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ABSTRACT
Network accountability, forensic analysis, and failure diagnosis are
becoming increasingly important for network management and se-
curity. Such capabilities often utilize network provenance – the
ability to issue queries over network meta-data. For example, net-
work provenance may be used to trace the path a message traverses
on the network as well as to determine how message data were de-
rived and which parties were involved in its derivation.

This paper presents the design and implementation of ExSPAN,
a generic and extensible framework that achieves efficient network
provenance in a distributed environment. We utilize the database
notion of data provenance to “explain” the existence of any net-
work state, providing a versatile mechanism for network prove-
nance. To achieve such flexibility at Internet-scale, ExSPAN uses
declarative networking in which network protocols can be modeled
as continuous queries over distributed streams and specified con-
cisely in a declarative query language. We extend existing data
models for provenance developed in database literature to enable
distribution at Internet-scale, and investigate numerous optimiza-
tion techniques to maintain and query distributed network prove-
nance efficiently. The ExSPAN prototype is developed using Rapid-
Net, a declarative networking platform based on the emerging ns-3
toolkit. Experiments over a simulated network and an actual de-
ployment in a testbed environment demonstrate that our system
supports a wide range of distributed provenance computations effi-
ciently, resulting in significant reductions in bandwidth costs com-
pared to traditional approaches.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer Communi-
cation Networks—Distributed Systems; E.1 [Data Structures]: Dis-
tributed Data Structures; H.2.1 [Database Management]: Logical
Design—Data Models

General Terms
Design, Management, Performance
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1. INTRODUCTION
In database systems, data provenance [4] is a well-known con-

cept, primarily used to answer questions concerning how query re-
sults are derived and which data sources they come from. A similar
notion – network provenance [25] – is emerging in the networking
domain. Network provenance describes the history and derivations
of network state resulting from the execution of a distributed proto-
col. Typical network provenance use cases include discerning the
origination of a message, the path that the message traversed on
the network, and how communicated data were derived and which
parties were involved in its derivation.

The capability to learn such information is essential to a diverse
set of network management tasks such as performing network diag-
nostics, identifying malicious and misbehaving users, and enforc-
ing trust management policies in distributed systems. Each goal
has led to a series of application-specific proposals [21, 1, 11, 24,
9, 12] that focus on improving network support for accountability
and providing efficient mechanisms to trace packets and informa-
tion flows through the Internet.

This paper explores the generic data management challenges
posed by the distribution, querying, and maintenance of network
provenance at Internet-scale. Such scale has presented a unique
challenge to provenance data management. Traditionally, prove-
nance data are either stored in a centralized server or shared across
only tens of nodes. In contrast, network applications in Internet do-
mains usually involve thousands of nodes. Moreover, provenance
computations are required to co-exist with existing network pro-
tocols. Bandwidth efficiency and minimal impact on convergence
times are of significant importance.

As a step towards meeting these challenges, this paper proposes
ExSPAN (EXtenSible Provenance Aware Networked systems), a
platform that enables generic distributed systems to be specified,
implemented, and analyzed with built-in distributed provenance
support. ExSPAN provides a flexible framework for distributed
querying of network meta-data. The type of network provenance
ExSPAN provides can be customized along the dimensions of gran-
ularity (domains defined according to nodes, tuples, or networks),
distribution (centralized or distributed), and representation (using
derivation trees, binary decision diagrams [2], algebraic structures,
etc.). We show that various distributed systems (in particular, di-
agnostics, network debugging, and distributed trust management)
map naturally to network provenance.

This paper makes the following contributions:
Data model for network provenance. We define a distributed data



model for storing network provenance. Our data model builds upon
current work on representing provenance information as relational
tables [10, 5], with extensions to supported distributed storage and
querying. We propose two forms of distribution: a value-based
approach in which all relevant information is piggy-backed onto
communicated tuples, and a bandwidth-efficient reference-based
approach that lazily creates provenance markers (or pointers) that
can be resolved on demand via a distributed query.
Efficient provenance maintenance and querying. To maintain
network provenance efficiently, we leverage the distributed query
processing capabilities of declarative networking [17, 16, 15].
Declarative networking models network protocols as continuous
queries over distributed streams. Declarative networking programs
permit a variety of distributed network protocols to be specified
concisely in a declarative query language. Given a declarative net-
working program, we demonstrate an automatic rewrite strategy
that will augment the original program with additional queries for
maintaining provenance information for the network protocol. More-
over, additional distributed queries can be formulated to derive var-
ious representations of network provenance, hence achieving a uni-
fying framework for synthesizing and analyzing distributed sys-
tems. We further propose a variety of query optimization tech-
niques aimed at reducing communication latency and bandwidth
utilization.
ExSPAN prototype implementation and evaluation. We present
the prototype of ExSPAN. Our implementation utilizes
RapidNet [18], a declarative networking platform developed us-
ing the ns-3 network simulator [19]. Our experiments over sim-
ulated networks and an actual deployment on a testbed environment
demonstrate that ExSPAN supports a wide range of distributed prove-
nance computations efficiently, resulting in significant reduction in
bandwidth utilization compared with centralized approaches.

The remainder of this paper is organized as follows. In Section 2,
we present a background introduction to declarative networking. In
Section 3, we then present a taxonomy of provenance along three
axes and outline various use cases in distributed systems analysis.
Based on the taxonomy, Section 4 presents the data model for dis-
tributed provenance, and declarative networking queries for main-
taining provenance information in a distributed fashion. Section 5
demonstrates a similar use of declarative networking to query for
various representations of network provenance. Section 6 presents
various optimization techniques. Our evaluation results in simula-
tion and on an actual testbed are presented in Section 7. We then
conclude with related work (Section 8) and future work (Section 9).

2. BACKGROUND
Given ExSPAN’s use of declarative networking, we briefly in-

troduce declarative networking and the query language that will be
used as a basis for enabling network provenance. The high level
goal of declarative networks [17, 16, 15] is to build extensible net-
work architectures that achieve a good balance of flexibility, perfor-
mance, and safety. Declarative networks are specified using Net-
work Datalog (NDlog), a distributed recursive query language used
for querying network graphs. NDlog queries are executed using
a distributed query processor to implement the network protocols
and are continuously maintained as distributed views over existing
network and host state. Declarative queries such as NDlog are a nat-
ural and compact way to implement a variety of routing protocols
and overlay networks. For example, traditional routing protocols
can be expressed in a few lines of code [17], and the Chord [23]
distributed hash table in 47 lines of code [16]. When compiled and

executed, these declarative networks perform efficiently relative to
imperative implementations.

The techniques proposed in this paper can be generally realized
using any sufficiently expressive distributed query processor. The
advantage of using declarative networking is that several robust im-
plementations exist that can be straightforwardly leveraged to de-
velop ExSPAN. Moreover, since distributed protocols can them-
selves be expressed as declarative statements, declarative network-
ing represents a natural means for unifying the synthesis and anal-
ysis of distributed protocols.

The declarative NDlog language used by ExSPAN is based on
Datalog [20]. A Datalog program consists of a set of rules. Each
rule has the form p :- q1, q2, ..., qn., which can be read in-
formally as “q1 and q2 and ... and qn imply p”. Here, p is the
head of the rule, and q1, q2,...,qn is a list of literals that constitutes
the body of the rule. Literals are either predicates with attributes
(which are bound to variables or constants by the query) or Boolean
expressions that involve function symbols (including arithmetic)
applied to attributes. Predicates in NDlog are typically relations,
although in some cases they may represent functions. Commas
are interpreted as logical conjunctions (AND). The names of pred-
icates, function symbols, and constants begin with a lowercase let-
ter, while variable names begin with an uppercase letter.

