
SP4: Scalable Programmable Packet Processing Platform

Harjot Gill
University of Pennsylvania

Philadelphia, USA

Dong Lin
University of Pennsylvania

Philadelphia, USA

Lohit Sarna
University of Pennsylvania

Philadelphia, USA

Robert Mead
University of Pennsylvania

Philadelphia, USA

Kenton C.T. Lee
University of Pennsylvania

Philadelphia, USA

Boon Thau Loo
University of Pennsylvania

Philadelphia, USA

ABSTRACT
We propose the demonstration of SP4, a software-based programm-
able packet processing platform that supports (1) stateful packet
processing useful for analyzing traffic flows with session semantics,
(2) uses a task-stealing architecture that automatically leverages
multi-core processing capabilities in a load-balanced manner with-
out the need for explicit performance profiling, and (3) a declarative
language for rapidly specifying and composing new packet pro-
cessing functionalities from reusable modules. Our demonstration
showcases the use of SP4 for performing high-throughput analy-
sis of traffic traces for a variety of applications, such as filtering
out unwanted traffic and detection of DDoS attacks using machine
learning based analysis.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design

Keywords
Packet analysis, multicore, declarative networking

1. INTRODUCTION
As network applications become increasingly complex and het-

erogeneous, there is an increasing need for extensibility at the data
plane, in order to carry out sophisticated functionalities such as traf-
fic flow management, filtering out unwanted traffic, and content-
based networking. Emerging software-defined networking plat-
forms such as OpenFlow [6] provides extensibility by enabling
packet processing at the software level. However, enabling such
functionality in software requires significantly high bandwidth and
compute capacity from servers.

One promising direction proposed recently is the use of multi-
core machines to enable high-performance programmable software
routers [3, 11], that can scale as the number of cores/machines in-
creases. However, existing solutions either lack programming tools
to rapidly customize different data plane functionalities, require ex-
plicit performance profiling to allocate cores to processing func-
tionalities, or are not capable of performing complex operations
beyond stateless per-packet processing, such as basic IP routing
and packet encryption. To address these limitations, we present
SP4 (stands for Scalable Programmable Packet Processing Plat-
form), a software-based router platform that aims to provide data

Copyright is held by the author/owner(s).
SIGCOMM’12, August 13–17, 2012, Helsinki, Finland.
ACM 978-1-4503-1419-0/12/08.

plane customizability and rapid deployment at high throughput and
low latency.

We have developed a prototype of SP4 based on Rapidnet declar-
ative networking engine [8], enhanced with task-stealing model of
parallelism, and uses component-based dataflow architecture that
allows for rapid assembly of packet processing functionalities. SP4
uses SP4LOG, a declarative language inspired by declarative net-
working [5] for constructing dataflows by composing existing data
processing components. SP4LOG increases customizability throu-
gh the use of high-level programming abstractions for composition.
For example, our SMTP, VoIP and DDoS dataflows can be specified
in only 7, 10 and 5 rules respectively.

SP4 integrates a threading library based on the task-stealing mod-
el [9], that enables us to enable fine-grained parallelism at the level
of individual components in the dataflow, hence achieving both au-
tomatic load-balancing and high throughput processing. As op-
posed to naïve per-packet parallelism [3] which is only suitable for
stateless workload (e.g. packet-routing, IPSec etc.), SP4 can pro-
cess stateful multi-packet protocols (e.g. SIP) with high degree of
parallelism. To ensure correct packet ordering in the presence of
parallel processing, SP4 allows packets to be ordered based on its
specified context attribute, defined in terms of application-specific
semantics (e.g., a SIP session).

2. SYSTEM OVERVIEW
We provide an overview of SP4 by describing its dataflow pipeli-

ne. Refer to [4] for more details on SP4LOG.
SP4 uses a component-based dataflow architecture [7] that al-

lows for rapid assembly of packet processing functionalities from
reusable components into dataflow pipelines. These component
modules are typically wrappers over existing code, that perform
functionalities for various operations such as aggregating traffic
statistics, or performing deep-packet inspections into specific ap-
plication traffic.

The dataflow pipeline consists of several components connected
in a linear chain, which are directly compiled from SP4LOG pro-
grams. Figure 1 shows an example dataflow pipeline that illustrates
the execution model of SP4. SP4 supports three types of reusable
components (e.g. elements), whose types are specified when the
dataflow is constructed:

• Serial. Packets are processed in strict FIFO order. This is done
for operations where total order is essential. In our example,
Packet Capture is a serial component.

• Parallel. Incoming packets to a parallel component can be pro-
cessed by several concurrent threads in a manner where order-
ing does not matter. For instance, once SMTP messages are as-
sembled, regular expression matches on individual email mes-

75



Input 
Packets 

Packet	  
Capture	  

IP	  
Assembler	  

TCP	  
Assembler	  
(FlowID)	  

Protocol	  
Detector	  
(FlowID)	  

SMTP	  
Processor	  
(FlowID)	  

Regex	  
Matcher	  

Result 

Task	  Queues	   Task	  Stealing	  Threads	  

Figure 1: SP4 Dataflow pipeline example based on SMTP analysis. Parallel components have double lines, and context-ordered
elements additionally have their context-keys shown in (...).

sages can be parallelized and processed in arbitrary order. IP
Assembler and Regex Match are parallel components.

