.e., the edges in the
provenance graph), we can extract the complete provenance of
a queried tuple y by recursively traversing the graph: starting
from y, we traverse the graph by following the edges until we
reach base tuples. The returned provenance is presented in a
pre-determined representation. Generally, the graph traversal
allows us to extract any provenance representation defined as a
provenance semiring [11].

Provenance polynomials. In this paper, provenance polyno-
mial is adopted as the basis for answering more complex queries
(such as identifying the most influential base tuples, etc), for

!For performance considerations, additional optimization is adopted in the actual
implementation to ensure that the rule body, which is the same for all the three
rules, only needs to be evaluated once.



its close connection to probability calculation. The provenance
polynomial for a queried tuple q in ProbLog is a Boolean formula
A(q), where each literal denotes one individual tuple or rule. The
literals are Boolean variables and each has some probability of
being true. There are two binary operators “-” and “+” in A(q).
Specifically, “-” denotes conjunctive use of multiple tuple or rules
for the derivation of a derived tuple, and “+” denotes union of
alternative derivations for the same derived tuple.

For example, if tuple g is derived from a conjunctive rule
r1 which takes tuple t; and #; as input, then the provenance
polynomial of this derivation is r; - t; - t2. Suppose that g has
another derivation from rule r, which takes tuple ¢3 and t4 as
input, then the complete provenance polynomial A(g) is ry - #1 -
by + 1y - 13 - 1.

Consider the Acquaintance example (see Figure 2), the prove-
nance polynomial of the derived tuple know("Ben", "Elena") is
r3 - know("Ben","Steve") - know("Steve","Elena"), where
know("Steve","Elena") is a derived tuple that can be further
expanded. The complete provenance polynomial of tuple
know("Ben", "Elena") is the following:

r3 - know("Ben","Steve") -

(r; - live("Steve","DC") - live("Elena","DC") +

ro - like("Steve", "Veggie") - like("Elena","Veggie"))
This provenance polynomial represents the two derivations of
know("Ben","Elena").

Success probability of provenance polynomial. Noting that
this example provenance polynomial consists of only base tuple
literals and rule literals, we can, at least in theory, compute the
success probability of the provenance polynomial. We simply
treat the provenance polynomial as a formula of random vari-
ables; we can then calculate its success probability by plugging
in the probabilities of the base tuples and the rules, which are
provided as input to a ProbLog program. More formally,

P[A()] = E[A(qg)] )

SERBS GBI i B GERSHER EPgalop A P denotes sue-

However, computing the success probability of an arbitrary
provenance polynomial is an NP-hard problem [29]. For instance,
the success probability of formula a+b is not the sum of the proba-
bility of a and the probability of b because of Inclusion—Exclusion
principle. Therefore, in practice, we use Monte-Carlo sampling [14]
approach to estimate the probability value.

Handling cycles. For a ProbLog program containing recursive
rules, a cycle may appear in the provenance graph where a de-
rived tuple can also be an input tuple for one of its own derivation.
This raises issues when we retrieve provenance polynomials from
the provenance graph — the provenance polynomials may po-
tentially be arbitrarily long (by infinitely expanding the graph
traversal through cycles) or contain literals that correspond to
derived tuples (by stopping the graph traversal at these derived
tuples). This would greatly affect the calculation of the success
probability of the provenance polynomial.

However, we show that any such cycles can be removed from
the provenance graph without affecting the success probability
of the provenance polynomial. Generally, if the queried tuple g
has cycles in its provenance graph, its provenance can be written
as a polynomial in the following form:

Aq) = (Pg + Pr) - AMq) + P + P| (6)

where Pg and Py, each denotes a polynomial that only contains
base tuples and rule literals. Py and P} each denotes a polynomial

containing other derived tuple literals (e.g., the provenance graph
contains other cycles that do not involve q). The polynomial
(Pg + Pr) - A(g) indicates that some derivations of ¢ depend on
the existence of g itself.

Given the existence of cycles, g has infinitely many derivations:
some derivations can traverse around a cycle multiple times. We
define a series of formula that progressively include derivations
with multiple-round cycles:

2%(g) includes derivations containing no cycles. We have

2%(q) = P + P} )
Al(g) includes derivations containing at-most-one-round cy-

cles, that is, it includes all derivations in Ao(q) but also derivations
containing exact one-round cycles. We have

P[2}(q)] = P[ (P& + Pr)- 2°(q) + Py + P} ] ®)
=P[(Pg +Pp)- (Pp+P)) + P +P]] 9)
=P[(1+Pg+Pp)- (PJ,E + P})] (10)
= P[P, + P| ] (Absorption Law) (11)

Thus, we have P[ 1°(q) | = P[ A1(q) ]. Likewise, we have P[ 1°(g) | =
P[AY(q)] =P[A%(q)] =--- =P[A1¥(q) ] = P[ Py +P] ]. Therefore,
if we are only concerned about calculating its success probability,
we can simplify provenance polynomial for q as:

Mq) =P+ P; (12)

Furthermore, to simplify P}, if any derived tuple g in P; that
has cycles in its derivation graph, we can replace A(qx) with
2%(gy). Then we have

Mq) = Py, + Py | (YA(qx), Max) = 2°(qk)) (13)

In cases where A%(gy) also includes A(g), we can replace
Mq) with Py, + P} | (VA(qi), Mgqx) = A°(qx)) in 2°(gx), and
then remove 1%(q;) following the same process (Equation (6) to
Equation (12)). Recursively, the final provenance polynomial for
q consists of only base tuple literals and rule literals.