NDlog is a distributed variant of traditional Datalog, primarily
designed for expressing distributed (recursive) computations. ND-
log supports a location specifier in each predicate, expressed with
the @ symbol followed by an attribute. This attribute denotes the
location of each corresponding tuple.

sp1 pathCost(@S,D,C) :- link(@S,D,C).
sp2 pathCost(@S,D,C1+C2) :- link(@Z,S,C1), bestPathCost(@Z,D,C2).
sp3 bestPathCost(@S,D,min<C>) :- pathCost(@S,D,C).

Figure 1: The MINCOST program in NDlog

For example, consider the three-rule MINCOST program shown
in Figure 1. MINCOST computes the best path cost between each
pair of nodes in a network. Rules sp1 and sp2 specify the defini-
tion of the derived tuple pathCost. Rule sp1 computes all one-hop
path cost based on the base tuples from the link relation. Rule sp2

expresses that “if there is a link from S to Z of cost C1, and the best
path cost from Z to D is C2, then there is a path from S to D with cost
C1+C2” (we assume links are symmetric, i.e. if there is a link from
S to D with cost C, then a link from D to S with the same cost C also
exists). Rule sp3 aggregates all paths with the same pair of source
and destination to compute the best path cost. By modifying this
simple example, we can construct more complex routing protocols,
such as the distance vector and path vector routing protocols.

When executed, MINCOST forms a distributed stream computa-
tion where streams of link, pathCost, and bestPathCost tuples are
joined at different nodes to compute the best path costs. To main-
tain and derive tuples as the inputs to the rules are updated (e.g.,
link tuples are inserted), these queries are continuously executed.
For more details on the incremental maintenance of declarative net-
working protocols, refer to references [13, 15].

f1 ePacket(@Next,Src,Dst,Payload) :- ePacket(@N,Src,Dst,Payload),
bestHop(@N,Dst,Next).

Figure 2: The PACKETFORWARD program in NDlog

NDlog also supports event predicates (that is, tables for transient
state). Events can trigger rule executions but are not materialized.
By convention, event predicate names start with “e”. The PACKET-
FORWARD program in Figure 2 illustrates how to use event pred-
icates. Upon receiving an event ePacket, the next hop is found
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Figure 3: Example network topology.
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Figure 4: Provenance graph for bestPathCost(@a,c,5).

by joining the bestHop table. The packet is then sent as another
ePacket event to the next hop.

3. NETWORK PROVENANCE
ExSPAN is a generic and customizable framework that enables

a variety of types of network provenance, which can be catego-
rized along three orthogonal axes: (i) granularity, which reflects
the detail level of the provenance maintained for derived tuples;
(ii) representation, which defines how provenance is encoded in-
ternally; and (iii) distribution, which describes how provenance is
distributed.
Granularity. ExSPAN provides three levels of granularity for
provenance encoding. Tuple-level provenance maximizes prove-
nance detail by encoding all intermediary tuples used in a given
derivation. For instance, the ability to trace a tuple’s construc-
tion makes tuple-level provenance a useful tool for debugging net-
work protocols. As an example of tuple-level provenance, con-
sider the network topology depicted in Figure 3 and the corre-
sponding provenance graph for bestPathCost(@a,c,5) (computed
using MinCost) shown in Figure 4. The tuple-level provenance for
bestPathCost(@a,c,5) consists of all nodes and edges in the graph.
In general, tuple-level provenance encodes the maximum amount
of information, but incurs the largest communication overhead.

ExSPAN also supports node-level provenance in which prove-
nance encodes only the nodes that are involved at each step of the
derivation. For example, the node-level representation of
bestPathCost(@a,c,5) is 〈a,b→ a〉, reflecting the nodes along the
two derivation paths. Node-level provenance is a useful means
to determine which elements of the network are responsible for a
given tuple.

Finally, ExSPAN may store provenance at the trust domain level.
Here, groups of nodes within a trusted domain share a domain iden-
tifier. Provenance encodes sufficient information only on the trust
domains involved in each derivation. Trust domain level prove-
nance enables, for example, access control policies based on a pri-
ori established trust relationships.
Representation. ExSPAN supports storing provenance internally
using graph representation. A provenance graph reflects the rela-
tions between output tuples and the base tuples that contribute to
them. Each internal node represents a database relational operator
(e.g., union, join, selection and projection) tagged with its location,
while each edge denotes a data flow among the operators.

Figure 4 shows the provenance graph for bestPathCost(@a,c,5),
derived and stored at node a. Each operator (denoted by an oval) is
annotated with ruleID@S, indicating that rule ruleID is executed at
node S. The edges in the graph show the intermediate computation
results (i.e., pathCost and bestPathCost tuples).

Graph representation encodes tuple-level provenance informa-
tion and is typically used to answer queries pertaining to fine-grained

network state. For example, graph representation may be useful for
debugging distributed systems [22, 14] and for accepting/rejecting
network packets based on their traversed path.

Alternatively, provenance may be more compactly represented
using algebraic representation [7, 3]. Algebraic representations
encode provenance using the binary operations + and ∗ (represent-
ing union and join, respectively). For instance, if α, β, and γ are
the respective unique tuple IDs for link(@a,c,5), link(@b,a,2)

and link(@b,c,2), then the provenance of bestPathCost(@a,c,5)

in Figure 4 is encoded as α+β ∗ γ (or <a+a*b> when using node-
level provenance).

Algebraic representations can be further condensed [13] by en-
coding them as boolean expressions stored in Binary Decision Dia-
grams (BDDs) [2]. For example, <a+a*b> can be condensed to <a>

since the trustworthiness of node b is inconsequential given a. As
long as node a is trusted by the node that receives the
bestPathCost(@a,c,5) tuple, the tuple will be accepted, regardless
of whether node b is trusted. Enforcing trust policies based on such
condensed forms of provenance is useful in network protocols (e.g.,
BGP) in which updates should only be accepted if they originate
from trusted sources. Similarly, one can utilize the algebraic for-
mulation to compute a trust value for each derivation.
Distribution. ExSPAN stores provenance in either a central-
ized or a distributed fashion. In centralized provenance [14], the
entire provenance of a tuple is stored along with the tuple’s con-
tent. In order to maintain complete centralized provenance, all
provenance information is relayed to a centralized server. This
approach presents a single bottleneck at the server, high aggre-
gate bandwidth-utilization, and may not be feasible in a setting in
which the distributed system being monitored spans administrative
domains and/or large geographic locations.

Provenance may also be stored in a distributed fashion. In value-
based distributed provenance, each derived tuple must include its
entire provenance when transmitted between nodes. This paper
introduces an alternative and more efficient means of storing dis-
tributed provenance which we call reference-based distributed prove-
nance. In the reference-based variant, provenance information is
dispersed among network nodes and lazily shipped. Here, only
markers (pointers for subsequent traversal) are shipped with each
tuple as the protocol executes, and the provenance information is
fetched on demand via distributed queries. Rather than store com-
plete provenance data at each tuple, tuples contain pointers that
may be resolved recursively to reconstruct their derivations.

Reference-based distributed provenance imposes little commu-
nication overhead during query execution, but requires a (poten-
tially expensive) distributed querying protocol to discern prove-
nance information. Conversely, both centralized provenance and
value-based provenance incur high communication costs when trans-
mitting tuples (due to the provenance information contained in the
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Figure 5: The provenance graph for the tuple bestPathCost(@a,c,5). Ovals represent rule execution vertexes and rectangles
denote tuple vertexes.

tuples and the propagation of provenance updates), but offer imme-
diate provenance resolution.

