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ABSTRACT
We present the RapidMesh toolkit for rapid protocol simula-
tion, implementation and experimentation of wireless mesh
networks. RapidMesh utilizes declarative networking, a declar-
ative, database-inspired extensible infrastructure that uses
query languages to specify behavior. RapidMesh integrates
a declarative networking engine with the emerging ns-3 net-
work simulator. The same declarative specifications can
also be used as actual implementations using the ns-3 net-
work emulator, hence providing a bridge between simula-
tion and testbed-based experimentation. We demonstrate
that RapidMesh enables a variety of wireless routing pro-
tocols and neighbor discovery protocols can be synthesized
via compact declarative specifications. We experimentally
validate declarative MANET routing protocols in dynamic
settings within RapidMesh operating in ns-3 simulation en-
vironment and on the ORBIT wireless testbed.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Design, Languages, Experimentation
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1. INTRODUCTION
In the past decade, there has been intense activity on

the development of routing protocols for mobile ad hoc net-
works (MANETs). A wide variety of routing protocols have
been proposed, all with their own strengths and weaknesses,
and all with varying degrees of success. For example, re-
active routing protocols such as DSR [7] and AODV [14]
set up routing state on demand and hence are preferred for
low traffic environments; proactive routing protocols such as
OLSR [4] on the other hand expend network bandwidth to
gather routing state with a purpose of amortizing this ex-
tra cost over multiple traffic flows – hence these are better
for high traffic load environments, in general. Recently re-
searchers have focused on the disruption tolerance aspects
of MANETs that are at best intermittently connected, e.g.,
epidemic routing protocols [20].

Despite the proliferation of wireless routing protocols, there
have been a lack of systematic tools that can enable one
to carefully study the performance characteristics of these
protocols under a variety of mobility settings. While ex-
tensive simulation studies (e.g. [2]) have been carried out in
the past and provided useful insights into different routing
protocols, they may not completely reflect real-world effects
which manifest themselves in actual deployments. The re-
cent advent of open testbeds such as Orbit [19] presents an
avenue for evaluating these MANET protocols under realis-
tic settings. However, implementing, deploying and evaluat-
ing MANET protocols on these testbeds (particularly with
mobility induced in the experiment setup) remain arguably
a time-consuming and tedious process.

In reality, network designers require a combination of sim-
ulation and evaluation on realistic testbeds. Simulation en-
ables one to study routing protocols in a controlled environ-
ment where one can scale to large number of nodes under
complex mobility patterns. After validating the design in
simulation, an actual wireless testbed is useful for studying
the protocol in a realistic setting.

In this paper, we present RapidMesh, a development toolkit
that enables one to rapid prototyping and analyze wire-
less mesh protocols in simulation and on actual testbeds.
RapidMesh utilizes declarative networking [11, 10], a declar-



ative, database-inspired extensible infrastructure that uses
query languages to specify network behavior. A declarative
approach enables modular reuse of resources and functions
by allowing network programmers to say “what” they want,
without worrying about the details of “how” to achieve it.
This makes it easy to specify protocols, since specification is
largely confined to the “what”, while implementation of the
“how” is automated. In addition, there are other benefits
such as compactness of specifications, safety, and potential
for correctness checks.

RapidMesh integrates a declarative networking engine with
the emerging ns-3 [13, 5] network simulator, intended as
an eventual replacement for the ns-2 simulator. MANET
routing and neighbor discovery protocols are specified using
declarative specifications, which are then compiled into ns-
3 code for simulation and analysis. The same declarative
specifications can also be used as actual implementations
using the ns-3 network emulator, hence providing a bridge
between simulation and testbed-based experimentation.

Specifically, the paper makes the following contributions:

Declarative protocols for wireless mesh networks:
We demonstrate that RapidMesh enables routing protocols
such as various variants of link state routing, dynamic source
routing and epidemic routing to be specified compactly as
declarative networks in a compact and clean fashion, typi-
cally in a handful of lines of program code. Moreover, neigh-
borhood discovery protocols and distributed queries that
monitor properties of the network, and testbed configura-
tions (e.g. determining the current set of neighbors) can be
specified using declarative networking language.

Experimental validation: We experimentally validate declar-
ative MANET routing protocols in dynamic settings within
RapidMesh operating in ns-3 simulation environment and
on the ORBIT wireless testbed. Our results demonstrate
that RapidMesh can enable a network developer to generate
compact routing specifications that can be simultaneously
evaluated in simulation and on an actual testbed to gain
insights into protocol behavior under mobility.

