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ABSTRACT

SECURE TIME-AWARE PROVENANCE FOR DISTRIBUTED SYSTEMS

Wenchao Zhou

Boon Thau Loo

Operators of distributed systems often find themselves needing to answer foren-

sic questions, to perform a variety of managerial tasks including fault detection,

system debugging, accountability enforcement, and attack analysis. In this dis-

sertation, we present Secure Time-Aware Provenance (STAP), a novel approach that

provides the fundamental functionality required to answer such forensic questions

– the capability to “explain” the existence (or change) of a certain distributed sys-

tem state at a given time in a potentially adversarial environment.

This dissertation makes the following contributions. First, we propose the

STAP model, to explicitly represent time and state changes. The STAP model al-

lows consistent and complete explanations of system state (and changes) in dy-

namic environments. Second, we show that it is both possible and practical to

efficiently and scalably maintain and query provenance in a distributed fashion,

where provenance maintenance and querying are modeled as recursive continu-

ous queries over distributed relations. Third, we present security extensions that

allow operators to reliably query provenance information in adversarial environ-

ments. Our extensions incorporate tamper-evident properties that guarantee even-

tual detection of compromised nodes that lie or falsely implicate correct nodes.

Finally, the proposed research results in a proof-of-concept prototype, which in-

cludes a declarative query language for specifying a range of useful provenance

queries, an interactive exploration tool, and a distributed provenance engine for

operators to conduct analysis of their distributed systems. We discuss the applica-

bility of this tool in several use cases, including Internet routing, overlay routing,

and cloud data processing.
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Chapter 1

Introduction

Distributed systems have rapidly evolved, from simple client/server applications

in local area networks, to Internet-scale peer-to-peer networks and large-scale cloud

platforms deployed on thousands of nodes across multiple administrative domains

and geographical areas. Despite the ubiquity and criticality of these distributed

systems, designing and deploying these systems remains challenging due to their

ever-increasing scale and the complexity and unpredictability of system execu-

tions. In both the design and deployment phases, designers/administrators of

distributed systems often find themselves needing to answer forensic questions, to

understand why and how a system execution reaches a certain state. Such exam-

ples include, but are not limited to, the following scenarios:

• Fault detection. A system fault may manifest itself as violations of prede-

fined invariants or properties. For instance, in interdomain routing, prefix

hijacking is a violation of the invariant that all the route advertisements to

the same prefix should originate from the same autonomous system (AS).

Often times, such invariants and properties are defined not only on the cur-

rent state but on the derivation of that state as well. Verification of these

1



Chapter 1. Introduction

invariants and properties can be performed by compiling the answers to the

corresponding forensic questions.

• System debugging. A detected system fault in a prototype implementation

may indicate a subtle yet critical bug in the design or the implementation.

The system designer would greatly benefit from knowing the execution trace

that led to this unexpected state, and the ability to reconstruct it for debug-

ging purposes.

• Access control. Upon receiving a request for accessing local resources, the

operators may decide to grant or deny the access based on how the request

was formulated – whether it was originated from an authorized user or

whether an authority has endorsed the request.

• Accountability. In a system deployment that crosses multiple administra-

tive domains, each of the participating parties may act to maximize its own

benefit regardless the (potentially negative) impact on the global system (e.g.,

“hot-potato” routing in the interdomain routing systems). Forensic questions

that are answered in a collective and secure fashion are useful to enforce ac-

countability – the ability to hold the parties to be accountable to their opera-

tions and outputs to the global system.

• Attack analysis - root cause analysis. Distributed systems are known to be

vulnerable to malicious attacks. Given the symptoms (e.g., suspicious en-

tries in the routing table), the operators must decide their root causes (e.g.,

intrusion by a malicious user) before they can take appropriate actions.

• Attack analysis - damage assessment. On the other hand, if an attack has

been discovered, the operators must then determine its effects (i.e., its dam-

age to the whole system), such as corrupted state on other nodes, so that the

system can be repaired and brought back to a correct state.

2



1.1. The Provenance Approach

Composing answers to forensic questions is not an easy task; in fact, the an-

swers are often coupled with a particular combination of behaviors, both within the

network and at different hosts, which can be hard to find. The key challenge is

to inspect the data flows, dependencies, and updates to distributed (networked)

nodes’ state — often in ways that are not predictable in advance. Existing domain-

specific solutions [22, 51, 101] often work by recording some forensic data at each

node, e.g., a list of past routing changes, which are then used to answer the admin-

istrator’s questions on demand. However, tailoring the schema and the introspec-

tion mechanisms to each new application is cumbersome and inflexible. It would

be preferable to have a generic solution that can be applied to arbitrary distributed

systems.

1.1 The Provenance Approach

The approach that we propose in this dissertation is to construct a distributed data

structure called the provenance that, at a high level, tracks how data flows through

the system. Data provenance itself is not a new concept — it has been extensively

explored by the databases and the systems community, and has proven to be a

useful and practical concept. It has been successfully applied to a variety of areas,

including probabilistic databases [9, 85, 105], collaborative databases [33], file sys-

tems [42, 72, 73], scientific workflow computation [10, 15, 23, 78, 100], and cloud

computing [45]. It is primarily used to answer questions concerning how query or

computation results are derived and which data sources they come from. The capa-

bility of learning such information is essential to answer the cause-and-effect ques-

tions, and, therefore, enables provenance to be a promising approach for forensics

in distributed systems.

Backed by the provenance system, we can support a large variety of queries

to answer forensic questions. For instance, system administrators may use state

3



Chapter 1. Introduction

queries (“Why does a certain state τ exist?”), which explains the derivations of system

state at query time, for fault detection, history queries (“Why did τ exist at a previous

time t?”) for system debugging and accountability, dynamic queries (“Why and how

did τ (dis)appear?”) for root cause analysis, and causal queries (“What state on other

nodes was derived from τ?”), which explains which parts of the system have been

affected, for attack analysis and system recovery.

1.2 Research Challenges

To support the full range of functionality required for enabling forensics in dis-

tributed systems, there are a number of challenges that traditional data provenance

cannot answer very well. To illustrate this, we consider a realistic scenario from to-

day’s Internet routing systems (illustrated by Figure 1.1). A network operator Alice

might want to investigate why her route r1 to the destination foo.com changed to

route r2 five minutes ago.

Surprisingly, this query cannot be easily answered by existing provenance sys-

tems, because it requires a comprehensive solution for several challenges arisen in

distributed systems: the query may ask for a state change and for state (such as

route r1) that no longer exists; a route change during query processing could re-

sult in inconsistency in the query results; furthermore, if the change was brought

about by an attacker who has “hijacked” r1, the attacker can try to cover his traces

by falsifying the provenance of r2. To support forensic queries in this scenario,

• We must be able to capture historical information about past states and inter-

actions within the systems, not just about the current state. Only maintaining

relationships among current state is not enough; historical provenance would

require recording relationships among entries in event logs.

• We must guarantee correct and complete provenance results even in tran-
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A

Route to foo.com
not exported to Alice

Alice
foo.com

A

C
B

Route rRoute r1

A

Attacker changes policy
to redirect traffic, so she
can intercept it

Route r2

Alice
foo.com

A

C
B

Figure 1.1: An example scenario. In the unmodified system (top), network A’s
policy does not allow cross traffic, so Alice can reach foo.com only through net-
works B and C. If evil Eve can compromise A’s router (bottom), she can change
this policy and thus gain the ability to listen to Alice’s traffic.

sient state. In reality, the state of a distributed system can be highly dynamic;

there can even exist instabilities or oscillations, for instance, a typical Internet

router can incur hundreds of updates per minute.

• We must take messages and timing into account, rather than simply looking

at global sequences of events. In a distributed system, the local clocks of the

different nodes can be slightly out of sync, messages take time to propagate

from one node to another and are sometimes lost by the network, etc.

• We must choose the right cost tradeoff to optimize performance. If some

of the distributed nodes’ operations are deterministic, provenance could be

recorded at multiple levels of detail: one could record the entire record of
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state derivations, or instead just record the inputs and use deterministic re-

play to re-derive missing state.

• We must have the ability to distribute the storage of the provenance to keep

communication costs down: for performance reasons, centrally archiving the

system’s entire provenance is impractical. This means that we also need the

ability to detect when nodes tamper with the provenance; otherwise, a com-

promised node could cover its traces and avoid detection.

1.3 Contributions

Several prior work has proposed solutions that attack these research challenges in-

dividually. For instance, PASS [72] and several scientific workflow systems [10, 78,

100] present solutions for historical provenance; Orchestra [33], PA-S3fs [73] and

RAMP [45] discuss distributed provenance maintenance and querying for specific

applications; and Sprov [42] enforces the integrity of chain-structured provenance.

(Chapter 8 summarizes and discusses the related work in greater details.) This

dissertation provides the first comprehensive solution that addresses all the research

challenges presented in the previous section. We demonstrate that it is both feasible

and practical to develop a general-purpose provenance system for distributed systems, that

provides explanation for system behavior even in an untrusted and dynamic environment.

This dissertation proposes and develops the foundations of Secure Time-aware

Provenance (STAP). STAP captures time, distribution, and dependencies of updates;

it enables the administrator of a distributed system to pose “ad hoc” queries over

the system’s prior states, communications patterns, event orderings, and more. In

particular, the dissertation makes the following contributions:

1. Time-aware provenance model. We present a formal model and semantics

of STAP [108, 112], and, using a Datalog abstraction for modeling distributed
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protocols, we prove that STAP provides a sound and complete representa-

tion of the dependencies of events in a distributed system. Due to practical

challenges in distributed systems (such as loosely synchronized clocks, node

failures, and interactions via message passing), we rethink several of the key

design decisions behind data provenance in the design of STAP.

2. Efficient distributed provenance maintenance. It is infeasible to maintain

provenance in a centralized approach for large scale distributed systems,

which may consist of thousands of nodes. To amortize the maintenance over-

head, this dissertation explores a distributed storage model and the corre-

sponding maintenance techniques [113], with the design goals that aim to

minimize the impact to the existing concurrently running systems.

3. Recursive provenance query evaluation. As a distributed storage model

is adopted, provenance queries have to be evaluated in a distributed re-

cursive fashion. This dissertation presents a general querying framework

that enables a large degree of customizations for various applications. We

show that, based on a combination of recursive view maintenance and log-

ging/deterministic replay, a recursive query can reconstruct the provenance

of a system state/event that occurred at a specific time in the past [112, 113].

4. Performance optimization and tradeoffs. In addition, the dissertation ex-

plores a related research question – how optimizations/tradeoffs can be ap-

plied to improve the communication overhead and query response time.

We present two alternative strategies for maintaining provenance: a proac-

tive scheme in which provenance deltas are logged, and a reactive scheme in

which only nondeterministic events (such as incoming messages) are logged

for reconstructing provenance on demand.

The proactive and the reactive schemes have different performance tradeoffs;
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the optimal strategy for a given application depends on factors such as query

frequency, system runtime, and the ratio of local vs. distributed derivations.

To exploit these tradeoffs, we develop cost models [112] for both schemes,

and we describe techniques for determining the optimal maintenance strat-

egy at runtime.

5. Security guarantees in malicious environments. This dissertation further

explores the question whether there exists an approach that can guarantee

the correctness and completeness of provenance query results with the exis-

tence of compromised nodes; if not, whether we can provide a weaker yet

useful guarantee. This dissertation presents a solution [109] that guarantees

progress on provenance queries – given a query issued at a correct node,

either a correct and complete query result is returned or at least one compro-

mised node is exposed.

6. Full-fledged implementation and evaluation. Finally, we present the NET-

TRAILS system [111], a full-fledged TAP provenance engine. NETTRAILS

uses a declarative networking [63] engine for maintaining and querying the

provenance graph, which is coupled with a secure logging and replay sys-

tem. NETTRAILS incrementally maintains and queries provenance in a

workload-aware fashion, and it can provide meaningful guarantees despite

network variability (such as instabilities or oscillations) and even in a mali-

cious environment.

Using three example applications (declarative network routing [63], Chord

distributed hash table [99], and Hadoop MapReduce [37]) with a combi-

nation of realistic network simulations and an actual testbed deployment,

we demonstrate that NETTRAILS is able to efficiently maintain and execute

provenance queries at scale. Moreover, we validate that our cost model can

accurately estimate the system’s performance.
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Chapter 2

System Model

Before we present the provenance model of STAP in Chapter 3, we first introduce a

distributed system model (based on distributed Datalog) and some basic concepts

that will be useful for our formal definitions. We also describe some key chal-

lenges that STAP needs to address in order to support a range of network forensic

capabilities.

2.1 State Transition Systems

We consider a system that consists of a set of nodes N = {N1, N2, ..., Nn} that are

connected by a network and can communicate by sending messages. Each node

has a local clock, but the clocks are not necessarily synchronized. A node Ni is

either correct, whereNi conforms to a prescribed protocolP(Ni); or faulty, whereNi

can behave arbitrarily. A faulty node externally exhibits as a Byzantine fault [55].

We write F to denote the set of faulty nodes.

We capture the behavior of a distributed system using a state transition system.

We write S to denote the state of a distributed system. S consists of the set of the

states of correct nodes H and the set of the in-fly messagesM. Events are treated

as messages addressed to the local nodes. Note that, we do not consider the states
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of faulty nodes, as faulty nodes can behave arbitrarily regardless of their states.

We now give the syntactic definition of node state and messages.

Definition 1. (State) The state of a node Ni, H(Ni), is expressed as a set of tuples

(typically with fixed schema), where each tuple τ ∈ H(Ni) represents a relational data

item that encodes information about Ni’s current state.

We model user input as tuples that are inserted or deleted directly by users, and

computations performed by the system as derivations of new tuples from existing

tuples. We say that a tuple is a base tuple if it was inserted directly by a user; oth-

erwise, it is a derived tuple. As an illustrative example, consider a simple network

routing system that computes pair-wise shortest paths among all nodes. The state

of a node Ni contains the local links to its neighbor (e.g., link(S,D,C) for a direct

link between S and D with cost C), and its routing entries to various destinations

(e.g., cost(S,D,C) for a path from node S to D with cost C). Here, link tuples

are the base tuples directly imported from external sources, and cost tuples are

derived from these base link tuples.

Definition 2. (Update) An update is either +τ or −τ , where τ is a tuple that is being

derived (+) or underived (−). We write4τ to denote an update of either type.

Definition 3. (Message) Each message m ∈ M is a triplet (src, dest, upd) where src

denotes the sender, dest denotes the receiver, and upd is the message payload. The message

payload is either +τ or −τ , indicating an intended update of state τ .

We additionally write txT ime(m) to denote the time m is sent from src, and

rxT ime(m) to denote the time m is received by dest. txT ime and rxT ime are respec-

tively defined accordingly to the local clocks of src and dest.

Note that the sender src and the receiver dest are not necessarily different; in the

case src = dest, upd = ∆τ represents a modification on the local state. Consider

again the previous network routing example, (Z, S, +cost(S,D,C)) represents
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a messages sent from Z to S that notifies the discovery of a new path from S to

D with cost C, and (S,S,-link(S,D,C)) represents a withdraw of the direct link

between node S and D.

Based on the syntactic definition of system state, we next present the semantics

of the state transition system. We define valid state transition as follows:

Definition 4. (Transition). Suppose S = {M,H} and S ′ = {M′,H′}, a valid state

transition S → S ′ corresponds to one of the following scenarios:

1. H′ = H,M′ = M + {m}, where m = (src, src, upd): the user sends an external

input (which is not yet delivered) to node src;

2. H′ = H,M′ =M+ {m}, where m = (src, dest, upd), src ∈ F : a faulty node src

sends out a message m to node dest;

3. H′ = H,M′ =M−{m}: the message m is lost during the transmission;

4. H′ = H,M′ = M− {m}, where m = (src, dest, upd), dest ∈ F : the message m

is delivered to a faulty node dest;

5. H′(dest) = H(dest) + ∆τ , H′(Ni) = H(Ni) (for Ni 6= dest),M′ =M− {m} +

{m′1,m′2, ...,m′o}, where m = (src, dest,∆τ),m′i = (src′i, dest
′
i,∆τ

′
i), src

′
i = dest:

a correct node dest receives a message m ∈ M, applies the modification to its local

state, and generates a set of new messages according to its execution logic described

by protocol P(Ni).

The first four scenarios in the definition are straightforward, where the nodes’

states remain unchanged during the transition. The transition in the last scenario

largely relies on the semantics of the execution logic P(Ni), which remains unde-

fined. We introduce a model for execution logic and complete the definition of the

state transition system in the next section.
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2.2 Protocol as Derivation Rules

The execution logic of a given nodeNi is entailed by the prescribed protocol P(Ni),

which is encoded as a set of explicit derivation rules. This is the case, e.g., for sys-

tems that are written in a declarative language such as Network Datalog (ND-

log) [63]. However, STAP is not specific to declarative systems written in ND-

log, and can be applied to any legacy distributed systems whose dependencies

between incoming and outgoing tuples can be modeled using derivation rules as

described in Section 7.2.

As an illustrative example, we consider the simple MINCOST protocol for net-

work routing, in which the nodes compute the lowest-cost path between each pair

of nodes using the following rules:

mc1 cost(@S,D,C) :- link(@S,D,C).

mc2 cost(@S,D,C) :- link(@Z,S,C1), mincost(@Z,D,C2), C=C1+C2.

mc3 mincost(@S,D,MIN<C>) :- cost(@S,D,C).

As in traditional Datalog, each NDlog rule has the form p :- q1, q2, ..., qn.,

which can be read informally as “p should be derived whenever q1, q2, ..., and

qn all exist at the same time”. NDlog supports a location specifier in each predicate,

which is written as an @ symbol followed by the node on which the tuple resides.

For example, any cost tuples that are derived via rule mc1 should reside on the

same node as the corresponding link tuples, since both carry the same location

specifier.

In this program, the base tuple link(@S,D,C) exists if node S has a direct link

to node D with cost C. The tuple cost(@S,D,C) is derived when S has a (possibly

indirect) path to D with total cost C, which can either be a direct link (mc1) or a

path through another node Z (mc2). Rule mc3 aggregates all paths with the same

sources and destinations to compute the minimal path cost. The protocol runs

continuously, and tuples can be derived or underived in response to changes to
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base tuples. For instance, mincost tuples may be updated if the cost of a link

changes, since this can change the lowest-cost route.

2.3 Rule Execution Model

Next, we briefly describe the execution model for NDlog rules. The execution

of a NDlog program consists of insertions and deletions of individual tuples; we

refer to these as events. An event is essentially triggered by a node Ni receiving

a message m = (N ′i , Ni,∆τ), and applying the intended update carried by the

message. We defer the formal definition of event till the end of the section, after the

rule execution model is presented. Causal dependencies can exist between events;

for instance, the insertion of a derived tuple causally depends on the insertion of

the tuple(s) from which it was derived. It is these causal dependencies that will be

captured by STAP.

NDlog programs are executed using pipelined semi-naı̈ve evaluation (PSN) [63].

PSN first requires rewriting each NDlog rule into delta rules (also known as the

event-condition-action rule in active database [20]) of the form action :- event,

conditions. As an example, the generated delta rules for rule mc2 in the MINCOST

program are:

d1 +cost(@S,D,C) :- +link(@Z,S,C1), mincost(@Z,D,C2), C=C1+C2.

d2 -cost(@S,D,C) :- -link(@Z,S,C1), mincost(@Z,D,C2), C=C1+C2.

d3 +cost(@S,D,C) :- link(@Z,S,C1), +mincost(@Z,D,C2), C=C1+C2.

d4 -cost(@S,D,C) :- link(@Z,S,C1), -mincost(@Z,D,C2), C=C1+C2.

d1-d2 and d3-d4 are delta rules for the link and mincost predicates, respectively.

Rules d1 and d3 describe insertions (+), and d2 and d4 describe deletions (-). For

instance, in rule d2, -link is the event, mincost is the condition predicate, and

-cost is the action that is taken when the event occurs and the condition holds.

13
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For rules with aggregates (e.g. mc3), a similar set of insert/delete delta rules

can be generated. The main difference here is that the action would result in an

update of an aggregate in the rule head.

Since derivations can involve tuples on remote nodes (such as the rule mc2

above), nodes must notify each other when they locally derive a tuple that could

trigger a derivation on a remote node. This is done by sending a message that

encodes the update. For instance, evaluating the delta rules of rule mc2 results in

sending messagem =(Z,S,+/-cost) to node Z. Messages can be reordered by the

network.

In PSN evaluation, when a node receives a message, it applies the update en-

capsulated in the message and then determines whether any additional deriva-

tions (or underivations) have been triggered by the rule evaluation. If so, the cor-

responding updates are formulated as messages and sent to the corresponding

destinations.