Centralized provenance support may be straightforwardly
achieved using traditional centralized database systems. Previous
work [13] also shows value-based distributed provenance can be
supported by modifying relational operators, such as INSERT, DELETE
and JOIN, to include provenance information in the query evaluation
towards a distributed fixpoint.

ExSPAN aims to support both centralized and distributed distri-
bution. However, the focus of this paper is on enabling efficient
network provenance using our reference-based approach.

4. MAINTAINING PROVENANCE
This section defines the data model used by ExSPAN to store

and maintain network provenance in dynamic networks. The data
model utilizes the graph-based representation introduced in Sec-
tion 3 and applies to both centralized and distributed provenance.
ExSPAN’s graph-based data model is amenable to storage using a
distributed relational database, and is sufficiently general to be used
as a basis for generating other provenance representations.

4.1 Data Model
Given a tuple T , we model its provenance as an acyclic graph

G(V,E). By disallowing cycles in the graph, we simplify the pro-
cess of issuing distributed queries (Section 5) at the expense of not
permitting cyclical derivations. We note that such cycles are fairly
rare in the usage scenarios we have encountered in networking ap-
plications, but supporting them is an interesting area of future work.

The vertex set V consists of tuple vertices and rule execution
vertices. Each tuple vertex in the graph is either a base tuple or
a computation result, and each rule execution vertex represents an
instance of a rule execution given a set of input tuples. The edge set
E consists of unidirectional edges that represent dataflows between
tuples and rule execution vertices, where an edge from a tuple ver-
tex t to a rule execution vertex o indicates t is taken as an input of
o. Conversely, an edge from a rule execution vertex o to a tuple
vertex t denotes that t is the evaluation result of o.

ExSPAN stores the graph representation of provenance in a rela-
tional table in a format similar to that used in existing work [6, 5]
with the following modifications to enable efficient maintenance in
a distributed setting: (We focus our discussion on reference-based
distributed provenance, and adopt the declarative networking con-
vention of having location predicates to denote tuples and their lo-
cations.)

To uniquely identify each vertex in a derivation graph, we assign
a vertex ID (VID) to each vertex in the provenance graph, using
cryptographic hash functions (e.g., SHA-1) to reduce the probabil-
ity of collision.

For a tuple vertex, the VID is the hash of the tuple’s contents
(i.e., its location specifier, table name, and attribute values). For

instance, the VID of a tuple vertex for pathCost(@X,Y,C) is VID =
SHA1(“pathCost”+X +Y +C), where a+ b denotes the concate-
nation of a and b.

For a rule execution vertex, its unique identifier (RID) is the con-
catenation of the location where the rule resides, the rule name, and
the input tuple nodes. For example, when rule r2 at node X is exe-
cuted with input tuples t1 and t2, its RID is SHA1(“r2”+X+t1+t2).
Storage Model ExSPAN stores provenance information in the
network using two tables – prov and ruleExec – that are distributed
and partitioned across all nodes in the network.

The prov table maintains provenance information. Each entry in
the relation represents a direct derivation of a tuple. Specifically, an
entry in the prov relation is of the form prov(@Loc,VID,RID,RLoc),
with VID and RID as its keys, indicating that the tuple vertex VID

located at node Loc is directly derivable from the rule execution
vertex RID for a rule that resides at RLoc. This table is distributed
across nodes, partitioned based on the location specifier Loc.

A separate table, ruleExec(@RLoc,RID,R,VIDList), stores the ac-
tual meta-data of the rule execution. For a given RID, the table stores
the actual rule identified by the label R, as well as the VIDs for all
the input tuples used in the rule derivation. RLoc corresponds to the
location where the rule resides.

4.1.1 Example Graph and Tables
Figure 5 shows the provenance graph for a derived tuple,

bestPathCost(@a,c,5), using the example network depicted in Fig-
ure 3. Ovals represent the rule execution vertices and rectangles de-
pict tuple vertices. The graph encodes how tuples are derived dur-
ing the execution of the MINCOST query. For instance,
bestpathCost(@a,c,5) (bottom-right) is generated from rule r3 at
node a taking pathCost(@a,c,5) as the input. Note that the graph
representation itself is distributed, where the location of each vertex
is shown using the location specifier (@). To trace further,
pathCost(@a,c,5) has two derivations: the locally derivable one-
hop path a→ c and the two-hop path a→ b→ c that requires the
distributed join (in rule r2) at node b.

Table 1 presents the prov table that corresponds to the prove-
nance graph shown in Figure 5. For instance, the prov table con-
tains two entries (the 2nd and 3rd lines) for pathCost(@a,c,5), indi-
cating that the tuple is derivable in two alternative ways: one that is
directly derived from link(@a,c,5) and the other that is generated
by joining link(@b,a,3) with bestpathCost(@b,c,2). As a special
case for base tuples (e.g., the link tuples), we assign null as the
RID to differentiate from the tuples derived via rule evaluation.

4.1.2 Value- and Reference-Based Provenance
The previously described data model incurs very small commu-

nication overhead while maintaining reference-based distributed
provenance. Only the 20-byte Rloc and RID attributes must be af-



Loc VID RID RLoc Derivation
a VID3 = SHA1(“link”+a+ c+5) null a link(@a,c,5)

a VID5 = SHA1(“pathCost”+a+ c+5) RID2 a pathCost(@a,c,5)

a VID5 = SHA1(“pathCost”+a+ c+5) RID3 b pathCost(@a,c,5)

a VID7 = SHA1(“bestPathCost”+a+ c+5) RID5 a bestPathCost(@a,c,5)

b VID1 = SHA1(“link”+b+ c+2) null b link(@b,c,2)

b VID2 = SHA1(“link”+b+a+3) null b link(@b,a,3)

b VID4 = SHA1(“pathCost”+b+ c+2) RID1 b pathCost(@b,c,2)

b VID6 = SHA1(“bestPathCost”+b+ c+2) RID4 b bestPathCost(@b,c,2)

Table 1: An example prov relation. The table is horizontally partitioned across all nodes, based on the location specifier Loc. The
last column Derivation is not part of the table, but indicates the actual tuple derivation that corresponds to each prov entry.

RLoc RID R VIDList Derivation
a RID2 = SHA1(“sp1”+a+VID3) sp1 (VID3) pathCost(@a,c,5)

a RID5 = SHA1(“sp3”+a+VID5) sp3 (VID5) bestPathCost(@a,c,5)

b RID1 = SHA1(“sp1”+b+VID1) sp1 (VID1) pathCost(@b,c,2)

b RID3 = SHA1(“sp2”+b+VID2+VID6) sp2 (VID2,VID6) pathCost(@a,c,5)

b RID4 = SHA1(“sp3”+b+VID4) sp3 (VID4) bestPathCost(@b,c,2)

Table 2: An example ruleExec relation that corresponds to the derivations shown in the prov table in Table 1. The last column
Derivation indicates the actual derivation for the given rule execution instance.

fixed to tuples in order to reconstruct the provenance information
via a distributed query.

To derive the derivation of a tuple encoded with reference-based
provenance, the provenance graph is traversed in a distributed fash-
ion. Given a derivation identified by VID (i.e., the hash of the tuples’
contents), the corresponding VIDList can be retrieved by traversing
the RLoc attribute value in the prov table and retrieving the con-
tents corresponding to RID stored in the ruleExec table. The base
tuples may then be retrieved by recursively traversing the entries
in VIDList. Mechanisms for efficiently querying reference-based
network provenance are described in more detail in Section 5.