The long term goal of RapidMesh is to provide a plat-
form for rapid prototyping, synthesis, and deployment of
new network protocols. In addition to being a valuable tool
for rapid network prototyping and analysis, RapidMesh can
potentially be used as a basis of an educational software
package that packages the declarative platform with ns-3
and the ORBIT testbed, enabling students to learn and ex-
periment with network protocols via higher level declarative
abstractions.

2. BACKGROUND
The high level goal of declarative networks is to build ex-

tensible architectures that achieve a good balance of flexibil-
ity, performance and safety. Declarative networks are spec-
ified using Network Datalog (NDlog), which is a distributed
recursive query language for querying networks.

Declarative queries such as NDlog are a natural and com-
pact way to implement a variety of routing protocols and
overlay networks. For example, traditional routing protocols
such as the path vector and distance-vector protocols can
be expressed in a few lines of code [11], and the Chord dis-
tributed hash table in 47 lines of code [10]. When compiled
and executed, these declarative networks perform efficiently
relative to imperative implementations. Recent work [21]

has also shown that declarative specifications can be veri-
fied using a mechanized prover, hence enabling the bridging
of specification, verification, and implementation.

NDlog is based on Datalog [15]: a Datalog program con-
sists of a set of declarative rules. Each rule has the form p

:- q1, q2, ..., qn., which can be read informally as “q1
and q2 and ... and qn implies p”. Here, p is the head of
the rule, and q1, q2,...,qn is a list of literals that constitutes
the body of the rule. Literals are either predicates with at-
tributes (which are bound to variables or constants by the
query), or boolean expressions that involve function symbols
(including arithmetic) applied to attributes.

Datalog rules can refer to one another in a mutually re-
cursive fashion. The order in which the rules are presented
in a program is semantically immaterial; likewise, the order
predicates appear in a rule is not semantically meaningful.
Commas are interpreted as logical conjunctions (AND). The
names of predicates, function symbols, and constants begin
with a lowercase letter, while variable names begin with an
uppercase letter. Function calls are additionally prepended
by f_. Aggregate constructs are represented as functions
with attribute variables within angle brackets (<>). We il-
lustrate NDlog using a simple example of two rules that com-
putes all pairs of reachable nodes:

r1 reachable(@S,N) :- link(@S,N).
r2 reachable(@S,D) :- link(@S,N),

reachable(@N,D).

The rules r1 and r2 specify a distributed transitive clo-
sure computation, where rule r1 computes all pairs of nodes
reachable within a single hop from all input links (denoted
by the link, and rule r2 expresses that “if there is a link
from S to N, and N can reach D, then S can reach D.” The
output of interest is the set of all reachable(@S,D) tuples,
representing reachable pairs of nodes from S to D. By mod-
ifying this simple example, we can construct more complex
routing protocols, such as the distance vector and path vec-
tor routing protocols.

NDlog supports a location specifier in each predicate, ex-
pressed with the @ symbol followed by an attribute. This
attribute is used to denote the source location of each corre-
sponding tuple. For example, all reachable and link tuples
are stored based on the @S address field. To support wireless
broadcast, we have introduced a broadcast location specifier
denoted by @* which will broadcast a tuple to all nodes
within wireless range of the node where the rule is executed.

NDlog queries are compiled and executed as distributed
dataflows by the query processor to implement various net-
work protocols. These dataflows share a similar execution
model with the Click modular router [8].

2.1 Soft-state Storage Model
Declarative networking incorporates support soft-state [16]

derivations commonly used in networks. In the soft state
storage model, all data (input and derivations) has an ex-
plicit “time to live” (TTL) or lifetime, and all tuples must
be explicitly reinserted with their latest values and a new
TTL, or they are deleted.

The soft-state storage semantics are as follows. When a
tuple is derived, if there exists another tuple with the same
primary key but differs on other attributes, an update occurs,
in which the new tuple replaces the previous one. On the
other hand, if the two tuples are identical, a refresh occurs,
in which the existing tuple is extended by its TTL.



For a given predicate, in the absence of any materialize

declaration, it is treated as an event predicate with zero
lifetime. Since events are not stored, they are primarily used
to trigger rules periodically or in response to network events.
Event predicates (whose names start with an additional “e”)
are used to denote transient tables which are used as input
to rules but not stored.

For example, utilizing the built-in periodic keyword ,
node X periodically generates a ePing event every 10 seconds
to its neighbor Y denoted in the link(@X,Y) predicate:

ePing(@Y,X) :- periodic(@X,10), link(@X,Y).