We model an event as the application of one update and its corresponding delta

rule evaluation. An event corresponds to one transition step in the system execu-

tion. We formally define an event as follows:

Definition 5. (Event) An event d@Ni = (e, r, t, c, e′) represents the fact that delta rule r

was triggered by update e and generated a set of updates e′ at time t (relative to Ni’s local

clock), given the precondition c. The precondition c is a set of tuples that existed on Ni at

time t that are used in the event.

Given an initial state S, we write S d@Ni−−−→ S ′ to denote the transition from S to S ′,

where S ′ is the resulting state after the application the event d@Ni .

Note that the definition of event is purposely made general to model not only the

rule-based system execution (Scenario 5 in Definition 4), but the other scenarios

as well. Specifically, for input externally from users and messages from faulty
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Figure 2.1: An example network, where the best path between node c and a

changed at time t2, due a change of the network topology.

nodes (Scenario 1 and 2), we write e, r and c as ⊥; for message loss and messages

delivered at faulty nodes (Scenario 3 and 4), we write r, c and e′ as ⊥.

2.4 Execution Traces

The execution of an NDlog program can be characterized by the sequence of events

that take place; we refer to this sequence as an execution trace. An execution trace

can be used to explain a derivation that occurred during the execution – we can

simply replay it and check which event triggered the derivation and which condi-

tions held at that time. A full trace can recursively explain all derivations; if we are

only interested in some specific derivations (e.g., the ones queried by the network

operator), a subtrace is generally sufficient.

Definition 6. (Trace): A trace E of a system execution is an ordered sequence of events

d1@Ni1 , d2@Ni2 , ..., dm@Nim .

Definition 7. (Subtrace): A subtrace E ′ ⊆ E of a trace E is a subsequence of E , i.e., E ′

consists of a subset of the events in E in the same order. In particular, we write E|Ni to

denote the subtrace that consists of all the events on Ni in E .

Figure 2.1 shows an example scenario during the execution of the MINCOST

program. At some past time t2, the network protocol changed its min-cost path
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+link(@b,a,1) +cost(@b,a,1)
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t2@b t3@c Timeline

link(@b,c,3)+link(@b,c,3)
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t0@b
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…

Figure 2.2: An execution subtrace of the MINCOST program that corresponds to
scenario in Figure 2.1 and provides an explanation of +mincost(@c,a,4). Rectangles
indicate that a rule is fired, dashed arrows indicate local event triggering, solid
arrows indicate cross-node messages, and shaded boxes indicate the conditions
for events.

between node c and a in response to updated link information that claimed there

existed a shorter path between the two nodes. Figure 2.2 shows a part of the corre-

sponding execution during which +mincost(c,a,4) is derived. The explanation

for this event consists of the following trace (event tuples are denoted in bold):

• At time t2@b, node b discovered a new link to node a and thus inserted the

base tuple +link(@b,a,1).

• Rule mc1 was triggered by +link(@b,a,1), resulting in +cost(@b,a,1).

• Rule mc3 was used to derive +mincost(@b,a,1) from +cost(@b,a,1).

• Rule mc2 (specifically its delta rule d3) was triggered by +mincost(@b,c,1).

The condition was satisfied by the existing tuple link(@b,c,3) that had

been derived at time t0; the resulting update +cost(@c,a,4) was then

shipped to node c.

• At time t3@c, node c received +cost(@c,a,4) from node b and derived

+mincost(@c,a,4) using rule mc3, which then replaced the higher-cost

mincost(@c,a,5).
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Note that the ordering of edges (arrows) in Figure 2.2 reflects dependencies, in the

form of a happens-before relationship. For example, +link(@b,c,1) happens before

+cost(@b,a,1) as a result of executing rule mc1.

2.5 Challenges and Requirements

The aim of STAP is to provide an explanation for the derivation of any network

state. For example, in Figure 2.2, a network operator may issue a query asking for

the explanation of -mincost(@c,a,5) at a particular time t3 at node c. STAP’s ex-

planations should provide the entire chain of events, leading from +link(@b,c,3)

at time t3. To illustrate why this is a challenging problem, we consider the follow-

ing realities in any distributed systems:

• Continuous processing. Distributed systems run continuously: nodes con-

stantly process new information and update their state in response to local

events and incoming messages from other nodes. Thus, a given tuple might

have existed at time tx but not at time ty, or it might have existed at both

times, but for different reasons. STAP should store enough information to

return the correct explanation for a given time.

• Updates. Sometimes it is important to understand not only why a certain

tuple exists, but also why it has appeared or changed. For example, to un-

derstand the route update presented in Figure 2.1, one would not only need

to understand the derivation of the latest route, but also explain why the pre-

vious route was replaced by the current one. Prior distributed provenance

engines [113] are unable to deal with recording explanations that evolve over

time, let alone provide an explanation that causally links -mincost(@c,a,5)

and +mincost(c,a,4) at time t3.

17



Chapter 2. System Model

• Lack of synchrony. There is no “global” time that could be used to order

events. For instance, when c received the message in Figure 2.2, its local clock

might show an earlier time than b’s clock when it sent the message! Also,

since information takes time to propagate from node to node, there may not

be a single, globally consistent explanation: if a tuple is obtained through a

long chain of derivations from tuples on other nodes, some of the underlying

tuples may have already changed or disappeared. Hence, STAP must capture

time and dependencies at a logical level, based on rule execution and tuple

instances.

• Network effects. Messages can be delayed and reordered. For instance, if

link(a,b,1) is added and withdrawn within a short period of time,

mincost(@c,a,4) would subsequently also be derived and deleted in quick

succession, increasing the likelihood that the insert and subsequent delete

messages are reordered in the network. The explanations of

+mincost(@c,a,4) or -mincost(@c,a,4) should still be accurate in the pres-

ence of such message orderings. Message delays further complicate this,

since reordering can separately happen to the actual network derivations and

to the corresponding provenance metadata.

2.6 Summary

In order to present and prove correct the STAP provenance model, this chapter for-

mally defines the system model that the provenance system will be targeting and

deployed on. We model general distributed systems as state transition systems, in

which the execution logic (or behavior) of each individual node is captured by a set

of derivation rules. Based on the semantics of the defined state transition systems,

we further present the definition of execution traces, which capture the dynamism

18



2.6. Summary

of distributed system executions. In the subsequent section, we define the formal

provenance model and show its close connection to the trace representation of sys-

tem executions.
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Chapter 3

Provenance Model

We use the system model described in the previous chapter as a basis for

formalizing STAP. In this chapter, we present a (slightly) simplified version of

STAP, called Time-aware Provenance (TAP), that assumes a trusted environment. We

defer the discussion of STAP’s security enhancement for untrusted environments

to Chapter 6.

Given a distributed system, TAP is used to provide an explanation as to why

a given tuple τ or update event is located on node Ni at time t. Tuple τ can be

viewed as a materialization point that applies a sequence of the update events on τ .

Intuitively, the answer for a provenance query on the existence of τ on node Ni at

time t can be formulated as a sequence of query results for the update events (up to

time t) on τ . Hence, we focus our discussion on the provenance of update events.

3.1 TAP Provenance Model

TAP encodes the provenance for a trace E in a graph G(E) = (V,E) in which each

vertex v ∈ V represents an event in E , and each edge (v1, v2) ∈ E represents a

direct dependency between two such events. TAP’s provenance graph can contain

the following six types of vertices:
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• INSERT(t, n, τ) and DELETE(t, n, τ): Tuple τ was inserted (deleted) on node n at

time t.

• DERIVE(t, n, R, τ) and UNDERIVE(t, n, R, τ): Tuple τ was derived (underived)

via rule R on node n at time t.

• SEND(t, n,4τ, n′) and RECEIVE(t, n′,4τ, n): An update4τ was sent (received)

on node n at time t to (from) node n′.

The last two vertices are needed because a derivation on one node can involve

tuples on another; the corresponding messages are represented explicitly inG. The

vertices are generated and connected according to the following rules:

• When a base tuple is inserted, an INSERT vertex is added.

• If a node Ni derives a tuple τ via rule r, a DERIVE vertex is added, which has

incoming edges from all of r’s preconditions, as well as from the triggering

event, i.e., the INSERT that caused r to fire. The DERIVE vertex is then connected

to a new INSERT vertex (if τ is local to Ni) or a new SEND vertex (if τ is sent to

another node).

• When a message is received from another node, a RECEIVE vertex is added,

with an incoming edge from the corresponding SEND vertex. This vertex is

then connected to a new INSERT vertex.

• Whenever an INSERT vertex is added for a tuple τ that already has at least one

derivation, an incoming edge is added to τ ’s most recent INSERT vertex (recall

that tuples can have more than one derivation).

• When a tuple τ1 replaces another tuple τ2 due to a primary-key or aggrega-

tion constraint, an update edge is added from τ1’s INSERT vertex to τ2’s DELETE

vertex.
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The guidelines for deletions and underivations are analogous. Note that the

graph is acyclic because edges are always added between an existing vertex and a

new vertex, but never between two existing vertices. It is also monotonic because,

as the execution continues, new vertices and edges are added but never removed.

Given the instantiated provenance graph G(E), the provenance G(4τ, E) of an

update event 4τ on node Ni at time t is simply the subtree of G(E) that is rooted

at the corresponding INSERT(t, Ni, τ) (or DELETE(t, Ni, τ)) vertex.

When G(4τ, E) includes a DERIVE vertex for some rule α :- α1, α2, . . . , αk, it in-

cludes the provenance of each αi, not just the provenance of the tuple (say, α1) that

triggered the rule. This is helpful when the provenance is used to explain the exis-

tence of τ , since α is a (direct or indirect) precondition for τ and each αi is equally

responsible for α’s existence. However, when provenance is used to explain a state

change, i.e., the appearance or disappearance of τ , only the provenance of the trig-

gering tuple (here α1) is relevant; the others merely clutter the graph. Because of

this, TAP can optionally replace each subtree for a non-triggering αi with a single

EXIST vertex and a snapshot summarizing the current state at a particular node, as

it was computed by applying all events up to the current time. State snapshots are

discussed in more detail in Section 3.2.

Example: MINCOST Routing. Let us revisit our running example from the pre-

vious sections. Figure 3.1 shows a piece of the TAP graph that explains the dele-

tion of the tuple mincost(@c,a,5) on node c at time t3 that resulted from the new

link a-c that was inserted at time t0. Specifically, the edge at the DELETE vertex

of mincost(@c,a,5) (indicated by a dotted line) corresponds to an aggregation

constraint — that is, the minimal cost changed because a lower-cost path to node a

became available. The updated lowest cost (cost(@c,a,4)) was derived on node

b at time t2 (and subsequently sent to node c) because a) a link b-c with cost

three was inserted at time t0 (and remained to exist at time t2), and b) the tuple
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DELETE(t3, c, mincost(@c,a,5))

INSERT(t3, c, cost(@c,a,4))

update
INSERT(t3, c, mincost(@c,a,4))

INSERT(t2, b, mincost(@b,a,1))INSERT(t0, b, link(@b,c,3))

……

SEND(t2, b, +cost(@c,a,4))

RECEIVE(t3, b, +cost(@c,a,4))

DERIVE(t2, b, mc2, cost(@c,a,4))

DERIVE(t2, b, mc3, mincost(@b,a,1))

DERIVE(t3, c, mc3, mincost(@c,a,4))

Figure 3.1: The TAP provenance graph for explaining the deletion of
mincost(@c,a,5).

mincost(@b,a,1) was newly derived at t2 via rule mc3. The latter derivation was

caused by the insertion of the base tuple link(@b,a,1), which corresponds to the

addition of the new link.

Note that the additional time dimension on the provenance graph enables an-

other use of provenance: querying the effects of an update event. For example, if we

want to determine how the insertion of the new link a-b has affected the system,

we can simply locate the corresponding INSERT vertex in the graph and traverse

the edges in the reverse direction.

3.2 Derivations and System Snapshots

Consider a delta rule of the form ∆τ :-∆τ1, τ2, . . . , τk. Since TAP is used to explain

a state change, i.e., the appearance or disappearance of particular tuples, only the
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DELETE(t3, c, mincost(@c,a,5))

INSERT(t3, c, cost(@c,a,4))

update
INSERT(t3, c, mincost(@c,a,4))

INSERT(t2, b, mincost(@b,a,1))
INSERT(t0, b, link(@b,c,3))

……

SEND(t2, b, +cost(@c,a,4))

RECEIVE(t3, b, +cost(@c,a,4))

EXIST(t2, b, link(@b,c,3))

DERIVE(t2, b, mc2, cost(@c,a,4))

DERIVE(t2, b, mc3, mincost(@b,a,1))

DERIVE(t3, c, mc3, mincost(@c,a,4))

Figure 3.2: The TAP provenance graph for explaining the deletion of
mincost(@c,a,5). The subgraph that supports the precondition that
link(@b,c,3) existed at time t2 is replaced by the EXIST vertex.

provenance of the triggering tuple ∆τ1 is relevant. Instead of storing full prove-

nance information of all preconditions, we introduce a new vertex that provides a

compact representation of per-node state at a given time:

• EXIST(t, n, τ): State of tuple τ at a particular node n at its local time tn. This

vertex includes all vertices {INSERT(t, n, τ)|t ≤ tn} ∪ {DELETE(t, n, τ)|t ≤ tn}.

To retrieve the snapshot value of τ at time t, one can simply replay the se-

quence of insertions and deletions, canceling out deleted insertions accord-

ing to standard bag semantics.

In Figure 3.2, mincost(@c,a,4) is derived from rule mc2. The DERIVE vertex for

mincost(@c,a,4) at time t2 includes the INSERT vertex for the triggering event

+mincost(@b,a,1) and the EXIST vertex for link(@b,c,3).
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3.3. Correctness

3.3 Correctness

Given the provenance G(4τ, E) of an update event 4τ , G should be “consistent”

with the trace representation of the execution E . We say G(4τ, E) is correct if it is

possible to extract a subtrace from G that has the properties of validity, soundness,

completeness, and minimality. We first describe our subtrace extraction algorithm,

followed by the correctness properties themselves.

Subtrace extraction. Given G(4τ, E), the original subtrace can be obtained by

running an algorithm A (presented in Algorithm 1) based on topological sort.

Briefly, A converts each vertex in the provenance graph to an event and then uses

a topological ordering to assemble the events into a trace – in other words, if two

vertices v1, v2 ∈ V correspond to events e1, e2 and are connected by edges in E,

then e1 will appear in the trace before e2. This is possible as the provenance graph

is acyclic (see Lemma 1).

In particular, Line 19 - 32 implements the construction of one individual event,

where the information of a rule evaluation (such as the triggering event, condi-

tions, and action) is extracted from the corresponding vertices in G(4τ, E).

Correctness of subtrace. The extracted subtrace A(∆τ, E) must satisfy the fol-

lowing four properties (Theorems and proofs for all four properties are included

in Appendix A):

Property 1. (Validity) A(∆τ, E) is valid, that is, given the initial state S0, for any event

di@Ni = (ei, ri, ti, ci, e
′
i) ∈ A(∆τ, E), (a) there exists dj@Nj = (ej, rj, tj, cj, e

′
j) that

precedes di@Ni in A(∆τ, E), ei ∈ e′j , and (b) for all τk ∈ ci, τk ∈ Si−1, where S0
d1@N1−−−−→

S1 ...Si−2
di−1@Ni−1−−−−−−→ Si−1. (Recall from Definition 5 that S dk@Nk−−−−→ S ′ indicates a state

transition from state S to state S ′ by applying event dk@Nk.)
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Algorithm 1 Extracting subtraces from provenance
1: proc ExtractTrace(G = (V,E))
2: // calculate the out-degree of all vertices in G
3: for ∀ e = (v, v′) ∈ E do degree(v)← degree(v) + 1
4: // generate the subtrace based on topological sort
5: NodeToProcess = V
6: while NodeToProcess 6= φ do
7: select v ∈ NodeToProcess : degree(v) = 0, and 6 ∃v′ ∈ NodeToProcess that is located

on the same node has a larger timestamp
8: NodeToProcess.remove(v)
9: if typeof(v) = INSERT or DELETE then

10: find e = (v′, v) ∈ E, degree(v′)← degree(v′)− 1
11: end if
12: if typeof(v) = SEND or RECV then
13: find e = (v′, v) ∈ E, degree(v′)← degree(v′)− 1
14: end if
15: if typeof(v) = EXIST then
16: find e = (v′, v) ∈ E, degree(v′)← degree(v′)− 1
17: end if
18: if typeof(v) = DERIVE or UNDERIVE then
19: find e = (v, v′) ∈ E, output← v′

20: for ∀ e = (v′, v) ∈ E do
21: if typeof(v′) = INSERT or DELETE then
22: trigger = v′ // v′ is the triggering event
23: else
24: condition.add(v′) // v′ is a EXIST vertex for one of the conditions
25: end if
26: degree(v′)← degree(v′)− 1
27: end for
28: ruleName← v.ruleName, time← v.time
29: event← (trigger, ruleName, time, condition, output)
30: trace.push front(event)
31: end if
32: end while
33: return trace

Intuitively, validity means that A(∆τ, E) must correspond to a correct execution of

the NDlog program whose provenance is being captured. Any event that triggers

a delta rule evaluation must be generated before the rule is evaluated, and that the

conditions of the rule evaluation must hold at the time of the rule evaluation.
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Property 2. (Soundness) A(∆τ, E) is sound, that is, A(∆τ, E) is a subtrace of some E ′

that is equivalent to E (written as E ′ ∼ E). We say two traces E and E ′ are equivalent, if

for all nodes Ni, E|Ni
= E ′|Ni

.

Intuitively, soundness means that A(∆τ, E) must preserve the all happens-before

relationships among events in the original execution trace obtained from running

the NDlog program. Ideally, we would like A(∆τ, E) to be a subtrace of E , but

without synchronized clocks, we cannot always order concurrent events on differ-

ent nodes. However, for practical purposes E and E ′ are indistinguishable: each

node observes the same sequence of events in the same order.

Property 3. (Completeness) A(∆τ, E) is complete, that is, it ends with the event ∆τ .

Intuitively, completeness means that A(∆τ, E) must include all events necessary

to reproduce τ . Note that the validity property already requires that any event

that is needed for ∆τ be included in A(∆τ, E); hence, we can simply verify the

completeness property of a valid trace by checking whether it ends with ∆τ .

Property 4. (Minimality)A(∆τ, E) is minimal, that is, no valid E ′⊂A(∆τ, E) is sound

and complete.

Intuitively, minimality means that A(∆τ, E) should not contain any events that

are not necessary to reproduce ∆τ . If this property were omitted, A(∆τ, E) could

trivially output the complete trace E .

3.4 Summary

In this chapter, we present the TAP provenance model based on the system model

defined in Chapter 2. We show that it is always possible to extract, from the TAP

provenance, a trace that is “consistent” with the actual system execution. We

then further formalize and prove the correctness of the TAP provenance model
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as four properties (validity, soundness, completeness and minimality). (The com-

plete proofs are presented in Appendix A.) In the subsequent chapter, we describe

the provenance maintenance and querying techniques that realize the TAP prove-

nance in distributed systems.
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Chapter 4

Maintenance and Querying

In this chapter, we explore the generic data management challenges posed by the

distribution, querying, and maintenance of provenance in large-scale distributed

systems. Such scale has presented a unique challenge to provenance data man-

agement: Network applications in Internet domains usually involve thousands of

nodes; moreover, provenance computations are required to co-exist with existing

network protocols. Bandwidth efficiency and minimal impact on convergence time

are of significant importance.

4.1 Storage Model

This section defines the storage model used by NETTRAILS to store and main-

tain provenance in distributed systems. NETTRAILS’s graph-based data model is

amenable to storage using a distributed relational database, and is sufficiently gen-

eral to be used as a basis for generating other provenance representations.

4.1.1 Provenance as Relational Tables

NETTRAILS stores the graph representation of provenance in a relational table in a

format similar to that used in existing work [29, 31]. NETTRAILS makes use of four
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provenance tables – called prov, ruleExec, send, and recv – that are incremen-

tally updated as the derivation rules that model the protocols are executed. These

tables store TAP’s provenance graph in a distributed fashion.

Tuple instances: The prov table maintains information about each tuple (includ-

ing both current tuples and tuples that existed in the past) as well as the specific

rule that triggered its derivation. Entry prov(@N,VID,Time,RLoc,RID) indicates

that the tuple on node N with unique identifier VID was derived at time Time by a

rule execution on node RLoc that is uniquely identified by RID. If N and RLoc are

different, the tuple was sent from RLoc to N, and this communication is recorded

in additional recv and send entries (see below). VID is generated based on a cryp-

tographic hash of the contents of the tuple and the time of its derivation; similarly,

RID is a hash of the rule identifier, node location, and VID of the derived tuple. For

base tuples, RID is set to null, since they are not derived by any rule.

