
1

Declarative Policy-based Adaptive Mobile
Ad Hoc Networking

Changbin Liu∗ Ricardo Correa∗ Xiaozhou Li∗ Prithwish Basu† Boon Thau Loo∗ Yun Mao‡
∗University of Pennsylvania †Raytheon BBN Technologies ‡AT&T Labs - Research

{changbl, ricm, xiaozhou, boonloo}@seas.upenn.edu, pbasu@bbn.com, maoy@research.att.com

Abstract—This paper presents DAWN, a declarative platform
that creates highly adaptive policy-based MANET protocols.
DAWN leverages declarative networking techniques to achieve
extensible routing and forwarding using declarative languages.
We make the following contributions. First, we demonstrate that
traditional MANET protocols can be expressed in a concise
fashion as declarative networks and policy-driven adaptation
can be specified in the same language to dictate the dynamic
selection of different protocols based on various network and
traffic conditions. Second, we propose inter-protocol forwarding
techniques that ensure packets are able to seamlessly traverse
across clusters of nodes running different protocols selected based
on their respective policies. Third, we have developed a full-
fledged implementation of DAWN using the RapidNet declarative
networking system. We experimentally validate a variety of
policy-based adaptive MANETs in various dynamic settings using
a combination of ns-3 simulations and deployment on the ORBIT
testbed. Our experimental results demonstrate that hybrid pro-
tocols developed using DAWN outperform traditional MANET
routing protocols, and are able to flexibly and dynamically adapt
their routing mechanisms to achieve a good tradeoff between
bandwidth utilization and route quality. We further demonstrate
DAWN’s capabilities to achieve inter-protocol forwarding across
different protocols.

I. INTRODUCTION

In the past decade, there has been intense activity on the
development of routing protocols for mobile ad hoc networks
(MANETs). A wide variety of routing protocols have been
proposed, all with their own strengths and weaknesses, and all
with varying degrees of success. For example, reactive routing
protocols such as DSR [13] and AODV [25] set up routing
state on demand and hence are preferred for low traffic envi-
ronments; proactive routing protocols such as OLSR [9] and
HSLS [30], on the other hand, expend network bandwidth to
gather network topology state with the purpose of amortizing
this extra cost over multiple traffic flows – hence these are in
general better for environments with greater traffic loads and
more number of source-destination pairs. Recently researchers
have focused on routing in MANETs that are at best intermit-
tently connected (a class of disruption tolerant networks or
DTNs) – examples are epidemic routing protocols [33], [28]
and probabilistic/predictive routing protocols [15].

Due to a wide range of variability in network connectivity
and mobility, and also a wide range of data traffic patterns,
we argue that a one-size-fits-all MANET routing algorithm
does not exist. Hybrid routing protocols attempt to address
the above problem by combining features from various pure
protocols, such as those of proactive or reactive types. While
extant protocols in the hybrid category (e.g. [11], [29], [26],
[12], [36], [24]) have systematic logic behind their design, they
are not very flexible and customizable as they are specified

in a stove-piped fashion. As a result, the no-one-size-fits-all
argument applies to these hybrid protocols as well. In reality,
these protocols perform well only under certain conditions,
and require additional heuristics to achieve good performance
in scenarios where they are not designed for.

To address the above challenges, we present Declara-
tive Adaptive Wireless Networking (DAWN), a platform that
creates highly customizable hybrid protocols by composing
any number of known protocols, and utilizes a declarative
policy-based framework to define the rules and conditions for
switching among different protocols. DAWN achieves these
capabilities as follows. First, known protocols such as the ones
in the ”link-state” and ”epidemic” families are specified in a
database query-style declarative language. Second, rule-based
adaptation policies dictating when to use which protocols and
under what conditions are specified in the same language. Fi-
nally, the runtime system automatically compiles the protocols
and policies into actual implementations.

DAWN has the following benefits: (1) hybrid protocols writ-
ten in a declarative language are highly customizable, because
protocols and policies are both specified in the same high-level
language as first class concerns, suggesting opportunities for
making finer-grained customizations on runtime adaptation;
(2) DAWN enables quick prototyping and analysis of complex
hybrid protocols in realistic environments in addition to net-
work simulators. The protocol specifications are usually orders
of magnitude smaller in size than the corresponding imperative
implementations in languages like C/C++. Furthermore, shared
protocol components can be reused and composed to create
new hybrid protocols. Specifically, our contributions include:

Policy-based adaptive MANET routing: DAWN provides
a unified platform based on declarative networking [6], [19]
that enables one to implement a variety of MANET routing
protocols (proactive, reactive, and DTN) concisely in a few
lines of code. Moreover, policy-based decisions for creating
hybrid protocols can be expressed in the same declarative
language, and used to switch between different protocols as
the network conditions (e.g., connectivity, mobility and traffic
volume and patterns) change over time.

Policy-based inter-protocol forwarding: DAWN’s hybrid ap-
proach results in different protocols being executed at different
nodes in the network. For instance, some disconnected nodes
in the network may utilize DTN routing, while other better
connected nodes are running reactive or proactive protocols.
We propose inter-protocol forwarding techniques that ensure
packets are able to seamlessly traverse across clusters of nodes
running different protocols. Interestingly, these forwarding



2

policies can themselves be customized using additional for-
warding policy rules, and applied to packets as they traverse
through different protocols.
Experimental evaluation: We have developed a full-fledged
implementation of DAWN using the RapidNet declarative
networking system [4]. We experimentally validate a variety
of policy-based adaptive MANET routing protocols in various
dynamic settings. Using a combination of ns-3 [1] simulations
and deployment on the ORBIT [2] testbed, we evaluate these
protocols under varying mobility, connectivity, and traffic
patterns, and demonstrate that they can outperform traditional
MANET routing protocols – in particular, they are able to
flexibly and dynamically adapt their routing mechanisms to
achieve a good tradeoff between bandwidth utilization and
route quality. We further demonstrate DAWN’s capabilities to
forward packets in a network consisting of clusters of nodes
running proactive, reactive and DTN routing protocols.

To the best of our knowledge, our work is one of the first
attempts at evaluating a wide range of MANET protocols
in combination on an actual wireless testbed. In addition to
contributions on policy-based adaptive MANET routing, our
work also demonstrates that declarative networking techniques
can be used effectively to rapidly prototype, deploy, and com-
pare a variety of MANET protocols. Moreover, the proposed
declarative framework facilitates the ability to rapidly explore
a wide range of deployment and implementation parameters
necessary for tuning the performance of MANET protocols.

II. OVERVIEW

Control Plane Data Plane

Forwarding EngineRouting Engine

Proactive
(LS, OLSR, HSLS)

Network Status Monitor

Mobility ConnectivityTraffic

Reactive
(DSR, AODV)

DTN
(Epidemic)

…

Adaptive Routing Policies
Adaptive Forwarding 

Policies

Dst NextHop

Forwarding Table

Fig. 1. Components of a DAWN node.

Figure 1 shows an overview of DAWN from the perspective
of a single DAWN node’s network layer, divided into control
plane (left) and data plane (right). DAWN is a declarative
platform for network designers to: (1) develop new MANET
protocols; (2) customize policies for adaptive routing and
forwarding; and (3) evaluate prototypes in simulation and im-
plementation modes. DAWN is deployed in a fully distributed
fashion. Each node runs a DAWN instance, and communicates
with other nodes by executing the input declarative protocols
and policies (shown as bold boxes in the figure).

A. DAWN Components

In the routing engine component, a variety of routing
protocols, ranging from proactive (e.g. Link-State, OLSR,
HSLS [30]), reactive (e.g. DSR, AODV [25]) and DTN (e.g.
epidemic routing) are implemented as declarative protocols.

Policy-based routing adaptation is dictated by adaptive
routing policies via a series of adaptation policy rules [16]
specified in the same declarative language as routing protocols.
These adaptive routing policies are usually composed by net-
work designers according to application demands and network
scenarios, and are highly customizable. Example adaptation
policies include switching between Link-State (LS) and HSLS
due to network mobility for the tradeoff between route quality
and communication overhead, or between epidemic routing
when the network is highly disconnected and proactive routing
when connectivity is reestablished.

As input to these policy rules, a network status monitor is
deployed to continuously monitor network status (e.g. network
mobility, traffic and connectivity information). The monitoring
queries themselves are also specified as declarative rules.

Depending on the type of protocol, the output of executing
these declarative protocols is typically forwarding tables in the
data plane for use in determining the next hop to forward a
packet given a destination, or in the case of source routing
protocols, the entire path required to traverse from the current
node to the destination. A forwarding engine within data
plane interacts with routing engine for forwarding data traffic.
Interestingly, these forwarding policies can themselves be
customized using additional forwarding rules, and applied to
packets as they traverse through different protocols.

B. Background

Given our planned use of declarative networking as a frame-
work for policy-based MANETs and associated adaptation
policies, we begin with a brief overview of its capabilities and
prior use cases. The high level goal of declarative networks is
to build extensible architectures that achieve a good balance
of flexibility, performance and safety. Declarative networks
are specified using Network Datalog (NDlog), which is a
distributed recursive query language for querying networks.

NDlog enables a variety of routing protocols and overlay
networks to be specified in a natural and concise manner.
For example, traditional routing protocols such as the path
vector and distance-vector protocols can be expressed in a
few lines of code [6], and the Chord distributed hash table
in 47 lines of code [19]. When compiled and executed, these
declarative protocols perform efficiently relative to imperative
implementations. As evidence of its widespread applicability,
declarative techniques have been used in several domains,
including, fault tolerance protocols [31], cloud computing [5],
sensor networks [8], overlay network compositions [20], wire-
less channel selection [17], and as a basis for course projects
in a networked systems class [10].

In addition to ease of implementation, another advantage
of the declarative networking approach is its amenability to
formal and structured forms of correctness checks. These
include the use of theorem proving [34], algebraic techniques
for constructing safe routing protocols [35], and runtime verifi-
cation [38]. These formal analysis techniques are strengthened
by recent work on formally proving correct operational seman-
tics of NDlog [23]. Finally, the dataflow framework used in
declarative networking naturally captures information flow as
distributed queries, hence providing a natural way to use the



3

concept of network provenance [37] to analyze and explain
the existence of any network state.