3. OVERVIEW
Figure 1 provides an overview of RapidMesh’s basic ap-

proach towards unifying specifications, simulation, and im-
plementation within a common declarative framework. In
the initial design phase of RapidMesh, a network design is
used as the basis for specifying the network protocol using
the NDlog declarative networking language. High-level in-
variant properties of the protocol can also be expressed in
NDlog as distributed queries which raise event alarms when
invariants are violated.

In the simulation mode, the RapidMesh compilation pro-
cess generates ns-3 code from the NDlog protocol specifi-
cations and invariants. The generated code either runs as
an ns-3 application, or replaces routing protocol implemen-
tations at the network layer. The generated code imple-
ments dataflows (execution plans) with a similar execution
model with the Click modular router [8], which consists of
elements that are connected together to implement a variety
of network and flow control components. In addition, those
elements include database operators (such as joins, aggre-
gation, selections, and projects) that are directly generated
from the declarative networking rules. Messages flow among
dataflows executed at different nodes, resulting in updates
to local tables. The local tables store the state of intermedi-
ate and computed query results which represent the network
state of various network protocols.

In the implementation mode, declarative networking speci-
fications are directly executed and deployed either using the
P2 declarative networking system [1] or the ns-3 network
emulator. RapidMesh currently utilize ns-3 network emula-
tor for actual implementation. In the emulation mode, each
ns-3 simulation node connects to the real physical network
underneath using a raw socket. While we have successfully
implemented several declarative networks using the P2 sys-
tem in the past, we have chosen to adopted the ns-3 emu-
lation environment to implement the protocols themselves.
The main advantage is in ensuring that all declarative net-
working protocols are evaluated in simulation and emulation
within a common ns-3 code base.

Since declarative networks share common functionalities
such as the network stack, multiplexing tuple messages en-
tering and leaving the dataflow, and database functional-
ities, all these utilities are defined in a shared RapidMesh
library. This enables one to simplify the compilation pro-
cess to only the relevant database operations that implement
the distributed dataflows for the corresponding declarative
network specification. This also enables one to easily in-
corporate multi-query optimizations to share computations
across declarative networks in future.

4. DECLARATIVE SPECIFICATIONS
We demonstrate a variety of MANET routing protocols

expressed using RapidMesh. Table 1 summarizes the declar-
ative protocols that we have successfully implemented, and
the corresponding number of rules required. In this section,
we primarily focus our discussions on proactive protocols ,
and a brief description of neighbor discovery rules and mon-
itoring queries. Appendix A present additional examples on
DSR and epidemic routing.

Category Protocol Rules

Reactive Dynamic source routing 11

Proactive
Traditional link state 15

Optimized link state routing 34
Hazy sighted link state 18

Epidemic Summary-vector based epidemic 17

Table 1: Declarative MANET Protocols and number
of rules.

4.1 Proactive Protocols
A well studied proactive protocol is the link-state pro-

tocol, in which the entire topology is disseminated to all
nodes in the network. We show first an example for network-
wide flooding of link-state (LS) updates in traditional link-
state, followed by two variants of link-state commonly used
in MANET settings. Traditional dissemination of link state
information is expressed by the following NDlog rules:

ls1 lsu(@S,S,N,C,S) :- link(@S,N,C).
ls2 lsu(@M,S,N,C,Z) :- link(@Z,M,C1),

lsu(@Z,S,N,C,W), M!=W.

lsu(@M,S,N,C,Z) is a link state update (LSU) correspond-
ing to link(S,N,C), which indicates a link between node S

and N with a cost of C. This LSU tuple is flooded in the
network starting from source node S. During the flooding
process, node M is the current node it is flooded to, while
node Z is the node that forwarded this tuple to node M.

Rule ls1 generates an lsu tuple for every link at each
node. Rule ls2 states that each node Z that receives an lsu

tuple recursively forwards the tuple to all neighbors M except
the node W that it received the tuple from. Datalog tables are
set-valued, meaning that duplicate tuples are not considered
for computation twice. This ensures that no similar lsu

tuple is forwarded twice.
The above LS rules perform triggered updates continu-

ously: whenever a link is added or deleted, a corresponding
lsu is inserted or deleted locally, and then flooded to the
entire network. As an alternative, one may prefer to imple-
ment link-state via periodic updates by modifying rule ls1

as follows:

ls1p lsu(@S,S,N,C,S) :- periodic(@S,10),
link(@S,N,C).

ls2p lsu(@M,S,N,C,Z) :- link(@Z,M,C1),
lsu(@Z,S,N,C,W), M!=W.