4 REASONING PLP WITH PROVENANCE

The provenance of a queried tuple can be used in a variety of ways
to reason a PLP program. For instance, users may want to know
how a tuple is derived (Explanation Query), which derivation
contributes most to achieving the probability of the derived tuple
(Derivation Query), which base tuple has the most influence
on the derivation of the queried tuple (Influence Query), and
how to change the base tuples to achieve a given target value
(Modification Query). These questions can help users reason and
debug a PLP program. A summary of the provenance query types
discussed in this paper is shown in Table 1.

4.1 Explanation Query

An Explanation Query returns the complete derivations of the
queried tuple. The success probability of the queried tuple as well
as any intermediate derived tuples can be computed efficiently
using Monte-Carlo simulation. Consider the Acquaintance pro-
gram (see Figure 2), an example Explanation Query is:

Query 1: Show the derivations of the derived tuple
know("Ben","Elena").

By querying the provenance of know("Ben","Elena"), we get
provenance polynomial A(know("Ben","Elena")) =



Table 1: Summary of provenance query types

Query Type Operation

Explanation Query

Ilustrate the derivations graph of the queried tuple for explanation

Derivation Query

Find the set of most important derivations of the queried tuple given some approximation error

Influence Query

Show the (top-K) most influential variables (base tuples and rules) of the queried tuple

Modification Query | Modify the variables to achieve a target probability value with minimal change

r3 - know("Ben","Steve") -
(r1 - live("Steve","DC") - live("Elena","DC") +
ro - like("Steve", "Veggie") - like("Elena","Veggie"))

Its success probability P[ A(know("Ben", "Elena")) ] = 0.18, mean-

ing there is a 18% probability Ben knows Elena. The prove-
nance polynomial also corresponds to the visual provenance
graph shown in Figure 3 and explained in Section 3.1: tuple
know("Ben", "Elena") has two derivations that share parts of
their paths.

4.2 Derivation Query

Sometimes, the complete explanation can be too long or too com-
plex for users to (intuitively) understand; instead, users may be
interested in a more compact explanation that still retains a close-
enough success probability. For example, in the Acquaintance
scenario, suppose two person Alice and Bob share many com-
mon hobbies (and thus may know each other from the same hobby
groups). But if Alice’s and Bob’s addresses show that they are
next-door neighbors, then this serves as a strong explanation for
why Alice knows Bob; it easily trumps the share-similar-hobbies
explanation which can be long and tedious.

More generally, after computing the success probability of a
queried tuple, it is intuitive to ask: (a) which derivations con-
tributed most to the success probability? (b) can we find a small
set of important derivations to achieve an approximate probabil-
ity? The Derivation Query is used to answer these types of ques-
tions. Formally, given a provenance polynomial A, the Derivation
Query returns a sufficient provenance A5:

|P[A]-P[AS]|<e (14)

where A5 consists of a subset of the monomials in A, and € is a user-
specified error limit. As an example, consider the Acquaintance
program. An example Derivation Query is:

Query 2: What are the most important derivations of
know("Ben","Elena"), assuming an error limit of €?

The original provenance polynomial is given by Query 1, which
consists of two monomials, corresponding to the two derivations
of know("Ben","Elena"). The returned sufficient provenance
varies with the value of e: When € is set to 0.001, the sufficient
provenance remains the same, as removing either of the mono-
mials would yield a success probability change greater than e.
After we increase € to 0.01, the returned sufficient provenance
A5 (know("Ben", "Elena")) =

r3 - know("Ben","Steve") -

r1 - live("Steve","DC") - live("Elena","DC")
It removes one derivation and presents the most important deriva-
tion: The fact that Steve and Elena live in the same city con-
tributes more to the derivation of know("Steven","Elena")
(and then, in turn, the derivation of know("Ben","Elena"), since
rule r1 has a significantly higher probability than r2.

Compute sufficient provenance. For a queried tuple g, each
monomial in the provenance DNF formula A(q) corresponds to

one derivation path of g. The probability of each monomial is
computed by multiplying all the probabilities of literals in the
monomial. So it is easy to find the most important derivation
of g. However, the probability of A is not the sum of the prob-
ability of each monomial in A, since these monomials can be
correlated. In fact, finding the smallest sufficient provenance of
A, i.e., the e—approximate polynomial with the minimal number
of monomials, is NP-hard [25].

A naive way to compute sufficient provenance is to sort the
monomials in the provenance polynomial according to their prob-
abilities in a descending order. We can then progressively remove
monomials that have the lowest probabilities, until the error
limit € is reached. This doesn’t guarantee the smallest sufficient
provenance but it provides an approximation. In our evaluation
in Section 6, this naive approach performs surprisingly well.