NDlog is based on Datalog [27]: a Datalog program consists
of a set of declarative rules. Each rule has the form p :-

q1, q2, ..., qn., which can be read informally as “q1 and
q2 and ... and qn implies p”. Here, p is the head of the
rule, and q1, q2,...,qn is a list of literals that constitutes the
body of the rule. Literals are either predicates with attributes
(which are bound to variables or constants by the query), or
boolean expressions that involve function symbols (including
arithmetic) applied to attributes.

Datalog rules can refer to one another in a mutually recur-
sive fashion. The order in which the rules are presented in a
program is semantically immaterial; likewise, the order predi-
cates appear in a rule is not semantically meaningful. Commas
are interpreted as logical conjunctions (AND). Conventionally,
the names of predicates, function symbols, and constants begin
with a lowercase letter, while variable names begin with an
uppercase letter. Function calls are additionally prepended by
f_. Aggregate constructs are represented as functions with
attribute variables within angle brackets (<>). We illustrate
NDlog using a simple example of two rules that computes all
pairs of reachable nodes in a network:
r1 reachable(@S,N) :- link(@S,N).
r2 reachable(@S,D) :- link(@S,N), reachable(@N,D).

The rules r1 and r2 specify a distributed transitive closure
computation, where rule r1 computes all pairs of nodes
reachable within a single hop from all input links (denoted
by the link, and rule r2 expresses that “if there is a link
from S to N, and N can reach D, then S can reach D.”
The output of interest is the set of all reachable(@S,D)

tuples, representing reachable pairs of nodes from S to D.
By modifying this simple example, we can construct more
complex routing protocols, such as the distance vector and
path vector routing protocols.

NDlog supports a location specifier in each predicate,
expressed with the @ symbol followed by an attribute. This
attribute is used to denote the source location of each corre-
sponding tuple. For example, all reachable and link tuples
are stored based on the @S address field. To support wireless
broadcast, we have introduced a broadcast location specifier
denoted by @* which will broadcast a tuple to all nodes within
wireless range of the node where the rule is executed.

In DAWN, each node runs its own set of NDlog rules.
Typically, these rules are common across all nodes (e.g. all
nodes run the same protocol), but may further include per-
node policy customizations. NDlog rules are compiled and
executed as distributed dataflows by the query processor to
implement various network protocols. These dataflows share
a similar execution model with the Click modular router [14],
which consists of elements that are connected together to
implement a variety of network and flow control components.
In addition, elements include database operators (such as joins,
aggregation, and selections) that are directly generated from
the NDlog rules. Messages flow among dataflows executed at
different nodes, resulting in updates to local tables, or query
results that are returned to the mobile hosts that issued the
queries. The local tables store the network state of various

network protocols.
Predicates refer to tables which themselves are declared as

soft-state with lifetimes. Event predicates (whose names start
with an additional “e”) are used to denote transient tables
which are used as input to rules but not stored. For example,
utilizing the built-in periodic keyword , node X periodically
generates a ePing event every 10 seconds to its neighbor Y
denoted in the link(@X,Y) predicate:
ePing(@Y,X) :- periodic(@X,10), link(@X,Y).

III. DECLARATIVE MANET ROUTING

In this section, we demonstrate how a variety of MANET
routing protocols can be expressed concisely using the declar-
ative networking framework. We present typical protocols of
each category in proactive, reactive and DTN-style MANET
routing. This section sets the stage for Section IV where we
discuss policies for routing adaptation.

A. Proactive Protocols

A well studied proactive protocol is the Link-State (LS)
protocol, in which the entire topology is disseminated to all
nodes in the network. We show first an example for network-
wide flooding of link-state updates (LSU) in traditional LS,
followed by two variants of LS commonly used in MANET
settings. Traditional dissemination of LSU is expressed by the
following NDlog rules:
ls1 lsu(@S,S,N,C,S) :- link(@S,N,C).
ls2 lsu(@M,S,N,C,Z) :- link(@Z,M,C1),

lsu(@Z,S,N,C,W), M!=W.

lsu(@M,S,N,C,Z) is a link-state update corresponding to
link(S,N,C), which indicates a link between node S and
N with a cost of C. This LSU tuple is flooded in the network
starting from source node S. During the flooding process, node
M is the current node it is flooded to, while node Z is the node
that forwarded this tuple to node M.

Rule ls1 generates an lsu tuple for every link at each
node. Rule ls2 states that each node Z that receives an lsu

tuple recursively forwards the tuple to all neighbors M except
the node W that it received the tuple from. Datalog tables are
set-valued, meaning that duplicate tuples are not considered
for computation twice. This ensures that no similar lsu tuple
is forwarded twice.

The above LS rules perform triggered updates continuously:
whenever a link is added or deleted, a corresponding lsu

is inserted or deleted locally, and then flooded to the entire
network. As an alternative, one may prefer to implement link-
state via periodic updates by modifying rule ls1 as follows:
ls1p lsu(@S,S,N,C,S) :- periodic(@S,10), link(@S,N,C).

In rule ls1p we utilize the periodic keyword to flood
LSUs once in every 10 seconds. In order to ensure freshness of
lsu tuples, they are stored using soft-state, where the lifetimes
are set to be roughly the duration of periodic floods. In
practice, a combination of triggered updates for timeliness and
periodic updates for robustness are used. DAWN declarative
platform enables both approaches naturally via modifications
to a single rule, demonstrating the power of declarative pro-
gramming. In addition, batched triggered updates in which



4

updates are batched and propagated at fixed intervals can also
be concisely expressed within DAWN.

Our example above utilizes unicast communication, where
each link tuple results in an lsu tuple being sent via unicast
to each neighbor. Using the broadcast location specifier @*
described in Section II-B, the following rules broadcast link
information to all neighbors within the wireless range:
ls1b lsu(@*,S,N,C,S) :- link(@S,N,C).
ls2b lsu(@*,S,N,C,Z) :- lsu(@Z,S,N,C,W).

Once the entire network topology, i.e., all the links, are
available at each node, additional rules are required in order
to compute the shortest paths with minimum cost C for each
source S and destination D. These rules take as input the
local lsu tuples, and essentially result in the execution of
the Dijkstra’s algorithm locally. They are shown as follows:
bp1 path(@S,N,P,C) :- lsu(@S,S,N,C,W), P=f_init(S,N).
bp2 path(@S,D,P,C) :- lsu(@S,N,D,C1,W),

bestPath(@S,N,P2,C2),
C=C1+C2, P=f_concatPath(P2,D).

bp3 bestPathCost(@S,D,min<C>) :- path(@S,D,P,C).
bp4 bestPath(@S,D,P,C) :- bestPathCost(@S,D,C),

path(@S,D,P,C).

In rule bp1, 1-hop paths are built from every link, while
in rule bp2 paths are recursively constructed by concatenating
shorter path with links. Rule bp3 computes the minimum cost
for paths with same sources and destinations, and rule bp4

finally computes the best paths to all destinations originating
from S. From the best paths, the following rule instantiates
the forwarding table (in Figure 1) for each node S:
ft1 forwardingTable(@S,D,N) :- bestPath(@S,D,P,C),

N=f_second(P).

Given that each bestPath tuple that stores the best path
P from node S to D, rule ft1 uses the function f_second to
extract out the next hop N along the path P to generate the
corresponding forwardingTable entry.

Optimized Link-State Routing (OLSR): A well-known
proactive MANET protocol is OLSR (Optimized Link-State
Protocol) [9]. OLSR ensures efficient flooding by forwarding
LSUs to a subset of neighbors known as multipoint relays
(MPR). The union of the neighbor sets of MPRs of any node
X is equal to the set of 2-hop neighbors of X. To implement
OLSR-style flooding in LSUs requires modifications to rules
ls1-2 to flood LSUs along MPR nodes. A detailed declarative
OLSR rules and implementation can be found in [21].

Hazy-Sighted Link-State (HSLS): Hazy Sighted Link-State
routing (HSLS) [30] is a scalable LS routing variant for
handling moderate to high rate of change in network topology.
This protocol attempts to control the scope and frequency of
its LSU flooding scheme based on the topology of the network.
The basic principle of HSLS is that route calculation of a node
should not be affected significantly by link dynamics due to
mobility or failure in a portion of network that is far away from
this node. Hence unlike the pure LS protocol which performs a
network wide flood of all LSUs, HSLS sends LSUs to the 2k-
hop neighbors of a node with a period equal to 2kTe, where
Te is a nominal period. If link dynamics are high, pure LS
starts thrashing because remote nodes could receive an LSU
corresponding to a link that has long vanished.

HSLS rules are expressed as follows:
hsls1 lsu(@S,S,N,C,S,TTL) :- periodic(@S,T),

link(@S,N,C), T=f_pow(2,K)*Te,
TTL=f_pow(2,K), K=range[1,10].

hsls2 lsu(@M,S,N,C,Z,TTL-1) :- lsu(@Z,S,N,C,W,TTL),
link(@Z,M,C1), TTL>0, M!=W.

Rule hsls1 is periodically fired, and the period of execution
depends on 2KTe. Note that here we add one more attribute for
lsu tuple, which is TTL used for controlling flooding scope.
In declarative networking, it is easy to modify tuples, such as
adding and deleting their attributes due to the need of different
protocols. Rule hsls2 keeps forwarding LSUs if their TTL

is larger than 0. Similar to LS, HSLS rules can be modified
to support triggered updates and batched triggered updates. In
triggered updates, the flood of the corresponding LSU for each
link insert/delete event is scoped using a similar HSLS policy,
where LSUs flooded within a time interval has a fixed TTL.
If triggered updates are used, in order for all LSUs to reach
every node, a periodic network-wide LSU flooding needs to
be carried out based on the nominal period Te.