In rule ls1p we utilize the periodic keyword to flood once
in every 10 seconds. In order to ensure freshness of lsu tu-
ples, they are stored using soft-state (Section 2.1), where
the lifetimes are set to be roughly the duration of periodic
floods. In practice, a combination of triggered updates for
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Figure 1: Overview of RapidMesh

timeliness and periodic updates for robustness are used. The
declarative framework enables both approaches naturally via
modifications to a single rule, demonstrating the power of
declarative programming. In addition, batched triggered up-
dates in which updates are batched and propagated at fixed
intervals can also be concisely expressed within this frame-
work.

Our example above utilizes unicast communication, where
each link tuple results in an lsu tuple being sent via unicast
to each neighbor. Using the broadcast location specifier @*

described in Section 2, the following rules broadcast link
information to all neighbors within the wireless range of each
node S:

ls1b lsu(@*,S,N,C,S) :- link(@S,N,C).
ls2b lsu(@*,S,N,C,Z) :- lsu(@Z,S,N,C,W).

Once the entire network topology, i.e., all the links, are
available at each node, additional rules are required in or-
der to compute the shortest paths with minimum cost C

for each source S and destination D. These rules take as in-
put the local lsu tuples generated, and essentially result in
the execution of the Dijkstra’s algorithm locally. They are
shown as follows:

bp1 path(@M,S,N,P,C) :- lsu(@M,S,N,C,W),
P=f_init(S,N).

bp2 path(@M,S,D,P,C) :- lsu(@M,S,N,C1,W),
bestPath(@M,N,D,P2,C2),
C=C1+C2, P=f_concatPath(S,P2).

bp3 bestPathCost(@M,S,D,min<C>) :-
path(@M,S,D,P,C).

bp4 bestPath(@M,S,D,P,C) :-
bestPathCost(@M,S,D,C),
path(@M,S,D,P,C).

In rule bp1, 1-hop paths are built from every link, while in
rule bp2 paths are recursively constructed by concatenating
shorter path with links. Rule bp3 computes the minimum
cost for paths with same sources and destinations, and rule
bp4 finally computes the best paths.

Optimized Link-state Routing (OLSR): A well-known
proactive MANET protocol is OLSR (Optimized Link State
Protocol) [4]. OLSR ensures efficient flooding by forwarding
LSUs to a subset of neighbors known as multipoint relays
(MPR). The union of the neighbor sets of MPRs of any node
X is equal to the set of 2-hop neighbors of X. The following

rules olsr1-2 are modified from rule ls1-2 to implement
OLSR-style flooding of LSUs:

olsr1 lsu(@S,S,N,C,S) :- periodic(@S,10),
link(@S,N,C).

olsr2 lsu(@M,S,N,C,Z) :- mpr(@Z,M,C1),
lsu(@Z,S,N,C,W), M!=W.

The mpr predicate in rule olsr2 denotes MPR tuples each
storing multipoint relay node M for node Z. This predicate
itself can be defined with additional rules to customize the
definition of MPR.

Hazy-sighted Link-state (HSLS): Hazy Sighted Link
State routing (HSLS) [18] is a scalable LS routing variant
for handling moderate to high rate of change in network
topology. This protocol attempts to control the scope and
frequency of its LSU flooding scheme based on the topology
of the network. The basic principle of HSLS is that route
calculation of a node should not be affected significantly
by link dynamics due to mobility or failure in a portion of
network that is far away from this node. Hence unlike the
pure LS protocol which performs a network wide flood of all
LSUs, HSLS sends LSUs to the 2k hop neighbors of a node
with a period equal to 2kTe, where Te is a nominal period.
If link dynamics are high, pure LS starts thrashing because
remote nodes could receive an LSU corresponding to a link
that has long vanished.

Policy rules used in HSLS are expressed as follows:

hsls1 lsu(@S,S,N,C,S,TTL) :- periodic(@S,T),
link(@S,N,C), T=f_pow(2,K)*Te,
TTL=f_pow(2,K), K=range[1,10].

hsls2 lsu(@M,S,N,C,Z,K-1) :-
lsu(@Z,S,N,C,W,K),
link(@Z,M,C1), K>0, M!=W.