In order to correctly generate the above entries, NDlog programs undergo an

automatic rewrite process to include the RID and RLoc information with each tuple

derivation. This process ensures that the appropriate prov entry will be generated

on the node to which the derivation is sent.

Rule execution instances: The ruleExec table maintains information about each

execution of a rule (not just about each rule). Entry ruleExec(@RLoc,RID,Rule,

ExecTime,Event,CList) indicates the execution of a Rule on RLoc at ExecTime,

triggered by an event Event (i.e., a tuple that changed, appeared, or disappeared)

while the preconditions in CList were holding.

Message transmissions: The send and recv tables maintain information about

message exchanges. send(@Sender,VID,STime,RID) and recv(@Receiver,VID,

RTime,Sender,STime) refer to the rule execution identified by RID that affected

the tuple identified by VID; the corresponding message was sent by Sender at time

STime and received at time RTime. Whenever a rule execution causes a message
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+/- Loc VID Time RLoc RID Derivation
+ b V ID1 t0 null null +link(@b,c,3)
+ b V ID2 t2 null null +link(@b,a,1)
+ b V ID3 t2 b RID1 +mincost(@b,a,1)
+ c V ID4 t3 b RID2 +cost(@c,a,4)
+ c V ID5 t3 c RID3 +mincost(@c,a,4)
− c V ID6 t3 c RID3 -mincost(@c,a,5)

Table 4.1: An example prov relation based on Figure 3.1. The table is horizontally
partitioned across all nodes, based on the location specifier Loc. The last column is
not stored in the table; it is included here to show the derivation that corresponds
to each entry. The first column indicates an insertion (+) or a deletion (−).

+/- RLoc RID Rule ExecTime Event CList Derivation
+ b RID1 mc3 t2 V ID2 null +mincost(@b,a,1)
+ b RID2 mc2 t2 V ID2 (V ID1) +cost(@c,a,4)
+ c RID3 mc3 t3 V ID4 null +mincost(@c,a,4)

Table 4.2: An example ruleExec relation that corresponds to the DERIVE vertices
shown in Figure 3.1. The last column shows the derivation rule that was executed
in each instance.

to be sent, send and recv entries are generated at the sender and receiver, respec-

tively, and are timestamped using nodes’ local clocks. To handle clock skew, the

receiver stores the sender’s timestamp at message transmission; this timestamp is

included in each message along with the (un)derived tuple. This information is

used during query processing to correctly match up send and recv entries.

Given the distributed nature of provenance storage, these tables are naturally

partitioned based on their first attributes, and distributed among the nodes. For

instance, prov entries are co-located with the tuples to which the update events

were applied, and ruleExec entries are located on the nodes on which the rule

executions were performed.
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Sender VID STime RID Derivation
b V ID4 t2 RID2 +cost(@c,a,4)

Receiver VID RTime Sender STime Derivation
c V ID4 t3 b t2 +cost(@c,a,4)

Table 4.3: Example send and recv relations that correspond to the SEND and
RECEIVE vertices in Figure 3.1.

4.1.2 Example Tables

Tables 4.1, 4.2, and 4.3 show the entries for the tables above, based on the exam-

ple provenance tree shown in Figure 3.1. The vertices defined by our provenance

model (Section 3.1) are encoded in the above provenance tables as follows: INSERT

and DELETE vertices are respectively represented as tuple insertions (+prov) and

deletions (-prov). Likewise, DERIVE and UNDERIVE are stored as +ruleExec and

-ruleExec. Edges between INSERT / DERIVE and DELETE / UNDERIVE pairs are rep-

resented by the RID and VID pairings in each prov entry. recv and send entries

correspond to the RECV and SEND vertices. For each tuple uniquely identified by

its primary key, each EXIST vertex consists of all updates (i.e., +prov and -prov)

ordered by their timestamps.

4.2 Provenance Maintenance with Delta Rules

The TAP graph can be captured via the evaluation of delta rules (see Section 2.3) of

the form action :- event, conditions. In a delta rule of the form

4p :- p1, . . . ,4pi, . . . , pn, the event (in this case,4pi) is represented as an INSERT or

DELETE vertex, the conditions (the other pk) are represented as a sequence of INSERT

(or DELETE) vertices that support the existence of pk (EXIST vertex), and the action

(4p) is represented as a DERIVE or UNDERIVE vertex.
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When a delta rule 4p :- p1, . . . ,4pi, . . . , pn is fired at time t, NETTRAILS per-

forms the following steps:

• Generate a +ruleExec or -ruleExec tuple with timestamp t to represent

the rule execution, and maintain pointers to the triggering event 4pi and

preconditions p1, . . . , pn (excluding pi).

• Generate a +prov or -prov tuple with timestamp t to represent the insertion

or deletion event4p, and to maintain a pointer to the generated +/-ruleExec

tuple.

• If the generated event 4p needs to be sent to another node, generate a pair

of send and recv tuples at the sender and the receiver, respectively, with

timestamps that correspond to nodes’ local clocks.

• Finally, if the generated event 4p results in a violation of a primary-key or

aggregation constraint (e.g., the newly-generated tuple displaces another),

generate an additional +prov or -prov tuple to represent the deletion caused

by4p. This corresponds to the update edge from Section 4.1.

4.2.1 Rule Generation for Provenance Maintenance

To perform the provenance maintenance described in the previous section, we

leverage the distributed querying processing capability of the declarative network-

ing engine. Given any NDlog program, additional NDlog provenance maintenance

rules are automatically generated. Algorithm 2 shows the basic approach towards

generating provenance maintenance rules. The algorithm takes as input an NDlog

delta rule R of the form:

+/-h(@H1,...,Hk) :- +/-t0(@X,P01,...,P
0
k0
),t1(@X,P11,...,P

1
k1
),...,

tn(@X,Pn1,...,P
n
kn
),c1,...,cp.
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Algorithm 2 Generation of Provenance Maintenance Rules
1: proc ProvenanceRewrite(R)
2: RS ← {}
3: R = ±h(@H1, ...,Hk) : - ±t0(@X,P 0

1 , ..., P
0
k0
), t1(@X,P

1
1 , ..., P

1
k1
), ...,

tn(@X,P
n
1 , ..., P

n
on), c1, ..., cp.

4: RS.add(eHTemp(@RLoc,H1, ...,Ho, RID,Rule, ExecT ime,Event, CList) : -
t0(@X,P

0
1 , ..., P

0
k0
), t1(@X,P

1
1 , ..., P

1
k1
), ..., tn(@X,P

n
1 , ..., P

n
kn
),

c1, ..., cp, RLoc = X,Rule = rid,
P ID0 = f sha1(t0 +X + P 0

1 + ...+ P 0
k1
),

......
P IDn = f sha1(tn +X + Pn1 + ...+ Pnkn),
Event = PID0

CList = f append(PID1, ..., P IDn),
RID = f sha1(R+RLoc+ Event+ CList).)

5: RS.add(ruleExec(@RLoc,RID,Rule, ExecT ime,Event, CList) : -
eHTemp(@RLoc,H1, ...Ho, RID,Rule, ExecT ime,Event, CList).)

6: RS.add(eH(@H1, ...,Ho, RID,RLoc,ExecT ime) : -
eHTemp(@RLoc,H1, ...Ho, RID,Rule, ExecT ime,Event, CList).)

7: RS.add(±h(@H1, ...,Ho) : - eH(@H1, ...Ho, RLoc,RID,RecvT ime).)
8: RS.add(prov(@H1, V ID,RecvT ime,RLoc,RID) : -

eH(@H1, ...Ho, RLoc,RID,RecvT ime),
V ID = f sha1(h+H1 + ...+Ho).)

9: return RS

where the rule body consists of one trigger event t0, n predicates +/-t1, t2,. . . ,tn

and p constraints (or assignments) c1, c2,. . . ,cp. The derived rule head +/-h con-

sists of k attributes which are generated from executing the rule body. Here, we

assume that all body predicates are executed at location X (since the rule has been

localized). We further consider the case in which the rule head location H1 is at a

different location from X (and hence the derivation is sent across the network).

The output of running the algorithm is the rule setRS, which is used for prove-

nance maintenance and executing the original derivation. The first rule generates

the local event eHTemp (line 4) which contains all information required for creating

the local ruleExec entry (line 5) corresponding to the meta-data for rule execu-

tion, sending the event message eH to the target node H1 (line 6) to create the

corresponding result tuple +/-h (line 7) and the remote prov entry (line 8). Note
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that the only additional attribute shipped with each message eH is the (RID, RLoc,

ExecTime) fields necessary to reconstruct the provenance information.

The generation of send and recv tuples is performed by the underlying trans-

mission module, which, upon sending and receiving the packets, simply deserial-

izes the packets and records the related fields. Note also that upon receiving the eH

tuple, the transmission model replaces ExecTime field with RecvTime, which indi-

cates the time when the tuple is received. This is necessary for reconstructing the

provenance information by tracing from the prov entry back to the corresponding

recv entry.

Recent work by Amsterdamer et al [2] has shown that provenance models

should be extended to take into account the individual values within tuples to

handle aggregation in general. It is worth mentioning that Algorithm 2 can be ex-

tended to support general aggregations, where Line 4 needs to be updated to treat

aggregation rules as a special case, in which the individual tuples in the relations

of the rule body need to be taken into account.

4.2.2 Proactive and Reactive Maintenance

To answer provenance queries about past tuples or updates, the TAP model con-

tains a temporal dimension. This could in principle be implemented by keeping

a full copy of the provenance whenever it changes. However, this would require

an enormous amount of storage, particularly for long-running distributed systems

with many updates. Moreover, keeping full copies of the provenance is unnec-

essary because TAP provenance is monotonic: the provenance of historic updates

and tuples (which eventually make up a major portion of a provenance graph) is

immutable.

For better efficiency, NETTRAILS maintains provenance incrementally, i.e., it

considers only the “deltas” between adjacent versions, which are sufficient to re-
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construct the full provenance graph. NETTRAILS can store these deltas in the fol-

lowing two different ways:

• Explicit deltas (proactive). In this approach, all of the +prov, -prov,

+ruleExec and -ruleExec entries are stored explicitly in a temporally or-

dered log that is indexed by time. Compared to keeping each version of the

provenance, the storage cost is considerably lower; however, the full prove-

nance information must be reconstructed from the deltas before a query can

be answered. To permit fast reconstruction of EXIST vertices during query ex-

ecution (see Section 4.3), NETTRAILS maintains reverse-time ordered point-

ers between all +prov and -prov entries that correspond to the same tuple.

For instance, in Table 4.1, the prov entry with VID4 (+mincost(@c,a,4))

points to the entry with VID5 (-mincost(@c,a,5)) which in turn points to

another entry for +mincost(@c,a,5).

The idea of keeping deltas between adjacent versions and reconstructing a

specific version by merging deltas is known as a classic approach to perform

efficient versioning. It has been extensively studied and adopted in many

application domains, include transaction logs in database systems [30, 70],

revision control systems [43, 102], and log-structure file systems [89, 93]. Sev-

eral variants, such as forward deltas and reverse deltas [102], have been pro-

posed to tailor the system performance for different system settings or re-

quirements. We expect that similar treatment is applicable to the proactive

provenance maintenance as well.

• Per-node input logs (reactive). In this approach, NETTRAILS maintains only

the non-deterministic inputs (recv entries for incoming messages, as well as

tuple insertions and deletions) at each node. If the underlying application is

deterministic, NETTRAILS can replay these inputs at query time to reproduce

the original execution of that node, and reconstruct the provenance on the
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provenance 
extractor

prov(@N, VID, Time, RID, RTime, RLoc)

ruleExec(@RLoc, RID, Rule, RTime, 
CList, Trigger)

provQuery(@N, VID, Time)

execQuery(@RLoc, RID, Time)

prov.VID = provQuery.VID

execQuery.RID = ruleExec.RID

project (prov.RLoc, prov.RID, prov.RTime)
as execQuery(@RLoc, RID, Time)

project (execQuery.RLoc, 
ruleExec.Trigger / ruleExec.CList[i], 

execQuery.Time)
as provQuery(@N, VID, Time)

log

Figure 4.1: Logical query plan for recursive provenance queries. Underlined at-
tributes are primary keys.

fly. As an optimization, each derived tuple sent across nodes needs only to

include the sender’s timestamp.

The first approach represents a proactive style of provenance maintenance in which

provenance information is stored explicitly in the form of deltas; the second ap-

proach represents a reactive style in which provenance information is reconstructed

at query time. There exists a tradeoff between the two: the proactive approach re-

sults in lower query latencies (since there is less overhead for reconstruction) but

requires more storage space.

4.3 Provenance Query Processing

For ease of exposition, we first limit our discussion to the scenario in which the

query result of interest is the entire provenance for the given update 4τ at time

t. We then discuss in Section 4.3.4 how the query processing can be customized to

handle a more diverse range of application scenarios.
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4.3.1 Recursive Query Plan

To query the provenance of an update, NETTRAILS executes a distributed recursive

query that reconstructs the relevant subtree of the provenance graph from the four

tables we have described in Section 4.1. Figure 4.1 shows the logical query plan

for evaluating this distributed recursive query; the query starts at the root of the

subtree and iteratively adds vertices and edges until a fixpoint is reached (at the

base tuples). The results are then returned in the form of tuples from the prov,

ruleExec, send, and recv tables that encode the relevant subtree.

In Figure 4.1, the initial provenance query is represented as an input tuple

provQuery(@N,VID,Time) to the logical plan. Based on this tuple, NETTRAILS

carries out the following steps:

• Step 1: Retrieve rule execution instances. Since the VID uniquely identifies

4τ , NETTRAILS uses it as a lookup into the prov table (via a database join)

and then retrieves the corresponding RID used to derive the tuple, as well

as the location RLoc at which the rule was fired. This corresponds to the

generation of the DERIVE or UNDERIVE vertex. If RLoc is different from Loc

(i.e., the tuple was derived from a remote rule execution), additional RECV

and SEND vertices are generated by joining the VIDs of derived tuples with

the recv and send tables1; for readability, these extra operations have been

omitted from Figure 4.1. Next, NETTRAILS generates execQuery tuples to

trigger queries on the ruleExec table.

• Step 2: Expand dependent derivations. NETTRAILS ships the resulting

execQuery(@RLoc,RID,Time) tuple to RLoc and there joins it with the local

ruleExec table to recursively expand the child derivations that have resulted

1After retrieving the recv entry based on VID and RTime, we use the STime (sender’s times-
tamp) attribute in recv to fetch the appropriate send entry on the sender’s side. This avoids
explicit time synchronization.
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in4τ . Here, multiple additional provQuery tuples are generated: one for the

trigger event for the delta rule RID, and another for each condition predicate

value that occurred during the execution of RID. Each expansion generates

an INSERT or DELETE vertex, depending on whether the trigger event was an

insertion or a deletion, and each expanded condition generates an EXIST ver-

tex, which includes additional INSERT and DELETE vertices to explain why the

condition held at the relevant Time.

• Repeat until fixpoint. Steps 1 and 2 are performed recursively until all child

nodes are expanded. As the query progresses, the provQuery events are re-

cursively propagated from the root of the provenance tree (where the queried

update resides) towards the child nodes in order to construct the entire sub-

tree. Each level of the tree can be expanded in parallel at different nodes.

Upon reaching the leaf nodes (which correspond to base tuples), the query

results are returned back to the root along the reverse path. At each level, the

parent node returns only its portion of the query result (subtree) after all the

child nodes have completed their respective subqueries.

For our prototype, we have implemented the query plan from Figure 4.1 in ND-

log, and we execute it on a distributed recursive query engine [63]. To customize

the query and to return other annotations of provenance [48], NETTRAILS supports

user-defined functions for augmenting the query plan.

4.3.2 Reconstructing Provenance on Demand

Steps 1 and 2 assume that the entire prov and ruleExec tables are already con-

structed and available when the query is issued. To support the proactive and re-

active maintenance techniques from Section 4.2.2, NETTRAILS needs an additional

provenance extraction operator to reconstruct the prov and ruleExec entries from

deltas or input logs whenever a provQuery or execQuery is received.
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Reconstruction with provenance deltas. When the log consists of deltas, the

prov entries are reconstructed as follows. Given a provenance query

provQuery(@N,VID,Time), the provenance extractor is invoked using VID and

Time as the lookup keys. Using a fast binary-search data structure indexed by

time, the extractor searches the log for an entry corresponding to VID at time Time,

and returns the corresponding +/-prov tuple. In some cases, if an EXIST vertex is

required, the provenance extractor first finds the latest prov entry at time Time

and then follows the chain of updates backwards in time to retrieve all tuples

with a VID smaller than Time. An analogous mechanism is used to reconstruct

the ruleExec tuples by searching for the corresponding RID and RTime.

Reconstruction with input logs. In the reactive implementation, instead of

searching for the appropriate prov and ruleExec entries, reconstruction involves

replaying the entire log (messages and changes to base tuples) at the relevant nodes

until the specified input time (Time or RTime) is reached. Each recv entry from the

log is replayed on a reference implementation of the distributed system to regen-

erate prov and ruleExec entries.

In theory, one can always start replaying the input logs from the very begin-

ning of the system execution. However, this can be costly when the application

has been active for a long time, particularly if the derivation rules are computa-

tionally expensive. NETTRAILS reduces this overhead by periodically recording a

checkpoint. Each node checkpoints only its local state — specifically, the currently

extant tuples and any unprocessed updates in the local pool. This is sufficient be-

cause each node replays only its local execution, and it allows NETTRAILS to avoid

the complex mechanisms needed for consistent global checkpoints. The input log

can then be incrementally applied, starting from the latest checkpoint.

A possible optimization is to cache prov and ruleExec entries from previous

replays in case they can be used in a subsequent query. This avoids unnecessary re-
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plays. Additional methods for improving querying and maintenance performance

are discussed in the next chapter.

4.3.3 Distributed Recursive Query Formulation

We next present the mechanisms by which NETTRAILS formulates distributed

queries to derive various representations from the distributed provenance.

To derive provenance information, NETTRAILS utilizes NDlog programs that

express distributed recursive queries. These queries traverse provenance graphs

(in the form the prov, ruleExec, send and recv tables) in a distributed fashion,

returning results to the querying node. NETTRAILS is flexible to permit different

granularities and representations of provenance (see Section 4.3.4). The program-

mer may select the type of network provenance by modifying the query specifica-

tions.

The following NDlog program demonstrates a generic distributed graph traver-

sal operation on tables prov and ruleExec. The entire program is written in twelve

NDlog rules: two base rules (edb1 and c0), and two pairs of five rules for re-

cursively querying the prov (idb1-idb5) and ruleExec (rv-rv5; not shown for

brevity) tables. The rules are continuous, long-running queries that are initially

installed at every NETTRAILS node for handling distributed provenance queries.

// Base case

edb1 provResults(@Ret,QID,VID,Prov) :- provQuery(@X,VID,Time,QID,Ret),

prov(@X,VID,Time,RLoc,RID), RID==NULL, Prov=f_pEDB(VID).

// Count number of children for each VID

c0 numChild(@X,VID,COUNT<*>) :- prov(@X,VID,Time,RLoc,RID).

// Initializing Buffer

idb1 pResultTmp(@X,QID,Ret,VID,f_empty()) :- provQuery(@X,VID,Time,Ret),

prov(@X,VID,Time,RLoc,RID), RID!=NULL.
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// Recursive case - Local

idb2 execQuery(@RLoc,RID,ExecTime,RQID,X) :- provQuery(@X,VID,Time,Ret),

prov(@X,VID,Time,RLoc,RID), RQID=f_sha1(QID+RID), RLoc==X,

ExecTime=Time.

// Recursive case - Remote

idb3 execQuery(@RLoc,RID,ExecTime,RQID,X) :- provQuery(@X,VID,Time,Ret),

prov(@X,VID,Time,RLoc,RID), RQID=f_sha1(QID+RID), RLoc!=X,

recv(@X,VID,Time,RLoc,ExecTime).

// Buffer sub-results

idb4 pResultTmp(@X,QID,Ret,VID,Buf) :- execResults(@X,RQID,RID,Prov),

pResultTmp(@X,QID,Ret,VID,Buf1),

RQID=f_sha1(QID+RID), Buf=f_concat(Buf1,Prov).

// Calculate and return results

idb5 provResults(@Ret,QID,VID,Prov) :- pResultTmp(@X,QID,Ret,VID,Buf),

numChild(@X,VID,C), C=f_size(Buf), Prov=f_pIDB(Buf,VID,X).