B. Reactive Protocols

Next, we demonstrate a reactive protocol based on
DSR [13]. The following set of rules show the route discovery
of DSR (rules dsr1-4) followed by the route response (rules
dsr5-7) traversing the best reverse path from destination to
source.
dsr1 eRouteReq(@N,S,D,P,C) :- eQuery(@S,D),

link(@S,N,C), P=f_init(S).
dsr2 eRouteReq(@Z,S,D,P,C):-

shortestRoute(@N,S,D,P1,C1), link(@N,Z,C2),
C=C1+C2, P=f_concatPath(P1,N).

dsr3 minCost(@N,S,D,min<C>) :- routeReq(@N,S,D,P,C).
dsr4 shortestRoute(@N,S,D,P,C) :-

minCost(@N,S,D,C), routeReq(@N,S,D,P,C).
dsr5 eRouteReply(@N,S,D,P,P,C) :-

eRouteReq(@N,S,D,P,C), N=D.
dsr6 eRouteReply(@Z,S,D,P,P1,C) :-

eRouteReply(@N,S,D,P,P2,C), Z=f_last(P2),
f_size(P2)>0, P1=f_removeLast(P2).

dsr7 bestPath(@S,D,P,C):-
eRouteReply(@S,S,D,P,P2,C), f_size(P2)=0.

In DSR, a requesting node S issues an initial route request,
denoted by eQuery(@S,D) event in rule dsr1. This results in
a eRouteReq message tuple that is generated and recursively
forwarded along all links (rule dsr2). The routeReq table
is used to cache current route requests. To prune unnecessary
paths, rules dsr3-4 ensures that only the shortest path from
the initial node S to the intermediate node N is maintained.

Upon reaching the destination node D, rule dsr5 gener-
ates a eRouteReply message that is then sent back recur-
sively via rule dsr6 along the computed best reverse path
back to the requesting node S. The functions f_last and
f_removeLast returns and removes the last node from a path
respectively. Rule dsr7 generates the bestPath, based on
the eRouteReply that has now traversed back to the original
requesting node. The resulting bestPath can be used by node
S to send a packet to D via source routing.

The rules for AODV [25] share similarities with DSR
above, where only the next hop rather than the entire path
is maintained.



5

C. DTN Protocols
As an example DTN-style protocol, epidemic routing has

been proposed for reliable delivery in intermittently connected
MANETs. A key reliability component of such protocols is the
summary vector exchange as illustrated by rules e1-4 below:
e1 eBitVecReq(@Y,X,V):- summaryVec(@X,V),

eDetectNewLink(@X,Y).
e2 eBitVecReply(@X,Y,V):- eBitVecReq(@Y,X,V1),

summaryVec(@Y,V2),
V=f_vec_AND(V1,f_vec_NOT(V2)).

e3 eMessage(@Y,I,S,D,P):- eBitVecReply(@X,Y,V),
message(@X,I,S,D,P), f_vec_in(V,I)=true.

e4 message(@Y,I,S,D,P):- eMessage(@Y,I,S,D,P).

In rule e1, node X detects that a new link comes to
be available, then it retrieves its local summaryVec table,
consisting a bit vector where the ith bit denotes the receipt
of the ith message, and then generates a eBitVecReq request
to the neighbor Y connected by the new link. Upon receiv-
ing the request, node Y performs a bitwise AND operation
(f_vec_AND) between the incoming summary vector V1 and
the negation (f_vec_NOT) of local summary vector V2 to
generate a new vector V which is sent back to X. This new
vector V denotes messages seen by X but not Y. Rules e3-4

then enable node X to filter (f_vec_in) local messages based
on message ID I (sourced from S and destined to D with
packet payload P) to be sent according to the bit vector V

stored in the reply, which are then put in the local message
table after transmission.
D. Evaluation of Declarative MANETs

We have performed a detailed evaluation of the above
protocols in an emulated environment on our local testbed,
and an actual deployment on the ORBIT testbed [2]. In our
evaluation, DAWN instances are deployed on all nodes. Each
declarative protocol is compiled and executed at all DAWN
nodes, which execute the NDlog rules and communicate with
other nodes to implement the distributed protocols. We briefly
summarize the main findings of our evaluation.

To validate the correctness of our declarative MANET
protocols, we compare their behavior and performance char-
acteristics against prior observations of these protocols. Our
results demonstrate that declarative MANET protocols can
be efficiently implemented with performance characteristics
that are expected from these protocols. For instance, we
observe that the per-node communication overhead of LS
increases linearly as the network size increases, a scala-
bility trend that one would expect in link-state protocols.
Moreover, as expected, LS incurs the highest communication
overhead, followed by OLSR, and HSLS. Intuitively, OLSR
incurs lower communication overhead than LS since flooding
is only performed via MPRs, whereas HSLS requires the
least communication overhead as it sacrifices optimality for
performance via the use of scoped flooding. In [16], [21], we
have additional experimental details that demonstrate that the
protocols are working correctly. For instance, LS and HSLS
have periodic peak bandwidth utilization due to network-
wide floods, and HSLS’s peak bandwidth utilization is lower
than LS. Furthermore, HSLS’s flooding peaks vary over time
based on current scope, and incur lower bandwidth utilization
compared to OLSR.

In addition to LS, OLSR, and HSLS, our declarative imple-
mentations of DSR and summary-based epidemic routing also
exhibit expected protocol behavior and performance charac-
teristics. For instance, in DSR, the per-node communication
overhead increases linearly as the number of route requests
increases. We notice a similar linear trend for DSR when we
fix the number of queries, but increase the network size.

Category Protocol Rules C++
Reactive Dynamic source routing 11 659

Proactive
Traditional link state 15 728

Optimized link state routing (OLSR) 34 1552
Hazy sighted link state (HSLS) 18 956

Epidemic Summary-vector based epidemic 17 755

TABLE I
DECLARATIVE MANET PROTOCOLS.

Table I summarizes the declarative protocols that we have
successfully implemented, by comparing the corresponding
number of rules required against the number of lines of code
(LOC) in the generated C++ code. The generated code is a
good estimation on the LOC required by a programmer to
implement these protocols in a traditional imperative language.
We note that the declarative specifications result in orders of
magnitude reduction in code size.

IV. POLICY-BASED ADAPTIVE ROUTING

Building upon the basic declarative MANET protocols in
the previous section, we next leverage DAWN’s declarative
framework to create customizable hybrid protocols by com-
posing any number of known protocols. Specifically, DAWN
will be used to synthesize policy-based adaptive hybrid rout-
ing protocols in its routing engine (Figure 1), i.e. protocols
built from combining several existing protocols with specific
criteria determining the usage of a particular protocol. These
compositional capabilities are particularly useful for routing in
heterogeneous network settings where features from various
routing protocols (e.g. HSLS, OLSR, DSR, AODV, epidemic)
are adaptively combined based on changing application de-
mands and network conditions (connectivity, mobility, traffic
flow characteristics, etc.).

To motivate policy-based adaptive hybrid protocols, we
present some examples illustrating possible application scenar-
ios. Our motivating examples are primarily rooted in military
and emergency-response situations, where MANET is likely
the most feasible form of communication in the absence
of established wired infrastructures. In these scenarios, as
personnel moves around, they may display varying mobility
patterns that may not be temporally uniform. For instance,
personnel may congregate together to discuss a mission (sta-
ble), and then dispersing out to execute mission operations
(moderate to high mobility). There can also be periods of high
communication or data transfer (e.g. during a VoIP call, or
continuous stream of sensor and location feeds), followed by
periods of low communication patterns (e.g. quiet operations
in hostile territories). Mobility and traffic patterns may also
have spatial aspects, where only a portion of the network is
mobile, and different applications are deployed among clusters
of nodes. Policy-based hybrid techniques for adaptation are
well-suited for such temporally and spatially non-uniform
environments.



6

To illustrate the plethora of possibilities, we first present an
exemplar of a hybrid link-state protocol which adapts between
two types of proactive protocols based on link dynamics and
mobility, followed by a more generalized hybrid protocol
that adapts based on traffic patterns, mobility and network
connectivity.

A. Example: Hybrid Link-State Protocol

As the name suggests, a hybrid link-state protocol adapts
between two variants of link-state routing protocols based
on a single metric. While this example is a limited form
of adaptation, its simplicity allows us to illustrate the salient
features of our declarative rule-based adaptation approach.

The primary disadvantages of HSLS (Section III) is that
it sacrifices optimality in routing to the need for scalability
under high link dynamics. This is because unlike pure LS
protocol which triggers updates when link status changes,
HSLS forgoes the pursuit of gathering up-to-date information
about the complete network topology and computes routes on
a network topology that may have stale link state information.
Imperfect topology knowledge may result in computation
of suboptimal routes, and this effect can be announced in
somewhat dynamic but sparsely connected topologies, where
route diversity is limited.

There are a variety of metrics that one can use to quantify
the degree of link-dynamics (due to mobility, duty cycling,
outages, etc.) on a per-link basis in a network. The link metric
we explore is average availability (AA) [28], which captures
the average fraction of time that a link has been available for
use in the recent past. Specifically, AA is calculated as the total
time that a link’s status is up divided by the total time since it
was detected. This metric itself can be locally computed based
on gathered links, and is expressible using 5 declarative rules.

If the link AAs stop fluctuating wildly in most parts of the
network as indicated by gathered links, one may decide to
switch from HSLS to pure LS routing since that may yield
near-optimal routes with a lower stretch1 and higher validity.
Moreover, a stable network will result in fewer triggered
updates, ensuring that LS does not incur unnecessarily high
control traffic.

Based on the LS and HSLS rules presented earlier, one
can further define a generic policy that allows us to switch
between HSLS and LS based on the computed average AA of
all neighbor links (or alternatively network-wide links based
on collected LSUs). The average AA threshold below which to
switch to pure LS is a configuration parameter that is set either
by analysis or experimentation. This policy can be expressed
by the following rules:
#include ls1, ls2, hsls1, hsls2
#define THRES 0.5
s1 averageLinkAvail(@M,AVG<AA>) :- link(@M,N,C,AA).
s2 useHSLS(@M) :- averageLinkAvail(@M,AA), AA<THRES.
s3 useLS(@M) :- averageLinkAvail(@M,AA), AA>=THRES.