Rule hsls1 is periodically fired, and the period of exe-
cution depends on 2KTe. Note that here we add one more
attribute for lsu tuple, which is TTL used for controlling
flooding scope. In declarative networking, it is easy to mod-
ify tuples, such as adding and deleting their attributes due to
the need of different protocols. Rule hsls2 keeps forward-
ing LSUs if their TTL is larger than 0. Similar to LS, the
HSLS rules can be modified to support triggered updates or
batched triggered updates. In triggered updates, the flood
of the corresponding LSU for each link insert/delete event
is scoped using using a similar HSLS policy, where LSUs



flooded within a time interval has a fixed TTL. If triggered
updates are used, in order for all LSUs to reach every node,
a periodic network-wide LSU flooding needs to be carried
out based on the nominal period Te.

4.2 Neighbor Discovery and Monitoring
In all of the above examples, the link table is used as in-

put to the routing protocol. The table represents the neigh-
borhood information gathered at each node, and can itself
be generated via a neighbor discovery process. For instance,
an NDlog rule can be used to generate a periodic beacon
message which is used to refresh the link tables at neigh-
boring nodes. To illustrate, we consider the following two
NDlog rules:

d1 beaconMsg(@*,S) :- periodic(@S,10).
d2 link(@N,S,1) :- beaconMsg(@N,S).

In rule d1, each node S generates a broadcast beacon mes-
sage every 10 seconds that contains its address. The recip-
ient node N inserts (or refresh) its local link(@N,S,1 entry
upon receiving the beacon message from S, and set the cost
to be 1. Each link tuple has a soft-state TTL that can
be customized based on the periodic beacon interval. Ad-
ditional predicates can be added to the rule d2 in order to
specify neighbor selection policies, for instance, a node may
limit its neighbors to trusted nodes or those with similar
hardware configurations. The cost of each link can also be
customized, e.g. based on link RTT or expected transmission
count (ETX).

Since declarative networks utilize a distributed query en-
gine to execute its protocols, monitoring queries can be ex-
pressed as NDlog rules to gather network statistics that de-
pict the performance characteristics of the deployed protocol
and the degree of mobility. For instance, a distributed re-
cursive query can be used to compute network diameter,
average link availability [17], average node degree, etc..

5. EVALUATION
In this section, we validate the RapidMesh system by de-

veloping and evaluating declarative implementations of LS
and HSLS (Section 4) in simulation and emulation modes.
In evaluating these two protocols, we measure per-node com-
munication overhead (Kbps) and two well-known notions of
route quality: route stretch, and route validity. Given the
source and the destination of a routing request, the stretch
of the route is the ratio of the hop count of the path selected
by the routing algorithm to that of the optimal path given
by the oracle with complete and instantaneous knowledge of
the entire network topology. A route is valid if at the time
it is computed from the local LSUs, the links that comprise
the route are still up.

5.1 Simulation
Our first set of results involves executing declarative im-

plementations of LS and HSLS within the ns-3 simulation
environment. This enables us to study the protocols within
a controlled environment using existing mobility models. In
Section 5.2, we will repeat the same experiments in emula-
tion using the exact same declarative specifications.

Our experiment setup consist of 35 nodes within an arena
of size 550 meters by 750 meters, where nodes are configured
to move at 0.5 m/s based on the random walk 2-dimensional

model, often identified as a Brownian motion model. We use
the identical mobility traces across all experiments in order
to ensure we can compare the protocols based on a similar
set of link updates.

All nodes communicate with other nodes using ns-3’s
802.11b WiFi model with a range of approximately 100 me-
ters. Based on this setup, network-wide link updates happen
at an average rate of 1.3 events/second. The average node
degree for the experimental duration is 5.6.

Each node executes the LS or HSLS protocols and the
neighbor discovery protocol described in Section 4. We uti-
lize periodic and periodic with triggered propagation modes.
The latter approach combines both periodic flooding and
triggered updates, which results in better route validity and
stretch at the expense of increased communication overhead.
The periodic flooding interval in LS and the nominal period
of HSLS is set to 60 seconds.

Figures 2-4 compares LS and HSLS with periodic flooding
based on the three evaluation metrics of per-node communi-
cation overhead, average route validity and stretch respec-
tively. The Y-axis shows the respective metric, while the
X-axis shows the elapsed time of the experiment (up to 500
seconds). To compute route validity and stretch, at every 5
second interval, we determine the fraction of routes that are
valid at that instance, and for all valid routes greater than 3
hops, we compute the average stretch at the same instance.