Alternatively, prior work [25] on approximate lineage for prob-
abilistic databases proposed an algorithm to efficiently find an
e-approximation of provenance polynomial. Our system extends
it for PLP programs. Briefly, the algorithm finds a sufficient prove-
nance of a k—literal polynomial A in the following steps:

o Step 1. It first finds an arbitrary match of A: A match of A
consists of a set of independent monomials in A. Since these
monomials are independent, the success probability of the
match can be efficiently computed.

o Step 2. If the match is already an e—approximation of A, then
the match is returned as the final result.

o Step 3. Otherwise, the monomials in A are partitioned into
groups, where the monomials in each group share at least one
literal. Therefore, each group can be rewritten into the form
I - (m; + my + ... + my), where [ is the literal shared by all
monomials in the group.

o Step 4. The algorithm can then recursively find the sufficient
provenance for my + my + ... + my, which is a (k-1)—literal
polynomial. The algorithm is guaranteed to terminate at 1-
literal polynomial.

Although this algorithm is more efficient than the naive approach,
it relies heavily on the choices of the match (in Step 1) and the
groups (in Step 3). In some cases, it provides little reduction in
the size of the provenance polynomial.

4.3 Influence Query

In addition to derivations of a queried tuple, users may also be
interested in the influence of each literal on the queried tuple.
An Influence Query returns the most influential literals (i.e., rule
weight or base tuple probability) of a given derived tuple.
Intuitively, the influence of a literal x; on a provenance polyno-
mial A measures the impact on the success probability of A when
the value of x; changes. For example, a counterfactual base literal
would have a large influence, because setting it to be false would
invalidate the derived tuple. We adopt the definition proposed in
a prior work [13]: Consider A as a multiple-variable function, the

influence of x; is the partial derivative %



Definition 4.1. Literal influence [13]. The influence of a lit-
eral x; on the provenance polynomial A, denoted Infy, (1), is:

oA — ~
Infy, (1) = 2= = Pldlx,=1]-P[Alx—o] = ElZlx,21~Alxi=o] (15)
1

where 1 denotes the arithmetization form of 1. P[] denotes prob-

ability, and E[] denotes expectation. P[A] = E[I]

Based on this definition, P3 can answer Influence Query ef-
ficiently by using Monte-Carlo sampling approach to estimate
E[Alx;=1 — Alx;=0]. Consider the Acquaintance program. An ex-
ample Influence Query is:

Query 3: What are the most influential literals to the suc-
cess probability of know("Ben","Elena")?

Table 2: Results of Influence Query

Variable | Influence Value
r3 0.896

r 0.2

te 0.1792

Table 2 lists the top-3 most influential literal. It shows that rule
r3 is the most influential. It makes intuitive sense: Rule r3 is the
critical recursive rule that allows for the generation of multi-hop
know relationships, including the case for Ben and Elena who
know each other through their direct relationships with Steve.

4.4 Modification Query

For a queried tuple, our system can answer which derivations
contribute most, and which individual variables are the most influ-
ential ones. Users may further explore how to effectively modify
the base variables to adjust the queried tuple’s success probability,
for example, when the success probability of the queried tuple is
suspiciously low (or high). The Modification Query aims to an-
swer this type of question. We use the results from the Influence
Query as a basis to answer Modification Queries.
Based on Equation (5), we can easily get

P[A;] = Infy; (A) - p(xi) + P[Alx;=0] (16)

It means that for any variable x;, the success probability of the
derived tuple is positively correlated to p(x;), and the positive
coefficient is the influence value of x;. Equation (16) effectively
considers P[] as a function of p(x;).

Query 4: Given a target success probability of the queried
tuple, how should we modify the base literals to achieve
the targe with minimal cost?

Here, we consider the cost is defined as:

Cost = " |Ap(x:)| (17)

which is the summation of the probability change of each mod-
ified literal. To find a good solution for Query 5, We follow a
heuristic-based greedy algorithm. The algorithm selects the most
influential variable, and change its value to reach the target prob-
ability. Sometimes, even changing the most influential variable
to the maximum value of 1 (or minimum value of 0) is still not
enough. In this case, we continue to find the most influential
variable in the remaining variables, until the target probabil-
ity is reached. The most influential variable in each iteration
corresponds to the highest slope to change, so the total cost of
modification of variables is minimized. The strategy returned by
this heuristic-based algorithm is not guaranteed to be an optimal

solution of minimal cost, but, by leveraging the result of Influence
Query, it works well empirically.

Take the Acquaintance program as an example. The original
success probability of know("Ben","Elena") is 0.18. If we hope
to modify the value to be above 0.5, the answer returned by P3
is that we should change variable r3 to 0.56. The total cost of
the change is 0.36. Further evaluation of the effectiveness of the
heuristic-based algorithm is elaborated in Section 5.2.

5 CASE STUDY

The Acquaintance program is a simple example to illustrate how
provenance is utilized to reason the evaluation results of ProbLog
programs. In this section, we present two case studies to showcase
how users can benefit from P3’s practical reasoning capabilities.
Performance evaluations will follow in the next section.

Visual Question Answering. Our first use case describes a
scenario from multi-modal learning in the machine learning
community, called Visual Question Answering (VQA). The learn-
ing task is to answer user’s questions regarding a presented
photo, e.g., identifying a (partially blocked) object in the photo.
In this scenario, we use provenance to provide some insights
from human-explainable perspective, e.g., to identify the most
influential features that lead to the learning result.

Mutual Trust in Social Network. Our second use case is simi-
lar to the Acquaintance example, which, at the core, computes
probabilistic recursive rules. In this scenario, we use sampled
data from real-world trust network, and computes pair-wise mu-
tual trust between each pair of peers in the network. We use
provenance to identify critical direct trust relationships.

