
Declarative Network Verification

Anduo Wang1

Prithwish Basu2 Boon Thau Loo1 Oleg Sokolsky1

1University of Pennsylvania

2BBN technologies

PADL 09



Motivation
I Challenges to today’s Internet

I Unwanted and harmful traffic
I Complexity and fragility in Internet routing

I Proliferation of “overlay networks”:
I Resiliency (RON, SOSR, Detour...)
I Scalable Lookup (Chord, Pastry, Tapestry,...)
I Mobility (i3, DHARMA, HIP)
I Security (SOS, OverDoSe)
I Content-distribution (Akamai, CoralCDN)
I Multicast (Overcast, ESM)

I Clean-slate Internet Design
I NSF FIND (Future Internet Design)
I GENI (Global Environment for Network Innovation)



Motivation
I Challenges to today’s Internet

I Unwanted and harmful traffic
I Complexity and fragility in Internet routing

I Proliferation of “overlay networks”:
I Resiliency (RON, SOSR, Detour...)
I Scalable Lookup (Chord, Pastry, Tapestry,...)
I Mobility (i3, DHARMA, HIP)
I Security (SOS, OverDoSe)
I Content-distribution (Akamai, CoralCDN)
I Multicast (Overcast, ESM)

I Clean-slate Internet Design
I NSF FIND (Future Internet Design)
I GENI (Global Environment for Network Innovation)



Motivation
I Challenges to today’s Internet

I Unwanted and harmful traffic
I Complexity and fragility in Internet routing

I Proliferation of “overlay networks”:
I Resiliency (RON, SOSR, Detour...)
I Scalable Lookup (Chord, Pastry, Tapestry,...)
I Mobility (i3, DHARMA, HIP)
I Security (SOS, OverDoSe)
I Content-distribution (Akamai, CoralCDN)
I Multicast (Overcast, ESM)

I Clean-slate Internet Design
I NSF FIND (Future Internet Design)
I GENI (Global Environment for Network Innovation)



Motivation
I Challenges to today’s Internet

I Unwanted and harmful traffic
I Complexity and fragility in Internet routing

I Proliferation of “overlay networks”:
I Resiliency (RON, SOSR, Detour...)
I Scalable Lookup (Chord, Pastry, Tapestry,...)
I Mobility (i3, DHARMA, HIP)
I Security (SOS, OverDoSe)
I Content-distribution (Akamai, CoralCDN)
I Multicast (Overcast, ESM)

I Clean-slate Internet Design
I NSF FIND (Future Internet Design)
I GENI (Global Environment for Network Innovation)



Recent Efforts in Practical Network Verification

I Runtime verification
I Pip [NSDI’06]
I DS3 [NSDI’08]

I Static analysis
I Metarouting [SIGCOMM’05]

I Model checking
I MaceMC [NSDI’07] best paper
I CMC [NSDI’04]



Limitations of Current Approaches

I Runtime verification
I Incur additional runtime overhead
I Non-exhaustive, limited class of properties

I Model checking network implementation
I Require model extraction
I State explosion problem:

I Large state space persistent in network protocol
prevents complete exploration

I Restricted to temporal properties on small network

I Classical theorem proving
I High initial investment in formal specification
I Restricted to design and standard
I Theorems are decoupled from actual implementation
I Actual implementation not guaranteed to be error-free

even when theorems are verified correct



Limitations of Current Approaches

I Runtime verification
I Incur additional runtime overhead
I Non-exhaustive, limited class of properties

I Model checking network implementation
I Require model extraction
I State explosion problem:

I Large state space persistent in network protocol
prevents complete exploration

I Restricted to temporal properties on small network

I Classical theorem proving
I High initial investment in formal specification
I Restricted to design and standard
I Theorems are decoupled from actual implementation
I Actual implementation not guaranteed to be error-free

even when theorems are verified correct



Our Approach: DNV (Declarative Network Verification)

bridges network specification, verification and
implementation

1. Specification: Declarative networking code

2. Verification: General-purpose theorem prover
I Automatic axiom generation process

3. Implementation: Distributed query processor



Background on Declarative Networking

See Loo et. al [SOSP ’05, SIGMOD ’06] for implementation
details of declarative networking