Figure 2 compares LS and HSLS based on their per-node
communication usage over time. Overall, as expected, HSLS
incurs considerably less bandwidth due to the use of scoped
flooding, incurring on average per-node communication over-
head (sending traffic) of 0.29 kBps, as compared to 0.53
kBps for LS. Our HSLS implementation exhibits expected
periodic scoped flooding behavior from the protocol speci-
fication. At more frequent intervals, HSLS flood peaks are
lower compared to LS due to scoped flooding (at TTL of
2 and 4). These results are consistent with the expected
protocol behavior and performance of LS and HSLS. More-
over, because of the scoped flooding, HSLS computes shorter
paths compared to LS. The average path hop count com-
puted by HSLS is of length 1.8, as compared to 2.2 for LS.
The network-wide average longest paths (averaged every 5
seconds) computed by LS is 7.1 hops, as compared to 4.3
hops for HSLS.

Figure 3 shows the corresponding route validity of LS and
HSLS. We observe that route validity is close to 1 whenever
a network-wide flood occurs. However, the fraction of valid
routes decreases rapidly (particularly in the case of HSLS)
until the next flood occurs. Moreover, LS achieves higher
route validity, achieving a route validity (averaged over the
entire experiment duration) of 0.64 compared to 0.52 for
HSLS.

Figure 4 shows the average stretch of all valid routes for LS
and HSLS. Given the relatively small network, route stretch
do not degrade significantly during the experiment. As a
result, LS and HSLS achieve roughly equivalent stretch of
1.1, computed from all valid routes averaged over the entire
experiment duration. In the case of LS, we observe that
there is a sharp momentary increase in route stretch after
300s. This is an effect of the specific mobility pattern used in
the experiment. At around 300s, nodes move towards each
other to form a denser network. Since LS computes paths for
the entire network, it is more vulnerable to sudden clustering
of nodes compared to HSLS. In both cases, we note that both
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protocols are able to recover and reduce route stretch to 1
at the next flood.

Overall, our experimental results validate that our declar-
ative implementations of LS and HSLS achieve the expected
performance vs route quality tradeoffs. In aggregate, LS
incurs 1.8 times more bandwidth compared to HSLS, but
improves overall route validity of HSLS by 19%. However,
since LS utilize a more aggressive flooding strategy, we ob-
serve higher packet losses of 10% for LS compared to 4% for
HSLS. Our results suggest that in a network with higher mo-
bility, LS potentially will result in even higher losses, which
may cause poor route quality compared to HSLS. Investi-
gating the performance between these two protocols is an
avenue of future work.

Figures 5-7 shows the corresponding results of executing
LS and HSLS with triggered updates being used in between
periodic floods. The basic specifications of LS and HSLS re-
main unchanged, with a few additional NDlog rules to trigger
LSU updates when links are added or deleted. Overall, we
similarly observe that the comparative differences between
LS and HSLS that we observe in the earlier experiment.
The additional use of triggered updates increase average per-
node bandwidth utilization of periodic LS and HSLS by 17%
and periodic HSLS by 21%. We note that when averaged
across the entire experimental duration, route validity im-
proved from 0.64 to 0.71 for LS, and from 0.52 to 0.57 for
HSLS. This suggests that when used appropriately, triggered
updates can result in overall improved route quality.

5.2 ORBIT Testbed
We execute the declarative implementations of LS and

HSLS using the same generated ns-3 code running in emu-
lation mode on the ORBIT wireless testbed [19]. This ap-
proach enables us to study the LS and HSLS protocols in an
actual wireless environment, and also validate the observa-
tions drawn from simulations. The ORBIT testbed consists
of machines with 1 Ghz VIA Nehemiah processors, 64KB
cache, 512MB RAM, and supports two types of network
adapters (Intel Pro-wireless 2915-based 802.11 a/b/g and
Atheros AR5212-based 802.11 a/b/g). Nodes on the OR-
BIT testbed are placed a meter apart from one another in a
grid and run with 1dBm transmit power.

Our evaluation is based on the RapidMesh system run-
ning in the emulation mode supported by ns-3. Each OR-
BIT machine executes an instance of a RapidMesh process
running in ns-3’s emulation mode. We utilize 35 testbed
nodes with the Atheros adapter within a 7m×5m grid area.

for our experiments. In both protocols, given our use of
broadcast communication to disseminate LSUs to neighbors,
RTS/CTS and retries are not invoked. We have selected
802.11a as it is less susceptible to interference on the OR-
BIT testbed compared to 802.11b.