5.1 Visual Question Answering

This use case involves supporting the Visual Question Answering
(VQA) [2] task using a probabilistic logic program. In VQA, the
system answers a natural language question about an image. This
task comgines natural language, image processing, and logical
reasoning. Prior work on PSL based VQA program [1] can de-
compose and reason VQA task in terms of logic rules, but lacks
the ability to explain the derivation procedure for the answer.
Here, we rewrite the VQA-PSL program in ProbLog syntax, and
provides provenance queries to explain VQA answers.

The input of this use case is a set of tuples parsed from both the
image (hasImg relation) and the question (hasQ relation) with
some probability. The similarity between words are also base
tuples (sim relation). The input also includes word relation tuples.
It is the set of answers with prior confidence scores as probability.
The scores can come from some sources, e.g. a dictionary with
word frequency.

The VQA-PSL program [1] is written into an equivalent VQA
ProbLog program shown in Figure 5. Each rule is associated with
a weight probability, which can be assigned any reasonable val-
ues. The four rules in Figure 5 explain how the final answers
(ans relation) can be derived step-by-step combining image in-
formation, question parsing information, and words similarity
knowledge.

In Figure 5, rule r1 extends the hasImg relation by replacing
items with their synonyms (but with a diminishing score). For
example, hasImg(V,"apple","in", "background") can be ex-
tended to hasImg(V,"fruit","in","background"), as apple
is similar to fruit (indicated by sim("apple","fruit")).

Rule r2 states that a word in the dictionary automatically be-
comes a candidate answer. However, it may then be out-weighted
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Figure 4: Abstract provenance graph of ans("ID1","barn"). The complete most important derivation is shown.

by results generated by rule r3 which further considers how the
candidate answer is correlated with user’s question and the ob-
jects appeared in the photo.

Finally, rule r4 takes all the candidate answers and evaluates
their correlation with the question and the objects in the photo.
Stronger correlation will have higher scores. Note that we as-
signed equal weight to all words in the dictionary such that the
predicted result is unbiased.

r1 wl:hasImgAns(V,Z, X1
word(V,Z), hasImg(V, X1
sim(Z,X1), sim(Z,Y1).

r2 w2:candidate(V,Z) :- word(V,Z).

r3 w3:candidate(V,Z) :- word(V,Z),
hasQ(V,X,R,Y), hasImgAns(V,Z,X1
sim(R,R1), sim(Y,Y1), sim(X,X1).

r4 wé4:ans(V,Z) :- candidate(V,Z),
hasQ(V,X,R, "WHAT"),
sim(Z,21), sim(R,R1),

JR1,Y1) -
,R1,Y1),

sim(X,X1).
Figure 5: VQA ProbLog program

Given an image and a question shown in Figure 4, the input
tuples can be obtained using a image captioning system and nat-
ural language processing system. The word similarity inputs are
obtained from Word2Vec library. The evaluation of the ProbLog
program returns the tuple ans("ID1", "barn") as the the result
with the highest confidence, meaning that the building in the
presented photo (identified by “ID1”) is determined as a barn. We
query the provenance of ans("ID1","barn") to check whether
the returned provenance can give meaningful explanations.

Query 1A: Show the derivations of ans("ID1", "barn").
Since the provenance graph for the queried tuple has many
branches, to enhance readability, we only display a condensed
graph shown in Figure 4 instead of the complete fine-grained
provenance graph. The actual complete graph can be generated
by our system if the user hopes to take a closer look at it.

In Figure 4, we show the most important derivation to ans ("ID1",

"barn"), and leave out other derivations. In the most impor-
tant derivation, word "barn" is selected as a candidate (rule r2)
given that "barn" is included in the dictionary. Besides, "barn" is
strongly correlated to the horse appeared in the photo, adding
some other words similarity relation, ans("ID1", "barn") is
derived through rule r4. There are other derivations that can
also derive ans("ID1", "barn"), but they contribute less to the
final probability of ans("ID1", "barn").

Query 1B: Show the most influential base tuple to
ans("ID1", "barn"). Our next query concerns the base tu-
ple that influences the final learning result the most. In other
words, we would like to understand which factor would affect

,R1,Y1),

hasImg(V,Z1,R1,X1),

Figure 6: Image of horses in front of a church

the predicted result the most if its value was changed. We per-
formed the influence query on the returned provenance result,
then identified that the base tuple word("ID1", "barn") is the
most influential one. This is reasonable, however, less interesting
as it is simply stating the obvious truth that a word must be con-
sidered as a potential answer to affect the result. As the program
mainly depended on the information from hasImg() and sim()
for prediction, we decided to find the most influential tuples in
these two relations respectively.