In value-based distributed provenance, each transmitted tuple in-
cludes its entire provenance tree (that is, all the prov and ruleExec

tuples that are relevant to its derivation). As we demonstrate in Sec-
tion 7, the value-based provenance approach results in much higher
communication overhead as compared to the reference-based ap-
proach. However, value-based distributed provenance is desirable
for certain network management applications in which the decision
to accept or reject an incoming message may depend on its (imme-
diately available) provenance.

4.2 Distributed Provenance Maintenance
Given an NDlog program, incremental maintenance with prove-

nance aims to achieve the following: Whenever a base tuple is in-
serted, rules incrementally recompute new derivations from exist-
ing NDlog rules. ExSPAN achieves incremental view maintenance
through delta rules [13, 15], with additional bookkeeping to main-
tain multiple derivations of the same tuple. These delta rules are
then processed in a pipelined fashion via the use of the pipelined
semi-naïve algorithm (PSN) [15].

For a Datalog rule of the form: d :- d1, d2, ..., dn, a delta
rule is generated for each derived predicate, where the kth delta
rule is of the form:

4d :- d1,..,dk−1,4dk, dk+1,..,dn

where 4dk denotes a tuple tk ∈ dk that is used as input to the rule
for computing new d tuples. Each delta4dk results in the creation

of two delta rules, one for insertion and one for deletion. In PSN,
tuples are processed one at a time in a pipelined fashion. Each
node maintains a FIFO queue (ordered by arrival timestamp) of new
input tuples. Each new tuple is dequeued and is used as input to its
respective delta rule. The execution of a delta rule may generate
new tuples which are either inserted into the local queue or sent to
a remote node for further execution. Refer to references [13, 15]
on details of PSN and handling of duplicate derivations.

As views are incrementally recomputed due to new insertions,
each rule execution and new derivation results in the creation of
new prov and ruleExec entries. Similarly, whenever a base tuple
is deleted, all derivations resulted from NDlog rules that depend on
the base tuple in the program are incrementally deleted, resulting
in cascaded deletions of the respective prov and ruleExec entries in
the provenance graphs of deleted tuples.

To perform the above incremental provenance maintenance (for
both insertion and deletion), ExSPAN leverages the distributed
query processing capabilities of its declarative networking engine.
Given any NDlog program, additional NDlog provenance mainte-
nance rules are automatically generated.

We present an example to demonstrate the intuition behind the
generation of new provenance maintenance rules. The provenance
maintenance rules for rule sp2 in Figure 1 are automatically rewrit-
ten by ExSPAN as follows:
r20 ePathCostTemp(@RLoc,S,D,C,RID,R,List) :- link(@Z,S,C1),

bestPathCost(@Z,D,C2), C=C1+C2, Z!=Y,
RLoc=Z, R=‘‘sp2’’, PID1=f_sha1(‘‘link’’+Z+S+C1),
PID2=f_sha1(‘‘bestPathCost’’+Z+D+C2),
List=f_concat(PID1,PID2), RID=f_sha1(R+RLoc+List).

r21 ePathCost(@S,D,C,RID,RLoc) :-
ePathCostTemp(@RLoc,S,D,C,RID,R,List).

r22 ruleExec(@RLoc,RID,R,List) :-
ePathCostTemp(@RLoc,S,D,C,RID,R,List).

r23 pathCost(@S,D,C) :- ePathCost(@S,D,C,RID,RLoc).
r24 prov(@S,VID,RID,RLoc) :- ePathCost(@S,D,C,RID,RLoc),

VID=f_sha1(‘‘pathCost’’+S+D+C).

Rules r20 through r24 re-implement the original rule sp2 with
additional rules for creating and maintaining provenance informa-



tion. Rule r20 takes as input the original rule body predicates link

and bestPathCost, and generates a new local event ePathCostTemp
that contains the results of the derivation (attributes S, D, and C),
as well as new attributes RLoc (rule location), R (rule label), RID

(hash digest of rule), and List (VIDs of children vertices) nec-
essary for the generation of the provenance information. The at-
tributes stored in ePathCostTemp contain all the information nec-
essary to instantiate the ruleExec entry locally (via rule r22) and
create the prov entry at the remote node. This is achieved by a mes-
sage event ePathCost that is sent from the node in which the rule is
derived (RLoc) to node Z, the destination of the original derivation
in rule sp2. Rule r23 receives the ePathCost event and generates
the pathCost derivation. The prov entry is populated by rule r24.

Since rule r23 generates the original pathCost derivation in sp2,
the above set of rules subsumes the original rule, adding addi-
tional information for provenance computation. Note that in ad-
dition to generating the correct derivation and provenance infor-
mation (ruleExec and prov entries), the above program imposes
only minimal additional communication overhead. The message
event ePathCost contains only two additional attributes RID and
RLoc. The bandwidth utilization is significantly lower compared
with the value-based distributed approach, the latter of which re-
quires shipping the entire provenance information with each tuple.

Finally, note that the above rewritten program integrates well
with the use of cascading deletions used in PSN evaluation of declar-
ative networking programs. Rule r20 compiles into a series of in-
sertion and deletion delta rules that guarantees that whenever the in-
put link and bestPathCost tuples are inserted/deleted,
ePathCostTemp will trigger either an insert or delete delta rule ap-
propriately, leading to the insertion/deletion of appropriate entries
in the prov and ruleExec tables.

Reference [26] shows that the rewrite-based approach can be
generalized to enable provenance maintenance for any NDlog pro-
gram, where each rule is replaced by a set of new rules: the first
rule generates an event containing all information required for cre-
ating the local ruleExec entry that corresponds to the meta-data of
the rule execution; the generated event is then shipped to the target
node to create the corresponding resulting tuple (e.g., pathCost in
the above example) and the prov entry.

5. QUERYING PROVENANCE
The previous section presents the distributed provenance data

model and introduces an algorithm for automatically rewriting ND-
log programs to support provenance. In this section, we describe
how ExSPAN allows users to query the provenance information via
distributed queries.
Intuition: Before describing ExSPAN’s provenance query mech-
anisms, we first present the intuition of provenance querying through
an example. We consider the provenance graph shown in Figure 5
and a query for the full provenance of tuple bestPathCost(@a,c,5).
The initial prov entry for this tuple (corresponding to the entry with
VID=VID7 in Table 1) indicates that the tuple is derived from the
execution of rule sp3 at node a. The query then retrieves the cor-
responding entry in the ruleExec table (in this case the entry for
RID=RID5). The query subsequently traces back to the input tu-
ple corresponding to VID5, i.e. pathCost(@a,c,5), by following the
pointers maintained in VIDList. The process continues recursively
by next retrieving the prov entries for VID5, followed by the corre-
sponding ruleExec entries.

Since pathCost(@a,c,5) has two derivations (via sp1@a or sp2@b),
two queries are initiated to further query the provenance along the
two derivations. This results in cross-node communication, since

sp2@b is located at a remote node. The recursive query stops at
base tuples, e.g., link(@a,c,5), link(@b,c,2), and link(@b,a,3).
Provenance information is returned through the reverse direction
of the path traversed by the queries.

5.1 Distributed Recursive Query Formulation
Based on the above intuition, we next demonstrate the mech-

anisms by which ExSPAN formulates distributed queries to derive
various representations from reference-based distributed provenance.

To derive provenance information, ExSPAN utilizes NDlog pro-
grams that express distributed recursive queries. These queries tra-
verse provenance graphs (in the form the prov and ruleExec ta-
bles) in a distributed fashion, returning results to the querying node.
ExSPAN’s flexibility permits different granularities and representa-
tions of provenance (see Sec. 3). The programmer may select the
type of network provenance by modifying the query specifications.