Given that nodes on the ORBIT testbed are static, we
emulate random walk 2-dimension mobility based on the
neighborhood updates obtained from simulation traces with
node speed of 0.15m/s. The neighborhood information is
used to create the link table at each node. In each ex-
perimental run, we add and delete tuples from each node’s
link table based on mobility traces obtained from our above
simulation runs. Since ns-3 emulation utilizes raw sockets,
iptables are not applicable for filtering packets at the MAC
layer based on each node’s current set of neighbors. Instead,
application-level filtering is done by each RapidMesh node
which will filter incoming tuples to accept only tuples from
nodes that are currently in its neighbor set determined by
the current tuples stored in each node’s link table.

This approach enables one to dynamically adjust neigh-
borhood information on ORBIT even though the nodes are
physically static. This flexibility however comes at the ex-
pense of the increased likelihood of transmission collision
(and hence dropped frames) since each node’s neighbors are
not the ones that are physically closest on the grid. In all
variants of link-state routing. to reduce the likelihood of col-
lisions, we de-synchronize the time at which all nodes send
out network-wide LSUs by spacing out the starting time of
nodes. This reduces the peak bandwidth utilization when all
nodes are sending LSUs to all other nodes. To reduce packet
interference caused by potential simultaneous broadcast of
LSUs, we add a random jitter of 0 to 500 milliseconds to
every broadcast packet.

Figures 8-10 shows our experimental results for LS and
HSLS with periodic flooding on ORBIT. Figure 8 shows that
the peaks in per-node bandwidth utilization is lower com-
pared to the corresponding simulation experiment in Fig-
ure 2. However, each network-wide flood last for a signifi-
cantly longer period as noted from the width of each peak.
This is in part due to the addition of packet jitter to de-
synchronize the flooding of LSUs. With the use of jitter,
we note packet losses of 3.4% for LS and negligible losses
for HSLS. Figures 9 and 10 shows that LS achieves better
route validity compared to HSLS and roughly equivalent av-
erage route stretch. Moreover, route validity and stretch are
significantly improved after each network-wide flood. These
observations are consistent with our simulation results.
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Figure 8: Per-Node communica-
tion overhead (KBps) for LS and
HSLS (periodic).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350  400  450  500

R
ou

te
 V

al
id

ity

Time (Seconds)

LS
HSLS
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Figure 10: Route stretch for LS
and HSLS (periodic).

Figures 11-13 shows the ORBIT experimental results for
LS and HSLS with both periodic flooding and triggered up-
dates being used. Similar to our prior observations, the
bandwidth utilization is increased with the additional use
of triggered updates. However, route quality has improved
as a result. For instance, the average route quality of LS
increased from 0.81 to 0.90 with the additional use of trig-
gered updates. Similarly, the average route quality of HSLS
increases from 0.63 to 0.69. These comparative differences
are also consistent with that of our simulation results.

6. RELATED WORK
Prior to this paper, declarative networking has been stud-

ied primarily in wired environments, such as IP routing [11]
and overlay network construction [10]. Recent work [3] has
also demonstrated the feasibility of using declarative tech-
niques to program sensor network protocols. The MANET
settings present new challenges posed by the presence of mo-
bility in the network. In addition, the variability of wireless
environment presents compelling motivation for the use of
declarative framework for synthesizing a variety of protocols
and evaluate their performance/overhead tradeoffs under a
variety of mobility patterns.

Reference [9] first proposes the use of declarative pro-
gramming to prototype and adapt MANET routing proto-
cols. This paper realizes the vision with the development of
RapidMesh toolkit, with experimental validation in the ns-3
simulation environment and the ORBIT wireless testbed.

7. CONCLUSION
In this paper, we present RapidMesh, a declarative toolkit

that enables one to rapidly specify, analyze and experiment
with MANET protocols both in simulation and on an ac-
tual wireless testbed using a common code-base and run-
time system. RapidMesh utilizes declarative networking [11,
10], a declarative, database-inspired extensible infrastruc-
ture that uses query languages to specify network behav-
ior. Our initial experience of using RapidMesh to prototype
and evaluate wireless routing protocols suggests that this is
a promising approach. Declarative networking techniques
can be used effectively to rapidly prototype protocols in a
compact fashion, and one can rapidly deploy and evaluate
the protocols in simulation and emulation. Moreover, the
declarative framework enables the ability to rapidly explore
a wide range of deployment and implementation parameters
necessary for tuning the performance of MANET protocols.