#include is a macro used to include earlier rules. Rule s1

computes at node M the average AA of all gathered neighbor
links. Note that we add one additional attribute which is link

1Route stretch is the ratio of the hop count of the path between a source
and a destination selected by the routing algorithm to that of the optimal path.

AA for every link tuple here. Rules s2-3 generate useHSLS

and useLS predicates which are then added to rules hsls1-2
and ls1-2 respectively for protocol switching.

Any form of protocol adaptation requires extensive exper-
imentation and tuning, especially under a large number of
network variables. A declarative protocol design is much more
suited for that style than traditional protocol design due to its
conciseness. To encode a new policy (e.g. use LS instead of
HSLS when the network is sparse with high frequency of link
updates), one only needs to modify the above rules to generate
useHSLS and useLS without having to change the rules for
the individual protocols themselves.

In addition, to dampen any effects on possible instability
due to fluctuations of AA around the threshold value, one
can modify the above rules such that protocol switching only
occurs after the AA value has stabilized above or below the
threshold value for a specified time period. After switching
from one protocol to another, out-of-date routing tables and
other information related to the previous protocol will be
gradually phased out upon expiration.

B. Example: Generalized Hybrid Protocol

Our first example illustrates switching the underlying dis-
semination scheme2 between two types of proactive protocols
using only one metric alone. As an alternative example, in
[16], we demonstrate that one can utilize the same declarative
specifications above to achieve a hybrid proactive-epidemic
protocol, useful in a disruption-tolerant setting. This hybrid
protocol switches between two modes of operation: (1) single
path LS message forwarding in well connected parts of the
network under low mobility/dynamics, and (2) multi-path
epidemic style message flooding in disrupted parts of the
network under high mobility/dynamics.

Here, we present a more general version of an adaptive pro-
tocol, which we refer to as generalized hybrid protocol since it
adapts across proactive, reactive, and DTN-style routing based
on various network conditions. This generalized protocol is in
fact a superset of the more constrained hybrid link-state and
proactive-epidemic protocols mentioned earlier.

Mobility

Connectivity

Low

High Low

DTN

Low High

Reactive

Traffic

Proactive Proactive'

High

Fig. 2. An example decision tree that reflects one possible set of policies
for adaptive routing. Ovals denote metrics and rectangles denote protocols.

Figure 2 illustrates this protocol in the form of a decision
tree diagram. In addition to the AA metric for Mobility, this ex-
ample uses two additional metrics gathered using the network
status monitor in Figure 1: Connectivity, a measure of network

2Note that the route computation scheme at each node remains unmodified.



7

density computed based on a rule that uses a combination of
“group-by”s and “aggregate”s at all nodes to determine the
per-node degree (or degree within a neighborhood); Traffic,
measured at each node using monitoring rules for data sending
rate, packet queue length, etc.

Given the three metrics, the generalized hybrid protocol
adapts as follows. In a highly disconnected environment
(low connectivity), a DTN protocol (e.g. epidemic routing) is
used. When network connectivity is well established, reactive
routing is preferred if data traffic is low, since its route
discovery procedure is only reactively data-driven and there is
no overhead of maintaining up-to-date routing tables. Proactive
protocols are more suited for relatively stable network with
fair amount of data traffic, since they perform periodic LSU
flooding and provide good reliability and QoS guarantee. In
these situations, one can either decide to use pure LS or OLSR
(denoted as Proactive in the figure) under low mobility, or
the more scalable HSLS (denoted as Proactive’) that trades
off route quality for less bandwidth. The generalized hybrid
protocol requires only 13 additional rules to implement, using
existing declarative MANET protocols presented in Section III
as building blocks.

Similar to our previous example, the threshold for adapta-
tion (i.e. “low” and “high” values) requires additional tuning
and experimentation in order to determine the appropriate
values. The declarative framework and concise specifications
make it easy to write other (more intelligent) switching rules
in this scenario. Given a metric and threshold values, at each
decision point in the tree, the adaptation rules are written in
a similar manner as rules s1-s3.

Other policy examples are certainly possible as well, accord-
ing to different network scenarios and application demands.
In fact, this decision tree can be further classified, up to 8
different possibilities based on the three metrics. For instance,
the choice of DTN protocol can be further refined as follows.
Given a low connectivity network, a probabilistic forwarding
approach such as PROPHET [15] would be suitable for a
relatively high traffic and predictable mobility/dynamics sce-
nario – this is because predictable link dynamics allow one to
compute a single-copy route, albeit intermittently connected,
and then store-and-forward data along that path. On the other
hand, an epidemic protocol such as PREP [28]3 is more
effective when there is a higher degree of non-predictable
mobility and low traffic load.

Alternative variations to the decision tree in Figure 2 are
possible. For example, in a high connectivity, low traffic and
high mobility scenario, a flooding-based multicast strategy (in
which no route computation is performed and the data packets
are disseminated network-wide) can be the most effective [32].

The main point here is not to establish whether one policy is
superior to another, but rather that DAWN declarative frame-
work makes such policy specifications concise and flexible,
hence enabling us to rapidly explore the rich design space of

3PREP is an extension of the basic epidemic protocol, in which transmis-
sions of messages are prioritized based on the residual lifetimes of individual
messages. This can be done elegantly in NDlog by sorting the message
table based on a user-defined ranking function, and then have forwarding rules
that take the message table as input, and transmit based on the sorted order.

various possible policy configurations.

V. POLICY-BASED ADAPTIVE FORWARDING

In Section IV, we show how DAWN can perform protocol
switching at each node following a policy-based assessment
of network conditions. If the mobility/dynamics and traffic
conditions have high spatial diversity, locally optimized deci-
sions can result in a non-uniform spatial distribution of routing
protocols that have been chosen to run on various nodes. For
instance if a network has high link dynamics in one half of the
network and no dynamics in the other half, rules in Section
IV can switch the nodes in the stable half to run a proactive
link-state protocol while nodes in the unstable, intermittently
connected portion can be instructed to run some epidemic
routing scheme.

Under such circumstances, if a packet needs to be sent
across the two aforementioned portions of the network, there
is a necessity of traversing the proactive/epidemic protocol
boundary at one or more intermediate nodes in the network.
Similarly, if a portion of the network is running reactive
routing, the data and control plane mechanisms4 of various
routing protocols in use need to be coordinated at dynamically
chosen “gateway” nodes located at the protocol boundaries.

In this section, we propose inter-protocol forwarding (IPF)
techniques at the control and data plane to enable packets
traversing seamlessly across different protocols, by bridging
various categories of MANET routing (i.e. proactive, reactive
and DTN) in DAWN. In all our examples, we define gateway
nodes to be adjacent nodes running different protocols. Unlike
prior work [7], DAWN does not require pre-selected gateway
nodes. Rather, the identification of such nodes and policies
for forwarding packets from one protocol type to another
are expressed as declarative networking rules. Prior work on
declarative networking has focused primarily on programma-
bility/customizability in the control plane. IPF is the first usage
of declarative networking in the data plane.

Our IPF mechanism assumes some degree of spatial locality
in metrics such as network connectivity, mobility, and traffic
patterns among nodes in the networks. This means that nodes
tend to exhibit behavior similar to that of its neighbors, e.g.
highly mobile nodes tend to be clustered together, while nodes
that are relatively static are also surrounded by nodes of a
similar static nature. This assumption ensures that any routing
policies (such as the generalized hybrid protocol in Sec-
tion IV-B) designed with these metrics will result in clusters of
nearby nodes running the same protocol. As we demonstrate
later in this section, while this assumption is not strictly
required for the correct operation of our IPF techniques,
making this assumption typically results in better performance
as nodes can utilize a common forwarding mechanism within
a cluster, and transition to other mechanisms across clusters.

In the rest of the section, we first demonstrate how IPF rules
in general are implemented in DAWN, and then describe the
IPF mechanisms in two steps. First, we consider only forward-
ing of packets in a network consisting of clusters of proactive
and reactive nodes (Section V-B), followed by a combination

4These include route discovery/response, source routing, LS dissemination,
next-hop routing, store-and-forward routing etc.



8

of proactive/reactive nodes together with disconnected nodes
using store-and-forward mechanism (Section V-C).

A. Forwarding Rules

DAWN uses NDlog rules to easily capture various types
of forwarding in the data-plane. To illustrate, the following
NDlog rule recursively forwards a message packet along
computed forwardingTable (Section III-A):
f1 eMessage(@N,I,S,D,P) :- forwardingTable(@R,D,N),

R!=D, eMessage(@R,I,S,D,P).

Rule f1 forwards a message packet with identifier I

and payload P along the best path from source S to des-
tination D via the next hop N node as computed in the
forwardingTable. This payload is recursively routed by rule
f1 to the destination. The source routing rule is very similar,
where the entire path is included in the initial eMessage and
used recursively to forward the packet until the destination
is reached. In Section III-C, we show an example based on
epidemic-style store-and-forward mechanism of disseminating
message packets.

B. Proactive and Reactive

We first consider IPF in a network consisting of nodes using
either proactive (denoted as P) or reactive (R) routing. We
consider both routing from a reactive node to a proactive node
in the network (R to P) and vice versa.
R to P: When routing from a reactive to a proactive part of the
network, the IPF mechanism closely resembles that of DSR
protocol with caching [13]. When a route request (see dsr1-4
in Section III) reaches a proactive node that knows the route
to the final destination (typically, the destination node is also
within its proactive network), a route reply can be immediately
sent back to the requesting node.
rp1 eRouteReply(@N,S,D,P,P,C) :-

useProactive(@N), eRouteReq(@N,S,D,P1,C1),
bestPath(@N,D,P2,C2),
P=f_concatPath(P1,P2), C=C1+C2.

To illustrate this policy, in rule rp1, when proactive node N

(denoted by useProactive) receives eRouteReq originated
from source S and finds that the best route from N to destina-
tion D has already been computed in proactive routing table
bestPath, a eRouteReply will be generated and returned,
in which the path from S to D is the concatenation of the path
from S to N and the best path from N to D.