• Parallel context-ordered. These components are processed in
partial order. A context-key is specified, in which all packets with
the same key should be processed in order of their arrival into the
system. But the ordering of packets with different keys is not re-
quired. For instance, TCP Assembler have to assemble message
in a partial order (based on TCP flows). Protocol Detector
and SMTP Processor are also context-ordered components.

3. DEMONSTRATION PLAN
Our demonstration will showcase dataflow parallelization tech-

niques used in SP4 to support automatic load-balancing and fine-
grained parallelism, and present concrete use-cases of the system
for high-throughput analysis of network traces. Our demonstration
consists of the following use cases:
SMTP analysis. As our first use-case, we will demonstrate a naive
regex based data-leak detection system that monitors SMTP traffic.
The dataflow is shown in Figure 1. The setup consists of SMTP
protocol based email traffic generator, a network tap and a SP4
node. To emulate real network traffic, we will use an email gener-
ator written in JavaMail API that sends emails with preconfigured
content to a mail server. A SP4 node deployed on a linux machine
will execute a dataflow for analyzing the SMTP traffic. Specif-
ically, this dataflow will assemble TCP flows, detect SMTP pro-
tocol, assemble SMTP messages and red-flag if message matches
customizable regex based rules.
VoIP call interception. As our second use-case, we will demon-
strate VoIP traffic capture of a live SIP call. Our experimental setup
consists of SIP clients (running on Android smartphones), a net-
work tap and a SP4 node. To emulate real network traffic load,
we will use SIPp traffic generator tool[10] in addition to real SIP
clients. The workflow will monitor and track all active SIP ses-
sions based on preconfigured interception rules. The RTP stream
interceptor component will decode and dump the RTP stream to
local disk if the corresponding SIP session is matched by the SIP
transaction processor component. Finally the dumped stream will
be available for playback as sound media, post session termination.
SP4 will maintain call-states while dynamically load-balancing the
processing across threads.
DDoS attack detection. Our third use-case evaluates the perfor-
mance and reliability of SP4 in detecting Distributed Denial of
Service Attack (DDoS) patterns by using computationally inten-
sive Support Vector Machine algorithm (SVM), a popular general-
purpose algorithm used for machine learning. The dataflow in-
cludes two additional components for feature extraction and SVM
classification. Our experimental setup consists of a DDoS traffic
generator and a SP4 node. The SVM Classification module is

implemented using libsvm [1], and is trained outside of SP4 on
DARPA intrusion detection dataset [2] and PREDICT dataset. In
our demonstration, SP4 node will tap network traffic generated by
a DDoS trace-driven traffic generator, extract and update features
that are significant for machine learning for each active connection,
and red-flag potential DDoS incidents if the set of feature value is
classified as positive by SVM classification component.

In all use cases, we will demonstrate the speedup and through-
put obtained by SP4 by running the system on multiple quad-core
laptops deployed at the conference venue. If network connectivity
allows, we will also connect to powerful desktop machines at Penn
with multiple cores (and hyperthreading enabled) to demonstrate
throughput and speedup capabilities of SP4.
Acknowledgements. This project is supported in part by NSF
grants CCF-0820208, IIS-0812270, CNS-0845552, and CNS-1040-
672, and the DARPA SAFER award N66001-C-4020.

4. REFERENCES
[1] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support

vector machines. ACM Transactions on Intelligent Systems
and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[2] DARPA Intrusion Detection Data Sets.
https://www.predict.org/.

[3] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, et al.
Routebricks: Exploiting parallelism to scale software
routers. In SOSP, Oct 2009.

[4] H. Gill, D. Lin, T. Kothari, and B. T. Loo. Declarative
multicore programming of software-based stateful packet
processing. In Declarative Aspects and Applications of
Multicore Programming.
netdb.cis.upenn.edu/papers/sp4_damp12.pdf.

[5] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and
I. Stoica. Declarative Networking. CACM, 2009.

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, and J. Rexford. Openflow: Enabling innovation
in campus networks. In ACM SIGCOMM, April 2008.

[7] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The
click modular router. In ACM Transactions on Computer
Systems, Aug 2000.

[8] RapidNet: A Declarative Toolkit for Rapid Network
Simulation and Experimentation.
http://netdb.cis.upenn.edu/rapidnet/.

[9] J. Reinders. Intel thread building blocks. In OâĂŹReilly
Associates, 2007.

[10] SIPp Open Source test tool / traffic generator for the SIP
protocol. http://sipp.sourceforge.net/.

[11] T. Wolf, N. Weng, and C.-H. Tai. Runtime support for
multicore packet processing systems. Network, IEEE,
21(4):29 –37, July-August 2007.

76

http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.predict.org/
netdb.cis.upenn.edu/papers/sp4_damp12.pdf
http://netdb.cis.upenn.edu/rapidnet/
http://sipp.sourceforge.net/

	Introduction
	System Overview
	Demonstration Plan
	References



