Declarative Toolkit for Rapid Network Protocol
Simulation and Experimentation

Shivkumar C. Muthukumar-
Mihai Oprea*

Xiaozhou Li*
Boon Thau Loo~
*University of Pennsylvania

Changbin Liu* Joseph B. Kopena

fDrexel University

{mshivk, xiaozhou, changbl, mihaio, boonloo}@seas.upenn.edu, tjkopena@cs.drexel.edu

ABSTRACT

We propose the demonstration of the RapidNet toolkit for
rapid network protocol simulation, implementation and ex-
perimentation. RapidNet utilizes declarative networking, a
declarative, database-inspired extensible infrastructure that
uses query languages to specify behavior. RapidNet inte-
grates a declarative networking engine with the emerging
ns-3 network simulator. Our proposed demonstration will
showcase two recent use cases: declarative mobile ad-hoc
network (MANET) routing and network composition.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms

Design, Languages, Experimentation

1. INTRODUCTION

RapidNet is a development toolkit that enables rapid sim-
ulation, implementation, and experimentation of network
protocols. RapidNet integrates a declarative networking [8}
7] engine with the emerging ns-3 |10l |4] network simulator,
which is intended as an eventual replacement for the ns-2
simulator. Network protocols are specified using declara-
tive specifications, which are then compiled into ns-3 code
for simulation and analysis. The same declarative specifi-
cations can also be used as actual implementations using
the P2 declarative networking system [1] or the ns-3 net-
work emulator. We will demonstrate the use of RapidNet
in recent research projects that use declarative networking:
(1) declarative mobile ad-hoc network (MANET) routing [6]
and network composition [9).

The high level goal of declarative networks is to build ex-
tensible architectures that achieve a good balance of flexibil-
ity, performance and safety. Declarative networks are spec-
ified using Network Datalog (NDlog), which is a distributed
recursive query language for querying networks. Declarative
queries such as NDlog are a natural and compact way to im-
plement a variety of routing protocols and overlay networks.
For example, traditional routing protocols such as the path
vector and distance-vector protocols can be expressed in a
few lines of code [8], and the Chord distributed hash table
(DHT) in 47 lines of code [7]. When compiled and executed,
these declarative networks perform efficiently relative to im-
perative implementations.

The long term goal of RapidNet is to provide a platform
for rapid prototyping, synthesis, and deployment of new net-
work protocols that can be provably verified prior to deploy-
ment. In addition to being a valuable tool for rapid network
prototyping and analysis, RapidNet can potentially be used
as a basis of an educational software package that integrates
the declarative platform with the ns-3 simulator, enabling
students to learn about network protocols via higher level
declarative abstractions.

2. OVERVIEW

8 Declarative
Network Protocol

Network Protocol

Design PPy +
Specification Invariant Specifications Dataflow
Compilation
Developer ns-3 code @ -@
Feedback generation &
ns-3 @
i Simulation - y
S:qmelgﬁllgn RapidNet library ns-3 Code Protocol implementation

Figure 1: Overview of RapidNet

Figure [l| provides an overview of RapidNet's basic ap-
proach towards unifying specifications, simulation, and im-
plementation within a common declarative framework. In
the initial design phase of RapidNet, a network protocol de-
sign is used as the basis for specifying the network protocol
using the NDlog declarative networking language. High-level
invariant properties of the protocol can also be expressed in
NDlog as distributed triggers which raise event alarms when
invariants are violated.

In the simulation mode, the RapidNet compilation pro-
cess generates ns-3 code from the NDlog protocol specifi-
cations and invariants. The generated code either runs as
an ns-3 application, or replaces routing protocol implemen-
tations at the network layer. The generated code imple-
ments dataflows (execution plans) with a similar execution
model with the Click modular router [5|, which consists of
elements that are connected together to implement a variety
of network and flow control components. In addition, those
elements include database operators (such as joins, aggrega-
tion, selection, and projection) that are directly generated
from the declarative networking rules. Messages flow among
dataflows executed at different nodes, resulting in updates to
local tables. The local tables store the state of intermediate

and computed query results which include the network state
of various network protocols. In the implementation mode,
declarative networking specifications are directly executed
and deployed either by using the P2 declarative networking
system [1] or the ns-3 network emulator.

Since declarative networks share common functionalities
such as the network stack, multiplexing tuple messages en-
tering and leaving the dataflow, and database functionali-
ties, all these utilities are defined in a shared RapidNet li-
brary. This enables one to simplify the compilation process
to only the relevant database operations to implement the
distributed dataflows for the corresponding declarative net-
work specification. This also enables one to easily incorpo-
rate multi-query optimizations to share computations across
declarative networks in future.