To customize provenance computations in the distributed graph traversal query,

we introduce three user defined functions: f pEDB, f pIDB, and f pRULE, which op-

erate on the base tuples (f pEDB), intermediate derivations (f pIDB), and rule ex-

ecution instance (f pRULE). In Section 4.3.4, we describe these functions in greater

detail, and show, via examples, how they can be customized to return different

provenance representations and granularities.

The initial query is indicated by event provQuery(@X,VID,Time,QID,Ret),

where a query is issued to retrieve the provenance information of tuple VID stored

on X at Time. An additional attribute QID is added to uniquely identify the query,

and the query result should be returned to Ret. Note that upon receiving this

query, node X executes rules edb1, idb1, idb2 and idb3.

Rule edb1 is the base case and applies when the tuple VID is a base tuple (EDB),
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as indicated by the fact that it has no associated rule execution instance (that is, RID

is null). In such cases, the provenance information is f pEDB(VID) — the result of

applying the user-defined function for EDBs to VID. An example of f pEDB is sim-

ply return the tuple itself, indicating the base tuple is involved in the derivation.

Rule idb1 initializes the pResultTmp table, which is later used to buffer inter-

mediate query results. Rule idb2 and idb3 represent the recursive case in which

the prov table is retrieved. Each entry with matching VID in the prov table in-

dicates a rule execution instance that leads to the derivation of VID. These rule

execution instances are additionally retrieved and buffered in pResultTmp table

by issuing a query execQuery(@RLoc,RID,ExecTime,RQID,X). The rule execu-

tion time (i.e., ExecTime) is computed differently, based on whether it corresponds

to a local (Rule idb2) or remote (Rule idb3) rule execution. The process continues

recursively, where the nodes receiving the execQuery message retrieve the match-

ing ruleExec tuples, and recursively traverse children derivations until the base

case is reached.

NETTRAILS applies rule idb4 when all children derivations have returned with

the provenance information. The resulting provenance information is then com-

bined in rule idb4 using the f pIDB function and the results are returned to the

query node.

An additional four rules rv1-rv5 (similar to idb1-idb4) perform a similar

traversal of the ruleExec tables. The intuition behind these rules is that the user

recursively traverses prov and ruleExec tables across nodes until the entire prove-

nance tree has been obtained. Since each rule execution takes several predicates as

input, an additional user defined function f pRULE enables the user to customize

how the various inputs to the rule can be combined in the provenance tree.
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4.3.4 Query Customization

Given the general querying framework presented in Section 4.3.3, we now describe

how users may customize the query processing for application requirements.

First example – Provenance Polynomials. Our first customization example stores

provenance information in the form of an algebraic expression called a provenance

polynomials [32]. Provenance can be encoded as an algebraic structure with two bi-

nary operations — addition and multiplication — indicated by “+” and “·”, where

“+” indicates the combination of tuples with union and projection and “·” denotes

a natural join over tuples. The literals in the algebraic expression represent base

tuples. By customizing the “+” and “·” operators, various types of classic prove-

nance annotation can be encoded. For example, r1(A+r2(B ·C)) indicates that rule

r2 applies JOIN on tuples B and C, and the result is then UNIONed with A in r1.

To return provenance query results as polynomials, the three user-defined func-

tions are implemented as follows:

• f pEDB(VID) takes as input the VID that uniquely identifies the base tuple.

The function simply returns the base tuple itself or its primary keys (which

can be retrieved by reading a systems table that maps VIDs to tuples).

• f pIDB(Derivations,Loc) takes as input Derivations that contain the poly-

nomials (D1,D2,...,Dn) that represent all possible n ways to derive the tuple,

and Loc, the location specifier of the tuple. The function iterates over all

entries in Derivations and applies a “+” operation across them. The re-

sulting provenance expression is then further annotated with the location as

(D1 +D2 + ...+Dn)@Loc.

• f pRule(ChildPred,R,RLoc) takes as input ChildPred, representing the

polynomials of all n input tuples (P1,P2,...,Pn) that are used in the execution
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Node Set # of Derivations Derivability Test
f pEDB {NodeID} 1 True

f pIDB
⋃n
i=1Di

∑n
i=1Di

∨n
i=1Di

f pRULE
⋃n
i=1 Pi

∏n
i=1 Pi

∧n
i=1 Pi

Table 4.4: User-defined functions for various queries

of rule R at location Loc. The function iterates over all entries in ChildPred

and applies a “·” operation across them. As above, the result is affixed with

a rule label and location. The function returns the polynomial 〈R@RLoc〉(P1 ·

P2 · ... · Pn).

Additional examples. Table 4.4 presents additional representative examples of

possible provenance customizations. (D1,D2,...,Dn) contains the provenance anno-

tations of all possible ways to derive a given tuple V ID, and (P1, P2, ..., Pn) denotes

similar annotations of input tuples to a particular rule execution instance.

The first example, NodeSet, returns the set of nodes that participate in the

derivation of a tuple. For each base tuple, f pEDB(VID) returns the node ID where

VID is stored. f pIDB(Derivations,Loc) and f pRULE(ChildPred,R,RLoc) both

return the union of the set of nodes. Note that this query can be trivially extended

to return the number of unique nodes participating in the query.

The second example returns the number of possible derivations of a given tu-

ple. We define the three user-defined functions as follows: f pEDB(VID) evalu-

ates to 1, indicating each of the edb tuples has one derivation. For intermedi-

ate derived tuples, f pIDB(Derivations,VID,Loc) calculates the sum of the sub-

results, where each Di is the number of derivations over its sub-results. For rule

execution instances, f pRULE(ChildPred,R,Rloc) is defined as the product of the

sub-results.

Similarly, the user can modify the user-defined functions for derivability tests.
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NETTRAILS’s flexibility enables numerous other customizations. In all cases,

the user need modify only the three user defined functions (f pEDB, f pIDB and

f pRule). The underlying NDlog program used for querying provenance is suffi-

ciently general to support a diverse set of provenance applications.

As a final example, we briefly outline how graph projection can be achieved

using NETTRAILS. When querying provenance, users may impose constraints

that only allow a specific subset of the provenance information to be counted in

the annotation computation. For example, in a multi-administrative domain, a

node may trust only the provenance information within its own domain. This re-

quires provenance information to be projected based on the constraints imposed

by users. Projection of the provenance graph is straightforwardly achieved us-

ing NETTRAILS’s querying framework by setting additional conditions during the

traversal in the provenance graph. More concretely, when rule idb2 is triggered,

rather than spawning eRuleQuery for each of the alternative derivations, the rule

can instead send the event to a particular targeted set of rule execution vertices.

NETTRAILS’s querying framework is directly applicable to various domains.

For example, in distributed trust management, access requests may be granted or

denied based on the nodes involved in formulating the request. Alternatively, a

trust value may be assigned to each derivation based on a specific definition of

trust. In the domain of recursive view maintenance, one may use the provenance

to perform efficient incremental deletion [59] by performing the derivability tests.

4.4 Correctness

In this section, we prove that the provenance maintenance presented in the previ-

ous sections can faithfully capture the provenance of a system execution based on

the provenance model defined in Chapter 3.

We first show that, given an execution trace E , the provenance information cap-
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tured by proactive maintenance is consistent with G(E), the provenance graph for

E . More specifically, we can find a mappingM between the tuple instances in ta-

bles prov, ruleExec, send and recv, and their corresponding INSERT (or DELETE),

DERIVE (or UNDERIVE), SEND and RECV vertices in G(E).

The execution logic of a prescribed protocol P(Ni) is captured as a set of deriva-

tion rules (i.e τ :- τ1, τ2, ..., τn). Given the semi-naı̈ve evaluation, each rule is rewrit-

ten into delta rules, which are in the form of4τ :-4τi, τ1, ..., τi−1, τi+1, ..., τn, where

4τi corresponds to the trigger event locally derived or encapsulated in a received

message, τ1, ..., τi−1, τi+1, ..., τn correspond to the preconditions, and4τ corresponds

to the generated update. According to the algorithm described in Section 4.2, for

a single event (i.e., state transition), the generated tuple instances in tables prov,

ruleExec, send and recv are consistent with the provenance denotation for this

transition. Provided that provenance is monotonic, the final prov, ruleExec, send

and recv tables are consistent with the denoted provenance G(E), after state tran-

sitions S0 → S1 → ...→ Sn.

We next show that the reactive provenance maintenance yields the same re-

sults as proactive maintenance. By assumption, the execution of a node Ni can be

deterministically replayed, by taking the non-deterministic events recorded in the

logs. Therefore, given the inputs of Ni (recorded as a log), Ni can regenerate the

state transition in the same sequence as runtime, i.e., S0 → S1 → ... → Sn−1 (to

generate the provenance for transition Sn−1 → Sn). At the end of the deterministic

replay, node Ni is at the same state (Sn−1) as the runtime, therefore the provenance

maintenance is performed on the same state.

4.5 Evaluation

In this section, we experimentally evaluate the maintenance and querying per-

formance of the NETTRAILS provenance system. The goal of our evaluation is
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two-fold: (1) to measure the performance overhead incurred by supporting TAP

provenance; and (2) to comparatively study the performance tradeoffs between

different maintenance and querying schemes.

We perform two sets of experiments. In the first set, we focus on the perfor-

mance overhead for supporting the TAP provenance. We evaluate the overhead

for both proactive and reactive maintenance and their corresponding query perfor-

mances. The second set of experiments further studies the performance overhead

for snapshot provenance (see Section 3.2) which captures provenance only for the

derivations of current system state.

4.5.1 Performance of TAP Provenance

Our first set of experiments evaluates NETTRAILS using the following maintenance

techniques from Section 4.2.2: (1) NoProv is a baseline in which no provenance in-

formation is maintained or queried; (2) Proactive maintains provenance proac-

tively using logs to store provenance deltas; and (3) Reactive-Chk and

Reactive-NoChk respectively maintain provenance reactively with and without

checkpointing using per-node input logs. Additionally, as a comparative evalu-

ation, we also measure the performance for maintaining and querying Snapshot

provenance, which captures provenance only for the derivations of the current sys-

tem state.

Experimental setup. We execute multiple instances of NETTRAILS using the

ns-3 [74] network simulator. By running NETTRAILS over ns-3, we can study the

scalability trends of NETTRAILS in a more controlled and repeatable environment.

Our experiments focus on the provenance maintenance and querying over-

heads of a declarative path-vector routing protocol called PATHVECTOR that con-

sists of four rules. PATHVECTOR is an extension of the MINCOST protocol from

Section 2.2; it stores an additional path attribute that encodes the actual path from a
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Figure 4.2: Average per-node bandwidth utilization (KBps).

given source to a destination. PATHVECTOR computes the shortest path (with min-

imal hop count) between any two nodes. We have chosen to evaluate PATHVECTOR

because path-vector protocols are used widely; for example, they serve as the basis

for the Internet’s interdomain routing protocol.

For our experiments, we use the declarative version of PATHVECTOR that was

previously developed by Loo et al. [63]. The program is executed continuously

over a dynamic network; as links are updated, new mincost tuples are derived,

and provenance logs are generated for subsequent reconstruction. Each NET-

TRAILS node runs the PATHVECTOR protocol; in steady state, we add or delete

two links every second. Our simulations last for 300 virtual seconds and are exe-

cuted on machines with X3450 Xeon 2.66 GHz processors and 4 GB memory that

run Fedora 12 (64-bit).

Provenance bandwidth overhead. In our first experiment, we vary the num-

ber of simulated NETTRAILS nodes from 20 to 100. Figure 4.2 shows the average
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Figure 4.3: Average per-node storage overhead (MB).

amount of bandwidth used by each node; since checkpointing increases only local

storage and does not result in any additional communication, we show only the re-

sults for Reactive-NoChk (i.e., without checkpoints). As expected, NoProv’s band-

width usage was the lowest. We also observe that Proactive and Reactive in-

curred roughly the same bandwidth overhead. The reason is that both techniques

add a few attributes (such as sender timestamp, address, and tuple identifier) to

each message that is sent as part of the protocol execution. In both cases, the per-

node bandwidth requirement in the 100-node network was less than 10.5 KBps.

In comparison, Snapshot incurred a relative 88% bandwidth usage. The differ-

ences are mainly because of the different sets of attributes that were added to each

message; Snapshot does not include timestamps in each of the message commu-

nicated.

Provenance storage overhead. NETTRAILS’s per-node storage overheads are

shown in Figure 4.3. We report only the storage used for logs (i.e., the overhead
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Figure 4.4: Query latencies (seconds) for various network sizes.

incurred by NETTRAILS), so we omit the results for NoProv and Snapshot, which

maintain no logs. In Reactive-Chk, checkpoints were taken once every minute.

Proactive produced the largest logs because it explicitly stores each change

to the prov and ruleExec tuples. Reactive-NoChk produced the smallest logs, at

approximately one third of the size of the Proactive logs. The storage overhead

for Reactive-Chk grows linearly with network size. Beyond a network size of 80,

Reactive-Chk actually exceeds Proactive, since checkpoints grow with the size

of the network. However, we note that the crossover point depends on additional

factors such as the update rate of base tuples. Overall, the storage overhead is

modest: in the largest network (100 nodes), it amounts to 2.65 MB in 300 seconds

(approximately 9 KBps).

Query latency. Our second set of experiments evaluates the query latency of

Proactive, Reactive-NoChk, Reactive-Chk. We use the same experimental setup
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as above. Additionally, we randomly issue 100 queries from different nodes, each

of which retrieves the provenance of a particular tuple derived in the past.

Figure 4.4 shows the average query latency for various network sizes. In

Proactive, the average query latency is within 0.34 seconds for the 100-node

network, and each query’s latency is dominated by network propagation delay.

Reactive-Chk returns query results within 37.7 seconds on average. The over-

head is dominated by log replays from a given checkpoint. Reactive-NoChk in-

curs the highest query latency as expected, due to the need to replay logs in their

entirety. However, as noted in Figure 4.3, Reactive-NoChk has significantly lower

storage overhead compared to other schemes, demonstrating a tradeoff in storage

overhead and latency.

4.5.2 Performance of Snapshot Provenance

In our second set of experiments, we further evaluate the performance of two vari-

ants of the proactive maintenance scheme — the value-based provenance and the

reference-based provenance [113]. In value-based provenance, each derived tuple

includes its entire provenance when transmitted between nodes. On the other

hand, in reference-based provenance, which is adopted in NETTRAILS, tuples con-

tain only pointers that may be resolved recursively to reconstruct their derivations

(see Section 4.1).

Experimental Setup. We perform a combination of simulation and deployment

experiments. Our simulation experiments are carried out using the ns-3 [74] net-

work simulator. We generate transit-stub topologies for our simulation experi-

ments using the GT-ITM topology generator [35]. The transit-stub topology con-

sists of eight nodes per stub, three stubs per transit node, and four nodes per transit

domain. We increase the number of nodes in the network by increasing the num-

ber of domains.
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Our deployment experiments are executed within a local cluster of eight dual-

core Intel 2.8GHz Pentium D hosts and 16 quad-core machines with Intel Xeon

2.33GHz CPUs. All machines run Linux 2.6 and are interconnected by high-speed

Gigabit Ethernet. NETTRAILS communicates messages between nodes via UDP

packets. To increase the size of our network, we execute two instances of NET-

TRAILS on each quad-core machine, enabling us to scale our implementation ex-

periments to 40 nodes.

As workloads for our simulation and deployment experiments, we use two

NDlog applications: MINCOST, introduced in Section 2.2, computes the costs of

the best (least cost) paths between pairs of nodes; and PATHVECTOR, introduced

in Section 4.5.1, extends MINCOST and enables a node to discover the best path

(transmitted as a vector of nodes) to a specified destination. For all experiments,

each node is initialized with a link tuple for each of its neighbors. That is, nodes

have a priori knowledge of their local links and use MINCOST and PATHVECTOR

to discover longer network paths. Link costs are fixed at 1, and hence MINCOST

measures hopcount to the destination.

Communication Overhead. In the case of value-based provenance, each tuple

carries its (potentially lengthy) derivation history. Reference-based provenance

attempts to decrease this overhead by communicating pointers to provenance in-

formation rather than directly conveying the information.

Figure 4.5 plots the communication cost (the number of transmitted bytes be-

fore reaching the fixpoint), averaged over all nodes, for various sized simulated

networks when nodes execute the MINCOST program. (For readability, the order

of the labels in all figures in this section mirror the ordering of the plotted curves.)

Value-based provenance results in significant communication overhead. For

example, in the 300-node network, value-based provenance quadruples the cost

of conducting the query compared with executing MINCOST without provenance

53



Chapter 4. Maintenance and Querying

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 100  150  200  250  300  350  400  450  500

A
v
e
ra

g
e
 C

o
m

m
. 
C

o
s
t 
(M

B
)

Number of Nodes

Value-based Prov.
Ref-based Prov.

No Prov.

Figure 4.5: Average communication cost (MB) for MINCOST.

(line “No Prov.”). In contrast, reference-based provenance (line “Ref-based Prov.”)

incurs little communication overhead, increasing the communication cost by just

0.04 MB (11.3%) in the same 300-node network. The vast difference in bandwidth

costs is due to MINCOST’s ability to produce multiple derivations for a given

mincost tuple. All possible derivations must be communicated with each tuple

when using value-based provenance. Our reference-based technique reduces the

provenance information that must be transmitted since the same pointer may be

shared between different derivations.

Due to the memory constraints of running large-scale ns-3 simulations on a sin-

gle machine, we experimented with up to 500 nodes in our simulations. However,

our results clearly demonstrate promising scalability trends for all protocols: the

average communication costs of MINCOST protocol (without provenance) scale

linearly with the number of nodes. This matches the expected scalability behav-

ior for the protocol. Moreover, with the addition of reference-based provenance,
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Figure 4.6: Average bandwidth cost (MBps) for MINCOST under churn.

we note that the communication costs continues to scale linearly, hence maintain-

ing the original scalability trends, demonstrating that reference-based provenance

incurs minimal impact on the scalability of an existing protocol.

Incremental Maintenance. The experiments described above model a static

topology in which nodes neither leave nor join the network and links never fail.

Here, we evaluate NETTRAILS’s ability to mitigate a high level of node churn

and link failure. We model churn by adding or deleting ten randomly selected

stub-to-stub links in a 200-node simulated network (originally containing 315

stub-to-stub links) every 0.5 seconds, with link addition or deletion occurring with

equal probability.

Figure 4.6 shows the respective average per-node bandwidth costs of running

the MINCOST protocol. Reference-based provenance does not incur significant

bandwidth overhead (the lines for No Prov. and Ref-based Prov. closely over-
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Figure 4.7: Average bandwidth cost for PATHVECTOR in testbed deployment.

lap). For example, the maximum increase in bandwidth due to reference-based

provenance (relative to conducting the query without provenance) is 0.07 Mbps.

Value-based provenance consumes significantly greater bandwidth as complete

provenance information must be affixed to each transmitted tuple. The respective

increases in bandwidth for MINCOST are 1.0 Mbps, 1329% greater than the equiv-

alent overheads for reference-based provenance.

For both reference- and value-based provenance, a new fixpoint is reached

within 0.5 seconds, indicating that NETTRAILS is resistant to even high levels of

churn regardless of the type of provenance used.

Testbed Experiments To empirically evaluate NETTRAILS’s computation and

communication properties, we installed 40 instances of NETTRAILS in a local

cluster. Since nodes on the cluster are fully connected via a shared switch, we

impose a less trivial virtual topology as follows: to ensure reachability, nodes
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Figure 4.8: Fixpoint times for PATHVECTOR in testbed deployment.

are arranged in a ring structure. Each node in the network has links to its two

neighbors (hence achieving the ring structure). Additionally, each node has a link

to a random peer such that the maximum degree of all nodes is always three (a

link to each ring neighbor and a third to a random peer). All nodes execute the

PATHVECTOR protocol.

As with the simulation experiments, our reference-based provenance technique

significantly reduces the overhead of provenance compared to the value-based ap-

proach. When sending no provenance information, the average per-node band-

width cost of executing PATHVECTOR is 1.24 KB before a fixpoint is reached.

Reference-based provenance increases this cost by 29%, far less than the 204% in-

crease caused by value-based provenance. This trend can be observed from Fig-

ure 4.7 which plots the average per-node bandwidth over time for the experiments.

The relative overheads of reference- and value-based provenance mirror our ear-

lier simulation results.
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In addition to examining bandwidth costs, our deployment provides a mecha-

nism to study the computational overhead of using the different provenance tech-

niques. Figure 4.8 shows the fixpoint time for different network sizes. (As an

invariant of network size, the degree of each node in the network is fixed at three.)

As can be discerned from the Figure, neither provenance technique imposes any

significant increase in fixpoint time.

To summarize, the results of our deployment experiments indicate that

reference-based provenance achieves a substantial decrease in communication

cost as compared to value-based techniques, while imposing little or no increase

in fixpoint latency.