The salient point here is that the execution of the IPF rules
determines the identity of the best gateway node N that the
S to D path needs to pass through. If the reactive protocol is
based on source-routing, S can send the data packet along to
intermediate node N following the computed source route, and
N then uses its proactive routing table to send the data packet
towards D. On the other hand, if the reactive protocol sets up
routing tables like AODV, after S gets a route reply from N,
it sends the packet toward N using the reactive routing table,
and then N uses proactive routing as mentioned before.

Note that DAWN nodes rely on tuples communicated among
them to carry the protocol type information implicitly via the
tuple name. Each node includes a set of customized forwarding
rules for handling messages based on their protocol type. For

instance, in the above example, N receives an eRouteReq tuple
from its neighbor. Rule rp1 is then used by N to correctly
respond to a request from a reactive protocol.
P to R: To enable P node initiating communications with
unknown R node, one approach we explore is to equip P node
with reactive route discovery rules (dsr1-4 in Section III).
When a proactive node (that initiates the packet forwarding)
does not know the route to the destination node, a route request
is issued. To reduce route discovery overhead incurred by
network-wide flooding, one technique is bordercasting [11]
route requests to border nodes within the same P network
along already computed proactive routes. The border nodes
can be defined using additional NDlog rules, e.g., choosing
the nodes with the largest hopcount in the routing table.

Each of the border nodes then floods the route request
(within the reactive networks they are attached to) and returns
the best path information back to S. S then sends the data
packet to the border node that minimizes the total routing cost.
Note that without any coordination between border nodes,
this may result in multiple route request floodings within the
reactive network. This can be mitigated by additional NDlog
rules that suppress flooding of an already-encountered packet.

Unlike traditional hybrid protocols [11], [29], DAWN does
not require constraining nodes into specific routing zones, and
hence provides greater flexibility on protocol adaptation.

C. Proactive / Reactive and DTN

We next consider a network consisting of proactive, reactive,
and DTN nodes. We consider the scenario where DTN nodes
utilize epidemic routing as described in Section III-C. Unlike
proactive/reactive protocols, epidemic routing does not require
the use of any routing tables, but performs opportunistic data
forwarding. To illustrate how packets can be forwarded in
such a network, we consider the IPF mechanisms required
for routing between nodes running proactive/reactive protocol
(PR) and epidemic routing (E).
E to PR: We first consider the scenario where a data packet
traverses from E network to PR network. Starting from epi-
demic node, the packet is first forwarded opportunistically
until a PR node is reached, at which point the packet is either
directly sent to the destination (if the route is known), or
trigger a route discovery process. Note that the destination
node may receive multiple copies of the same packet, since the
packet may be received by multiple PR nodes at the boundaries
of the two networks.
PR to E: We next consider the reverse scenario where a packet
is routed from a node (source S) in the PR network to E node
(destination D). In this process, S first queries its routing table
for D. If the entry does not exist, a route discovery is initiated
from S. Upon reaching a border node5 in the E network, a route
reply is sent back to S requesting for the actual data packet to
be sent to the E node, at which point, epidemic forwarding is
used starting within the E network until the packet arrives at
D. This mechanism may also result in the destination receiving

5The definition of a border node can itself be customized as policy rules.
In our implementation, it is the first E node that receives the route request
enroute to destination.



9

multiple copies of the same packet; however the summary
vector mechanism that is an integral part of epidemic routing
ensures that a packet is not transmitted on any intermittently
connected link more than once.
pre1 eRouteReply(@Z,S,D,P,P,C) :-

eRouteReq(@N,S,D,P1,C), useEpidemic(@N),
Z=f_last(P1), P=f_concatPath(P1,*).

To illustrate this forwarding process in the form of a
NDlog rule, we consider the scenario where an E node at
the boundaries of a PR and E network first receives a route
request to destination D. Given that the packet is now within
an E network, the actual data packet is required for further
forwarding within the E network. In this case, the border
node utilizes the above rule pre1 to send a route reply back
to S, appending a special * symbol at the end of the reply
path P, indicating that the packet be forwarded via route P

to the border node for further epidemic forwarding. Note that
the requesting S node may receive multiple such replies, and
to avoid duplication, only one of the routes (typically the
shortest) is chosen to forward the packet on to the E network.

To deal with possible message losses when PR and E
networks are disconnected, one may utilize additional mech-
anisms, e.g. for the S node to buffer the original packet and
resend it upon a timeout. Intermediate PR nodes may also
perform similar buffering and resending of route requests.
When a packet traverses from a PR to a E network, the packet
may be sent back to nodes in the PR network, and in the worst
case, flooded back to the entire PR network. To prevent this
from happening, PR nodes can be augmented with NDlog rules
that maintain temporary state to remember packets seen in
the recent past. This consumes additional memory but reduces
communication overhead.

The performance of the above mentioned hybrid protocols
are somewhat dependent on the actual network topology.
While it is easy to come up with MANET topologies that can
result in high network overhead (e.g., ones where there are a
large number of dynamically appearing border nodes between
E and PR networks, and the overhead is high without imple-
menting a coordination mechanism between the border nodes),
there are useful and practical locally stable topologies where
good performance can be achieved by IPF, as demonstrated in
our evaluation section.

VI. EVALUATION

In this section, we perform an experimental evaluation to
validate the benefits of policy-based adaptive MANETs via
declarative networking. We have developed a prototype for
DAWN based on the RapidNet declarative networking en-
gine [4], [22], an open-source platform that we have developed
and released. The RapidNet system is implemented as an add-
on to ns-3 [1], an emerging discrete-event network simulator
aimed to replace ns-2. ns-3 emulates all layers of the network
stack and supports (configurable) packet loss, packet queuing,
and network topology models. ns-3 supports a simulation
mode enabling the controlled examination of DAWN’s per-
formance under various network topologies and conditions.
Moreover, RapidNet is able to run in implementation mode on
ORBIT testbed. Note that the simulation and implementation

mode utilize an identical code base, declarative rules, and rule
execution engine. The only distinction is the use of network
simulation in ns-3 vs raw sockets on ORBIT.

Our evaluation is divided into three parts. First, we evaluate
a specific instance of policy-based adaptive routing based on a
hybrid link-state protocol (Section IV-A) in simulation mode.
Second, we evaluate in simulation the generalized hybrid
protocol (Section IV-B) and explore the use of inter-protocol
forwarding techniques to forward packets across nodes running
proactive, reactive, and epidemic protocols. Finally, we deploy
and evaluate the generalized hybrid protocol on the ORBIT
testbed to validate our simulation results.

A. Hybrid Link-State Routing

Our first evaluation study involves Hybrid-LS, a policy-
driven link-state protocol described in Section IV-A. Hybrid-
LS utilizes traditional LS routing when the network is stable,
and HSLS when unstable. We configure all nodes to execute
Hybrid-LS protocol, and fix network connectivity and traffic
load, while varying only node mobility. Focusing our initial
evaluation on a subset of the generalized hybrid protocol
enables us to study in detail effects of policy-based adaptation
and protocol switching between LS and HSLS.

We conduct our experiment in a simulated wireless network
consisting of 30 nodes randomly located in a 750m × 750m
arena. In all our experiments, nodes execute a RapidNet en-
gine, but communicate via ns-3’s simulation mode. Our simu-
lated wireless network is based on ns-3’s 802.11b PHY+MAC
model and the wireless transmission range is set to 100m. By
default, simulations do not use RTS/CTS among nodes, but
permit up to 3 retries at the MAC layer to transmit each packet.
Network simulations enable us to evaluate the performance of
policy-based adaptive protocols in a controlled environment
where we can vary network topology, traffic, and mobility.
This complements our ORBIT testbed results in Section VI-C
and reference [16].

We compare Hybrid-LS with two declarative implementa-
tions of link-state routing presented earlier: LS and HSLS. In
all link-state protocols, we utilize batched triggered updates
introduced in Section III-A, which ensures that link updates
are batched and propagated periodically. In other words, each
node periodically batches up all link updates in the previ-
ous period, and sends out the corresponding LSUs. In our
experiments, we set the propagation period to be 2 seconds,
corresponding to the flooding period in LS and the nominal
period Te in HSLS. We observe higher packet losses when
the interval is increased. This is because at larger intervals,
each LSU packet is also larger (since link updates are batched
during the time interval for sending). Transmitting these larger
packets results in increased collisions in the network.

In addition to periodic batched updates, there is network-
wide refresh of LSUs performed periodically at intervals of
60 seconds. Correspondingly, LSUs that are not refreshed will
time-out after 65 seconds. Given the triggered updates, this
network-wide refresh is not strictly necessary. However, this
ensures that all nodes eventually learn about the network topol-
ogy via a soft-state refresh mechanism. This is particularly



10

useful given that transient network partitions result in LSU
packet losses during triggered updates.

Mobility setup: To explore extremes in mobility patterns,
we alternate at 60 seconds interval between three degrees of
mobility using the random waypoint model: stationary stage
in which all nodes stay in their current positions, moderate
stage, in which nodes move at a moderate speed of 4 m/s
(on average), and fast stage, in which nodes move at a speed
from 12 m/s (on average). Figure 3 shows the mobility setup
in terms of link events per second in a total time horizon
of 500 seconds (the first not-shown 10 seconds are network
initialization stage). Each event corresponds to an update
(insertion followed by deletion) to the link table at the node
whose neighborhood has been updated. On average, each node
has 6-8 neighbors. We note that at moderate speed (the 2nd,
4th and 6th intervals), link events occur at a frequency of 8.8
events/second on average in the entire network. At fast speed
(final interval), link events increase to 31.3 events/second. Link
events during stationary stage are caused by the instability of
wireless links.

Average link AA: The link average availability (AA) metric
(first introduced in Section IV-A ) reflects the stability of each
link, expressed as the fraction of time a link has been up in
the recent past. Each node can then compute the average AA
by averaging across all neighbor link AAs. The higher the
average AA, the more stable the network is.