3. DETAILS OF DEMONSTRATION

Our demonstration takes as input declarative network spec-
ifications which are automatically compiled to ns-3 code for
execution in the ns-3 simulation and emulation modes. Net-
work traces are directed to a ns-3 visualizer [11] that will
display the actual movement of nodes during the simula-
tion, side-by-side actual performance statistics of the proto-
col obtained from the ns-3 network statistics package. To
illustrate, Figure [2| shows an example execution of the cur-
rent version of our demonstration. A declarative path-vector
protocol is automatically compiled into ns-3 code, and runs
within an ns-3 scenario where 90 nodes within an arena com-
municate via 802.11b ad-hoc mode and move with Brownian
motion model.

] Gnuplot (window id : 0)

L rxr@a@aQ y?

Total Bandwidth

Pathvector 50 Nodes Ad Hot

Packets

‘ ﬂf ,‘- ‘:‘ﬁﬁh" 'TT J\]j Tr\ 1
i | [i
J.@ui il | x"ﬁ\uyﬂ‘m‘ x| m Hh |
]ﬂﬂ‘l {11 Mﬂ‘lﬂ 1‘11“1 MU% il

150 200 250

Seconds
252,695, 96,2767

Figure 2: Screenshot of real-time network statistics
(left) and the network visualizer (right).

Based on the above setup, we will demonstrate the follow-
ing recent use cases of declarative networking:

Declarative MANET routing: Our first use case in-
volves the declarative MANET protocol implementations,
ranging from link-state routing (LS), hazy-sighted link-state
routing(HSLS) [12], optimized link-state routing (OLSR) (3],
dynamic source routing (DSR), and summary-vector based
epidemic routing. Table [summarizes those protocols, by
categorizing them as proactive, reactive, and epidemic, as
well as respective number of rules. These MANET proto-
cols will be evaluated using different mobility models (e.g.
random waypoint, Brownian motion, hierarchical mobility,
etc.) supported by ns-3. This first use case provides us with
a wide-range of examples to demonstrate the use of Rapid-
Net for effective prototyping, deployment, and comparisons
across a variety of MANET protocols. Beyond comparisons

across protocols, the declarative framework enables the abil-
ity to rapidly explore a wide range of deployment and imple-
mentation parameters necessary for tuning the performance
of MANET routing protocols.

[Category | Protocol | Rules |
Reactive Dynamic source routing 11
Traditional link state 15
Proactive Optimized link state routing 34
Hazy sighted link state 18
Epidemic Summary-vector based epidemic 17

Table 1: Declarative MANET Protocols.

Network composition: Our second use case is on the
MOSAIC [9] network composition platform, which provides
a declarative platform that enables distinct parts or elements
of existing networks to be combined to create a new network
with new functionalities. Each component declarative net-
work is specified as a composable view, essentially a group of
rules represented with a single predicate, and then composed
(via bridging and layering) with other component networks
achieved via additional NDlog rules. Example compositions
include layering a declarative Chord DHT implementation
over a resilient overlay network (RON) [2] for robustness,
and composing an indirection overlay [13] with RON for ro-
bust mobility.

4. ACKNOWLEDGMENTS

This work is based on work supported in part by NSF
grants CNS-0721845, CCF-0820208, and CNS-0845552.

5. REFERENCES

[1] P2: Declarative Networking System. http://p2.cs.berkeley.edu.

[2] D. Anderson, H. Balakrishnan, F. Kaashoek, and R. Morris.
Resilient Overlay Networks. In ACM Symposium on Operating
Systems Principles (SOSP), 2001.

[3] T. Clausen and P. Jacquet. Optimized link state routing
protocol (olsr). In RFC 8626 (Ezperimental), 2003.

[4] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. B.
Kopena. Network simulations with the ns-3 simulator. In
SIGCOMM Demonstration, 2008.

[5] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. ACM Transactions on
Computer Systems, 18(3):263-297, 2000.

[6] C. Liu, Y. Mao, M. Oprea, P. Basu, and B. T. Loo. A
declarative perspective on adaptive manet routing. In ACM
SIGCOMM Workshop on Programmable Routers for
Extensible Services of TOmorrow, 2008.

[7] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe,
and I. Stoica. Implementing Declarative Overlays. In ACM
Symposium on Operating Systems Principles (SOSP), 2005.

[8] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan.
Declarative Routing: Extensible Routing with Declarative
Queries. In Proceedings of ACM SIGCOMM Conference on
Data Communication, 2005.

[9] Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith. MOSAIC: Unified
Declarative Platform for Dynamic Overlay Composition. In 4th
Conference on emerging Networking EXperiments and
Technologies (ACM CoNEXT), 2008.

[10] Network Simulator 3. http://www.nsnam.org/.

[11] ns 3 visualizer.
http://code.nsnam.org/tjkopena/ns-3-decorator3/.

[12] C. Santivanez, R. Ramanathan, and I. Stavrakakis. Making
link-state routing scale for ad hoc networks. In ACM MobiHoc
’01, Long Beach, CA, 2001.

[13] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet Indirection Infrastructure. In Proceedings of ACM
SIGCOMM Conference on Data Communication, 2002.

	Introduction
	Overview
	Details of Demonstration
	Acknowledgments
	References