We further identified the base tuple hasImg("ID1", "horse",
in", "background") as the most influential one in hasImg().
Its influence value was approximately 0.005. Effectively, this re-
sult states that the building being identified as a barn is largely
influenced by the fact that there is a horse in the background. In
sim(), the most influential tuple was sim("barn", "horse")
with 0.03 influence value. Again, it confirmed that horse was
the key factor that would affect the result the most. Both tuples
coincided with human intuition while supporting the feasibility
of our approach as well.

n

Query 1C: Show the most influential base tuple after mak-
ing modifications to the input image. Our next query demon-
strates the use of provenance queries for debugging. Intuitively,
we expected that ans("ID1", "church") would have the highest
probability if we replaced the horses in the photo with a cross. We
replaced hasImg("ID1","horse","in","background") with
hasImg("ID1","cross","in", "background") to mimic the mod-
ified photo aforementioned. However, the result was not as what
we expected. We observed that ans("ID1","barn") still ap-
peared in the evaluation result with the highest probability value.
For debugging purposes, we ran the query on Figure 6 and cap-
tured the image information shown in Table 3.

We then updated the word similarity using Word2Vec. How-
ever, ans("ID1", "barn") was still predicted as the most proba-
ble answer (i.e., the answer with the high probability). Demon-
strating the generality of our approach, we use the previous
queries to debug this issue. First, we ran the Derivation Query to
show the most important derivations of ans("ID1", "barn")
and ans("ID1", "church"). We found out that "barn" had



Table 3: Captured image information

Information Prob.
horse color brown 1
horse in field 0.88
cloud in sky 0.85
building with roof | 0.5
cross on building |1

very high similarities with other objects in the image ("cross":
0.30, "horse": 0.35, "cloud": 0.33), while "church" had much lower
values ("cross": 0.09, "horse": 0.19, "cloud": 0.01). Surprisingly,
sim("church", "cross") was much lower than sim("barn",
"cross"). This explains exactly why the program did not predict
the answer correctly.

Next, we would like to see how to increase the probability of
ans("ID1", "church") with minimum cost. Our goal was to
make "Church" the answer with the highest probability. So we
ran the Influence Query, and selected the unique tuples that only
appeared in the provenance of ans("ID1", "church"). The top
3 unique most influential tuples are shown in the following table:

Table 4: Top 3 unique influential tuple for ans("ID1",
"church")

Tuple Influence
sim("church", "cross") | 0.04
sim("church", "horse") | 0.02
sim("church", "cloud") | 0.01

It is reasonable to have sim("church", "cross") as the most
influential tuple. We set the probability of ans("ID1", "barn")
as the target probability value for sim("church", "cross") and
further computed the increment using the Modification Query,
which returns a result value of 0.42. The value of sim("church",
"cross") is updated to 0.51. Again, this met with our expec-
tation that sim("church", "cross") should be greater than
sim("barn", "cross").

This use case demonstrates how multiple queries can be used
in tandem to explain and debug unexpected answers caused by
input data errors in probabilistic logic programs.

5.2 Mutual Trust in Social Network

For this graph network reachability use case, we use the Bitcoin
OTC trust weighted signed network dataset?. This is a who-
trusts-whom network of people who trade using Bitcoin on a
platform called Bitcoin OTC [15, 16]. Each weighted edge in the
network graph represents the trust between two users with the
degree of trust as weight value. To fit the data in our probabilistic
setting, we re-scale the weights of edges from [-10,10] to [0,1] to
represent the probability score of trust.

In this use case, the input tuples are trust relations between
people. For example, tuple trust(1,2) of score 0.7 means Per-
son 1 trusts Person 2 with probability 0.7. We introduce the
ProbLog program shown in Figure 7 to find trustPath and
mutualTrustPath tuples that can be derived. Rule r1 is a base
case that each trust relation tuple is also a one-hop trustPath
relation tuple. Rule r2 is a recursive rule used to derive all the
reachable trustPath tuples. Rule r3 defines mutualTrustPath
tuples that can be derived when the trustPath between any two
nodes are bi-directional. The Trust ProbLog program can help

Zhttps://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

finding any indirect trust relations between people, which is of
significant interest during actual transactions.

rl 1.0: trustPath(P1,P2) :- trust(P1,P2).

r2 1.0: trustPath(P1,P3) :-
trust(P1,P2), trustPath(P2,P3),
P11=P3.

r3 0.8: mutualTrustPath(P1,P2) :-
trustPath(P1,P2), trustPath(P2,P1).

Figure 7: Trust ProbLog program

The original network graph is quite large, so for quality check
purpose, we use a sample of 30 nodes to evaluate the provenance
query results.

Query 2A: Show the derivations of mutualTrustPath(1,6).
The answer returned by P3 system is the provenance graph for
queried tuple mutualTrustPath(1,6), shown in Figure 8. The
provenance graph shows Person 1 and Person 6 mutually trust
each other because of the existence of trust paths from 6 to
1 (denoted by trustPath(1,6)) and from 1 to 6 (denoted by
trustPath(6,1)). It further shows that there is one single deriva-
tion for trustPath(6,1) where Person 2 is the middle man that
connects this trust path; on the other hand, trustPath(1,6)
has two derivations, namely through path 1 — 2 — 6 or path
1->13—>2-—>6.

Query 2B: Show the most influential base tuple for
mutualTrustPath(1,6).