4.6 Summary

In this chapter, we show how TAP provenance can be maintained and queried at

scale in distributed settings. We present the relational storage model of prove-

nance, and discuss two alternative approaches for provenance maintenance. We

show that, given the derivation rules that specify the system execution logic, an

automatic rewrite strategy can be employed to augment the original system with

additional rules for provenance maintenance. Moreover, provenance queries are

formulated as recursive queries over the distributed provenance data, and are

specified in a declarative framework that allows easy customization for various

applications. Through a combination of simulation and testbed deployment, we

demonstrate that provenance can be maintained and queried with reasonable over-

head. In the subsequent chapter, we discuss several optimization opportunities

that further reduce the maintenance overhead and/or query performance.
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Optimizations

In Chapter 4, we have demonstrated the practicality and scalability of the proposed

provenance maintenance and querying techniques. In practice, however, individ-

ual applications may impose different performance optimization goals that require

tailored treatment in system design and implementation. For instance, fault detec-

tion systems may frequently issue provenance queries to monitor the progression

of system execution, and, therefore, require optimized query performance; on the

other hand, provenance information is not actively queried for attack analysis in a

benign environment, so minimizing the maintenance overhead at runtime is pri-

oritized in this scenario. Often times, the maintenance and querying techniques

need to be customized to match these optimization goals.

In this chapter, we discuss several optimization techniques that balance the

tradeoff along several axis. Section 5.1 presents a quantitative study of the trade-

offs between the proactive and reactive maintenance schemes; and Section 5.2 fur-

ther discusses techniques that optimize query performance (such as query latency

and communication overhead). We conclude the chapter by demonstrating the

effectiveness of the proposed the optimizations in Section 5.3.
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5.1 Cost-based Optimizations

The maintenance approaches introduced in Chapter 4 offer a spectrum of trade-

offs between maintenance overhead and querying performance. The best tradeoff

depends on a variety of factors, some of which we discuss below.

Querying frequency. We expect that the cost for query processing will be a func-

tion of (1) how frequently queries are issued, (2) how far apart the checkpoints are

in the log, and (3) how much work is required to replay a log segment. If queries

are expected to be rare, we can save space by maintaining input logs and taking

checkpoints only occasionally. In this case, answering a query can be expensive

because the relevant parts of the provenance graph must be reconstructed by re-

playing the execution of certain nodes from their latest checkpoint.

If queries are more frequent, we can trade some space for a lower

query-processing cost by (1) taking checkpoints more frequently (for reactive main-

tenance), which reduces the expected length of the log segment that needs to be

replayed, and/or (2) maintaining provenance deltas rather than input logs. The

latter reduces the computational cost because replay needs only to incrementally

apply the changes to the provenance data and does not require repeating the pro-

cessing steps that produced them.

System runtime. Many distributed systems run for an indefinite amount of time.

For example, the Internet’s interdomain routing system has been running for

decades. In such systems, checkpoints are indispensable because it is not practical

for the querier to replay the execution of the system, or even just a single node,

from the very beginning. On the other hand, there are distributed systems that run

only for a limited time. For example, in this case, replaying the entire log may be

practical, and if so, we can save even more space by not maintaining checkpoints.
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Local derivations. Distributed systems differ in the relative frequency of remote

derivations (i.e., derivations that involve message exchanges between nodes).

When most derivations are remote, both provenance deltas and input logs should

perform equally well since most state changes (which are recorded in provenance

deltas) are due to incoming messages (which are recorded in the input logs). How-

ever, there are systems where most derivations are local; for example, a distributed

machine-learning algorithm might just send a very few messages to transfer the

raw data and the results. In this case, input logs should consume significantly less

space than provenance deltas, but they would need much more computation when

the provenance graph needs to be reconstructed to answer a query.

5.1.1 Cost Model

In order to decide which maintenance strategy(-ies) to adopt, we develop a cost

model that captures the tradeoffs between maintenance and querying overhead.

Our cost model takes as its inputs a set of runtime statistics collected from the

system, including workload properties (e.g., message and query frequencies), the

characteristics of the running protocol (e.g., the ratio of local derivations), and the

measured overhead for reading and writing log entries.

The model parameters are summarized in Table 5.1 and are broadly classified

into three categories: (1) properties of the NDlog program that the system executes,

(2) properties of the nodes on which the system is deployed, and (3) properties

of the workload. Unless otherwise specified, model parameters are system-wide;

they are obtained by profiling the deployed system at runtime. Each node first

averages its local statistics (e.g., the number of messages per unit time), and then

the results are averaged across all nodes.

NDlog program. The first set of parameters relate to the distributed protocol itself.

Since we have assumed (in Section 2.2) that the protocol is specified in NDlog, the
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NDlog Program
Npred # of predicates in rule body
Ndep Node-level depth of the provenance graph
Nexec # of derivation rules triggered by a message
Ndup # of duplicate derivations per tuple
System Performance
Slog/Schk Size of a log entry / checkpoint
Twlog/T

r
log Time taken to append / retrieve a log entry

Twchk/T
r
chk Time taken to save / load a checkpoint

Trule Time taken to execute a delta rule
Tlatency Average propagation delay between two nodes
Input Workload
Fmsg Message freq. (# of messages per unit time)
Fqry Query freq. (# of queries per unit time for the entire system)
Ichk Checkpoint interval (# of unit times between adjacent checkpoints)

Table 5.1: Summary of the statistics used for cost-based optimizations.

properties are expressed in terms of the structure of the program. Npred denotes

the average number of predicates in a rule body; for instance, in the MINCOST

program from Section 2.2, rule mc2 has a complexity of two because its rule body

contains the predicates link and mincost. Ndep denotes the average node-level

depth of a provenance tree for any tuple derived using the program. Note that this

is not the same as vertex-level depth; for instance, in Figure 3.1, Ndep = 2, since the

graph is partitioned at nodes c and b. Nexec is the number of derivation rules that

are triggered (executed) by an incoming message at a given node. This includes all

local rules executed until a local fixpoint is reached. For instance, in the MINCOST

program from Section 2.2, an incoming path message will trigger rule r3, which

may further trigger rule r2 (if the received path is optimal). Finally, Ndup is the

average number of duplicate derivations per tuple. Npred can be analyzed statically

from the protocol specification, whereas Ndep and Nexec are collected at runtime,

e.g., by observing the previous provenance query results and rule executions.

System performance. The next set of properties relates to the runtime environment
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in which the distributed system is deployed, e.g. with respect to I/O, computation

power, and message propagation delay in the network. Slog and Schk are the aver-

age sizes of a log entry and a checkpoint, respectively; Twlog and T rlog are the times

required to append and retrieve a log entry; Twchk and T rchk are the times required to

save and load a checkpoint; Trule is the average execution rule execution time; and

Tlatency is the average propagation delay between two nodes.

Input workload. The final set of properties relate to external inputs that drive the

execution of the protocol. For example, the rate at which links are updated in the

MINCOST program has a direct impact on the number of times rules are fired on a

node and the size of the log. Rather than capture the rate of change at a predicate

level, we instead measure the average frequency of incoming messages at each

node during protocol execution, denoted as Fmsg. Unlike other parameters, Fqry

represents a system-wide total, i.e., it represents the number of queries issued to

the entire network.

NETTRAILS captures parameters at a coarse granularity (typically, system-wide

averages of per-node averages). Our model can capture costs at finer granularity,

e.g., at the level of individual relational operators, but the requisite fine-grained

data leads to a massive number of parameters. As we show in Section 5.3.1, coarse-

grained statistics are sufficient for the model to provide accurate estimates on ac-

tual system performance.

5.1.2 Applying the Cost Model

The proactive and reactive provenance maintenance techniques offer storage and

latency tradeoffs: the proactive scheme has a higher log storage overhead but of-

fers lower query latency than the reactive strategy. NETTRAILS applies the above

cost model to estimate the storage and latency overheads, and then, as discussed

in Section 5.1.3, selects the strategy that is likely to perform best.
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• Storage overhead. In the proactive approach, the log stores +/-prov,

+/-ruleExec, and incoming recv tuples as they are generated by the under-

lying protocol. Each log entry requires Slog space. With a message frequency

of Fmsg, the recv tuple yields a storage overhead of Fmsg ×Slog, and the prov

and ruleExec yield 2× Fmsg ×Nexec × Slog.

For the reactive approach, NETTRAILS needs maintain only one log entry for

each incoming message. Here, the storage overhead is (Fmsg × Slog) + (Ichk ×

Schk), where the former term denotes the cost of storing the messages and the

latter is the cost of storing the checkpoints.

• Query latency. We consider the time taken to construct a vertex (Tvertex) in

the provenance graph in both the proactive and reactive cases.

In the proactive approach, given a delta rule execution, three log retrievals

are required to get the recv, prov, and ruleExec entries for the trigger event.

We repeat this retrieval process for all duplicate derivations. Hence, Tvertex =

3× T rlog ×Ndup.

In the reactive approach, checkpoints need to be retrieved and replayed, re-

quiring T rchk time. The expected number of log messages that must be re-

trieved and replayed by executing rules between two checkpoint intervals is

Fmsg × Ichk. Hence, Tvertex = T rchk + Fmsg × Ichk ×Nexec × Trule.

To estimate the average per-query latency, we would need to multiply by

the average depth of the tree, and the time to replay each vertex (Tvertex) and

propagation delays in sending the query results along the path of the tree,

resulting in Ndep × (Tvertex + 2 × Tlatency). By taking into account the query

frequency (Fqry), one can further estimate the aggregate latency of all queries

over a period of time.
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5.1.3 Optimizations using the Cost Model

The above cost model can be used to select the maintenance mode that is likely

to perform best according to a given metric. The choice of proactive or reactive

provenance depends upon the underlying protocol and workload, as well as the

metric (i.e., storage or query latency) that the administrator of the distributed sys-

tem would like to optimize. If the administrator’s goal is simply to minimize stor-

age (resp. latency), then the straightforward approach of selecting the maintenance

mode that incurs the least storage (resp. latency) cost is sufficient. More flexibility

can be achieved with more complex objective functions; for instance, the admin-

istrator can adopt a strategy that uses reactive provenance when the estimated

latency is lower than some threshold value.

Selecting the appropriate provenance maintenance mechanism can be done ei-

ther prior to system deployment or at runtime. In the former approach, which

we have adopted for our prototype implementation, NETTRAILS relies on perfor-

mance profiles that capture the costs of a representative system. Cost-based analysis

of the performance profile determines whether proactive or reactive provenance

maintenance is likely to yield better performance.

Another possibility is dynamic adaptation, that is, adjusting the provenance main-

tenance mechanism at runtime. This requires the ability to reconstruct provenance

from a log that contains a mix of provenance deltas and per-node input logs. Here,

NETTRAILS takes advantage of the property that the two maintenance modes are

interchangeable. For instance, given a query for a prov entry at time t, NETTRAILS

can start replaying the log from the most recent checkpoint before t. If a recv mes-

sage is encountered, the execution rules are fired to derive the corresponding prov

and ruleExec tuples. On the other hand, if a +/-prov delta is read from the log, it

can similarly be used to directly update the prov table.
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5.2 Query Optimizations

In this section, we present a number of optimization techniques aimed at reduc-

ing the bandwidth and latency overheads of our distributed querying algorithm.

These optimizations are orthogonal to which maintenance scheme the cost-based

optimizer decides to use, and, therefore, can be deployed with the cost- based op-

timization simultaneously.

5.2.1 Query Results Caching

In the distributed storage and maintenance model adopted by NETTRAILS, each

tuple maintains only reverse markers (via the prov, ruleExec, send and recv

tables) that can be recursively traversed on demand in response to a query. An

alternative approach, however, maintains and communicates the complete prove-

nance information with each tuple derived. Because the provenance is readily

available with the tuples, such an approach results in negligible query latency, in

the cost of excessive communication and storage overhead (as we demonstrated in

Section 4.5.2).

Our first optimization technique attempts to achieve a “sweet-spot” between

these two approaches via the use of query results caching. In cases in which queries

are rare, distributed provenance storage and maintenance aims to incur low com-

munication overhead and minimally impact the convergence times of protocols.

When queries are frequent, subsequent queries can leverage the results of the prior

queries.

Caching scheme. Unlike traditional caching in a centralized database, the dis-

tributed provenance cache is distributed across several nodes in the network.

Whenever a node N issues a distributed query to retrieve provenance information
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for a tuple VID, the resulting query results are not only cached at N, but also stored

at intermediate nodes as the query results are returned along the reverse path.

Specifically, whenever rule idb5 (or the equivalent rule for ruleExec traversal)

is triggered (see Section 4.3.3), it indicates the completion of a query at an interme-

diate derivation. The query result will be maintained in events provResults or

execResults. Before provResults or execResults is sent back to the query is-

suer, these results are cached in a cache(@N,VID,Time,Results) table that stores

at node N, the provenance Results for VID at Time. Further attributes can be added

to distinguish results based on provenance representation. Note that subsequent

queries need not be for the exact tuple (i.e., VID) in order to benefit from the cache:

since the intermediate results are cached along the reverse path, any graph traver-

sal query that reaches node N and requires a subgraph rooted at VID can use the

cache results. The cached results are then sent back on the reverse path back to the

node conducting the query without further traversal.

5.2.2 Query Traversal Order

At each tuple vertex being traversed, the program shown in Section 4.3 simul-

taneously issues queries to all possible derivations. In essence, the distributed

queries traverse the provenance graph using Breadth First Order (BFS). Intuitively,

BFS must flood the queries throughout the whole provenance graph before any

sub-results are obtained.

We explore another query traversal order, Depth First Order (DFS), in which

alternative derivations are explored at each tuple vertex. DFS may incur longer

querying latencies than BFS since the former can stall before a sub-result is re-

ceived. However, DFS provides the opportunity for bandwidth savings for

threshold-based queries in which a user asks, for example, whether a tuple has

more than T derivations or whether fewer than T ′ unique nodes participate in
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the derivation. DFS allows such threshold-based queries to terminate as soon as

the threshold is reached, without incurring additional communication overhead.

That is, DFS trades off query latency in favor of reduced communication overhead

for threshold-based queries.

The following modifications are required to adapt the BFS distributed graph

traversal program (see Section 4.3.3) to a DFS query:

idb6 pQList(@X,QID,AGGLIST<Time,RID,RLoc>) :-

provQuery(@X,VID,Time,QID,Ret),

prov(@X,VID,Time,RLoc,RID), RID!=NULL.

idb7 eIterate(@X,QID,N) :- pResultTmp(@X,QID,Ret,VID,Buf),

numChild(@X,VID,C), N=f_size(Buf)+1, N<=C,

f_pIDB(Buf,X)<=Threshold.

idb2’ execQuery(@RLoc,RID,ExecTime,RQID,X) :- eIterate(@X,QID,N),

pQList(@X,QID,LTime,LRID,LRLoc),

RID=f_item(LRID,N), RLoc=f_item(LRLoc,N), RLoc==X,

ExecTime=f_item(LTime,N).

idb3’ execQuery(@RLoc,RID,ExecTime,RQID,X) :- eIterate(@X,QID,N),

pQList(@X,QID,LRID,LRLoc),

RID=f_item(LRID,N), RLoc=f_item(LRLoc,N), RLoc!=X,

recv(@X,VID,Time,RLoc,ExecTime), Time=f_item(LTime,N).

idb5’ provResults(@Ret,QID,VID,Prov) :-

pResultTmp(@X,QID,Ret,VID,Buf), numChild(@X,VID,C),

Prov=f_pIDB(Buf,X), C=f_size(Buf)||Prov>Threshold.

Instead of starting queries for each derivation simultaneously, the revised pro-

gram iterates through the list of alternative derivations. The exploration of the

next derivation is started only if the results of the previous explorations have been

received.
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To allow the result to be returned as soon as the threshold requirement is satis-

fied, the original rule idb2 and idb3 are replaced by four rules (idb6, idb7, idb2’,

and idb3’) and an additional condition is added to idb5 (as shown in rule idb5’).

An additional set of similar rules is used for conducting a DFS traversal for each

rule execution vertex, and is omitted for brevity.

The pQList table in rule idb6 is a temporary table that maintains the list of rule

execution vertices and their location. We introduce a special aggregation function

AGGLIST<A1,...,AN> that generates lists for the designated attributes, indicated

as A1 to AN, for the tuples in each group.

Whenever there is an update in the pResultTmp table in rule idb7, the revised

program counts the number of the results that have been ever received by checking

the size of the buffer (that is, the Buf attribute in pResultTmp). If the current result

is under the threshold, the program expands the next derivation using rule idb2’

or idb3’ (based on whether it corresponds to a local or remote rule execution). If

not, rule idb5’ is triggered and the result is returned.

In addition to BFS and DFS, random moonwalk [106] traversal can easily be im-

plemented by randomly selecting N alternative derivations to explore, where N is

a pre-defined constant. This technique is particularly useful when the number of

a tuple’s derivations is significantly large. The random moonwalk pinpoints with

high probability the pivotal tuple that contributes to a derivation. In the context of

networking applications, such random moonwalks are useful for ascertaining the

dominating sources of incoming traffic [91].

5.2.3 Condensed Provenance

Our third optimization technique applies a previously proposed compression

scheme known as absorption provenance [59] to the algebraic representation of prove-

nance. Absorption provenance aims to reduce the number of variables in an alge-
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braic representation. For example, consider the algebraic expression a · (a + b).

By applying boolean absorption rules [59], the expression is reduced to a · (a + b) =

a + (a · b) = a. Note that savings in size comes at the expense of information loss.

In our example, absorption provenance loses the fact that b is also involved in the

derivation. However, such absorbed encodings can still retain sufficient informa-

tion for derivability tests or enforcing security policies based on the trust of source

origins (base tuples).

To implement absorption, we utilize Binary Decision Diagrams (BDDs) [8] to

encode provenance. BDDs provide a natural way to encode the algebraic represen-

tation of the provenance, and by default, apply absorption to save storage space.

Since BDDs are frequently used in circuit synthesis and formal verification appli-

cations, highly optimized libraries provide abstract BDD types as well as Boolean

operators that operate on them: pairs of BDDs can be ANDed or ORed; individual

BDDs can be negated; and variables within BDDs can be set to true or false.

Note that the use of absorption provenance applies to both centralized prove-

nance and value/reference-based distributed provenance. For example, in central-

ized and value-based provenance, the provenance information shipped for each

tuple can be stored as BDDs. Similarly, for reference-based distributed provenance,

query results can be returned in the form of BDD representations.

5.3 Evaluation

In this section, we present an experimental evaluation to demonstrate (1) the ac-

curacy of the cost model developed in Section 5.1, and (2) the effectiveness of the

proposed optimization techniques.
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Upd. Interval Proactive Reactive-Chk
(seconds) Estimated Actual Estimated Actual

4 1.0 MB 0.83 MB 4.4 MB 4.01 MB
2 1.4 MB 1.41 MB 4.5 MB 4.41 MB
1 2.2 MB 2.15 MB 4.8 MB 5.03 MB

Table 5.2: Comparisons between estimated storage (obtained from the cost model)
and actual measured storage (in MB) for the path-vector protocol.

5.3.1 Cost-based Optimization

In the first set of experiments, we validate the cost model presented in Section 5.1.1.

Our goal is to show that the model accurately predicts the storage and latency

costs in a variety of different configurations. In particular, we show that, based

on measurements of the parameters described in Table 5.1 (e.g., number of pred-

icates, message frequencies, etc.) and the storage and query formulas specified

in Section 5.1.2, NETTRAILS accurately estimates the storage overhead and query

latency.

We repeat the experimental setup in Section 4.5.1 on actual physical machines

in a local cluster testbed. Here, we utilize machines with a similar hardware and

software configuration as the machine used in simulation. The machines are con-

nected using high-speed Gigabit Ethernet. All NETTRAILS nodes run the same

code as before, but communicate using actual network sockets instead of ns-3’s

simulated network stack.

Path-vector. We deploy the PATHVECTOR protocol on 60 NETTRAILS nodes (uti-

lizing 60 cores on 15 cluster machines) for a duration of 900 seconds. Table 5.2

shows the differences between the estimated per-node storage (predicted using

the cost model) and the corresponding actual storage overhead for each experi-

mental run, repeated for different link update intervals. In both Proactive and

Reactive-Chk (with a per-minute checkpoint interval), our results indicate that
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Upd. Interval Proactive Reactive-Chk
(seconds) Estimated Actual Estimated Actual

4 0.011 s 0.010 s 2.7 s 2.5 s
2 0.012 s 0.012 s 3.3 s 3.6 s
1 0.013 s 0.014 s 4.9 s 4.7 s

Table 5.3: Comparisons between estimated average query latency (obtained from
cost model) and actual measured end-to-end latency (in seconds) for the path-
vector protocol.

our cost model is accurate: the differences between the estimated and the mea-

sured storage costs range from 0.7% to 20.5%. Unlike the simulation results, the

storage overhead for Reactive-Chk is significantly higher than Proactive. This

is largely due to the relatively large checkpoints (compared to the I/O logs) that

dominate the storage cost for Reactive-Chk. Our cost model is able to provide

accurate estimation, such that users can fine-tune the checkpoint intervals accord-

ingly.

