
RapidMesh
A Declarative Toolkit for Rapid Experimentation

of
Wireless Mesh Networks

http://netdb.cis.upenn.edu/rapidnet

Shivkumar C. Muthukumar*, Xiaozhou Li*, Changbin Liu*, Joseph B. Kopena†,
Mihai Oprea*, Richardo Correa*, Boon Thau Loo*, Prithwish Basu††

* University of Pennsylvania † Drexel University †† BBN

http://netdb.cis.upenn.edu/rapidnet

 2

Motivation

 Proliferation of MANET routing protocols
 Reactive (DSR, AODV)
 Proactive (LS, HSLS, OLSR)
 Epidemic

 No “one size fits all” protocol.
 Variations in network mobility and connectivity.
 Wide range of traffic patterns.

 Lack of systematic tools for rapid prototyping.

 3

Motivation

 Simulation studies are useful but may not be complete.
 Real-world effects manifest themselves in actual

deployments.
 Advent of open wireless testbeds (like ORBIT) allows

evaluation under realistic settings.

 Deploying and experimenting on testbeds remains arguably
time consuming.

 A case for unified tool support for
 Simulation: Controlled large scale experiments under a

variety of mobility models.
 Testbed-based experimentation: Evaluation under real

world effects.

 4

Outline

 Motivation
 Overview of RapidMesh
 Background on Declarative Networking
 Rapid Prototyping Example: LS to HSLS
 Evaluation on ORBIT Testbed
 Ongoing Work

 5

Overview: The Approach

 A development toolkit that unifies rapid prototyping,
simulation and experimentation.

 Integrates a declarative networking engine with the ns-3
network simulator and emulator.

 Declarative Networking [Loo et. al., SIGCOMM '05]
 Use of database query languages to specify protocols.
 Compiled to distributed dataflows and executed by a

distributed query engine.

 ns-3 network simulator and emulator (http://www.nsam.org)
 Discrete event simulator targeted Internet systems.
 Intended as an eventual replacement of ns-2.

http://www.nsam.org/

 6

Overview: Why Declarative Networking?

 Compact and high-level representation of protocols.
 Orders of magnitude reduction in code size.

 MANET Protocols
 Proactive: Link State – 8 rules, HSLS – 14

rules, OLSR – 27 rules
 Reactive: DSR – 10 rules
 DTN: Epidemic – 16 rules

 Overlay Networks: Chord DHT – 48 rules
 Rapid prototyping and ease of customization.

 Implementation of verification and correctness checks.

 7

Why ns-3?

 A feature-rich toolkit for networking experiments.
 Open source – collaboration and sharing.
 Easy to get started and work with.
 Emulation capabilities - ns-3 emulator based on raw

sockets.
 Unifies simulation with emulation – Same specifications

are used.
 One less tool to learn - compared to a standalone

system.

 8

Declarative Networking: Background

 A database-inspired approach to define network behavior.

 Nodes are modeled as databases.

 The protocol is specified in terms of database query rules.

 A declarative paradigm

 Specifying “what” to do instead of “how”
 Specification is confined to “what” and implementation of

the “how” is automated.
 Declarative networks perform efficiently compared to

imperative implementations.

 9

Declarative Networking: Background

 RapidMesh uses the Network Datalog (NDlog) language.

 A distributed recursive query language for querying
networks.

 Based on Datalog

 A rule-based language for querying graph structures.
 NDlog rules are compiled into distributed dataflows

 Execution model is similar to the Click modular router.
 A good balance of flexibility, performance and safety.

 10

NDlog Example: All-pairs Reachable

r1 reachable(@S,N) :­ link(@S,N).
r2 reachable(@S,D) :­ link(@S,N), reachable(@N,D).

 Input: link (source, neighbor) table

 Output: reachable (source, destination) table

 r1: Computes all pairs of nodes reachable in one hop.

 r2: If there is a link from S to N and N is reachable from
D, then S can reach D.

 Distributed transitive closure computation.

Rule BodyRule Head

@: Location Specifier link@S and reachable@N
distributed match on N

 11

RapidMesh Development Cycle

Network Protocol
Design

Declarative Network
Protocol &

Invariant SpecificationsSpecification

Design
Feedback

Simulation
Results ns-3

Simulation
ns-3

Emulation

http://www.orbit-lab.org/

RapidMesh
Library

Generated
Code for ns-3

RapidMesh
Compilation

http://www.orbit-lab.org/

 12

Outline

 Motivation
 Overview of RapidMesh
 Background on Declarative Networking
 Rapid Prototyping Example: LS to HSLS
 Evaluation on ORBIT testbed
 Ongoing Work

 13

Rapid Prototyping: Link State (LS)

 Input: link (src, next, cost) table

 Output: lsu (loc, src, dest, cost, from) table

 ls1: Periodically, store links as link state updates (lsu)

 ls2: Broadcast forward the lsu data to neighbors.

ls1 lsu(@*,S,N,C,N) :­ periodic(@S,T), link(@S,N,C).
ls2 lsu(@*,S,N,C,Z) :­ lsu(@Z,S,N,C,W).