The following NDlog program demonstrates a generic distributed
graph traversal operation on tables prov and ruleExec. The entire
program is written in ten NDlog rules: two base rules (edb1 and
c0) and two pairs of four rules for recursively querying the prov

(idb1-idb4) and ruleExec (rv-rv4; not shown) tables. The rules
are continuous, long-running queries that are initially installed at
every ExSPAN node for handling distributed provenance queries.

// Base case
edb1 eProvResults(@Ret,QID,VID,Prov) :-

eProvQuery(@X,QID,VID,Ret), prov(@X,VID,RID,RLoc),
RID==NULL, Prov=f_pEDB(VID).

// Count number of children for each VID
c0 numChild(@X,VID,COUNT<*>) :- prov(@X,VID,RID,RLoc).

// Initializing Buffer
idb1 pResultTmp(@X,QID,Ret,VID,f_empty()) :-

eProvQuery(@X,QID,VID,Ret), prov(@X,VID,RID,RLoc),
RID!=NULL.

// Recursive case
idb2 eRuleQuery(@RLoc,RQID,RID,X) :-

eProvQuery(@X,QID,VID,Ret), prov(@X,VID,RID,RLoc),
RQID=f_sha1(QID+RID).

// Buffer sub-results
idb3 pResultTmp(@X,QID,Ret,VID,Buf) :-

eRuleResults(@X,RQID,RID,Prov),
pResultTmp(@X,QID,Ret,VID,Buf1),
RQID=f_sha1(QID+RID), Buf=f_concat(Buf1,Prov).

// Calculate and return results
idb4 eProvResults(@Ret,QID,VID,Prov) :-

pResultTmp(@X,QID,Ret,VID,Buf),
numChild(@X,VID,C), C=f_size(Buf),
Prov=f_pIDB(Buf,VID,X).

To customize provenance computations in the distributed graph
traversal query, we introduce three user defined functions: f_pEDB,
f_pIDB, and f_pRULE, which operate on the base tuples (f_pEDB), in-
termediate derivations (f_pIDB), and rule execution instance
(f_pRULE). In Section 5.2, we describe these functions in greater
detail, and via examples, show how they can be customized to re-
turn different provenance representations and granularities.

The initial provenance query is indicated by the event
eProvQuery(@X,QID,VID,Ret), where node Ret issues a query to
retrieve the provenance information of tuple VID stored at X. To
uniquely identify the query, an additional attribute QID is added.
Note that upon receiving this query, node X executes rules edb1,
idb1, and idb2.

Rule edb1 is the base case and applies when the tuple VID is a
base tuple (EDB), as indicated by the fact that it has no associated
rule execution instance (that is, RID is null). In such cases, the
provenance information is f_pEDB(VID) – the result of applying the



user-defined function for EDBs to VID. For example, f_pEDB may
simply return the tuple itself, indicating the base tuple is involved
in the derivation.

Rule idb1 initializes the pResultTmp table, which is later used
to buffer intermediate query results. Rule idb2 represents the re-
cursive case in which the prov table is retrieved. Each entry with
matching VID in the prov table indicates a rule execution instance
that leads to the derivation of VID. These rule execution instances
are additionally retrieved and buffered in pResultTmp table by issu-
ing a remote query eRuleQuery(@RLoc,RQID,RID,X). This requires
sending a message to several matching RLoc nodes. The process
continues recursively, where the nodes receiving the eRuleQuery

message retrieve the matching ruleExec tuples, and recursively tra-
verse children derivations until the base case is reached.

ExSPAN applies rule idb3 when all children derivations have re-
turned with the provenance information. The resulting provenance
information is then combined in rule idb4 using the f_pIDB function
and the results are returned to the query node.

An additional four rules rv1-rv4 (similar to idb1-idb4) perform
a similar traversal of the ruleExec tables. We omit these rules due to
space constraints. The intuition behind these rules is that the user
recursively traverses prov and ruleExec tables across nodes until
the entire provenance tree has been obtained. Since each rule exe-
cution takes several predicates as input, an additional user defined
function f_pRULE enables the user to customize how the various in-
puts to the rule can be combined in the provenance tree.

5.2 Query Customization
Given the general querying framework present in Section 5.1, we

now describe how users may customize provenance queries to meet
various application requirements.

5.2.1 First Example: Provenance Polynomials
Our first customization example stores provenance information

in the form of an algebraic expression called a provenance semir-
ing [7]. Provenance can be encoded as an algebraic structure with
two binary operations — addition and multiplication — indicated
by “+” and “·”, where “+” indicates the combination of tuples with
union and projection and “·” denotes a natural join over tuples. The
literals in the algebraic expression represent base tuples. By cus-
tomizing the “+” and “·” operators, various types of classic prove-
nance annotation can be encoded. For example, r1(A+ r2(B ·C))
indicates that rule r2 applies JOIN on tuples B and C, and the result
is then UNIONed with A in rule r1.

To return provenance query results as polynomials, the three
user-defined functions are implemented as follows:
f_pEDB(VID) takes as input the VID that uniquely identifies the
base tuple. The function simply returns the base tuple itself or its
primary keys (which can be retrieved by reading a systems table
that maps VIDs to tuples).
f_pIDB(Derivations,Loc) takes as input Derivations that con-
tain the polynomials (D1,D2,...,Dn) that represent all possible n
ways to derive the tuple, and Loc, the location specifier of the tuple.
The function iterates over all entries in Derivations and applies a
“+” operation across them. The resulting provenance expression is
annotated with the location as (D1 +D2 + ...+Dn)@Loc.
f_pRule(ChildPred,R,RLoc) takes as input ChildPred, repre-
senting the polynomials of all n input tuples (P1,P2,...,Pn) that are
used in the execution of rule R at location Loc. The function iter-
ates over all entries in ChildPred and applies a “·” operation across
them. As above, the result is affixed with a rule label and location.
The function returns the polynomial 〈R@RLoc〉(P1 ·P2 · ... ·Pn).

5.2.2 Additional Examples
The second example returns the number of possible derivations

of a given tuple. We define the three user-defined functions as fol-
lows: f_pEDB(VID) evaluates to 1, indicating each of the edb tuples
has one derivation. For each intermediate derived tuple, the num-
ber of its derivations (i.e. f_pIDB(Derivations,VID,Loc)) can be
calculated as the sum of the sub-results. For rule execution in-
stances, f_pRULE(ChildPred,R,Rloc) is defined as the product of
the sub-results.

ExSPAN’s flexibility enables numerous other customizations. In
reference [26], we describe additional examples which include cal-
culating the set of nodes that participate in the derivation of a tuple,
testing the derivability of a given tuple, and projecting the prove-
nance graph according to imposed constraints. In all cases, the user
need only modify the three user defined functions (f_pEDB, f_pIDB
and f_pRule). The underlying NDlog program used for querying
provenance is sufficiently general to support a diverse set of prove-
nance applications.

ExSPAN’s querying framework is directly applicable to various
domains. For example, in distributed trust management, access re-
quests may be granted or denied based on the nodes involved in
formulating the request. Alternatively, a trust value may be as-
signed to each derivation based on a specific definition of trust. In
the domain of recursive view maintenance, one may use the prove-
nance to perform efficient incremental deletion [13] by performing
the derivability tests.

6. QUERY OPTIMIZATIONS
In this section, we propose a number of optimization techniques

aimed at reducing the bandwidth and latency overheads of our
reference-based distributed querying algorithm.

6.1 Query Results Caching
In value-based distributed provenance, provenance information

is communicated proactively in each tuple derivation, resulting in
high-overhead. In contrast, reference-based distributed provenance
takes a reactive (lazy) approach of generating reverse markers (via
the prov and ruleExec tables) that can be recursively traversed on
demand in response to a query.