Table 5.3 shows the differences between estimated and measured query laten-

cies in a similar setup. The execution time is lower than in the earlier simulations,

since our testbed experiments are carried out with lower update frequency, re-

sulting in shorter log replay times between checkpoints. As before, our cost model

accurately predicts query latencies for different frequencies of link updates; the dif-

ferences between the estimated and measured latencies range from 0.0% to 10.0%.

Hadoop. We next validate the accuracy of our cost model on Hadoop MapRe-

duce (version 1.0.0) [37]. We modified Hadoop so that the dependencies between

incoming and outgoing tuples are reported to NETTRAILS and modeled as NDlog

rules. Briefly, MapReduce consists of a map followed by a reduce phase. In the Map

phase, each Map worker applies the user-defined Map function on each input tu-

ple, and then locally combines intermediate results based on the partitioning key.
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Number of Proactive Reactive-NoChk
Map/Reduce Estimated Actual Estimated Actual

100/40 115.6 GB 115.6 GB 9.7 GB 9.7 GB
40/16 113.9 GB 113.9 GB 9.5 GB 9.5 GB

Table 5.4: Comparisons between estimated storage (obtained from the cost model)
and actual measured storage (in GB) for Hadoop MapReduce.

Number of Proactive Reactive-NoChk
Map/Reduce Estimated Actual Estimated Actual

100/40 6 s 8 s 41 s 47 s
40/16 15 s 19 s 62 s 66 s

Table 5.5: Comparisons between estimated average query latency (obtained from
cost model) and actual measured end-to-end latency (in seconds) for Hadoop
MapReduce

In the reduce phase, a reduce worker combines the outputs from Map workers and

performs the reduce function. The dependency logic between incoming and out-

put tuples of the map and reduce phases can be modeled as two NDlog rules each.

Hence, the number of rules triggered per input (Table 5.1) is Nexec = 2.

We run Hadoop’s WordCount program on up to 40 cores within our cluster.

The program (WordCount) counts the number of occurrences of each word, given

an input document size of 9.1 GB derived from the WebBase dataset [104] (dated

12/2010). In the first setup, 100 map tasks and 40 reduce tasks are executed, while

in the second setup, 40 map tasks and 16 reduce tasks are executed.

Unlike the earlier path-vector experiment, the MapReduce execution is a one-

time execution of static input data (as opposed to a continuously executed routing

protocol). Since it does not make sense to perform periodic checkpoints for the

duration of the execution, we compare only Proactive and Reactive-NoChk. Ta-

ble 5.4 shows that the Proactive approach incurs 12 times larger storage overhead

than Reactive-NoChk (which maintains only the original input files and the inter-
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mediate data communicated from map workers to reduce workers). This is largely

due to the fact that the SHA1-based IDs assigned to prov and ruleExec entries are

significantly larger than the input keywords: on average, a word is around 14 B

(due to a large amount to HTML-specific tags), whereas each prov (or ruleExec)

tuple is 35 B1, i.e., the average size of a log entry (Table 5.1) is Slog = 35 B. Pre-

vious work [45, 81] has shown that MapReduce-specific optimization is possible

to further reduce the size of log entries, however, we decide to retain the general-

purpose provenance encoding in our evaluation.

Our estimated storage overhead is calculated based on the formula introduced

in Section 5.1.2: the storage overhead is Nmsg× (Slog + 2×Nexec×Slog), where Nmsg

denotes the number of input records to the map and reduce workers. Given that

each input event triggers exactly two derivation rules, our cost model accurately

estimates the storage overhead based on the number of input records to the map

and reduce workers (reported by Hadoop).

Table 5.5 summarizes the average query latencies. We observe that, as expected,

Proactive results in a lower query latency since no replay is necessary. Neverthe-

less, even with replay, Reactive-NoChk returns each query within 66 seconds. Re-

play latency is higher when the number of map/reduce workers is reduced since

each worker is responsible for a larger set of input tuples (hence increasing the

replay overhead of reexecuting the specific worker to generate dependency logic

between incoming / outgoing tuples). In all cases, we note that our cost-model

provides a good estimation of query latency.

5.3.2 Query Optimization

In our second set of experiments, we study the performance of distributed query-

ing of provenance using the framework presented in Section 4.3. In addition, we

1In the Hadoop experiment, we use the first 80 bits of the SHA1 hashes for the IDs of prov and
ruleExec tuples.
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Figure 5.1: Average bandwidth cost (KBps) with and without caching.

validate the effectiveness of optimizations in reducing communication overhead

during query. We adopt the same experimental setup as Section 4.5.2. The experi-

ments are performed using a 100-node simulated network that runs the MINCOST

protocol. Our query measurements begin after the network has reached a fixpoint.

We utilize two queries in our evaluation: POLYNOMIAL and #DERIVATION. POLY-

NOMIAL acquires the provenance of an arbitrary tuple in the form of provenance

polynomials (see Section 4.3.4). #DERIVATION computes the number of alternative

derivations for a given tuple.

Caching Figure 5.1 plots the average per-node bandwidth over time when each

node issues five POLYNOMIAL queries per second with each query targeted to a

randomly selected mincost tuple. Without caching, the average bandwidth uti-

lization for each node is approximately 50 KBps. Each query therefore incurs an

average bandwidth cost of 0.1 KBps, an acceptable overhead for most current net-

works. (Of course, the precise cost of conducting POLYNOMIAL queries in other
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Figure 5.2: Cumulative distribution of query completion latencies with and with-
out caching.

settings depends upon the provenance of the queried tuples.) The overhead im-

posed by POLYNOMIAL is due in part to its requirement that results must contain

complete information regarding all possible tuple derivations.

As shown in Figure 5.1, POLYNOMIAL’s overhead can be significantly reduced

by enabling the caching optimization described in Section 5.2.1. Using caching,

the average bandwidth utilization decreases to 20 KBps after two seconds. The

performance improvement is attributed to the fact that queries are more likely to

benefit from the cached results of previous queries as time progresses.

Figure 5.2 presents the cumulative fraction of query completion times. Regard-

less of whether caching is used, results are returned in less than 0.3 seconds, high-

lighting that NETTRAILS’s provenance querying mechanisms are latency-wise ef-

ficient. The figure also shows the advantage of enabling caching: 80% of queries
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Figure 5.3: Average bandwidth cost (KBps) using different query traversal orders.

are returned within less than 50 ms if caching is enabled, a 67% improvement over

query latency when caching is disabled.

Query Traversal Order To study the trade-offs between different query traversal

orders, we conducted experiments in which nodes utilize the #DERIVATION query

to determine whether a minCost tuple has more than three alternative deriva-

tions (the average number of alternative derivations for mincost is approximately

three). The experiment is performed on three variants of the #DERIVATION query:

(a) BFS, (b) DFS, and (c) DFS-THRESHOLD (DFS with threshold-based cutting).

We use the same experimental setup as the caching experiment — that is, each

node in the 100-node network issues five queries per second for randomly selected

mincost tuples.

Figure 5.3 shows the average bandwidth consumption for different query

traversal orders. As can be discerned from the figure, the bandwidth costs incurred
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query traversal orders.

by BFS and DFS are roughly equivalent (since both must traverse the entire prove-

nance graph before a result is concluded). In contrast, DFS-THRESHOLD results in

a 40% decrease in bandwidth consumption, due largely to its avoidance of a full

traversal of provenance graphs for tuples with multiple derivations.

Figure 5.4 plots the cumulative distribution of query completion times for the

query traversal strategies. Although the median latency is roughly equivalent for

BFS and DFS, the latter experiences a long-tail distribution. For example, less than

80% of BFS queries complete within 0.16 seconds. In contrast, 80% of DFS queries

require 0.45 seconds.

BFS’s query completion is largely determined by the traversal depth in the

provenance graph. Unlike BFS, DFS traverses alternative derivations in order, re-

sulting in longer querying completion latencies. By terminating the query as soon

as three derivations are explored, DFS-THRESHOLD avoids the long-tail distribu-
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Figure 5.5: Average bandwidth (KBps) for querying POLYNOMIAL and BDD.

tion experienced by DFS. Using DFS-THRESHOLD, the query completion time for

80% of the queries decreases from 0.45 to 0.3 seconds.

Absorption Provenance We next compare the performance of the POLYNOMIAL

and BDD queries. Figure 5.5 shows the average bandwidth incurred by the POLY-

NOMIAL and BDD queries. POLYNOMIAL incurs 18 KBps (57%) more bandwidth

than BDD, due mainly to BDD’s compact binary representation. As described in

Section 5.2.3, BDD additionally decreases communication overhead by condens-

ing provenance information using lossy compression.

POLYNOMIAL and BDD present near-identical performance when defined in

terms of query completion latency. The latency of a query is largely decided by its

traversal depth. Since both queries follow BFS query traversal order and operate

on the same topology, the distributions of query completion latencies across nodes

is consistent among the POLYNOMIAL and BDD queries.
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5.4 Summary

In this chapter, we present two sets of optimization techniques. The first set studies

the tradeoffs between the proactive and reactive provenance maintenance schemes.

We develop a cost-based optimizer that takes as input the collected statistics that

summarize the program characteristics, system performance and workload pa-

rameters. The decision on which maintenance scheme to adopt is made based

on the cost estimation using these statistics. The second set of optimization tech-

niques focuses solely on improving the query overhead in the cost of increased

storage overhead (cache), delayed query latencies (DFS vs. BFS traversal order),

and approximate query results (condensed provenance). We demonstrate the ef-

fectiveness of the proposed optimization techniques through a series of experi-

mental evaluations performed on several example applications (such as network

routing and cloud MapReduce computation).
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Secure Provenance

In the previous chapters, we have assumed a trusted environment, in which nodes

are cooperative and correctly follow the provenance maintenance and querying

protocols. However, distributed systems may be deployed across multiple ad-

ministrative domains, where nodes may refuse to cooperate or even intentionally

misbehave for various reasons, such as tensions between competing parties or ma-

licious attacks.

In this chapter, we consider forensics in an adversarial setting, that is, we as-

sume that a faulty node does not necessarily crash but can also change its behavior

and continue operating. To be conservative, we assume that faults can be Byzan-

tine [55], i.e., a faulty node can behave arbitrarily. This covers a wide range of

faults and misbehavior, e.g., cases where a malicious adversary has compromised

some of the nodes, but also more benign faults, such as hardware failures or mis-

configurations. Getting correct answers to forensic queries in an adversarial set-

ting is difficult because the misbehaving nodes can lie to the querier. For example,

the adversary can attempt to conceal his actions by causing his nodes to fabricate

plausible (but incorrect) responses to forensic queries, or he can attempt to frame

correct nodes by returning responses that blame his own misbehavior on them.
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Thus, the adversary can gain valuable time by misdirecting the operators and/or

causing them to suspect a problem with the forensic system itself.

Existing solutions for forensics in an adversarial environment usually requires

some trusted components, e.g., a trusted virtual-machine monitor [6, 51], a trusted

host-level monitor [68], a trusted OS [72], or trusted hardware [14]. However, most

components that are available today are not fully trustworthy; OSes and virtual

machine monitors have bugs, which a powerful adversary could exploit, and even

trusted hardware is sometimes compromised [49]. We argue that it is useful to

have alternative techniques available that do not require this type of trust.

Towards this challenge, we introduce Secure Time-aware Provenance (STAP), a

provenance system that can operate in a completely untrusted environment. We as-

sume that the adversary may have compromised an arbitrary subset of the nodes,

and that he may have complete control over these nodes. Despite the conservative

threat model, a STAP system provides strong, provable guarantees: it ensures that

an observable symptom of a fault or an attack can always be traced to a specific

event — passive evasion or active misbehavior — on at least one faulty node, even

when an adversary attempts to prevent this.

6.1 Threat Model and Assumptions

Since we would like to enable system administrators to investigate a wide range

of problems, ranging from simple misconfigurations to hardware faults and even

clandestine attacks, we conservatively assume Byzantine faults [55], i.e., that an

adversary may have compromised an unknown subset of the nodes, and that he

has complete control over them. Thus, the non-malicious problems are covered as

a special case. We assume that the adversary can change both the primary system

and the provenance system on these nodes, and he can read, forge, tamper with,

or destroy any information they are holding. We also assume that no nodes or
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components of the system are inherently safe, i.e., system administrators do not a

priori trust any node other than their own local machines.

6.1.1 Compromises

Ideally, we would like to correctly answer provenance queries even when the sys-

tem is under attack. However, given our conservative threat model, this is not

always possible. Hence, we make the following two compromises: first, we only

demand that the system answer provenance queries about behavior that is observ-

able by at least one correct node [40]; in other words, if some of the adversary’s actions

never affect the state of any correct node, the system is allowed to omit them. Sec-

ond, we accept that the system may sometimes return an answer that is incorrect

or incomplete, as long as the system administrator can a) tell which parts of the

answer are affected, and she can b) learn the identity of at least one faulty node. In

a forensic setting, this seems like a useful compromise: any unexpected behavior

that can be noticed is observable by definition, and even a partial answer can help

the system administrator determine whether a fault or misbehavior has occurred

and which parts of the system have been affected.

6.1.2 Assumptions

In STAP, we make the following security assumptions:

1. An adversary cannot indefinitely prevent correct nodes from communicating;

2. Each node i has a keypair σi/πi for signing messages, and verifying signa-

tures by other nodes;

3. Faulty nodes cannot invert STAP’s hash function or forge a signature by a

correct node;

83



Chapter 6. Secure Provenance

4. In the absence of an attack, messages are typically received within Tprop;

5. The local clocks of the nodes are loosely synchronized to within ∆clock; and

6. The execution of the application on each node is deterministic.

The first three assumptions are needed for the tamper-evident log. Assump-

tion 2 could be satisfied by installing each node with a certificate signed by an of-

fline CA; Assumption 3 is commonly assumed to hold for algorithms such as RSA

and SHA-1. The next two assumptions are for simplicity; there are ways to build

tamper-evident logs without them [41]. Both Tprop and ∆clock can be large, e.g., on

the order of seconds. The final assumption is needed to efficiently store and verify

the provenance graph. This is also needed for some other security techniques, such

as BFT [11], and it can be enforced for different types of applications [41], including

legacy binaries [38].

6.2 Approach Overview

The definition of TAP in previous chapters assumes that, at least conceptually, the

entire system execution E is known. However, in a distributed system without

trusted components, no single node can have this information, especially when

nodes are faulty and can tell lies. In this section, we present STAP, which con-

structs an approximation Gν of the “true” provenance graph G that is based on

information available to correct nodes.

6.2.1 Approximate Provenance using Evidence

Although each node can observe only its own local events, nodes can use messages

from other nodes as evidence to reason about events on these nodes. We can require

that messages be authenticated and acknowledged, such that each received mes-
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sage m is evidence of its own transmission. Once we discover inconsistencies from

the input / output messages, the evidences can be used to tie faults to a particular

node who is responsible for the inconsistency.

In addition, we can demand that nodes attach some additional information

ϕ(m), such as an explanation for the transmission of m. The validity of ϕ(m) is

checked against the expected execution logic and the evidence. For the purposes

of this section, we will assume that ϕ(m) describes the sender’s entire execution

prefix, i.e., all of its local events up to and including the transmission of m. Of

course, this would be completely impractical; our implementation in Section 6.3.1

and 6.3.2 achieves a similar effect in a more efficient way.

When a provenance query is issued on a correct node, that node can collect

some evidence Ē , such as messages it has locally received, and/or messages col-

lected from other nodes. It can then use this evidence to construct an approxima-

tion Gν(Ē) of G(E), from which the query can be answered.

We use the similar mechanisms presented in Chapter 4 to construct provenance

from the evidence. In the construction of Gν(Ē), the legitimacy of the vertices de-

pends on the evidence collected from the other nodes. We introduce a color for

each vertex v in Gν(Ē), which is used to indicate whether v is legitimate: correct

vertices are black, and faulty vertices are red. For example, if a faulty node Ni has

no tuple τ derived during the execution, but nevertheless sends a message +τ to

another node. +τ has no legitimate provenance, so we use the red color to repre-

sent transmission of +τ . In Section 6.2.2, we will introduce a third color, yellow,

for vertices whose true color is not yet known.

6.2.2 Fundamental Limitations

When faulty nodes are present, we cannot always guarantee that Gν(Ē) = G(E).

There are four fundamental reasons for this. First, ϕ(m) can be incorrect; for ex-
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ample, a faulty node can tell lies about its local inputs. As a human investigator,

one may be able to recognize such lies (so there is still value in displaying all the

available information), but it is not possible to detect them automatically, since

nodes cannot observe each other’s inputs. Thus, the corresponding vertices do

not appear red in Gν . Note, however, that a faulty node cannot lie arbitrarily; for

example, it cannot forge messages from other nodes.

Second, ϕ(m) can be incomplete. For example, if two faulty nodes secretly

exchange messages but otherwise act normally, we cannot guarantee that these

messages will appear in Gν because the correct nodes cannot necessarily obtain

any evidence about them. We can, however, be sure that detectable faults [40] are

represented in the graph. Briefly, a detectable fault is one that directly or indirectly

affects a correct node through a message, or a chain of messages. Recall that, in our

motivating scenario, we have assumed that Alice has observed some symptom of

the fault; any fault of this type is detectable by definition.

Third, faulty nodes can equivocate, i.e., there can be two messages m1 and m2

such that ϕ(m1) is inconsistent with ϕ(m2). If a correct node encounters both m1

and m2, it can detect the inconsistency, but it is not clear which of them (if any)

is correct and should appear in Gν . One approach is to liberally mark as incor-

rect each vertex that is involved in an inconsistency. However, this can lead to

an excessive number of incorrect vertices on equivocating nodes, which limits the

usefulness of Gν . Another approach, which we adopt here, is to arbitrarily accept

one of the explanations as true, e.g., the one that appears first.

Finally, if ϕ is evaluated on demand, ϕ(m) can be unavailable. For example,

a correct node that is trying to evaluate a provenance query on Ē might ask the

sender of some m ∈ Ē for ϕ(m) but might not receive a response. This situation

is ambiguous and does not necessarily indicate a fault – for example, the queried

node could be slow, or the response could be delayed in the network. However, the

only way to avoid it reliably would be to proactively attach ϕ(m) to every message,
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which would be prohibitively expensive. Instead, STAP uses a third color (yellow)

for vertices whose color is not yet known. Yellow vertices turn black or red when

the response arrives. If a vertex v remains yellow, this is a sign that HOST(v) is

refusing to respond and is therefore faulty.

6.2.3 Definition: STAP

Based on the intuition presented in Section 6.3, we give the definition of STAP,

which is formulated based on the following properties.

Definition 8. (Monotonicity) An approximation Gν(Ē) of G(E) is monotonic if Gν(Ē)

is a subgraph of Gν(Ē + Ē ′) for additional evidence Ē ′.

Definition 9. (Accuracy) Gν(Ē) is accurate if it faithfully reproduces all the vertices on

correct nodes; in other words, if a vertex v on a correct node appears in Gν(Ē) then v must

also exist in G(E), be colored black, and have the same predecessors and successors.

Definition 10. (Completeness) Gν(Ē) is complete if, given sufficient evidence Ē from

the correct nodes, a) each vertex in G(E) on a correct node also appears in Gν(Ē), and b)

for each detectably faulty node, Gν(Ē) contains at least one red or yellow vertex.

Monotonicity is an important property because it prevents Gν from changing

fundamentally once additional evidence becomes available, which could invali-

date responses to earlier queries. Accuracy and completeness properties give guar-

antees that a correct node will never be falsely accused and that a detectably faulty

node will be eventually detected.

Based on the above three properties, we define STAP as follows:

Definition 11. Given an execution trace E , we define STAP to be a monotonic approx-

imation Gν(Ē) of the provenance graph G(E) that is both complete and accurate in an

untrusted setting.
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6.3 Secure Maintenance and Querying

In this section, we present the security enhancement to the provenance mainte-

nance and querying for implementation a STAP system.