Figure 4 shows the average link AA (computed by averaging
across the individual averages computed at each node) and
validates that our mobility model is behaving as expected, and
AA computations at each node is able to reflect the current
state of the network. We observe that when the network is
stable, the average link AA approaches 1, and at periods of
moderate speed, the average link AA can drop to as low as
0.64, only to recover when the network is stable again. At fast
speed, we observe that link AA drops to as low as 0.34.

Comparing LS and HSLS: One of the main advantages of
Hybrid-LS over traditional LS and HSLS is that it attempts to
find a good balance between communication overhead induced
by LSUs and route quality. In the remaining of this section,
we try to quantify these tradeoffs by first comparing LS and
HSLS in terms of their communication overhead and route
quality, and then contrast their performance against Hybrid-
LS. Figures 5-6 compare LS and HSLS based on the per-node
bandwidth utilization (KBps), and one measure of route quality
– stretch. The respective averages are summarized in Table II
in the first and second columns, with another measure of route
quality – validity.

Figure 5 shows per-node bandwidth utilization (KBps) ob-
tained for LS and HSLS during the corresponding experimental
run. Not surprisingly, LS incurs higher communication over-
head compared to HSLS, averaging at 13.8KBps compared to
9.3KBps for HSLS.

While LS consumes more bandwidth compared to HSLS,
it is able to compute higher quality routes. We consider two
well-known notions of route quality: route stretch as defined
in Section IV-A, and route validity, a route is valid if at the
time it is computed from the local LSUs, all the links that

comprise the route are up.
Figure 6 compares the protocols by comparing the average

stretch of the 5% longest routes. We choose to plot the
stretch for 5% longest routes because stretch is typically a
greater concern for longer routes, whereas routes that have
low hop-counts are less impacted by stretch. We make the
following observations. First, a perfect stretch of 1 is typically
only achievable when all nodes are stationary. Second, at
moderate speed, LS results in routes that are of lower stretch,
rarely exceeding a route stretch of 1.13, compared to HSLS
which achieves as high as 1.33. In the stationary stage , both
protocols eventually converge to a stretch of 1, though LS is
able to recover much quickly.

We make a similar observation based on the route validity
metric, as shown in Table II, where LS is able to achieve
higher percentage of valid routes at moderate speed, and close
percentage of valid routes at high speed. Overall, our results
indicate that at moderate speed, LS is a desirable protocol
since it is able to compute high quality routes at relatively low
bandwidth utilization. At high speed, the use of LS becomes
counter-productive, as network-wide floods under churn result
in high communication overhead, which significantly degrades
the successful delivery of LSUs necessary for maintaining
up-to-date routes. In this case, the HSLS protocol is more
desirable given that it achieves routes of equivalent quality
with lower communication overhead and significantly higher
packet delivery rates.

Mobility Performance LS HSLS Hybrid-LS

High
BW (KBps) 35.35 17.99 21.13
Stretch 1.16 1.14 1.09
Validity 55.8% 50.3% 52.7%

Moderate
BW (KBps) 18.01 9.58 18.01
Stretch 1.02 1.19 1.02
Validity 79.8% 68.2% 79.8%

TABLE II
PERFORMANCE COMPARISONS (BANDWIDTH UTILIZATION, AVERAGE

ROUTE STRETCH AND VALIDITY) AMONG LS, HSLS AND Hybrid-LS
DURING MODERATE AND HIGH MOBILITY.

Benefits of Hybrid-LS: To validate that the specified policies
of Hybrid-LS can indeed adapt between LS and HSLS based on
computed average link AA, we perform a similar evaluation
study by measuring the performance characteristics of Hybrid-
LS. In this protocol, the specified policy sets the THRES
parameter described in Section IV-A to 0.64. THRES can
be tuned either experimentally or by analysis, and adaptive
tuning of this value is an interesting avenue for future work.

Figure 7 shows the effects of this policy, by measuring
the percentage of nodes using LS during the experiment. Not
unexpected, LS and HSLS are insensitive to changing AA
values, since they are not policy driven. On the other hand,
we observe that in Hybrid-LS, nodes are able to quickly and
successfully adapt according to the policy. As average AA is
above the threshold (shown in Figure 4), all nodes adapt their
protocol to utilize LS. Conversely, after time 425 seconds, as
the network becomes unstable, nodes start adapting to using
HSLS. Eventually, all nodes adapt to using the HSLS protocol.
At the end of the experiment, as the network stabilizes, nodes
begin to re-adapts to using LS. Overall, we note that Hybrid-LS
is able to effectively adapt based on network conditions.



11

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

N
u
m
b
e
r 
o
f 
Li
n
k 

Ev
e
n
ts

Time (Seconds)

Link events

0

10

20

30

40

50

60

70

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

N
u
m
b
e
r 
o
f 
Li
n
k 

Ev
e
n
ts

Time (Seconds)

Link events

Fig. 3. Number of link events per second, with alternating 60 seconds periods of stability and mobility.

0.33

0.42

0.51

0.6

0.69

0.78

0.87

0.96

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

A
ve
ra
ge
 L
in
k 
A
A

Time (Seconds)

LS

HSLS

Hybrid‐LS

Threshold

0.33

0.42

0.51

0.6

0.69

0.78

0.87

0.96

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

A
ve
ra
ge
 L
in
k 
A
A

Time (Seconds)

LS

HSLS

Hybrid‐LS

Threshold

Fig. 4. Average link AA for LS, HSLS and Hybrid-LS. The green line indicates the switching threshold THRES by the adaptation policy.

0

10

20

30

40

50

60

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

P
e
r‐
n
o
d
e
 B
an

d
w
id
th
 

U
ti
li
za
ti
o
n
 (
K
B
p
s)

Time (Seconds)

LS

HSLS

Hybrid‐LS

0

10

20

30

40

50

60

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

P
e
r‐
n
o
d
e
 B
an

d
w
id
th
 

U
ti
li
za
ti
o
n
 (
K
B
p
s)

Time (Seconds)

LS

HSLS

Hybrid‐LS

Fig. 5. Per-node communication overhead (KBps) for LS, HSLS and Hybrid-LS.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

R
o
u
te
 S
tr
et
ch
 5
%
 

Time (Seconds)

LS

HSLS

Hybrid‐LS

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

R
o
u
te
 S
tr
et
ch
 5
%
 

Time (Seconds)

LS

HSLS

Hybrid‐LS

Fig. 6. Route stretch for top 5% longest routes for LS, HSLS and Hybrid-LS.

The third column of Table II summarizes the performance
characteristics of Hybrid-LS in comparison with LS and HSLS.
We note that Hybrid-LS is able to achieve a good balance
between communication overhead and route quality. In periods
where the network is in moderate mobility, Hybrid-LS adapts
to a more aggressive flooding strategy used by LS. Hence, the
protocol is able to achieve equivalent route quality compared
to LS, and higher route quality compared to HSLS. In periods
of high mobility, Hybrid-LS adapts to using the HSLS protocol.
As a result, it is able to achieve equivalent route quality
compared to LS and HSLS, while utilizing only a fraction of
the bandwidth that LS requires.

All in all, our results demonstrate that Hybrid-LS is able
to achieve the desired protocols of both protocols given the
current network conditions, by leveraging LS’s capabilities
to achieve high quality routes under moderate mobility, and
adapting to HSLS’s lower bandwidth utilization and higher
packet delivery ratios at extreme rates of mobility. Similarly,
policy-based protocol adaptation between other categories
of MANETs protocols under various metrics like network
connectivity and traffic can be implemented and evaluated.
We expect it to demonstrate same characteristics with Hybrid-
LS, i.e. adopting to the most suitable protocol under specified
policies and achieving the best performance of pure protocols.

B. Generalized Hybrid Protocol

Our next set of experiments focuses on the generalized
hybrid protocol (Hybrid) presented in Section IV-B, where
clusters of nodes adapt to use specific protocols based on

the policy decisions. We further evaluate the inter-protocol
forwarding (IPF) techniques presented in Section V, by send-
ing packets across nodes running different protocols. Our
evaluation here consists of two parts: first a network consisting
of proactive and reactive nodes, and second, a similar network
that additionally includes DTN nodes using epidemic routing.
Both parts are carried out in RapidNet’s simulation mode.

Proactive and Reactive: Our first Hybrid experiment consists
of a network of 28 wireless nodes randomly distributed in a
900m × 450m arena. The network consists of the following:
(1) 7 low-traffic nodes at each side of the arena moving with
a speed of 1-2 m/s based on the random waypoint model; and
(2) 14 high-traffic stationary nodes at the center of the arena.
By executing the generalized hybrid protocol, based on the
policies presented in Figure 2, nodes at the arena edge use
a reactive protocol (in this case, DSR), whereas nodes in the
center adapt to use the LS protocol.

Our experiment is carried out over a period of 600 seconds,
in which the nodes executing reactive protocol initiate commu-
nication with the proactive nodes. In total, the reactive nodes
initiate 180 different route requests to discover routes to the
proactive nodes in the arena center. As a basis for comparison,
we compare Hybrid with pure DSR and LS.

Figure 8(a) shows the CDF of route request latency (in
seconds) of Hybrid and DSR. Latency is computed as the time
duration from the moment a source node issues a route request
until a route reply is received by the same node. Overall, we
observe that Hybrid results in lower request latency, since most



12

0.0

0.2

0.4

0.6

0.8

1.0

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

P
er
ce
n
ta
ge
 o
f 
N
o
d
es
 

U
si
n
g 
H
SL
S

Time (Seconds)

LS

HSLS

Hybrid‐LS

0.0

0.2

0.4

0.6

0.8

1.0

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350 370 390 410 430 450 470 490

P
er
ce
n
ta
ge
 o
f 
N
o
d
es
 

U
si
n
g 
H
SL
S

Time (Seconds)

LS

HSLS

Hybrid‐LS

Fig. 7. Percentage of nodes using LS for LS, HSLS and Hybrid-LS.

route requests to proactive nodes can be satisfied by the closest
proactive node to the initial requesting node. For instance,
Hybrid has a median latency of 0.59 seconds compared to
1.31 seconds for DSR. Here, we have deliberately omitted LS
in the CDF, since the protocol proactively builds routing tables
and hence does not issue explicit route discovery requests.