Declarative Networking
A declarative framework for networks

I Declarative specifications of networks using Network
Datalog (NDLog), a distributed variant of Datalog

I NDLog is compiled to distributed dataflows

I Distributed query processor executes the dataflows to
implement the network protocols

I Advantages:
I Ease of programming:

I Compact high-level representation of protocols
I Orders of magnitude reduction in code size

I Ease of analysis:
I Amenable to static analysis and theorem proving



Declarative Networking
A declarative framework for networks

I Declarative specifications of networks using Network
Datalog (NDLog), a distributed variant of Datalog

I NDLog is compiled to distributed dataflows

I Distributed query processor executes the dataflows to
implement the network protocols

I Advantages:
I Ease of programming:

I Compact high-level representation of protocols
I Orders of magnitude reduction in code size

I Ease of analysis:
I Amenable to static analysis and theorem proving



Network Datalog (NDlog) by example
All-Pairs Reachability

I

R1:reachable(@S,D)<-link(@S,D)

I

R2:reachable(@S,D)<-link(@S,Z),reachable(@Z,D)

I For all nodes S,D: S can reach D if there is a link
from S to D

I For all nodes S,D,Z: if there is a link from S to Z,
and that Z can reach D, then S can reach D

I input: link(@S,D), output:reachable(@S,D)

I link(@S,D):a link from node S to D, reachable(@S,D):
node S can reach D

I Location specifier: value of attribute prefixed with @

determines the location of each tuple



Network Datalog (NDlog) by example
All-Pairs Reachability

I R1:reachable(@S,D)<-link(@S,D)

I

R2:reachable(@S,D)<-link(@S,Z),reachable(@Z,D)

I For all nodes S,D: S can reach D if there is a link
from S to D

I For all nodes S,D,Z: if there is a link from S to Z,
and that Z can reach D, then S can reach D

I input: link(@S,D), output:reachable(@S,D)

I link(@S,D):a link from node S to D, reachable(@S,D):
node S can reach D

I Location specifier: value of attribute prefixed with @

determines the location of each tuple



Network Datalog (NDlog) by example
All-Pairs Reachability

I

R1:reachable(@S,D)<-link(@S,D)

I R2:reachable(@S,D)<-link(@S,Z),reachable(@Z,D)

I For all nodes S,D: S can reach D if there is a link
from S to D

I For all nodes S,D,Z: if there is a link from S to Z,
and that Z can reach D, then S can reach D

I input: link(@S,D), output:reachable(@S,D)

I link(@S,D):a link from node S to D, reachable(@S,D):
node S can reach D

I Location specifier: value of attribute prefixed with @

determines the location of each tuple



Declarative Networking in Practice

I Example implementations to date:
I Wired and wireless routing protocols (DV, LS, DSR,

AODV, OLSR, etc.) [SIGCOMM ’05, PRESTO ’08]
I Chord Distributed Hash Table [SOSP ’05]
I Resilient overlay network (RON) [CoNEXT ’08]
I Internet Indirection Infrastructure (i3) [CoNEXT ’08]
I Others: sensor networking protocols [Sensys ’07],

multicast overlays, replication, snapshot, fault tolerance

I P2 declarative networking system
I http://p2.cs.berkeley.edu



Automatic axiom generation process in DNV

PVS as our example theorem prover



Path Vector Routing in Network Datalog

p1 path(@S,D,

P

,

C

):- link(@S,D,

C

),

P=(S,D)

.

p2 path(@S,D,

P

,

C

):- link(@S,Z,

C1

),

path(@Z,D,

P2

,

C2

),

C=C1+C2

,

P=concatPath(Z,P2)

.

I Input: link(@source, destination,

cost

)

I Output: path(@source, destination,

pathVector

,

cost

)



Path Vector Routing in Network Datalog

p1 path(@S,D,P,

C

):- link(@S,D,

C

),P=(S,D).

p2 path(@S,D,P,

C

):- link(@S,Z,

C1

),

path(@Z,D,P2,

C2

),

C=C1+C2

, P=concatPath(Z,P2).

