Provenance-aware Secure Networks

Wenchao Zhou Eric Cronin Boon Thau Loo

University of Pennsylvania

Motivation

Network accountability

- □ Real-time monitoring and anomaly detection
- □ Identifying and tracing malicious attackers
- Enforcing trust management policies
- □ Problem: Narrowly target specific security challenge/application

Provenance (or *lineage*)

- Data provenance: explain why a tuple is in a database.
- □ Well-studied query languages and systems in database community.
- □ *Network provenance*: explain why network state/event exists.

Insight: network accountability = distributed network provenance

Key Contributions

- Connecting provenance computation to network accountability
 - □ Usage scenarios for network accountability
 - □ Taxonomy of data provenance, relation to use scenarios
- Unified platform for provenance-aware secure networks
 - Declarative networks [SIGMOD '06] for protocol specification and implementation
 - Extensions for security policies [NetDB '07]
 - Distributed query-processing techniques for run-time provenance computation
- Techniques to optimize network provenance computation
 - Proactive vs. reactive fashion
 - □ Sampling, provenance granularity

- Motivation
- Network Accountability in Practice
 - □ Real-time Diagnostics
 - Forensics
 - Trust Management
- Background: Declarative Networks & Provenance
- Taxonomy of Network Provenance
- Optimizations
- Preliminary Evaluation
- Conclusion & Future Work

Network Accountability in Practice

Real-time Diagnostics

- Monitor networks and detect anomaly in network states
 - Distributed DoS, loss of convergence
 - Implementation bugs, malicious routers, router misconfigurations
- □ Language/system support for debugging in distributed systems:
 - *PIP* [NSDI '06], *FRIDAY* [NSDI '07]

Forensics

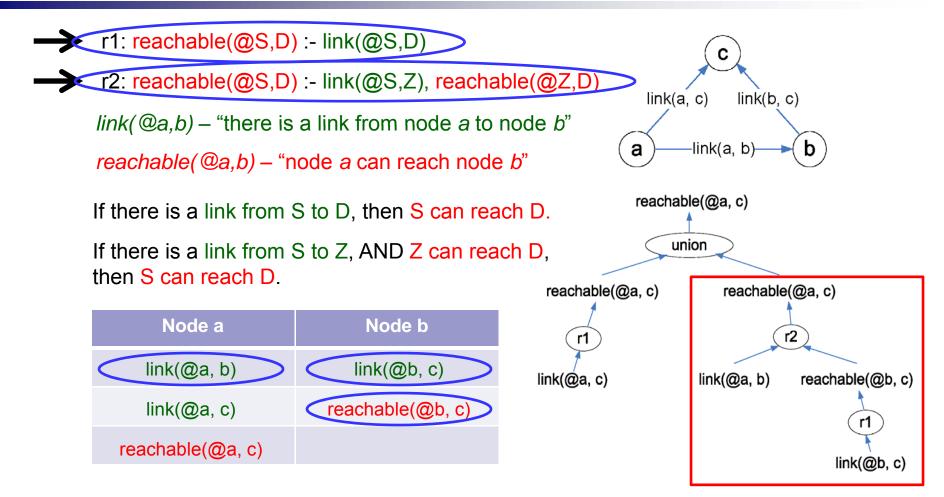
- Historical data is required to correlate traffic patterns and prevent attacks
- □ IP Traceback [SIGCOMM '00], TimeMachine [IMC '05], IP Forensics [ICNP '06]
 - Store the complete path in the packet
 - Maintain state at each router, perform subsequent traceback by a distributed query

Network Accountability in Practice

- Trust Management
 - □ Enforce trust policies based on *origins* and *intermediaries* ("chain of custody")
 - □ Real-world examples:
 - Path-vector protocols used in BGP carry the entire path during route advertisement
 - P2P data-sharing networks
 - □ Further explore *quantifiable* notion of trust:
 - Vote-based protocols (e.g. SPKI/SDSI, logic-based D1LP)
 - Granting an update only if over K principals assert it

- Motivation
- Network Accountability in Practice
- Declarative Networks & Provenance
- Taxonomy of Network Provenance
- Optimizations
- Preliminary Evaluation
- Conclusion & Future Work

Declarative Networking

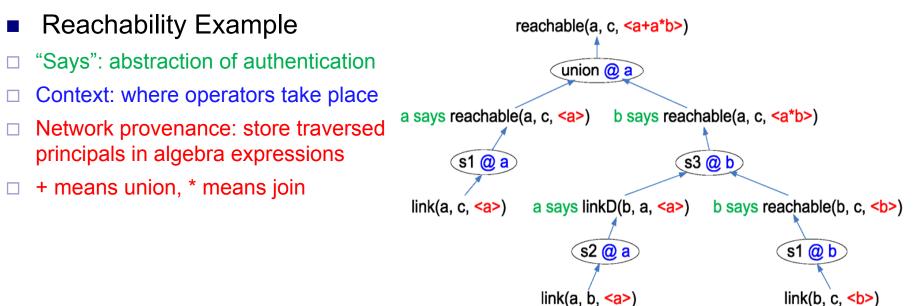

Declarative framework for networks:

- Network Datalog (NDLog) language as the specification
- Declarative specifications of networks, compiled to distributed dataflows
- Distributed query engine to execute dataflows to implement protocols

Datalog syntax

- cresult> :- <condition1>, <condition2>, ..., <conditionN>.
- □ Types of conditions in body
 - Input tables: link(src,dst) predicate
 - Arithmetic and list operations
- □ Head is an output table stored locally.