Our first optimization technique attempts to achieve a “sweet-
spot” between the proactive and reactive approaches via the use of
query results caching. In cases in which queries are rare, reference-
based distributed provenance aims to incur low communication over-
head and minimally impact the convergence times of protocols.
When queries are frequent, subsequent queries can leverage the re-
sults from prior queries.
Caching scheme Unlike traditional caching in a centralized
database, the reference-based distributed provenance cache is dis-
tributed across several nodes in the network. Whenever a node N

issues a distributed query to retrieve provenance information for a
tuple VID, the resulting query results are not only cached at node N,
they are also stored at intermediate nodes as the query results are
returned along the reverse path.

Specifically, whenever rule idb4 (or the equivalent rule for
ruleExec traversal) is triggered, it indicates the completion of a
query at an intermediate derivation. The query result will be main-
tained in events eProvResults or eRuleResults. Before eProvResults

or eRuleResults is sent back to the query issuer, these results are
cached in a cache(@N,VID,Results) table that stores (at node N) the
provenance Results for VID. Further attributes can be added to dis-
tinguish results based on provenance representation. Note that sub-
sequent queries need not be for the exact tuple (i.e., VID) in order



to benefit from the cache: since the intermediate results are cached
along the reverse path, any graph traversal query that reaches node
N and requires a subgraph rooted at VID can use the cache results.
The cached results are then sent back on the reverse path back to
the node conducting the query without further traversal.
Cache invalidation Cached provenance query results become in-
validated when a tuple is inserted or deleted. Upon receiving the
update event for tuple updates, all the caches that depend on the tu-
ple should be invalidated through an invalidation propagation pro-
cedure. This mechanism is similar to how distributed value-based
provenance is maintained; however, rather than shipping the whole
tuple (an expensive operation), the cache invalidation procedure re-
quires only that an invalidation flag be sent.

After a cache is invalidated, future queries for the same tuple
will have to perform distributed queries to compute the correct re-
sult and update the cache. However, since a tuple may have multi-
ple derivations (some of which correspond to intact cache entries),
the use of caching may still offer some performance benefits. To
illustrate, consider the network depicted in Figure 5. Suppose the
link between nodes a and c has failed. The link deletion will inval-
idate the cache for tuples pathCost(a,c,5), bestPathCost(a,c,5)
and the rule execution vertices along the path. However, if a query
is issued for bestPathCost(a,c,5) after the link failure, when the
traversal reaches the rule execution vertex
r2@b[link(@b,a), bestPath(@b,c)], the intact cached result will
be directly returned, eliminating the need to further traverse the
derivation graph.

6.2 Query Traversal Order
At each tuple vertex being traversed, the program shown in Sec-

tion 5 simultaneously issues queries to all possible derivations. In
essence, the distributed queries traverse the provenance graph using
Breadth First Order (BFS). Intuitively, BFS must flood the queries
throughout the whole provenance graph before any sub-results are
obtained.

We explore another querying traversal order, Depth First Order
(DFS), in which alternative derivations are explored in turns at each
tuple vertex [26]. Instead of starting queries for each derivation
simultaneously, DFS iterates through the list of alternative deriva-
tions. The exploration of the next derivation is started only after the
results of the previous explorations have been received.

DFS may incur longer querying latencies than BFS since the for-
mer can stall before a sub-result is received. However, DFS pro-
vides the opportunity for bandwidth savings for threshold-based
queries that check whether a tuple has more than T derivations or
whether fewer than T ′ unique nodes participate in the derivation.
DFS allows such threshold-based queries to terminate as soon as
the threshold is reached, without incurring additional communica-
tion overhead. That is, DFS trades off query latency in favor of
reduced communication overhead for threshold-based queries.

In addition to BFS and DFS, random moonwalk [24] traversal
can be implemented by randomly selecting N alternative deriva-
tions to explore, where N is a pre-defined constant. This technique
is particularly useful when the number of a tuple’s derivations is
significantly large. The random moonwalk pinpoints with high
probability the pivotal tuple that contributes to a derivation. In the
context of networking applications, such random moonwalks are
useful for ascertaining the dominating sources of incoming traffic.

6.3 Condensed Provenance
Our third optimization technique applies a previously proposed

compression scheme known as absorption provenance [13] to the
algebraic representation of provenance (see Section 5.2.1). Absorp-

tion provenance aims to reduce the number of variables in an alge-
braic representation. For example, consider the algebraic expres-
sion a · (a+b). By applying boolean absorption rules [13], the ex-
pression is reduced to a ·(a+b) = a+(a ·b) = a. Note that savings
in size comes at the expense of information loss. In our example,
absorption provenance loses the fact that b is also involved in the
derivation. However, such absorbed encodings can still retain suffi-
cient information for derivability tests or enforcing security policies
based on the trust of source origins (base tuples).

To implement absorption, we utilize BDDs [2] to encode prove-
nance. BDDs provide a natural way to encode the algebraic rep-
resentation of the provenance, and by default, apply absorption
to save storage space. Since BDDs are frequently used in circuit
synthesis and formal verification applications, highly optimized li-
braries provide abstract BDD types as well as Boolean operators
that operate on them: pairs of BDDs can be ANDed or ORed; in-
dividual BDDs can be negated; and variables within BDDs can be
set to true or false.

Note that the use of absorption provenance applies to both cen-
tralized provenance and value/reference-based distributed prove-
nance. For example, in centralized and value-based provenance,
the provenance information shipped for each tuple can be stored
as BDDs. Similarly, for reference-based distributed provenance,
query results can be returned in the form of BDD representations.

7. EVALUATION
In this section, we evaluate the ExSPAN network provenance

system. The goals of our evaluation are twofold: (1) to measure
the performance overhead incurred by value- and reference-based
distributed network provenance; and (2) to study the effectiveness
of optimizations at reducing communication cost.
Implementation and Experimental Setup ExSPAN is imple-
mented as an add-on to ns-3 [19], an emerging discrete event-driven
network simulator aimed to replace ns-2. ns-3 emulates all layers
of the network stack, supporting configurable loss, packet queu-
ing, and network topology models. ns-3 supports both a simulation
mode, enabling the examination of ExSPAN’s performance under
various network topologies and conditions, as well as a deployment
mode in which different hosts in a testbed environment execute the
network provenance system. ExSPAN makes extensive utilization
of RapidNet [18], a declarative networking platform that compiles
NDlog programs into applications that are executed by the ns-3 run-
time. ExSPAN uses the identical codebase for both simulation and
deployment modes.

We generate transit-stub topologies for our simulation experi-
ments using the GT-ITM topology generator [8]. The transit-stub
topology consists of eight nodes per stub, three stubs per transit
node, and four nodes per transit domain. We increase the num-
ber of nodes in the network by increasing the number of domains.
Links between adjacent transit nodes experience a 50 ms latency
and have a 1 Gbps bandwidth capacity; transit-stub connections
have a 10 ms latency and a 100 Mbps capacity; the respective la-
tency and bandwidth between stub nodes are 2 ms and 50 Mbps.

Our deployment experiments are executed within a local cluster
of eight dual-core Intel 2.8GHz Pentium D hosts and 16 quad-core
machines with Intel Xeon 2.33GHz CPUs. All machines run Linux
2.6 and are interconnected by high-speed Gigabit Ethernet. ExS-
PAN communicates messages between nodes via UDP packets. To
increase the size of our network, we execute two instances of ExS-
PAN on each quad-core machine, enabling us to scale the experi-
ments to 40 nodes. The deployment results described in Section 7.4
reflect the average of five executions of the experiment.
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Figure 6: Average communication cost
(MB) for MINCOST.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 100  150  200  250  300  350  400  450  500

A
ve

ra
ge

 C
om

m
. C

os
t(

M
B

)

Number of Nodes

Value-based Prov. (BDD)
Ref-based Prov.