In terms of communication overhead, Hybrid incurs a lower
per-node communication overhead (aggregated for the duration
of the experiment) of 58.99KB compared to 66.82KB of DSR.
The lower overhead is due to the fact that Hybrid avoids
network-wide flooding of requests whenever replies can be
generated by intermediate proactive nodes. On the other hand,
LS incurs the highest aggregate bandwidth of 73.66KB, due to
the aggressive flooding of LSUs whenever links are updated.
Overall, we observe that Hybrid is able to achieve lower route
request latency while incurring lower communication overhead
among the three protocols.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Route request latency (s)

C
D

F

 

 

Hybrid
DSR

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message delivery latency (s)

C
D

F

 

 

Hybrid
Epidemic

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Message delivery latency (s)

C
D

F

 

 

Hybrid
Epidemic

Fig. 8. (a) CDF of route request latency for Hybrid and DSR. (b) CDF
of message delivery latency for Hybrid and Epidemic. (c) CDF of message
delivery latency for Hybrid and Epidemic on ORBIT nodes.

Proactive / Reactive and Epidemic: Our second experiment
is on a network of 30 wireless nodes in a 950m × 450m
arena. Unlike the earlier setup, our experimental setup here
includes additional highly disconnected DTN nodes that are
using epidemic routing to transmit data packets. Specifically,
the network consists of: (1) 5 disconnected nodes (E) at each
side of the arena move with a speed of 8-16m/s following
the random waypoint mobility model, and (2) 20 nodes (PR)
at the arena center, where they execute either LS or DSR,
depending on each node’s traffic volume. The specific protocol
is similarly chosen based on policies of the generalized hybrid
protocol (denoted as Hybrid) shown in Figure 2.

After network initialization, data messages are transmitted
from E nodes at one end of the arena to E nodes at the other
end, traversing through the PR nodes in the center of the arena.
Our experimental duration is 3300 seconds, and a total of
150 messages are transmitted, one at a time with an interval
of 22 seconds. We compare Hybrid with a pure epidemic
protocol (Epidemic) where all nodes utilize store-and-forward
to transmit messages. In this setup, since messages from E
nodes need to traverse through the intermediate PR nodes, IPF
techniques (E to PR and PR to E) described in Section V-C
are directly applicable. As an optimization, whenever a PR
node discovers a border node via a route discovery, the border
node is cached for a period of time and reused for subsequent

messages until it ceases to be a E node.
Table III compares Hybrid with pure Epidemic and DSR.

We make the following observations. First, Hybrid achieves
the lowest per-node communication overhead (aggregated for
the duration of the experiment), since it avoids network-wide
flooding of packets (Epidemic) or route requests (DSR). Sec-
ond, both Hybrid and Epidemic achieves high delivery ratios,
defined as the percentage of messages that are successfully
delivered. Hybrid achieves fewer losses while utilizing only
30% of the bandwidth used by Epidemic. On the other hand,
not unexpected, DSR performs poorly with a message delivery
ratio of merely 11.3% in a highly disconnected environment,
where route requests are often dropped by nodes that are
disconnected from other nodes.

Figure 8(b) shows the CDF of packet delivery latency of
all messages sent by Hybrid and Epidemic. We observe that
Hybrid improves upon the packet delivery latency compared
to Epidemic, particularly for packets that require long delivery
time. For instance, considering only messages in the top 30th

percentile of delivery time, the average for Hybrid is 7.0
seconds compared to 10.5 seconds for Epidemic. We attribute
this reduction to reduced packet losses and fewer transmission
retries in Hybrid, as compared to Epidemic.

Performance Hybrid Epidemic DSR
BW (KB) 154.58 508.80 178.53
Delivery ratio 85.3% 82.7% 11.3%

TABLE III
PERFORMANCE COMPARISONS (BANDWIDTH UTILIZATION AND DELIVERY

RATIO FOR Hybrid, Epidemic AND DSR).

C. ORBIT Testbed Deployment

RapidNet simulation environment enables us to study the
policy-based adaptive MANETS within a controlled environ-
ment. To study protocols in an actual wireless environment, we
run RapidNet in implementation mode and evaluate the same
declarative rules on the ORBIT testbed [2]. ORBIT evaluation
enables us to study various performance characteristics (such
as actual per-node CPU overhead and memory footprint, and
actual wireless interference) not observable in simulations.

In reference [16], we have presented ORBIT evaluation re-
sults for two policy-based adaptive MANET routing protocols,
namely a hybrid link-state routing and a hybrid proactive-
epidemic protocol. Our results are consistent with that obtained
in Section VI-A. Due to space constraints, we refer the inter-
ested reader to the paper for detailed experimental analysis,
and instead focus our evaluation on validating our simulation
results in Section VI-B.

The ORBIT testbed consists of machines with 1 GHz
VIA Nehemiah processors, 64KB cache, 512MB RAM, and
supports two types of network adapters (Intel Pro-wireless
2915-based 802.11 a/b/g and Atheros AR5212-based 802.11



13

a/b/g). By default, we configure all nodes in 802.11a ad-
hoc mode with RTS/CTS off and a retry number of 3. We
have selected 802.11a as it is less susceptible to interference
compared to 802.11b. We utilize 30 testbed nodes within a
5m×6m grid area for our experiments. Each ORBIT machine
executes an instance of a RapidNet process. One limitation of
ORBIT is that given that the maximum distance between any
two nodes in our experiment is about 7.8 meters, all nodes can
hear the transmission signals from all other nodes. To mitigate
this issue, we reduce the transmission power to 1dBm.

Given that nodes on the ORBIT testbed are static, we
emulate mobility by first running an equivalent experiment in
simulation mode, and recording all neighborhood updates from
the simulation traces. The neighborhood information is used to
create the link table at each node. In each experimental run,
we add and delete tuples from each node’s link table based
on mobility traces obtained from simulation runs. Since ns-3
emulation utilizes raw sockets, iptables are not applicable
for filtering packets at the MAC layer based on each node’s
current set of neighbors. Instead, application-level filtering is
done by each RapidNet node by filtering incoming tuples
to accept only the ones from nodes that are currently in its
neighbor set determined by the current stored link table.

This approach enables one to dynamically adjust neigh-
borhood information on ORBIT even though the nodes are
physically static. This flexibility however comes at the expense
of increased likelihood of transmission collision (and hence
dropped frames) since each node’s neighbors may not be
the ones that are physically closest on the grid. To reduce
likelihood of collisions, we add a random jitter of 0 to 200
milliseconds for each transmitted packet.

Given the above ORBIT settings, we carried out a similar 30
node experiment as described in Section VI-B, consisting of 10
E and 20 PR nodes. The actual network topology and changes
to neighborhood were first captured as traces in simulation
mode, and replayed on ORBIT, while all 30 nodes are running
the Hybrid protocol.

Table IV summarizes the per-node aggregate communi-
cation overhead and message delivery ratio for Hybrid and
Epidemic. In addition, Figure 8(c) shows the corresponding
CDF of the message delivery latency based on a breakdown
by messages. We excluded DSR from our ORBIT experiment
due to its low message delivery ratio. Our ORBIT results
are consistent with our previous simulation results: Hybrid
is able to achieve high delivery ratio with lower latency
while consuming only a fraction of the bandwidth required
by Epidemic.

Figure 9 shows a representative snapshot of typical CPU
usage averaged over all ORBIT nodes during a deployment
period from time 500 to 800 seconds for this particular
experiment. The periodic spike in CPU utilization corresponds
to the periodic transmission of messages in the network. We
observe that RapidNet requires low computation overhead:
3.7% for Epidemic, and 2.4% for Hybrid, at maximum. More-
over, the memory footprint is only 12MB, demonstrating the
efficiency of DAWN platform on ORBIT. Overall, our results
demonstrate that the additional overhead incurred in executing
a declarative networking engine on ORBIT is low.

Performance Hybrid Epidemic
BW (KB) 139.49 514.55
Delivery ratio 92.7% 97.3%

TABLE IV
PERFORMANCE COMPARISONS (BANDWIDTH UTILIZATION AND MESSAGE

DELIVERY RATIO FOR Hybrid AND Epidemic ON ORBIT NODES).

2.5

3.0

3.5

e 
(%

)

Epidemic Hybrid

0.5

1.0

1.5

2.0

2.5

3.0

3.5

500 550 600 650 700 750 800

C
P
U
 U
sa
ge
 (
%
)

Time (s)

Epidemic Hybrid

Fig. 9. Average CPU usage on ORBIT nodes running Hybrid and Epidemic

VII. RELATED WORK

Of particular relevance to our work is the literature on hy-
brid adaptive MANET routing protocols include Zone Routing
Protocol (ZRP) [11] and SHARP [29]. ZRP hybridizes proac-
tive and reactive protocols with routing zones, and SHARP
enhances ZRP by adding adaptivity of zone radius based on
traffic and application requirements. In addition, a threshold-
based hybrid protocol switching between proactive and reac-
tive routing according to network mobility is proposed in [36].
Reference [24] attempts to combine reactive AODV and DTN-
style routing in hybrid scheme to achieve the advantage of
both in changing network scenarios. Anxiety-Prone Link-State
(APLS) protocol [26] adapts between single path link state
routing in well connected parts of the network, and multi-path
epidemic style routing in disrupted parts of the network.

Inter-domain MANETs [7] enables end-to-end communi-
cations over heterogeneous MANETs governed by distinct
administrative domains. Their approach differs from DAWN’s
IPF mechanisms in Section V as follows. First there is no
policy-based protocol adaptation within or across different
routing domains. Second, dedicated gateways notes are re-
quired to serve as bridges to connect heterogeneous MANETs
networks. In contrast, DAWN’s IPF mechanisms require no
explicit gateways to be pre-specified, and forwarding policies
across nodes running different protocols are customized via
declarative rules.