6.3.1 Secure Logging for Provenance Maintenance

Recall from Chapter 3 that provenance graph G = (V,E) is designed so that each

vertex v ∈ V can be attributed to a specific node HOST(v). Thus, we can parti-

tion the graph so that each v ∈ V is stored on HOST(v). To ensure accuracy, we

must additionally keep evidence for each cross-node edge, i.e., (v1, v2) ∈ E with

HOST(v1) 6= HOST(v2). Specifically, HOST(v1) must be able to prove that HOST(v2) has

committed to v2, and vice versa, so that each node can prove that its own vertex is

legitimate, even if the other node is compromised. Finally, due to Assumption 6,

each node’s subgraph of G is completely determined by its inputs and outputs;

hence, it is sufficient to store messages and changes to base tuples. When neces-

sary, the microquery module can reconstruct G from this information.

Logs and Authenticator Sets. STAP’s log is a simplified version of the log from

PeerReview [41]. The log λi of a node i consists of entries of the form ek :=

(tk, yk, ck), where tk is a timestamp, yk is an entry type, and ck is some type-specific

content. There are five types of entries: SND and RCV record messages, ACK records

acknowledgments, and INS and DEL record base tuple insertions and deletions.

Note that log entries are different from vertex types. Each entry is associated with

a hash value hk = H(hk−1 || tk || yk || ck) with h0 := 0, where H(·) is a cryptographic

hash function. Together, the hk form a hash chain. A node i can issue an authentica-

tor ak := (tk, hk, σi(tk ||hk)); σi(·) denotes a signature with i’s key. An authenticator

is a signed commitment that ek (and, through the hash chain, e1, . . . , ek−1) must
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exist in i’s log. Each node i stores the authenticators it receives from other nodes

in its authenticator set Ai.

Commitment. When a node i needs to send a message +/− τ to another node j,

it first appends a new entry ex := (tx, SND, (+/− τ, j)) to its local log. Then it sends

(+/− τ, hx−1, tx, σi(tx ||hx)) to j. When a node j receives a message (+/− τ, a, b, c),

j calculates h′x := H(a || b || SND || (+/− τ, j)) and then checks whether the authenti-

cator is properly signed, i.e., πi(c) = (b ||h′x), and whether tx is within ∆clock + Tprop

of its local time. If not, j discards the message. Otherwise, j adds (tx, h
′
x, c) to its

authenticator set Aj,i, appends an entry ey := (k, RCV, (+/− τ, i, a, b, c)) to its own

log, and sends (ACK, tx, hy−1, ty, σj(ty ||hy)) back to i.

Once i receives (ACK, a, b, c, d) from j, it first checks its log to see whether there

is an entry ex = (a, SND, (+/−τ, j)) in its log that has not been acknowledged yet. If

not, it discards the message. i then calculates h′y := H(b || c || RCV || (+/−τ, i, hx−1, tx,

σi(tx ||hx))), and checks whether πj(d) = (c ||h′y) and ty is within ∆clock + Tprop of

its local time. If not, i discards the message. Otherwise, i adds (c, h′y, d) to its

authenticator set Ai,j and appends an entry ez := (t, ACK, a, b, c, d) to its log. If i

does not receive a valid acknowledgment within 2 · Tprop, it immediately notifies

the administrator of this.

Retrieval. The provenance maintenance module implements a primitive

RETRIEVE(v, aik) which, when invoked on i := HOST(v) with a vertex v and an au-

thenticator aik of i, returns the prefix of the log in which v was generated. Typically,

this is the prefix authenticated by aik, but if v is an EXIST vertex that exists at ek, the

prefix is extended to either a) the point where v ceases to exist, or b) the current

time. If the prefix extends beyond ek, i must also return a new authenticator that

covers the entire prefix. A correct node can always comply with such a request.
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6.3.2 Secure Provenance Querying

STAP adopts a similar distributed recursive querying framework as TAP. To con-

struct provenance in a secure manner, it uses a special primitive called MICROQUERY

to navigate a STAP graph.1 MICROQUERY has two arguments: a vertex v, and ev-

idence Ē such that v ∈ Gν(Ē). MICROQUERY returns one or two color notifications

of the form BLACK(v), YELLOW(v), or RED(v). If two notifications are returned, the

first one must be YELLOW(v). MICROQUERY can also return two sets Pv and Sv that

contain the predecessors and successors of v in Gν(Ē), respectively. Each set con-

sists of elements (vi, ei), where Ēi is additional evidence such that vi and the edge

between vi and v appear in Gν(Ē + ei); this makes it possible to explore all of Gν by

invoking MICROQUERY recursively.

The microquery module implements MICROQUERY(v, e), and uses the informa-

tion in this log to implement MICROQUERY; it uses authenticators as a specific form

of evidence. At a high level, this works by 1) using e to retrieve a log prefix from

HOST(v), 2) replaying the log to regenerate HOST(v)’s partition of the provenance

graph G, and 3) checking whether v exists in it. If v exists and was derived cor-

rectly, its predecessors and successors are returned, and v is colored black; other-

wise v is colored red.

More formally, the evidence for a vertex v is an authenticator from HOST(v) that

covers a log prefix in which v existed. When MICROQUERY(v, e) is invoked on a node

i, i first outputs YELLOW(v) to indicate that v’s real color is not yet known, and then

invokes RETRIEVE(v, e) on j := HOST(v). If j returns a log prefix that matches e, i re-

plays the prefix to regenerate j’s partial provenance subgraph Ḡj . If this subgraph

does not contain v or replay fails (i.e., the sent messages do not match the SEND

entries in the log, a SEND does not have a matching ACK, or the authenticators in

the RECV and ACK entries do not satisfy the conditions from Section 6.3.1, i outputs

1MICROQUERY returns a single vertex; provenance queries must invoke it repeatedly to ex-
plore Gν . Hence the name.
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RED(v); otherwise it outputs BLACK(v) and returns the predecessors and successors

of v in Ḡj . The evidence for a SEND predecessor and a RECEIVE successor are the au-

thenticators from the RCV and ACK entries, respectively; the evidence for all other

vertices is the authenticator returned by RETRIEVE, if any, or otherwise e.

As described so far, the algorithm colors a vertex v red for which HOST(v) does

not have a correct ‘explanation’ (in the form of a log prefix), and it colors v yellow if

HOST(v) does not return any explanation at all. The only remaining case is the one

in which v’s explanation is inconsistent with the explanation for one of its other

vertices. To detect this, i performs the following check: it determines the interval I

during which v existed during replay, and asks all nodes with which j could have

communicated during I (or simply all other nodes) to return any authenticators

that were a) signed by j, and b) have timestamps in I . If such authenticators are

returned, i checks whether they are consistent with the log prefix it has retrieved

earlier; if not, i outputs RED(v).

6.3.3 Optimizations

As described so far, each NETTRAILS node cryptographically signs every single

message and keeps its entire log forever, and each microquery retrieves and re-

plays an entire log prefix. Most of the corresponding overhead can be avoided

with a few simple optimizations.

First, nodes can periodically record a checkpoint of their state in the log, which

must include a) all currently extant or believed tuples and b) for each tuple, the

time when it appeared. Thus, it is sufficient for MICROQUERY(v, ε) to retrieve the

log segment that starts at the last checkpoint before v appeared, and start replay

from there. Note that this does not affect correctness because, if a faulty node

adds a nonexistent tuple τ to its checkpoint, this will be discovered when the cor-

responding EXIST or BELIEVE vertex is queried, since replay will then begin before
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the checkpoint and end after it. If the node omits an extant or believed tuple that

affects a queried tuple, this will cause replay to fail.

Second, nodes can be required to keep only the log segment that covers the

most recent Thist hours in order to decrease storage costs. To speed up queries, the

querier can cache previously retrieved log segments, authenticators, and even pre-

viously regenerated provenance graphs. As we show in Section 6.5, this reduces

the overhead to a practical level.

Third, the overhead of the commitment protocol can be reduced by sending

messages in batches. This can be done using a variant of Nagle’s algorithm that

was previously used in NetReview [39]: each outgoing message is delayed by a

short time Tbatch, and then processed together with any other messages that may

have been sent to the same destination within this time window. Thus, the rate of

signature generations/verifications is limited to 1/Tbatch per destination, regardless

of the number of messages. The cost is an increase in message latency by Tbatch.

6.4 Correctness

Next, we argue that, given our assumptions from Section 6.1.2, NETTRAILS pro-

vides secure network provenance as defined in Section 6.2.3 — that is, monotonic-

ity, accuracy, and completeness. Here we present the theorems and proof sketches;

the complete proofs can be found in a technical report [110].

Theorem 1. NETTRAILS is monotonic: if ε is a set of valid authenticators and aik a valid

authenticator, Gν(ε) is a subgraph of Gν(ε+ aik).

Proof sketch. There are four cases we must consider. First, the new authenticator

aik can be the first authenticator from node i that the querying node has seen. In

this case, the querying node will RETRIEVE the corresponding log segment, replay it,

and add the resulting vertices toGν . Since the graph construction is compositional,
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this can only add to the graph, and the claim holds. Second, a can belong to a log

segment NETTRAILS has previously retrieved; in this case, Gν already contains

the corresponding vertices and remains unchanged. Third, a can correspond to

an extension of an existing log segment. In this case, the additional events are

replayed and the corresponding vertices added, and the claim follows because the

graph construction is compositional and incremental. Finally, a’s log segment can

be inconsistent with an existing segment; in this case, the consistency check will

add a red SEND vertex to Gν . �

Theorem 2. NETTRAILS is accurate: any vertex v on a correct node that appears in

Gν(ε) must a) also appear in G, with the same predecessors and successors, and b) be

colored black.

Proof sketch. Claim a) follows fairly directly from the fact that i := HOST(v) is

correct and will cooperate with the querier. In particular, i will return the relevant

segment of its log, and since the graph construction is deterministic, the querier’s

replay of this log will faithfully reproduce a subgraph of G that contains v. Any

predecessors or successors v′ of v with HOST(v′) = i can be taken from this sub-

graph. This leaves the case where HOST(v′) 6= v. If v′ is a predecessor, then it must

be a SEND vertex, and its existence can be proven with the authenticator from the

corresponding SND entry in λ. Similarly, if v′ is a successor, then it must be a RECV

vertex, and the evidence is the authenticator in the corresponding ACK entry in λ.

Now consider claim b). Like all vertices, v is initially yellow, but it must turn

red or black as soon as i := HOST(v) responds to the querier’s invocation of

RETRIEVE, which will happen eventually because i is correct. However, v can only

turn red for a limited number of reasons—e.g., because replay fails, or because i is

found to have tampered with its log—but each of these is related to some form of

misbehavior and cannot have occurred because i is correct. Thus, since v cannot

turn red and cannot remain yellow, it must eventually turn (and remain) black. �
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Theorem 3. NETTRAILS is complete: given sufficient evidence ε from the correct nodes,

a) each vertex in G on a correct node also appears in Gν(ε), and b) when some node is de-

tectably faulty, recursive invocations of MICROQUERY will eventually yield a red or yellow

vertex on a faulty node.

Proof sketch. Claim a) follows if we simply choose ε to include the most recent

authenticator from each correct node, which the querying node can easily obtain.

Regarding claim b), the definition of a detectable fault implies the existence of a

chain of causally related messages such that the fault is apparent from the first

message and the last message m is received by a correct node j. We can choose

v′ to be the RECV vertex that represents m’s arrival. Since causal relationships cor-

respond to edges in G, Gν must contain a path v′ →∗ v. By recursively invoking

MICROQUERY on v′ and its predecessors, we retrieve a subgraph of Gν that contains

this path, so the vertices on the path are queried in turn. Now consider some ver-

tex v′′ along the path. When v′′ is queried, we either obtain the next vertex on the

path, along with valid evidence, or v′′ must turn red or yellow. Thus, either this

color appears before we reach v, or we eventually obtain evidence of v. �

6.5 Evaluation

In this section, we evaluate NETTRAILS using three applications in a total of five

different scenarios. Since we have already proven the correctness of the STAP al-

gorithm in [110], we focus mostly on overheads and performance. Specifically,

our goal is to answer the following high-level questions: (i) can NETTRAILS an-

swer useful forensic queries? (ii) how much overhead does NETTRAILS incur at

runtime? and (iii) how expensive is it to ask a query?
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6.5.1 Experimental Setup

We examine NETTRAILS’s performance across five application configurations:

Quagga [82] routing deployment, two Chord [99] installations, and two

Hadoop [37] clusters. We describe how NETTRAILS interacts with each applica-

tion in greater details in Section 7.4.

Our Quagga experiment is modeled after the setup used for NetReview [39]:

We instantiated 35 unmodified Quagga daemons, each with the NETTRAILS proxy

from Section 7.4.3, on an Intel machine running Linux 2.6. The daemons formed

a topology of 10 ASes with a mix of tier-1 and small stub ASes, and both cus-

tomer/provider and peering relationships; the internal topology was a full iBGP

mesh. To ensure that both the BGP traffic and the routing table sizes are realis-

tic, we injected approximately 15,000 updates from a RouteViews [90] trace. The

length of the trace, and thus the duration of the experiment, was 15 minutes. In all

experiments, each node was configured with a 1024-bit RSA key.

We evaluated the Chord prototype (Section 7.4.1) in two different configura-

tions: Chord-Small contains 50 nodes and Chord-Large contains 250 nodes. The

experiments were performed in simulation, with stabilization occurring every 50

seconds, optimized finger fixing every 50 seconds, and keep-alive messages every

10 seconds. Simulation ran for 15 minutes of simulated time.

In the Hadoop-Small experiment, we ran the prototype described in

Section 7.4.2 on 20 c1.Medium instances on Amazon EC2 (in the us-east-1c

region). The program we used (WordCount) counts the number of occurrences

of each word in a 1.2 GB Wikipedia subgraph from WebBase [104]. We used 20

mappers and 10 reducers; the total runtime was about 79 seconds. Our final ex-

periment, Hadoop-Large, used 20 c1.medium instances with 165 mappers, 10 re-

ducers, and a 10.3 GB data set that consisted of the same Wikipedia data plus the
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12/2010 Newspapers crawl from WebBase [104]; the runtime for this was about

255 seconds.

Quagga, Chord, and Hadoop have different characteristics that enable us to

study NETTRAILS under varying conditions. For instance, Quagga and Chord

have small messages compared to Hadoop, while Quagga has a large number of

messages. In terms of rate of system change, Quagga has the highest, with ap-

proximately 1350 route updates per minute. In all experiments, the actual replay

during query evaluation was carried out on an Intel 2.66GHz machine running

Linux with 8GB of memory.

6.5.2 Example Queries

To evaluate NETTRAILS’s ability to perform a variety of forensic tasks as well as to

measure its query performance, we tested NETTRAILS using the following queries,

each of which is motivated by a problem or an attack that has been previously

reported in the literature:

Quagga-Disappear is a dynamic query that asks why an entry from a routing

table has disappeared. In our scenario, the cause is the appearance of an alternative

route in another AS j, which replaces the original route in j but, unlike the original

route, is filtered out by j’s export policy. This is modeled after a query motivated

in the Omni paper [101]. Note that, unlike Omni, NETTRAILS works even when

nodes are compromised. Quagga-BadGadget query asks for the provenance of a

‘fluttering’ route; the cause is an instance of BadGadget [34], a type of BGP config-

uration problem.

Chord-Lookup asks which nodes and finger entries were involved in a given

DHT lookup, and Chord-Finger returns the provenance of a given finger table en-

try. Together, these two queries can detect an Eclipse attack [96] in which most of a

node’s lookups are routed through a small set of nodes controlled by the adversary.

96



6.5. Evaluation

(squirrel, 10,000)
[Out@Red-3]

(squirrel, 4)
[In@Red-3]

(squirrel, 3)
[Shuffled from Map-7]

(squirrel, 9,993)
[In@Red-3]

(squirrel, 3)
[In@Red-3]

(squirrel, 4)
[Shuffled from Map-1]

(squirrel, 9,993)
[CombineOut@Map-3]

(squirrel, offset1)
[MapOut@Map-3]

(squirrel, offset2)
[MapOut@Map-3]

(squirrel, offset9,993)
[MapOut@Map-3]

(squirrel, offset3)
[MapOut@Map-3]

(squirrel, offset4)
[MapOut@Map-3]

(fileSplit1, offsetA)
[MapIn@Map-3]

(fileSplit1, offsetB)
[MapIn@Map-3]

(fileSplit1, offsetC)
[MapIn@Map-3]

……

(squirrel, 9,993)
[Shuffled from Map-3]

Intermediate MapOut

Reduce Side

Map Side

Figure 6.1: Example result (with simplified notations) of the Hadoop-Squirrel
query.

Hadoop-Squirrel asks for the provenance of a given key-value pair in the out-

put; for example, if the WordCount application produces the (unlikely) output

(squirrel,10000) to indicate that the word “squirrel” appeared 10,000 times

in the input, this could be due to a faulty or compromised mapper. Such queries

are useful to investigate computation results on outsourced Cloud databases [80].

6.5.3 Usability

In addition to the formal guarantees in Section 6.2.3, we also need to demonstrate

that NETTRAILS is a useful forensic tool in practice. For this purpose, we executed

each of the above queries twice – once on a correct system and once on a system

into which we had injected a corresponding fault. Specifically, we created an in-

stance of BadGadget in BGP routing, we modified a Chord node to always return

its own ID in response to lookups, and we tampered with a Hadoop map worker so

it would produce inaccurate results. For all queries, NETTRAILS clearly identified

the source of the fault.
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To illustrate a specific example query in detail, Figure 6.1 shows the output of

the Hadoop-Squirrel query, where one of the Mappers (i.e. Map-3) is configured

to misbehave – in addition to emitting a (word, offset) tuple for each word in

the text, it injects 9,991 additional (squirrel, offset) tuples (shown in red).

A forensic analyst who is suspicious about the enormous prevalence of squirrels

in this dataset can use NETTRAILS to query the provenance of the (squirrel,

10,000) output tuple. NETTRAILS responds by selectively reconstructing the

provenance subgraph of the corresponding reduce task. Seeing that one mapper

output 9, 993 squirrels while the others only reported 3 or 4, she can “zoom in”

further by requesting the provenance of the (squirrel, 9,993) tuple, at which

point NETTRAILS reconstructs the provenance subgraph of the corresponding map

task. This reveals two legitimate occurrences and lots of additional bogus tuples,

which are colored red.

Once the faulty tuples are identified, NETTRAILS can be used to determine their

effects on the rest of the system, e.g., to identify other outputs that may have been

affected by key-value pairs from the corrupted map worker.

In this example, the analyst repeatedly issues queries with a small scope and

inspects the results before deciding which query to issue next. This matches the us-

age pattern of provenance visualization tools, such as the VisTrails visualizer [10],

which allow the analyst to navigate the provenance graph by expanding and col-

lapsing vertices. The analyst could also use a larger scope directly, but this would

cause more subgraphs to be reconstructed, and most of the corresponding work

would be wasted because the analyst subsequently decides to investigate a

different subtree.

6.5.4 Network Traffic at Runtime

NETTRAILS increases the network traffic of the primary system because messages
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Figure 6.2: Normalized increase in traffic by NETTRAILS, compared to a baseline
system (no provenance).

must contain an authenticator and be acknowledged by the recipient. To quan-

tify this overhead, we ran all five experiments in two configurations. In the base-

line configuration, we run the original Hadoop, Quagga, or declarative Chord in

RapidNet with no support for provenance. In the NETTRAILS-enabled prototype,

we measured the additional communication overhead that NETTRAILS adds to the

baseline, broken down by cause, i.e. authenticators, provenance, proxy, etc.

Figure 6.2 shows the NETTRAILS results, normalized to the baseline results.

The overhead ranges between a factor of 17.1 for Quagga and 1.002 for Hadoop.

The differences are large because NETTRAILS adds a fixed number of bytes for

each message – 22 bytes for a timestamp and a reference count, 156 bytes for an

authenticator, and 187 bytes for an acknowledgment. Since the average message

size is small for Quagga (68 bytes) and very large for Hadoop (1.08 MB), the relative

overhead for Quagga is higher, although in absolute terms, the Quagga traffic is

still low (78.2 Kbps with NETTRAILS). Chord messages are 145 bytes on average,

and hence its overhead factor is in between Quagga and Hadoop.

The Quagga proxy causes some additional overhead because, unlike the origi-
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nal BGP implementation in Quagga, it does not combine BGP announcements and

withdrawals into a single message; this is not an inherent overhead of NETTRAILS,

and could mostly be optimized away with an efficient proxy that batches tuples.

In summary, NETTRAILS adds a constant number of bytes to each message, so

its relative overhead depends on the primary system’s average message size.

6.5.5 Storage

Each NETTRAILS node requires some local storage for the graph recorder’s log. To

quantify this cost, we ran our five experiments in the NETTRAILS configuration

and measured the size of the resulting logs.