Next, we perform a query to understand which base tuples, i.e.,
the trust tuples, are most critical to the mutual trust between
Person 1 and Perosn 6. We initialize the base tuples with prob-
ability values shown as follows (we omit the ones that are not
involved in the derivation of mutualTrustPath(1,6)):

Table 5: Initial probability values of base tuples

Literal Prob.
trust(1,13) | 0.65
trust(2,6) 0.75
trust(13,2) | 0.6

Literal Prob.
trust(1,2) | 0.9
trust(2,1) | 0.9
trust(6,2) | 0.7

Given this initialization, the P3 system returns that
trust(6,2) is the most influential literal with an influence value
of 0.51. The second most influential literal is trust(2,6) with
an influence value of 0.48. Observing the provenance structure in
Figure 8, we find that this result comply with human’s intuition:
trust(6,2) is influential® because its existence is the basis of
the trust path from Person 6 to Person 1; trust(2,6) is also
influential, more so than trust(1,2) and trust(1,13), for the
existence of the trust path from Person 1 to Person 6.

More intuitively, the result indicates that if Person 6 wants
to increase the mutual trust to Person 1 without directly reach-
ing him, strengthening the trust to Person 2 might be the most
effective approach.

Query 2C: Show the optimal way to increase the probabil-
ity of mutualTrustPath(1,6). Here, we assume that each lit-
eral’s probability can reach to 1.0 as maximum. The original
P[mutualTrustPath(1, 6)] is 0.3524. Now we want to approxi-
mately double it to a target value 0.7. The strategy returned
by P3 is as follows:

3trust(6,2) is considered to have a higher influence value than trust(2,1) due
to the initial probability assignment: whether trust(6,2) exist or not has a higher

influence because its existence would almost imply the existence of the trust path
from 6 to 1 as P[trust(2,1)]is very close to 1.
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mutualTrustPath(1,6)
Table 6: Optimal strategy (total change = 0.58)

Literal Change Overall prob.
Step 1 | trust(6,2) | 0.7 — 1.0 | 0.51
Step 2 | trust(2,6) | 0.75 — 1.0 | 0.68
Step 3 | trust(2,1) | 0.9 = 0.93 | 0.7

To show the effectiveness of our heuristic-based algorithm, we
compare the cost, in terms of total change in base tuple’s prob-
ability values, of its strategy with another randomly generated
strategy where a random base tuple is chosen to update in each
step. The result of a random strategy is shown as follows:

Table 7: Random strategy (total change = 1.36)

Literal Change Overall prob.
Step1 | trust(1,13) | 0.65— 1.0 | 0.37
Step 2 | trust(13,2) [ 0.6 = 1.0 | 0.38
Step 3 | trust(6,2) 0.7 > 1.0 0.54
Step 4 | trust(1,2) 09— 1.0 0.55
Step 5 | trust(2,6) | 0.75 — 0.96 | 0.7

We find that the strategy provided by P3 significantly out-
performs the random strategy (0.58 vs 1.36 in total change). We
make similar observations for other Modification Queries.

6 EVALUATION

We developed a prototype of P3 based on enhancements to the
ExSPAN provenance engine [31]. While ExXSPAN was a distributed
provenance engine designed for networks, we focused on using
ExSPAN primarily in a single-node centralized setting. ExXSPAN
provides provenance for Datalog programs and provides basic
provenance explanations. We enhanced the system to implement
ProbLog, collect provenance, and support the three additional
types of P3 queries (derivation, influence, and modification).
Experimental setup. Our experiments were performed on a
Dell PowerEdge R730 server equipped with dual Intel Xeon E5-
2640 CPUs and 32GB memory running Ubuntu 16.04 LTS 64-bit
operating system.

As our workload, we evaluated the program shown in Figure 7.
The output derivation of interest was the mutualTrustPath rela-
tion, over which we would run provenance queries. We selected
this program as it had all the features of our use case. Meanwhile,
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Figure 9: Running time with and without provenance

there existed real-world data that we could use for our experi-
ments. Specifically, we used the Bitcoin OTC data set described
in Section 5.2. The data set consisted of a directed graph network
with 5,881 nodes (bitcoin users) and 35,592 edges (trust relations).
We sampled the graph with different sizes of nodes, and evaluated
the performance of provenance queries elaborated in Section 4
for each sample.

6.1 Provenance Maintenance and Querying

To evaluate the provenance maintenance and querying perfor-
mance, we sampled subgraphs from the original trust network
with 50, 100, 150, ..., 500 nodes. For each sample, we randomly
chose a small set of seed nodes, and expanded the graph by per-
forming a breadth-first search within the trust network from
these seed nodes, until the graph reaches a given number of
nodes. We then collected all traversed edges. For each size, we
repeated our experiments 10 times with different samples and
calculated the average running time.

Maintenance. Our first set of experiments aimed to measure
the overhead of provenance maintenance. We compared the run-
ning time between running the Trust program with and without
provenance maintenance. The overhead is shown in Figure 9. We
observe that the evaluation time, both with and without prove-
nance, increases exponentially as the sample size grows, which
complies with our expectation. In addition, as provenance is
maintained at the runtime as a side-computation along each rule
evaluation, the provenance maintenance incurs a small overhead.
We observed that, in average, the maintenance time is less than
10% of the total running time, and will not impact the asymptotic
scalability of PLP programs. Thus, the provenance maintenance
is efficient and its overhead in P3 for ProbLog-like PLP programs
is low enough to be accepted.