NDLog Example: Reachability



Wenchao Zhou et.al - NetDB '08

Secure Network Datalog (SeNDLog)

Secure Network Datalog

- Combine NDLog and logic-based access control languages.
- Unified declarative language for specifying networks and security policies.
- □ "Says": abstraction of detailed authentication (e.g. certificate)

Wenchao Zhou et.al - NetDB '08

- Motivation
- Network Accountability in Practice
- Declarative Networks & Provenance
- Taxonomy of Data Provenance & Usage Scenarios
 - □ Local vs. Distributed Provenance
 - □ Condensed Provenance
- Optimizations
- Preliminary Evaluation
- Conclusion & Future Work

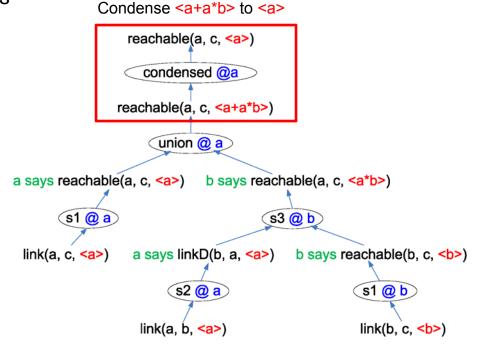
Taxonomy of Provenance

Provenance Taxonomy	Real-time Diagnostics	Forensics	Trust Management
Local / Distributed	\checkmark	\checkmark	$\sqrt{(Local)}$
Online / Offline	$\sqrt{(Online)}$	$\sqrt{(\text{Offline})}$	$\sqrt{(Online)}$
Authenticated	\checkmark	\checkmark	\checkmark
Condensed		\checkmark	\checkmark
Quantifiable	\checkmark		\checkmark

Local vs. Distributed Provenance

Local provenance

- □ The entire provenance is stored with each tuple.
- □ E.g. node a scores the entire derivation tree for reachable(@a, c)


Distributed provenance

- □ Pointers to the direct derivations are stored.
- \Box E.g. maintain pointers to link(@a, b) and reachable(@b, c) for reachable(@a, c).
- Tradeoffs between local and distributed provenance
 - □ Local provenance: provenance querying is cheap as they are available locally
 - Distributed provenance: no extra communication overhead

Condensed Provenance

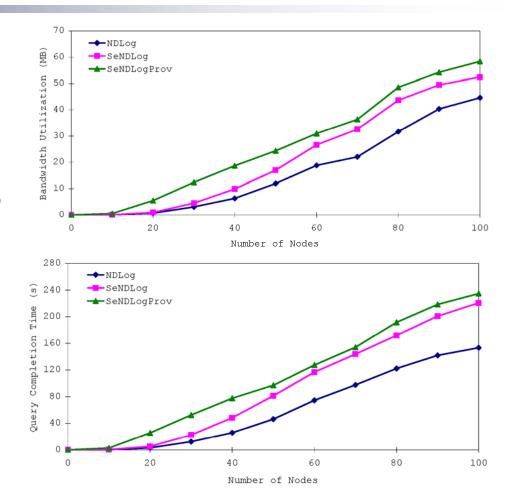
Condense the size of local provenance

- Provenance semirings annotates provenance in Boolean expressions
- □ Encode in *Binary Decision Diagrams*
- Condensed + Authenticated:
 - Retain sufficient information for trust management.
 - □ If a is trusted: derivable from a single principal a; accept.
 - □ If a is untrusted: derivations all depend on principal a; reject.
 - □ Principal b is inconsequential

Other Optimizations

Proactive vs. Reactive Provenance

- Proactive mode: all provenance are eagerly propagated throughout the network
- □ Reactive mode: provenance are triggered only by specified network events


Sampling

- □ Record only a portion of the provenance
- □ E.g. *IP Traceback* records messages 1/20,000th of the time
- Provenance Granularity
 - Aggregate and maintain provenance at different granularities
 - □ A balancing choice between accuracy and performance

- Motivation
- Declarative Networks & Provenance
- Network Provenance in Practice
- Taxonomy of Network Provenance
- Optimizations
- Preliminary Evaluation
- Conclusion & Future Work

Preliminary Evaluation

- P2 declarative networking system with security extensions and provenance support
- On a quad-core machine, running multiple P2 nodes on different ports
- Path-vector query as the workload to compute shortest paths between all pairs of nodes.
- Measure CPU and bandwidth overhead, affordable for provenance and authentication computations.

Wenchao Zhou et.al - NetDB '08

Conclusion & Future Work

Conclusion

- □ Connection between provenance computation to network accountability
- □ Unified declarative networks with security and provenance extensions
- □ Optimizations and preliminary feasibility evaluation.

Future work

- □ Validate our system with a variety of secure networks (e.g. secure Chord)
- □ Explore other practical aspects of our system
 - Query optimizations
 - Security vs. performance balancing
- □ Extensible security typing systems, evidence-based auditing
- □ Incorporate probabilistic database to the quantifiable notion of trust

Thank You ...