No Prov.

Figure 7: Average communication cost
(MB) for PATHVECTOR.
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Figure 11: Average bandwidth cost
(KBps) with and without caching.

Applications As workloads for our simulation and deployment
experiments, we implement three NDlog applications: MINCOST,
introduced in Section 2, computes the costs of the best (least cost)
paths between pairs of nodes. PATHVECTOR extends MINCOST,
enabling a node to discover the best path (transmitted as a vector of
nodes) to a specified destination. Both MINCOST and PATHVEC-
TOR operate on the control plane, enabling nodes to discover routes
to peers. In contrast, the PACKETFORWARD application operates
on the data plane, relaying data packets using previously discov-
ered paths.

For all experiments, each node is initialized with a link tuple for
each of its neighbors. That is, nodes have a priori knowledge of
their local links and use MINCOST and PATHVECTOR to discover
longer network paths. Link costs are fixed at 1, and hence MIN-
COST and PATHVECTOR measure hopcount to the destination.

7.1 Communication Overhead
Network provenance incurs bandwidth overhead since additional

information must be communicated. In the case of value-based
provenance, each tuple carries its (potentially lengthy) derivation
history. Reference-based provenance attempts to decrease this over-
head by communicating pointers to provenance information rather
directly conveying the information.

Figure 6 plots the communication cost (the number of transmit-
ted bytes before reaching the fixpoint) averaged over all nodes, for
various sized simulated networks when nodes execute the MIN-
COST program. (For readability, the order of the labels in all figures
in this section mirror the ordering of the plotted curves.)

Value-based provenance results in significant communication
overhead. For example, in the 300-node network, even with the
use of BDD representation, value-based provenance (line “Value-
based Prov. (BDD)”) more than quadruples the query execution

time as compared to executing MINCOST without provenance (line
“No Prov.”). In contrast, reference-based provenance (line “Ref-
based Prov.”) incurs very little communication overhead, increas-
ing the communication cost by just 0.04MB (11.3%) in the same
300-node network. The vast difference in bandwidth costs is due
to MINCOST’s ability to produce multiple derivations for a given
bestPathCost tuple (see, for example, Figure 4). All possible deriva-
tions must be communicated with each tuple when using value-
based provenance. Our reference-based technique reduces the prove-
nance information that must be transmitted since the same pointer
may be shared between different derivations.

The average communication cost when running the PATHVEC-
TOR program is shown in Figure 7. In contrast to MINCOST, tu-
ples have only one derivation (since PATHVECTOR returns a sin-
gle best path), decreasing the amount of information that must be
communicated using value-based provenance. However, due to
space savings in communicating pointers rather than values, the
reference-based technique imposes significantly less overhead (6%
in the 300-node network) than the value-based technique (45% in
the same network).

In addition to enabling provenance on the control plane, it may
also be useful to provide provenance information on the data plane.
As described above, the PACKETFORWARD program relays pack-
ets according to shortest-path “next hop” information stored at each
node. Figure 8 shows the average bandwidth over time when for-
warding packets in a 200-node network. Here, each node selects a
peer at random and transmits 1024 byte tuples at the rate of 100 tu-
ples per second. The overheads for PACKETFORWARD are roughly
equivalent for value- and reference-based provenance. Sending
packets with provenance incurs a small overhead, but is subsumed
by the large payloads.

Due to the memory constraints of running large-scale ns-3 sim-
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Figure 16: Average bandwidth cost for
PATHVECTOR in testbed deployment.
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Figure 17: Fixpoint times for
PATHVECTOR in various sized testbed
deployments.

ulations on a single machine, we experimented with up to 500
nodes in our simulations. However, our results clearly demonstrate
promising scalability trends for all protocols: the average commu-
nication costs of MINCOST and PATHVECTOR programs (without
provenance) scale linearly with the number of nodes. This matches
the expected scalability behavior for these two protocols. More-
over, with the addition of reference-based provenance, we note that
the communication costs continues to scale linearly, hence main-
taining the original scalability trends, demonstrating that reference-
based provenance incurs minimal impact on the scalability of an
existing protocol.

7.2 Incremental Maintenance
The experiments described above model a static topology in

which nodes neither leave nor join the network and links never fail.
Here, we evaluate ExSPAN’s ability to mitigate a high level of node
churn and link failure. We model churn by adding or deleting ten
randomly selected stub-to-stub links in a 200-node simulated net-
work (originally containing 315 stub-to-stub links) every 0.5 sec-
onds, with addition or deletion occurring with equal probability.

Figures 9 and 10 show the respective average per-node band-
width costs of running the MINCOST and PATHVECTOR protocols.
In both instances, reference-based provenance does not incur sig-
nificant bandwidth overhead (the lines for “No Prov.” and “Ref-
based Prov.” closely overlap). For example, the maximum increase
in bandwidth due to reference-based provenance (relative to con-
ducting the query without provenance) is 0.07 and 0.05 Mbps for
MINCOST and PATHVECTOR, respectively.

Value-based provenance consumes significantly greater
bandwidth as complete provenance information must be affixed
to each transmitted tuple. The respective increases in bandwidth

for MINCOST and PATHVECTOR are 1.0 and 0.30 Mbps— 1329%
and 500% greater than the equivalent overheads for reference-based
provenance.

For both reference- and value-based provenance, a new fixpoint
is reached within 0.5 seconds, indicating that ExSPAN is resistant
to even high levels of churn regardless of the type of provenance.

7.3 Distributed Queries
Sections 7.1 and 7.2 evaluate the performance of provenance

maintenance in ExSPAN. In this set of evaluations, we study the
performance of distributed querying of provenance using the frame-
work presented in Section 5. In addition, we validate the effective-
ness of optimizations in reducing communication overhead during
query. The experiments are performed using a 100-node simulated
network which runs the MINCOST protocol. Our query measure-
ments begin after the network has reached a fixpoint.

We utilize three queries in our evaluation: POLYNOMIAL, BDD,
and #DERIVATION. POLYNOMIAL acquires the provenance of an
arbitrary tuple in the form of provenance polynomials (see Sec-
tion 5.2.1). BDD, as discussed in Section 6.3, encodes provenance
in a more compact format. Using the customization described in
Section 5.2.2, #DERIVATION computes the number of alternative
derivations for a given tuple.
Caching Figure 11 plots the average per-node bandwidth over
time when each node issues five POLYNOMIAL queries per sec-
ond with each query targeted to a randomly selected bestPathCost

tuple. Without caching, the average bandwidth utilization for each
node is approximately 50 KBps. Each query therefore incurs an av-
erage bandwidth cost of 0.1KBps, an acceptable overhead for most
current networks. (Of course, the precise cost of conducting POLY-
NOMIAL queries in other settings depends upon the provenance of



the queried tuples.) The overhead imposed by POLYNOMIAL is due
in part to its requirement that results must contain complete infor-
mation regarding all possible tuple derivations.

As shown in Figure 11, POLYNOMIAL’s overhead can be signif-
icantly reduced by enabling the caching optimization described in
Section 6.1. Using caching, the average bandwidth utilization de-
creases to 20KBps after two seconds. The performance improve-
ment is attributed to the fact that queries are more likely to benefit
from the cached results of previous queries as time progresses.