Query. We next measured the overhead to obtain the provenance
of a queried tuple, as a generic explanation query. Figure 10
summarizes our evaluation results. We fixed the hop limit to 4,
which means we only retrieved the mutual trust paths whose
length are no greater than 4 hops. Limiting the path length can
remove overly long derivation paths from the provenance and
expedite the querying process: The number of derivation paths
grows exponentially with the path length, however, the long
paths contribute little to the derivability of the queried tuple
(intuitively, people are less likely to trust a relationship that has
many hops). As shown on the figure, the query time is roughly on
the same order of magnitude compared to the maintenance time,
but grows slower for larger-sized graphs owing to the use of hop
limits. Overall, the provenance querying is reasonably efficient
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to be practical, and can be further optimized by parallelizing the
provenance graph traversal.

6.2 Performance for Different Queries

We have evaluated the overhead of provenance maintenance for
a PLP program, and the execution time of generic explanation
query (i.e., to obtain the provenance for a queried tuple). In
this section, we perform a set of experiments to measure the
performance of answering other types of provenance queries
elaborated in Section 4.

Derivation Query. To evaluate this type of query, we sampled
graphs consisting of 150 nodes and 150 edges from the trust
network (we repeated the experiment 10 times with different
sampled graphs). We queried all possible mutual paths between
two specific users and set the hop limit to 6. We ran the query
on each sampled graph and calculated the average. For each
returned provenance polynomial A, varying the approximation
error € leads to sufficient provenance of different sizes — a more
forgiving approximation error (i.e., larger €) leads to a smaller-
sized sufficient provenance. We evaluated the compression ratio
of sufficient provenance with approximation error from 0.1% to
10% (X% means X percent of P[1]). Compression ratio is defined
as the number of monomials in the sufficient provenance divided
by the number of monomials in the original provenance polyno-
mials. Our evaluation result is shown in Figure 11. We observed
that, as expected, sufficient provenance leads to significant com-
pression: it warrants a 50% deduction in provenance size even
with merely 0.1% approximation error; 10% approximation error
allows approximately 99.8% deduction.

We further evaluated the computation time of our naive ap-
proach; we observe that the computation time was consistently

under 1 second. In fact, it decreased tremendously as we increased
the approximation error. This is because the computation of
Derivation Queries heavily relies on Monte-Carlo simulation (for
evaluating whether more monomials should be removed), and
larger approximation error shifts the search for optimal sufficient
provenance towards shorter polynomials and therefore a shorter
overall query time.

Influence Query. Our next set of experiments evaluates the
performance of Influence Queries. We used the same set of sam-
pled graphs as the Derivation Query, that is, each sampled graph
consists of 150 nodes and 150 edges. We observe that the average
time for computing the influence of all literals (and identifying
the most influential literal) is 9.6 seconds; according to the defini-
tion of influence presented in Section 4, the computation time of
influence queries highly depends on the size of the provenance,
more specifically, the number of monomials in the provenance
polynomial and the number of distinct literals. We consider two
optimizations that significantly reduce the computation time of
influence queries.

Parallelize Monte-Carlo simulation. Monte-Carlo simulation re-
peatedly evaluates the truth value of a Boolean polynomial given
a random value assignment of the variables (which can be either
true or false). This process is embarrassingly parallel and can
greatly benefit from using hardwares such as GPUs. We therefore
evaluated the computation time of the Influence Query using a
parallel implementation of Monte-Carlo simulation. The experi-
ment was run on a workstation equipped with an Intel 17 9800X
CPU, 64GB memory and four Nvidia GTX 1080 Ti GPUs. Table 8
summarizes the time required to compute the influence value
sequentially or in parallel.

Table 8: Comparison of influence query time

Seq total | Seq per-literal | Para total | Para per-literal

9.60 0.14 0.85 0.01

We observe that the parallel implementation provides a 10x
speed improvement owing to the high degree of parallelization,
and reduces the total computation time to under 1 second.

Preprocess using sufficient provenance. We noticed that most lit-
erals have a negligibly small influence value. If our goal is to
identify the most influential literal, we might be able to avoid
computing the influences of most literals. Our approach is to
use sufficient provenance as a preprocessing step, such that the
influence query runs on a much small provenance polynomial.
To evaluate the effectiveness of this method, we first examined
whether the returned sufficient provenance still retains the most
influential literals. We computed the sufficient provenance when
allowing different approximation errors, and compared the top-5
most influential literals to the ones computed from the original
provenance. As shown in Figure 12, the rank of the top-5 most
influential literals remained the same when the error limit was
less than 2%, and then started to fluctuate as the error limit in-
creased. However, the most influential tuple remained the same
even the error limit was as high as 10%.

Second, we evaluated the computation time of Influence Query
after the preprocessing step retrieves the sufficient provenance.
Figure 13 shows the evaluation results with varying approxima-
tion error limits. We observe that, since the number of monomials
decreased exponentially as we increased the error limit, the com-
putation time of Influence Query also decreased exponentially.
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Figure 13: Influence query time for a single literal

We further measured the total execution time of computing
influence queries with sufficient provenance. The result is shown
in Figure 14. We observed that, for large provenance polynomial,
allowing even a small approximation error would reduce the
query time tremendously. We compared it with Figure 12 and
observed that, when the approximation error limit was set ap-
propriately (around 2% in this case), the returned top influential
literals remained unchanged while the computation time could
be reduced substantially. For example, we observed an order of
magnitude reduction in computation time when setting the error
limit to 2%.