Previously, declarative networking has been studied pri-
marily in wired environments, such as IP routing [6] and
overlay network construction [19]. Recent work [8] has also
demonstrated the feasibility of using declarative techniques
to program sensor network protocols. The MANET settings
present new challenges posed by the presence of mobil-
ity in the network. In addition, the variability of wireless
environment presents compelling motivation for the use of
declarative framework for synthesizing a variety of protocols,
and expressing policy decisions that enable one to adaptively
select and compose protocols at runtime.

This paper builds upon our prior work on applying declar-
ative techniques to enable policy-based adaptive MANET
routing [18], [16]. Extensions that we have made in the
paper include: (1) the generalized hybrid protocol presented



14

in Section IV, (2) policy-based inter-protocol forwarding in
Section V, and (3) performance evaluation in ns-3 simulations
and on the ORBIT testbed to highlight the above exten-
sions. Moreover, the implementation described in this paper
is based on the open-source RapidNet declarative networking
engine [4], [22], which is an improved implementation over
the earlier P2 system [3] presented in our prior work.

VIII. CONCLUSION

In this paper, we present DAWN, a declarative platform that
creates highly adaptive policy-based MANETs. We demon-
strate that a variety of MANET routing protocols can be speci-
fied concisely as declarative networks. Moreover, policy-based
adaptation can be expressed in the same declarative language
to create hybrid adaptive protocols based on various network
and traffic conditions. We further propose inter-protocol for-
warding techniques that ensure packets are able to seamlessly
traverse across clusters of nodes running different protocols
selected based on their respective policies. We have developed
a full-fledged implementation of DAWN using our open-source
RapidNet declarative networking system and experimentally
validate policy-based adaptive MANETs in dynamic settings
using a combination of ns-3 simulations and deployment on
the ORBIT testbed. Our evaluation demonstrates that DAWN
is a practical approach for deploying MANET protocols,
achieving concise specifications, policy-based adaptation, and
inter-protocol forwarding at low performance overheads.

IX. ACKNOWLEDGMENTS

This work is supported in part by NSF grants CCF-0820208,
CNS-0831376, CNS-0845552, and CNS-1040672.

REFERENCES

[1] Network Simulator 3. http://www.nsnam.org/.
[2] ORBIT Wireless Network Testbed. http://www.orbit-lab.org/.
[3] P2: Declarative Networking. http://p2.cs.berkeley.edu/.
[4] RapidNet. http://netdb.cis.upenn.edu/rapidnet/.
[5] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein,

and R. Sears. Boom analytics: exploring data-centric, declarative
programming for the cloud. In EuroSys, 2010.

[6] Boon Thau Loo and Joseph M. Hellerstein and Ion Stoica and Raghu
Ramakrishnan. Declarative Routing: Extensible Routing with Declara-
tive Queries. In SIGCOMM, 2005.

[7] C.-K. Chau, J. Crowcroft, K.-W. Lee, and S. H. Wong. Inter-domain
routing for mobile ad hoc networks. In MobiArch, 2008.

[8] D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker,
and I. Stoica. The design and implementation of a declarative sensor
network system. In SenSys, 2007.

[9] T. Clausen and P. Jacquet. Optimized link state routing protocol (olsr).
In RFC 3626 (Experimental), October 2003.

[10] H. Gill, T. Saeed, Q. Fei, Z. Zhang, and B. T. Loo. An Open-source
and Declarative Approach Towards Teaching Large-scale Networked
Systems Programming. In SIGCOMM Education Workshop, 2011.

[11] Z. J. Haas. A New Routing Protocol for the Reconfigurable Wireless
Networks. In IEEE Int. Conf. on Universal Personal Comms., 1997.

[12] M. Joa-Ng and I.-T. Lu. Peer-to-peer zone-based two-level link state
routing for mobile ad hoc networks. IEEE Journal on Selected Areas
in Communications, 17(8):1415–1425, 1999.

[13] D. B. Johnson and D. A. Maltz. Dynamic Source Routing in Ad Hoc
Wireless Networks. In Mobile Computing, volume 353. 1996.

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
Click Modular Router. ACM TOCS, 18(3), 2000.

[15] A. Lindgren, A. Doria, and O. Scheln. Probabilistic routing in intermit-
tently connected networks. In MobiHoc, 2003.

[16] C. Liu, R. Correa, X. Li, P. Basu, B. Loo, and Y. Mao. Declarative
policy-based adaptive MANET routing. In ICNP, 2009.

[17] C. Liu, X. Li, S. C. Muthukumar, H. Gill, T. Saeed, B. T. Loo, and
P. Basu. A Policy-based Constraint-solving Platform Towards Extensible
Wireless Channel Selection and Routing. In PRESTO Workshop, 2010.

[18] C. Liu, Y. Mao, M. Oprea, P. Basu, and B. T. Loo. A declarative
perspective on adaptive manet routing. In PRESTO workshop, 2008.

[19] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica. Implementing Declarative Overlays. In SOSP, 2005.

[20] Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith. MOSAIC: Unified Platform
for Dynamic Overlay Selection and Composition. In ACM CoNext, 2008.

[21] S. C. Muthukumar, X. Li, C. Liu, J. B. Kopena, M. Oprea, R. Correa,
B. T. Loo, and P. Basu. RapidMesh: declarative toolkit for rapid
experimentation of wireless mesh networks. In WINTECH, 2009.

[22] S. C. Muthukumar, X. Li, C. Liu, J. B. Kopena, M. Oprea, and B. T.
Loo. Declarative toolkit for rapid network protocol simulation and
experimentation. In SIGCOMM (demo), 2009.

[23] V. Nigam, L. Jia, B. T. Loo, and A. Scedrov. Maintaining Distributed
Logic Programs Incrementally. In ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming (PPDP), 2011.

[24] J. Ott, D. Kutscher, and C. Dwertmann. Integrating dtn and manet
routing. In CHANTS ’06: Proceedings of the 2006 SIGCOMM workshop
on Challenged networks, 2006.

[25] C. E. Perkins and E. M. Royer. Ad hoc on-demand distance vector
routing. In Proceedings of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications, New Orleans, LA, February 1999.

[26] Rajesh Krishnan et. al. The spindle disruption-tolerant networking
system. In MILCOM, 2007.

[27] R. Ramakrishnan and J. D. Ullman. A Survey of Research on Deductive
Database Systems. Journal of Logic Programming, 23(2), 1993.

[28] R. Ramanathan, R. Hansen, P. Basu, R. Rosales-Hain, and R. Krishnan.
Prioritized epidemic routing for opportunistic networks. In ACM
MobiOpp ’07, pages 62–66, San Juan, Puerto Rico, 2007.

[29] V. Ramasubramanian, Z. J. Haas, and E. G. Sirer. SHARP: A Hybrid
Adaptive Routing Protocol for Mobile Ad Hoc Networks. In ACM
MobiHoc, 2003.

[30] C. Santivanez, R. Ramanathan, and I. Stavrakakis. Making link-state
routing scale for ad hoc networks. In ACM MobiHoc, 2001.

[31] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe. BFT Protocols
under Fire. In NSDI, 2008.

[32] F. Tchakountio and R. Ramanathan. Tracking highly mobile endpoints.
In WOWMOM ’01: Proceedings of the 4th ACM international workshop
on Wireless mobile multimedia, 2001.

[33] A. Vahdat and D. Becker. Epidemic routing for partially-connected ad
hoc networks. Technical Report CS-2000-06, Duke University, 2000.

[34] A. Wang, P. Basu, B. T. Loo, and O. Sokolsky. Towards declarative
network verification. In 11th International Symposium on Practical
Aspects of Declarative Languages (PADL), 2009.

[35] A. Wang, L. Jia, C. Liu, B. T. Loo, O. Sokolsky, and P. Basu. Formally
Verifiable Networking. In 8th Workshop on Hot Topics in Networks
(ACM SIGCOMM HotNets-VIII), 2009.

[36] J. Xie, L. G. Quesada, and Y. Jiang. A Threshold-based Hybrid Routing
Protocol for MANET. In 4th International Symposium on Wireless
Communication Systems, 2007.

[37] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient
Querying and Maintenance of Network Provenance at Internet-scale. In
SIGMOD, 2010.

[38] W. Zhou, O. Sokolsky, B. T. Loo, and I. Lee. DMaC: Distributed
Monitoring and Checking. In 9th International Workshop on Runtime
Verification (RV), 2009.

Changbin Liu received his B.S. degree from Tsinghua University in 2007
and M.S. Degree from University of Pennsylvania in 2009, both in Computer
Science. Since fall 2007, he has been working as a research assistant in
University of Pennsylvania, where now he is a Ph.D. candidate in the
Computer & Information Science department. His current research interests
include wireless networking, distributed systems and cloud computing.
Rick Correa graduated with a B.S. degree in Computer Science in 2004 from
the University of Texas at El Paso. In 2008, he received his M.S. degree in
Computer and Informational Science from the University of Pennsylvania.
He is currently a senior member of the technical staff at Lockheed Martin’s
Advanced Technology Laboratories in Cherry Hill, NJ.
Xiaozhou Li received his B.E. degree in Electronic Engineering from
Tsinghua University in 2008 and his M.S. degree in Telecommunications and
Networking from University of Pennsylvania in 2010. He is currently a Ph.D.
student at Princeton University.
Prithwish Basu is a Senior Scientist at Raytheon BBN Technologies. His
research interests include network science, several aspects of mobile ad hoc
networking (MANET), and in general, theoretical aspects of networking. He
holds a Ph.D. degree in Computer Engineering from Boston University and
a B.Tech. degree in Computer Science and Engineering from IIT Delhi.
Boon Thau Loo is an Assistant Professor in the Computer and Information
Science department at the University of Pennsylvania. He received his Ph.D.
degree in Computer Science from the University of California at Berkeley in
2006. His research focuses on distributed data management systems, Internet-
scale query processing, and applying data-centric techniques and formal
methods to the design, analysis and implementation of networked systems.
Yun Mao is a senior member of technical staff - research at the Shannon
Laboratory in AT&T Labs - Research. He received the Ph.D. degree in
computer and information science at University of Pennsylvania in 2008.
His current research interests include distributed systems, including protocol
design, programming environment, performance, and resource management.