Figure 12 presents the cumulative fraction of query completion
times. Regardless of whether caching is used, results are returned
in less than 0.3 seconds, highlighting that ExSPAN’s provenance
querying mechanisms are latency-wise efficient. The figure also
shows the advantage of enabling caching: 80% of queries are re-
turned within less than 50 ms if caching is enabled, a 67% im-
provement over query latency when caching is disabled.
Query Traversal Order To study the trade-offs between different
query traversal orders, we conducted experiments in which nodes
utilize the #DERIVATION query to determine whether a
bestPathCost tuple has more than three alternative derivations (the
average number of alternative derivations for bestPathCost is ap-
proximately three). The experiment is performed on three variants
of the #DERIVATION query: (a) BFS, (b) DFS, and (c) DFS-
THRESHOLD (DFS with threshold-based pruning). We use the
same experimental setup as the caching experiment – that is, each
node in the 100-node network issues five queries per second for
randomly selected bestPathCost tuples.

Figure 13 shows the average bandwidth consumption for differ-
ent query traversal orders. We observe that the bandwidth costs
incurred by BFS and DFS are roughly equivalent (since both must
traverse the entire provenance graph before a result is concluded).
In contrast, DFS-THRESHOLD results in a 40% decrease in band-
width consumption, due largely to its avoidance of a full traversal
of provenance graphs for tuples with multiple derivations.

Figure 14 plots the cumulative distribution of query completion
times for the query traversal strategies. Although the median la-
tency is roughly equivalent for BFS and DFS, the latter experi-
ences a long-tail distribution. For example, less than 80% of BFS
queries complete within 0.16 seconds. In contrast, 80% of DFS
queries require 0.45 seconds.

BFS’s query completion is largely determined by the traversal
depth in the provenance graph. Unlike BFS, DFS traverses alter-
native derivations in order, resulting in longer querying completion
latencies. By terminating the query as soon as three derivations are
explored, DFS-THRESHOLD avoids the long-tail distribution expe-
rienced by DFS. Using DFS-THRESHOLD, the query completion
time for 80% of the queries decreases from 0.45 to 0.3 seconds.
Absorption Provenance We next compare the performance of
the POLYNOMIAL and BDD queries. We use the same network
configuration and query rates as were applied in previous exper-
iment. Figure 15 shows the average bandwidth incurred by the
POLYNOMIAL and BDD queries. POLYNOMIAL incurs 18KBps
(57%) more bandwidth than BDD, due mainly to BDD’s compact
binary representation. As described in Section 6.3, BDD addition-
ally decreases communication overhead by condensing provenance
information using lossy compression (with information loss).

POLYNOMIAL and BDD have near-identical performance when
defined in terms of query completion latency. The latency of a
query is largely decided by its traversal depth. Since both query
techniques follow BFS query traversal order and operate on the
same topology, the distributions of query completion latencies across
nodes is consistent across the two strategies.

7.4 Testbed Experiments
To empirically evaluate ExSPAN’s computation and communi-

cation properties, we installed 40 instances of ExSPAN in a local
cluster. Since nodes on the cluster are fully connected via a shared
switch, we impose a less trivial virtual topology as follows: to en-
sure reachability, nodes are arranged in a ring structure. All links
are bidirectional; that is, if there is a link between nodes a and b,
then node a maintains a tuple link(@a,b,1) and node b has a tuple
link(@b,a,1). Each node in the network has links to its two neigh-
bors (hence achieving the ring structure). Additionally, each node
has a link to a random peer such that the maximum degree of all
nodes is three (a link to each ring neighbor and a third to a random
peer). All nodes execute the PATHVECTOR protocol.

As with the simulation experiments, our reference-based prove-
nance technique significantly reduces the overhead of provenance
compared to the value-based approach. When sending no prove-
nance information, the average per-node bandwidth cost of execut-
ing PATHVECTOR is 1.24 KB before a fixpoint is reached.
Reference-based provenance increases this cost by 29%, far less
than the 204% increase caused by value-based provenance. This
trend can be observed from Figure 16 which plots the average per-
node bandwidth over time for the experiments. The relative over-
heads of reference- and value-based provenance mirror our earlier
simulation results (see Section 7.1).

In addition to examining bandwidth costs, our deployment pro-
vides a mechanism to study the computational overhead of using
the various provenance techniques. Figure 17 shows the fixpoint
time for different network sizes. (As an invariant of network size,
the degree of each node in the network is fixed at three.) As can be
discerned from the Figure, neither provenance technique imposes
any significant increase in fixpoint time.

The results of our deployment experiments therefore indicate
that reference-based provenance achieves a substantial decrease in
communication cost as compared to value-based techniques, while
imposing little or no increase in fixpoint latency.

8. RELATED WORK
ExSPAN is related to a large body of work in the database liter-

ature on enabling provenance support in database systems. Of par-
ticular relevance to our work are recent attempts at storing prove-
nance information in relational databases [10, 5]. The data and
storage model in ExSPAN is also based on the relational model, but
extends the basic model to enable distribution via the use of value-
based and reference-based distributed provenance. In the space of
distributed query processing, Liu et al. [13] explored a mechanism
similar to the value-based provenance used by ExSPAN. Their ap-
proach stores BDD-based provenance information with each tuple
for tracking derivability information.

In terms of application scenarios, our efforts in this paper are
largely targeted at networking applications as surveyed by Zhou
et al. [25]. Of closest relevance is the recent use of provenance
in P2P data integration [10]. The operating environment however
differs significantly. ExSPAN is targeted at Internet-scale deploy-
ments with relatively small network state per node, as opposed to
only tens of databases storing large amounts of data. Hence, the
techniques developed in ExSPAN focus on network-centric met-
rics such as reducing communication overhead, minimizing query
latency, and avoiding negative impact on the convergence times of
existing protocols. Rather than using a heavy-weight database sys-
tem, ExSPAN leverages a declarative networking engine that pro-
vides networking and querying capabilities at Internet-scale, en-
abling it to be easily integrated into existing distributed systems.



While the focus of ExSPAN is on enabling provenance for large-
scale distributed systems and networking protocols, in principle,
the system is sufficiently general to enable other traditional use
cases of provenance in P2P data integration. Exploring such use
cases in ExSPAN via the use of declarative networking is an inter-
esting avenue of future work.

9. CONCLUSION
This paper presents ExSPAN, a scalable framework for achiev-

ing network provenance in a distributed environment. ExSPAN
utilizes declarative networking techniques and rewrite rules to effi-
ciently affix provenance information to distributed network queries,
enabling administrators to easily add accountability, trust manage-
ment, and failure diagnostic capabilities to their networks.

To achieve provenance at Internet-scale, we introduce novel tech-
niques for communicating network provenance. ExSPAN signifi-
cantly reduces communication overhead by distributing provenance
information among nodes. In contrast to existing approaches in
which complete derivation trees must be attached to each commu-
nicated message, ExSPAN appends short provenance pointers to
tuples to identify the nodes that maintain the relevant provenance
information. Simulation and implementation results demonstrate
that our reference-based provenance techniques impose substan-
tially less communication overhead than existing approaches. For
example, when providing provenance information for the path vec-
tor routing protocol, ExSPAN exhibits one ninth the communica-
tion overhead as incurred using traditional value-based distributed
provenance techniques while achieving equivalent fixpoint laten-
cies. Additionally, we present several optimization techniques for
efficiently querying provenance information.

As future work, we are investigating mechanisms to protect the
confidentiality and authenticity of provenance information. The
ability to provide formal security guarantees for provenance data
enables new classes of routing algorithms in which decisions can
be based not only on the contents of messages, but also on the mat-
ter in which messages are created and transported. We are also ex-
ploring the integration of ExSPAN with legacy distributed systems.
Here, the goal is to use ExSPAN to analyze the protocol behavior by
capturing coarse-grained provenance information obtained by hav-
ing these systems export their network state and incoming/outgoing
messages to ExSPAN as tables.
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