Modification Query In our last set of experiments, we evalu-
ated the performance of modification query where we change
the provenance probability to a target value with minimum cost.
Recall that the changed tuple in each step is the most influential
one to the provenance. We tested the Modification query on a
given provenance polynomial that consists of 366 monomials
and 65 distinct literals. The probability of the provenance was
0.873, and we wanted to reduce it to 0.373. We conducted the
experiment using three methods: sequential without sufficient
provenance, parallel without sufficient provenance, and sequen-
tial with sufficient provenance (with an error limit of 0.01). All
the three method returned the same change sequence: a) modify
the probability of trust21-2 by -0.75 (i.e., set its probability to
0), and b) modify the probability of trust132-2 by -0.196. The
computation time are shown in Table 9.

Table 9: Compare running times of modification query

Sequential | Parallel | Seq. with suff. prov.
20.66 1.55 2.44
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Figure 14: Influence query on sufficient provenance

We observed that sufficient provenance can give the same re-
sult while its computation time is in the same order of magnitude
compared to the hardware-aided parallel processing.

7 RELATED WORK

We briefly summarize related works in provenance for relational
databases (regular and probabilistic), as well as a reference to
other probabilistic logic programs.

7.1 Data Provenance

Data provenance is widely used in declarative logic programs
like Datalog and NDlog (Network Datalog) [17-19]. Provenance
information is stored using graph representation and algebraic
representation [11, 31]. The graph representation is also called
provenance graph, and the algebraic representation is commonly
encoded as provenance polynomials.

Tuple-level provenance graph is a fine-grained derivation
graph. In ExSPAN [31], the provenance graph is acyclic. There
are two types of vertices in the graph. One is the tuple vertex, and
the other is the rule execution vertex. Each tuple vertex is either a
base tuple or a derived tuple; each rule execution vertex denotes
an instance of a rule execution. The edges in the provenance
graph are unidirectional, and represent data flows between tuple
vertices and rule execution vertices.

Provenance can also be represented as provenance polynomi-
als [11] which is encoded as an algebraic expression with two

« »

binary operations: addition “+” and multiplication “-”. Each base
tuple is encoded as one literal in the polynomials. Specifically, “+”
indicates the combination of tuples with union and projection
operations, and “-” denotes a natural join over tuples.

As we will describe later in our paper, P3 also uses ExXSPAN
style execution to maintain and process provenance, with several

extensions in order to support a new provenance model.

7.2 Provenance in Probabilistic Databases

In probabilistic databases community, lineage is the synonym
of provenance. Each tuple has an associated probability score
in probabilistic databases. For SQL-like queries in probabilistic
databases, provenance can support explanations for the queried
tuple probabilities. For instance, Trio [30] is an innovative data-
base management system (DBMS) based on an extended rela-
tional model called Uncertainty-Lineage Databases (ULDBs) to
handle the uncertainty of data and data lineage. It extends the tra-
ditional model by adding a confidence value (probability of being



true) for each tuple. Trio introduces a SQL-based language called
TriQL for querying confidences and lineage in ULDBs. In our
paper, for PLP programs, we do not consider SQL-like queries.

In addition, for probabilistic databases, approximation of lin-
eage such as sufficient lineage [25] is used for only keeping track
of the most important derivations for the derived tuple given
some approximation error €. Kanagal et al. presented a further
discussion and provided an efficient approach for sensitivity and
explanation analysis [13]. This approach works on read-once
lineages from conjunctive queries without self-joins. However,
read-once is not a universal property of the provenance polyno-
mials extracted from PLP programs.

7.3 Probabilistic Logic Programs

Milch et al. introduced the BLOG language [20] to define proba-
bilistic models with unknown objects and identity uncertainty.
Unlike BLOG based on first-order logic, Goodman et al. devel-
oped Church[10], a LISP-like language based on lambda calculus
to describe stochastic generative processes. Furthermore, Pfeffer
introduced an object-oriented language called Figaro for proba-
bilistic programming. Beside these languages, for probabilistic
inference, Alchemy([26] is a system based on Markov logic repre-
sentation to construct knowledge bases. Niu et al. and Gribkoff et
al. introduced Tuffy[22] and SlimShot[12] respectively such that
MLN inference can perform on large scale data sets. Compared
to the aforementioned studies, our contribution is on providing
a feasible solution to perform quantitative query evaluations for
debugging purposes.

8 CONCLUSIONS AND FUTURE WORK

This paper proposes P3, a platform and system for capturing
provenance in probabilistic logic programs. P3 maintains the
provenance information using both graph representation (di-
rected acyclic provenance graph) and algebraic representation
(provenance polynomials as Boolean DNF formulas). P3 enables
a wide range of novel query types, including explanation query,
derivation query, influence query, and modification query. We
conduct the theoretical analysis of P3’s provenance model and
queries. Our evaluation on a P3 prototype demonstrate the feasi-
bility of P3 across multiple use cases with low overhead.
Moving forward, we are working on expanding the scope of
PLP programs supported by P3. We plan to extend provenance
model and system to support first-order PLP programs with nega-
tion, and machine-learning style inference [3, 6, 26]. As we sup-
port more language features, we would also like to broaden our
use cases to include learning-based applications, such as explain-
able recommendation through relational learning. Finally, we are
exploring ways to improve our performance further, leveraging
parallel query execution across multiple machines in a cluster.
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