Our immediate steps include further experimentation on
the ORBIT wireless testbed, by studying the performance
tradeoffs across a wide-range of reactive and epidemic proto-
cols under different mobility patterns. In the near future, we
plan to release RapidMesh as open-source for use in the re-
search community. While our focus so far have been on vali-
dating RapidMesh on existing protocols, our ultimate goal is
to develop a suite of declarative wireless protocols that can
be used as building blocks by other researchers in designing
their own protocols.

Another recent research initiative in the space of MANET
protocol developments is component-based routing [6], which
attempts to compose complex routing protocols from sim-
pler components at a finer granularity than hybrid protocols.
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Their goal is adaptability to the dynamic environment in
MANETs, the focus is on the diagnosis and the subsequent
improvement of a weak protocol component. Interestingly,
the declarative networking language enables composability
via the abilities to define predicates to be used by other
rules. This has been shown in prior work [12] to be useful
for synthesizing new networks from components, suggesting
its applicability to component-based routing.
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APPENDIX
A. ADDITIONAL EXAMPLES

A.1 Reactive Protocol: Source Routing
Next, we demonstrate a reactive protocol based on DSR [7].

The following set of rules show the route discovery of DSR
(rules dsr1-4) followed by the route response (rules dsr5-6)
traversing the best reverse path from destination to source.

dsr1 eRouteReq(@N,S,D,P,C) :- eQuery(@S,D),
link(@S,N,C), P=f_init(S).

dsr2 eRouteReq(@Z,S,D,P,C):-
shortestRoute(@N,S,D,P1,C1),
link(@N,Z,C2),
C=C1+C2, P=f_concatPath(P1,S).

dsr3 minCost(@N,S,D,min<C>) :-
routeReq(@N,S,D,P,C).

dsr4 shortestRoute(@N,S,D,P,C) :-
minCost(@N,S,D,C),
routeReq(@N,S,D,P,C).

dsr5 eRouteReply(@Z,S,D,P2,P1,C) :-
eRouteReq(@N,S,D,P2,C), N==D,
Z=f_last(P2),P1=f_removeLast(P2).

dsr6 eRouteReply(@Z,S,D,P,P1,C) :-
eRouteReply(@Z,S,D,P,P2,C),
Z=f_last(P2),
f_size(P2)>0, P1=f_removeLast(P2),

In DSR, a requesting node S issues an initial route request,
denoted by eQuery(@S,D) event in rule dsr1. This results
in a eRouteReq message tuples that is generated and recur-
sively forwarded along all links (rules dsr2). The routeReq

table is used to cache current route requests. To prune un-
necessary paths, rules dsr3-4 ensures that only the shortest
path from the initial node S to the intermediate node N is
maintained.

Upon reaching the destination node D, rule dsr5 generates
a eRouteReply message that is sent back recursively via rule
dsr6 along the computed best reverse path back to the re-
questing node S. The functions f_last and f_removeLast

return and remove the last node from a path respectively.
Rule dsr6 reaches the initial requesting node S when the
remaining path length is 0.

The rules for AODV [14] share similarities with DSR above,
where only the next hop rather than the entire path is main-
tained.

A.2 Epidemic Protocols
Epidemic routing has been proposed for reliable delivery

in intermittently connected MANETs (a class of disruption
tolerant networks or DTNs). A key reliability component of
such protocols is the summary vector exchange as illustrated
by the rules e1-4 below:

e1 eBitVecReq(@Y,X,V):- summaryVec(@X,V),
eDetectNewLink(@X,Y).

e2 eBitVecReply(@X,Y,V):- eBitVecReq(@Y,X,V1),
summaryVec(@Y,V2),
V=f_vec_AND(V1,f_vec_NOT(V2)).

e3 eNewMsg(@Y,I,S,D):- eBitVecReply(@X,Y,V),
msgs(@X,I,S,D),
f_vec_in(V,I)==true.

e4 msgs(@Y,I,S,D):- eNewMsg(@Y,I,S,D).

In rule e1, node X detects that a new link comes to be
available, then it retrieves its local (summaryVec) table, con-
sisting a bit vector where the ith bit denotes the receipt of
the ith message, and then generates a eBitVecReq request
to the neighbor Y connected by the new link. Upon receiv-
ing the request, node Y performs a bitwise AND operation
(f_vec_AND) between the incoming summary vector V1 and
the negation (f_vec_NOT) of local summary vector V2 to gen-
erate a new vector V which is sent back to X. This new vector
V denotes messages seen by X but not Y. Rules e3-4 then en-
ables node X to filter local messages to be sent based on the
bit vector V stored in the reply, which are then buffered in
the local msgs table for transmission.
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