I Input: link(@source, destination,

cost

)

I Output: path(@source, destination, pathVector,

cost

)



Path Vector Routing in Network Datalog

p1 path(@S,D,P,C):- link(@S,D,C),P=(S,D).

p2 path(@S,D,P,C):- link(@S,Z,C1),

path(@Z,D,P2,C2), C=C1+C2, P=concatPath(Z,P2).

I Input: link(@source, destination, cost)

I Output: path(@source, destination, pathVector, cost)



From Network Datalog to PVS Formalization

I Proof-theoretic semantics of path-vector routing
I p1: ∀(S , D, P, C ).link(S , D, C ) ∧ P = finit(S , D) =⇒

path(S , D, P, C )
I p2: ∀(S , D, P, C ).∃(C1, C2, Z , P2).link(S , Z , C1) ∧

bestPath(Z , D, P2, C2) ∧ C = C1 + C2 ∧ P =
fconcatPath(Z , P2) =⇒ path(S , D, P, C )

I PVS equivalent formalization

path(S,D,(P: Path),C): INDUCTIVE bool =
(link(S,D,C) AND P=f_init(S,D) AND Z=D) OR
(EXISTS (C1,C2:Metric) (Z2:Node) (P2:Path):
link(S,Z,C1) AND path(Z,D,P2,C2) AND C=C1+C2
AND P=f_concatPath(S,P2) AND f_inPath(S,P2)=FALSE)



Verification using PVS



Example Verification using PVS

I Route optimality property: does path vector routing
computes shortest paths between all nodes?

FORALL (S,D:Node) (C:Metric) (P:Path):
bestPath(S,D,P,C) => NOT (EXISTS (C2:Metric)

(P2:Path): path(S,D,P2,C2) AND C2<C)

I PVS proof scripts

("" (skosimp*) (expand bestPath) (prop)
(expand bestPathCost) (prop) (skosimp*)
(inst -2 C2!1) (grind))

I See extended technical report for general techniques:
http://repository.upenn.edu/cis reports/890/



Handling soft-state in networks

I Soft-state: network state expires after Time-To-Live
(TTL) unless refreshed

I Ensures eventual consistency in protocol in the presence
of message reordering and/or losses

I Additional rewrite step required for rules that uses
soft-state predicates. See paper for details



Distance Vector Routing Protocol

I Distance vector routing:
I NDLog specifications similar to path-vector routing

except only next hop (instead of entire path) is traversed

I An instance of a soft-state NDLog program
I Nodes periodically advertise to their neighbors their best

known distances to other destinations
I Nodes use these advertisements to select the best

neighbor along the shortest path to destination
I Advertisements timed-out unless refreshed



Example Properties Verified by DNV
Distance Vector Protocol with Soft-State

I Eventual convergence in stable network

bestHopCost_converge: THEOREM
EXISTS (j:posnat): FORALL
(S,D:Node)(C:Metric)(i:posnat):

(i>j) => bestHopCost(S,D,C,5*i,10)
= bestHopCost(S,D,C,5*j,10)

I Divergence (count-to-infinity problem) in dynamic network

I A well known solution: split-horizon can avoid
count-to-infinity in two-node cycle, but cannot prevent the
problem in three-node cycle



Conclusion

I DNV: a unified framework that combines specification,
verification, and implementation

I Uses declarative networking with automatic axiom
generation for theorem prover

I Ongoing and future work
I More verification use cases

I Variety of routing protocols (DSR, AODV, LS, etc.)
I Policy-based Inter-domain routing

I Integrating model checking into DNV
I Semi-automatic model extraction from declarative

network specification
I Convergence and network invariants in temporal logic

I Semi-automating the interactive proof process
I Remove the theorem proving expert
I Domain-specific proof strategies



Thank you
http://www.seas.upenn.edu/ anduo/dnv.html


	Motivation
	Background: Declarative Networking
	DNV by example
	Conclusion