Broadcast specifier Built-in periodic trigger

 14

What is Hazy-Sighted Link State (HSLS)?

 A scalable variant of LS

 Suitable for high rate of change of network topology

 Basic idea: Route updates from farther in the network are less
significant.

 Use scoped flooding, i.e. -

 Updates to farther nodes sent less frequently.
 Use of a TTL field to limit the forwarding of updates

 Updates to 2k hop neighbors sent with a period 2k * Tp

 Updates are forwarded if TTL > 0.

 15

Rapid Prototyping: HSLS

 Input: link (src, dest, cost) table

 Output: lsu (loc, src, dest, cost, from) table

 hs1: Updates to 2k hop neighbors sent with a period 2k * Tp.

 hs2: Broadcast forward the lsu data if TTL > 0.

 Ease of customization. (Think OLSR!)

hs1 lsu(@*,S,N,C,N,TTL) :­ periodic(@S,T), link(@S,N,C),
 TTL:=f_pow(2,K), T:=TTL*Tp,
 K:=range[1,5].
hs2 lsu(@*,S,N,C,Z,TTL) :­ lsu(@Z,S,N,C,W), TTL > 0.

 16

Outline

 Motivation
 Overview of RapidMesh
 Background on Declarative Networking
 Rapid Prototyping Example: LS to HSLS
 Evaluation on ORBIT testbed
 Ongoing Work

 17

Evaluation: Strategy

 We evaluate declarative implementations of Link State (LS)
and HSLS.

 Evaluation modes:
 ns-3 simulation

 ns-3 emulation over ORBIT wireless testbed

 Simulation results match emulation results.

 Performance Metrics:
 Per-node communication bandwidth

 Average Route Validity

 Average Route Stretch

 Route Validity: If the links on the computed route exist (0/1).

 Route Stretch: The ratio of the hop counts in the computed
route to that in the optimal route (>= 1).

 18

Evaluation: Emulation Setup

 35 wireless nodes in ORBIT that communicate over
802.11a.

 ns-3 mobility traces of random walk 2-dimensional
model.

 Nodes move at 0.15 m/s in a 550m X 750m arena.

 Application level filtering to accept packets only from
neighbors.

 Random jitter to reduce collision losses.

 19

Evaluation: Emulation Results

 Validity is almost 1 when a
periodic flood occurs and drops
in between.

 Higher average validity for LS
(81%) compared to HSLS
(63%).

 HSLS: Lower communication
overhead at the price of
reduced route quality.

 Lower average bandwidth
consumption HSLS (0.29 kB/s)
compared to LS (0.61 kB/s) due
to scoped flooding.

LS HSLS

Communication Bandwidth

Average Route Validity

 20

Evaluation: Simulation Results

LS HSLS

 Lower average bandwidth
consumption HSLS (0.30 kB/s)
compared to LS (0.53 kB/s) due
to scoped flooding.

 Validity is almost 1 when a
periodic flood occurs and drops
in between.

 Higher average validity for LS
(64%) compared to HSLS
(51%).

 HSLS: Lower communication
overhead at the price of
reduced route quality.

Communication Bandwidth

Average Route Validity

 21

Evaluation Experiences

 Few rounds of simulation – correct specifications.

 Run on the ORBIT sandbox, switch WiFiNetDevice
(wireless simulation) -> EmuNetDevice (emulation).

 Mobility traces: iptable filtering -> application-level filtering.

 Move to the testbed with 35 nodes.

 High collision losses -> Spaced out floods + random jitter.

 Subsequently, simulation to emulation switch was simply
using a different runner script.

 22

Ongoing Work

 Policy-based adaptive MANETs [ICNP '09]
 Policy rules for dynamic switching based on the

prevailing conditions.

 Verifiable networking [HotNets '09]
 Translating rules to theorems for proving using

mechanized theorem provers.

 Dynamic network composition [ACM CoNEXT
'09].

 23

More Information
 Website: http://netdb.cis.upenn.edu/rapidnet/
 Open source code release version 0.1
 RapidMesh demonstration this afternoon.

http://netdb.cis.upenn.edu/rapidnet/

 24

RapidMesh Summary

 Uses declarative networking for compact specification and
rapid prototyping.

 Bridges simulation with test-based experimentation.

 Development:

 Specify protocols in the NDlog language.
 Compile to ns-3 code
 Simulate, emulate, repeat.

 25

Thank You

Questions?

	Title
	Motivation
	Slide 3
	Outline
	Overview1
	Slide 6
	Slide 7
	DN1
	Slide 9
	DN2
	Overview2
	Slide 12
	DS2
	Slide 14
	Slide 15
	Slide 16
	Evaluation1
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