Figure 6.3 shows the average amount of log data that each node produced per

minute, excluding checkpoints. In absolute terms, the numbers are relatively low;

they range from 0.066 MB/min (Chord-Small) to 0.74 MB/min (Quagga). We ex-

pect that most forensic queries will be about fairly recent events, e.g., within one

week. To store one week’s worth of data, each node would need between 7.3 GB

(Quagga) and 665 MB (Chord-Small). Note that, in contrast to proactive detection

systems like PeerReview [41], this data is merely archived locally at each node and

is only sent to the query node during replay.

The log contains copies of all the received messages (for Hadoop, references to

files), authenticators for each sent and received message, and acknowledgments.

Thus, log growth depends both on the number of messages and their size distri-

bution. As a result, in Figure 6.3, we note that Quagga incurs the highest log size,

given that its baseline system generates the largest number of messages. Interest-

ingly, the overhead of Hadoop is extremely low (less than 0.1 MB/minute), due

to the optimizations described in Section 7.4.2 where the proxy only logs small

control messages. In addition to the log itself, NETTRAILS must keep the Hadoop

input files (1.2 GB for Small, 10.3 GB for Large) to be able to replay tasks if neces-
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Figure 6.3: Per-node log growth in NETTRAILS, excluding checkpoints.

sary. We do not include this in Figure 6.3 because the input files are already kept

by default in Hadoop, unless the user explicitly deletes them.

NETTRAILS can additionally keep checkpoints of the system state. The size of

a typical checkpoint is 25 KB for Chord and 64 MB for Quagga; since replay starts

at checkpoint, more checkpoints result in faster queries but consume more space.

For Hadoop, the equivalent of a checkpoint is to keep the intermediate files that

are produced by the Map tasks, which requires 207 MB for Small and 682 MB for

Large.

6.5.6 Computation

We next measure the additional overhead imposed by NETTRAILS. The domi-

nating additional computation overhead is due to NETTRAILS’s graph recorder,

which requires additional CPU processing at runtime for generating and verifying

signatures and, in the case of Hadoop, for hashing the input and output files (see

Section 7.4.2). The exact load is difficult to measure directly, but we estimated it

from (1) the number of signatures generated and verified, as well as the amount

of data hashed, and (2) benchmarks (openssl speed) on the target machines.

101



Chapter 6. Secure Provenance

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Quagga Chord
Small

Chord
Large

Hadoop
Small

Hadoop
Large

A
v
e
ra

g
e
 a

d
d
it
io

n
a
l 
C

P
U

 l
o
a
d

(%
 o

f 
a
 s

in
g
le

 c
o
re

)

SHA-1 hash
RSA verify
RSA sign

Figure 6.4: Additional CPU load for generating and verifying signatures, and for
hashing.

Specifically, we benchmark the time taken for signature generation/verification

and hashing on a single core, and multiply that by the total number of such op-

erations. Based on this subtotal, we can then compute the additional CPU load,

averaged over the total execution time.

Figure 6.4 shows our estimates for the average additional CPU load caused by

these operations. The results show that the average additional CPU load is below

4% in all three applications. For Quagga and Chord, the increase is dominated by

the signatures, of which two are required for each message – one for the authen-

ticator and the other for the acknowledgment. Hadoop sends very few messages

(one from each mapper to each reducer) but handles large amounts of data, which

for NETTRAILS must be hashed for commitment. Note that we do not include I/O

cost for the hashed data because the data would have been written by the unmodi-

fied Hadoop as well; NETTRAILS merely adds a SHA-1 hash operation, which can

be performed on-the-fly as the data is written.
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Figure 6.5: Query cost: time elapsed (left bar) and data downloaded (right bar).

6.5.7 Query Performance

Next, we evaluate how quickly NETTRAILS can answer queries, and how much

data needs to be downloaded. Since the answer depends on the query, we per-

formed several different queries in different systems. For each query, we measured

1) how much data (log segments, authenticators, and checkpoints) was down-

loaded, 2) how long it took to verify the log against the authenticators, and 3)

how much time was needed to replay the log and to extract the relevant prove-

nance subgraph. Figure 6.5 shows our results. Note that the query turnaround

time includes an estimated download time, based on an assumed download speed

of 10 Mbps.

The results show that both the query turnaround times and the amount of

data downloaded can vary considerably with the query. The Chord and Quagga-

BadGadget queries were completed within less than five seconds; the Quagga-

Disappear query took 19 seconds, where 14 were used to verify partial check-

points (using a Merkle Hash Tree); and the Hadoop-Squirrel query required 68

seconds, including 51 for replay. The download varied between 133 kB for Quagga-

BadGadget and 20.8 MB for Hadoop-Squirrel. The numbers for Hadoop are larger
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Figure 6.6: Scalability for Chord: total traffic (left) and log size (right).

because our prototype does not create checkpoints within map or reduce tasks,

and so must replay a node’s entire task to reconstruct a vertex on that node. Fine-

grain checkpoints could be added but would require more changes to Hadoop.

Generally, there is a tradeoff between storage and query performance: finer-grain

checkpoints require more storage but reduce the size of the log segments that need

to be downloaded and replayed.

In summary, the downloads and query turnaround times vary between queries,

but generally seem low enough to be practical for interactive forensics.

6.5.8 Scalability

In our final experiment, we examine how NETTRAILS’s overhead scales with the

number of nodesN . We ran our Chord experiment with a range of different system

sizes between N = 10 and N = 500 nodes, and we measured two of the main

104



6.6. Summary

overheads, traffic and log size, for each N . Figure 6.6 shows our results, plus the

baseline traffic for comparison.

The results show that both overheads increase only slowly with the system size.

This is expected because, as discussed in Sections 6.5.4 and 6.5.5, the overhead is

a function of the number and size of the messages sent. If the per-node traffic of

the application did not depend on N , the runtime overhead would not depend on

N either; however, recall that Chord’s traffic increases with O(logN), as illustrated

here by the baseline traffic results, so the NETTRAILS overheads in this experiment

similarly grow with N .

Note the contrast to accountability systems such as PeerReview [41] where the

overhead itself grows with the system size. This is because PeerReview uses wit-

nesses to ensure that each pair of authenticators from a given node is seen by at

least one correct node. NETTRAILS relies on the querier’s node for this property

(see Section 6.3.2) and, as a forensic system, it does not audit proactively.

In summary, NETTRAILS does not reduce the scalability of the primary system;

its per-node overheads mainly depend upon the number of messages sent.

6.6 Summary

This chapter introduces STAP’s security enhancement for securely constructing

provenance graphs in untrusted environments with Byzantine faults. Since faulty

nodes can tell lies or suppress information, a STAP system cannot always deter-

mine the exact provenance of a given system state (or state change), but it can

approximate it and give strong, provable guarantees on the quality of the approxi-

mation. To demonstrate that STAP is practical, we evaluate our NETTRAILS system

with three different example applications: the Quagga BGP daemon, a declarative

implementation of Chord, and Hadoop MapReduce. Our results show that the

maintenance costs vary with the application but are low enough to be practical.
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We also describe several example queries that can be used to investigate attacks

previously reported in the literature, and NETTRAILS can answer them within a

few seconds.
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Implementation: NETTRAILS System

In the previous chapters, we have focused on the provenance maintenance and

querying techniques, and the security treatment for provenance support in un-

trusted environments, which are the fundamental and core components in a prove-

nance system. As demonstrated in Section 6.5, such a system allows system opera-

tors to handle a variety of forensic tasks. In this chapter, we present in greater detail

NETTRAILS, the implementation of our proposed secure time-aware provenance

(STAP) system. We discuss how each component presented in this dissertation is

integrated into a coherent framework (Section 7.1), and present the techniques that

further improve the usability of NETTRAILS. In particular, we discuss the follow-

ing two aspects: 1) how the execution logic of a primary system can be extracted as

derivations rules (Section 7.2); and 2) how operators can interactively retrieve the

desired information (related to answering a forensic question) from a vast amount

of provenance data (Section 7.3). We demonstrate the wide applicability of NET-

TRAILS by showing three example applications (Section 7.4), and we conclude this

chapter by summarizing the limitations of the NETTRAILS system (Section 7.5).
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Figure 7.1: The architecture of a single node.

7.1 Architecture Overview

The provenance system consists of three major building blocks, a provenance main-

tenance module, a provenance querying module, and a user interface that permits easy

access to the provenance information (Figure 7.1). An additional extractor is used

to extract provenance information, using one of the methods discussed in Sec-

tion 7.2, from the input/output and the exposed internal states of the primary sys-

tem.

The provenance maintenance module stores and maintains provenance infor-

mation in a distributed store, which is either a set of relational tables or time-

ordered system logs, based on the maintenance techniques used. The provenance

querying module evaluates the provenance of a single tuple: upon receiving a

provenance query, the querying module accesses to the store, retrieves the imme-

diate predecessors and successors of the given tuple, and recursively issues queries

to the querying modules located on other nodes to assemble the complete answer

to the provenance query.

Implementation. NETTRAILS is implemented as an add-on to the ns-3 [74] net-
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work simulator. It makes extensive utilization of RapidNet [84], a declarative net-

working platform that compiles NDlog programs into applications that are exe-

cuted by the ns-3 runtime. NETTRAILS uses the identical codebase for both simula-

tion and deployment modes. NETTRAILS relies on PeerReview [41] for secure mes-

sage communication and acknowledgments, and the management of the tamper-

evident logs. Since auditing in NETTRAILS is driven by the forensic investigator,

PeerReview’s witnesses are not required, so we disabled this feature.

7.2 Extracting Provenance

To generate provenance graphs, a provenance system must extract information

about events from the application to which it is applied. Provenance extraction

(or the more general problem of correlating changes to network state based on

incoming/outgoing messages) is an ongoing area of active research (e.g., [72, 75])

that is orthogonal to the main focus of this dissertation. Nevertheless, we have

found the following three techniques useful for extracting provenance for target

applications:

• Method #1: Inferred provenance. A provenance system can infer prove-

nance data by transparently tracking data dependencies as inputs flow

through the system. Inferred provenance can be applied when the depen-

dencies are already explicitly captured in the programming language. We

have applied this method to a version of the Chord DHT written in a declar-

ative language (Section 7.4.1).

• Method #2: Disclosed provenance. Following the approach from [72], ap-

plications can explicitly call the interfaces provided by the provenance main-

tenance module to report data dependencies. This requires modifications to

the source code; also, key parts of the application must be deterministic to en-
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able the querier to verify that provenance was disclosed correctly. We have

applied this method to the Hadoop MapReduce system (Section 7.4.2).

• Method #3: Observed provenance. When black-box applications cannot use

either of the previous two approaches, one can observe how the application’s

outputs are derived from its inputs,and generate the provenance graph based

on the observed inputs and outputs. We have applied this method to the

Quagga BGP daemon (Section 7.4.3).

Extension – “maybe” rules. Since the third method cannot observe the internal

state of the black box, it cannot necessarily predict all derivations completely. For

example, a node n might choose a tuple τ from a set of other tuples, but the details

of the decision process might not be known (e.g., because it is performed by a

third-party binary). In this case, “maybe” rules can be used to infer provenance

by observing the set of tuples: if all the τi exist, we cannot predict whether τ will

appear, but if τ does appear, it must have been derived from the τi. To handle

such situations, external specifications may contain maybe rules, written τ
maybe←−−−

τ1@n1 ∧ . . . ∧ τk@nk, which stipulates that the tuple τ on node n may be derived

from tuples τ1@n1, . . . , τk@nk, but that the derivation is optional. In other words,

as long as all of the underlying tuples are present, node n is free to decide whether

or not to derive τ , and it is free to change its decision while the underlying tuples

still exist. The rule merely describes τ ’s provenance if and when it exists.

There is another situation in which “maybe” rules are useful: a node may con-

sider some rules or tuples as confidential. In this case, the node can be assigned two

sets of rules: one full set for the actual computation (without “maybe” rules) and

another to define provenance, in which the confidential computation is replaced

by “maybe” rules. The second set can then be safely revealed to queriers. Another

situation involves a node with a black-box computation, for which only the general

dependencies are known.
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Figure 7.2: A screenshot of the NETTRAILS system.

Extension – constraints. The second extension is intended for applications where

the presence of constraints prevents us from modeling the state as completely in-

dependent tuples. For example, given tuples α and β, an application might derive

either a tuple γ or a tuple δ, but not both. Modeling this with disjunctive rules

would lose important information: if tuple δ replaces tuple γ, the appearance of δ

and the disappearance of γ are not merely independent events, they are causally

related. Thus, the explanation of δ’s appearance should include the disappearance

of γ. In G, we represent this by a direct edge between the corresponding INSERT

and DELETE vertices.

7.3 Interactive Exploration Tool

While provenance maintenance is performed in a distributed fashion, some state

may be centralized to increase the ease of visualizing provenance queries and re-

sults. In particular, per-node provenance information and other system state (e.g.,

the network topology and bandwidth utilization) may be periodically captured as
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( ) (b)(a) (b) ( )(c)

Figure 7.3: An example of interactive exploration in the provenance visualizer.
Users start from the system-wide snapshot of the provenance at time T (screen-
shot a), select the table that they are interested in (screenshot b), and finally locate
the provenance of a particular tuple instance (screenshot c). Focus changes are
connected by smooth transitions, enabling progressive exploration.

system snapshots at each node and then propagated to a central Log Store which

resides at the visualization node. These logs are subsequently used for interactive

visualization, queries, and replays.

The generated logs are replayed using the RapidNet visualizer (to show the ac-

tual network topology and the position of nodes and links as the topology changes)

and a provenance visualizer, which is based on hypertrees [44]. The provenance

visualizer provides two useful features: the provenance graph is presented on a

hyperbolic plane, enabling users to focus on small segments of the graph; addi-

tionally, users can navigate the provenance graph by changing focus with smooth

transitions by clicking on or dragging the screen. To illustrate, Figure 7.2 shows an

example execution of the NETTRAILS system where we show the provenance of

the system state (captured as tuples) for a running MINCOST program. One may

further issue customized queries against the provenance and visually show their

progressive steps. We have created a video [21] that demonstrates the execution of

the current NETTRAILS system. In the video, we maintain and query provenance

for the MINCOST program running on a 16-node network.
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Figure 7.3 shows a series of screenshots of the visualizer while it is used to

interactively navigate the tree structure. This example is based on the MINCOST

protocol, which computes pair-wise minimal path costs in a network. Figure 7.3(a)

shows the root of the provenance tree at a particular point in time; Figure 7.3(b)

shows all the pair-wise minimal path costs; and Figure 7.3(c) shows a close-up

view of a particular tuple, as well as its attribute values and location (shown in the

black rectangle).

Note that the topology and the provenance visualizer are interactively navi-

gated in tandem: during the replay, users can interactively pause the network at a

given time, and then view the provenance information of any node. Similarly, by

navigating the hypertree provenance to explore dependencies among nodes, users

can traverse and view the network state and the rules executing at another node.

At any point in time, the users can customize the tree by issuing a provenance

query that is then evaluated potentially across several nodes.

7.4 Applications

In this section, we demonstrate that NETTRAILS can be applied to three differ-

ent types of applications with relatively little effort. Our examples cover all three

provenance extraction methods described in Section 7.2. Moreover, these three ap-

plications differ in terms of the traffic they send, the amount of data they process,

their scalability, etc., which allows us to evaluate NETTRAILS in a range of different

scenarios.

7.4.1 Application #1: Chord

To test NETTRAILS’s support for native NDlog programs, we applied it to a declar-

ative implementation [63] of the Chord distributed hash table that uses Rapid-
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Net [84]. The wide variety of known attacks against DHTs (e.g., eclipse attacks [96])

makes it a particularly attractive test case for secure network provenance. Since

NETTRAILS can automatically transform any NDlog program into an equivalent

one that automatically reports provenance, and since RapidNet is already deter-

ministic, no modifications were required to the Chord source code.

7.4.2 Application #2: Hadoop MapReduce

To test NETTRAILS’s support for disclosed provenance, we applied it to a version

of Hadoop MapReduce [37] that we manually instrumented to report provenance

to NETTRAILS at the level of individual key-value pairs. This application nicely

complements prior work [73] on tracking data provenance in cloud stores.

Our prototype considers input files to be base tuples. The provenance of an

intermediate key-value pair consists of the arguments of the corresponding map

invocation, and the provenance of an output consists of the arguments of the cor-

responding reduce invocation. The set of intermediate key-value pairs sent from

a map task to a reduce task constitutes a message that must be logged; thus, if there

are m map tasks and r reduce tasks, our prototype sends up to 2mr messages (a

request and a response for each pair). To avoid duplication of the large data files,

we apply a trivial optimization: rather than copying the files in their entirety into

the log, we log their hash values, which is sufficient to authenticate them later dur-

ing replay. Since we are mainly interested in tracking the provenance of key-value

pairs, we treat inputs from the JobTracker as base tuples. It would not be difficult

to extend our prototype to the JobTracker as well.

Individual map and reduce tasks are already deterministic in Hadoop, so re-

play required no special modifications. We did, however, add code to replay map

and reduce tasks separately, as well as a switch for enabling provenance reporting

(recall that this is only needed during replay). Altogether, we added or modified
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less than 100 lines of code (LoC) in Hadoop itself, and we added another 550 LoC

for the interface to NETTRAILS.

7.4.3 Application #3: Quagga

To test NETTRAILS’s support for observed provenance, we applied it to the Quagga

BGP daemon. BGP interdomain routing is plagued by a variety of attacks and

malfunctions [77], so a secure provenance system seems useful for diagnostics and

forensics. Rather than instrumenting Quagga for provenance and deterministic

replay, we treated it as a “black box” and implemented a small proxy that a) trans-

parently intercepts Quagga’s BGP messages and converts them into NETTRAILS

tuples, and b) converts incoming tuples back to BGP messages.

To enable NETTRAILS to capture the provenance of routes, we use a small

NDlog specification of only four rules that captures the essential dependencies

(but not the policy-level details) in BGP. The key rule is out(AS,N2, P, R2)
maybe←−−−

in(AS,N1, P, R1) ∧ isExt(R2, R1, AS), which stipulates that a route R2 to an IP

prefix P that is advertised to neighboring networks (through router N2) is derived

from another route R1 to the same prefix, if 1) R1 was previously announced to

the local network AS (received at router N1), and 2) the path vector in R2 is the

path vector in R1 with at least one copy of the local AS number appended. The

other rules specify how announcements propagate between networks, and that a

network can export at most one route to each prefix at any given time. The latter

constraint requires two separate rules.

In addition to the four rules, we wrote 626 LoC for the proxy; much of this code

is generic and could be reused for other black-box applications. We did not modify

any code in Quagga.
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7.5 Limitations

By design, NETTRAILS is a forensic system; it cannot actively detect faults, but

rather relies on a human operator to spot the initial symptom of an attack, which

can then be investigated using NETTRAILS. Investigations are limited to the part

of the system that is being monitored by NETTRAILS.

The security enhancement introduced by STAP assumes a full deployment, in

which all the nodes in the distributed system are willing to deploy the NETTRAILS

system and provide provenance information to the queries. While such setting is

realistic in many application scenarios, such as in centrally managed systems or

in systems that have some administrative authorities, we do not currently have a

solution for partial deployments. It may be possible to use the approach adopted

by NetReview [39] at the expense of slightly weaker guarantees.

NETTRAILS also does not have any built-in redundancy; if the adversary sac-

rifices one of his nodes and destroys all the provenance state on it, some parts of

the provenance graph may no longer be reachable via queries. This could be mit-

igated by replicating each log on some other nodes, although, under our threat

model, the problem cannot be avoided entirely because we have assumed that any

set of nodes — and thus any replica set we may choose — could be compromised

by the adversary.

Finally, NETTRAILS does not provide negative provenance, i.e., it can only ex-

plain the existence of a tuple (or its appearance or disappearance), but not its ab-

sence. Negative provenance is known to be a very difficult problem that is actively

being researched in the database community [69]. We expect that NETTRAILS can

be enhanced to support negative provenance by incorporating recent results from

this community.
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Related Work

The secure time-aware provenance system presented in this dissertation expands

upon previous results in the databases, networking and systems communities. In

this section, we describe the related research in these areas.

8.1 Provenance

Since its importance was realized by the research community, provenance has been

extensively studied, and successfully applied to a large range of application areas.

Various provenance models have been proposed, and implemented in their cor-

responding systems. Our work presented in this dissertation was inspired by the

rich previous work in this domain.

Provenance Model. A classic approach to model provenance, which is adopted

in this dissertation, is to capture provenance as graphs. Provenance graphs reflect

the relations between derived tuples and the base tuples that contribute to them.

Each vertex represents a data object or an operation that transforms data objects

(for instance, a database relational operator such as union, join, selection and pro-

jection), and each edge denotes a data flow among the vertcies. This approach is
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also adopted by many of the scientific computation systems [10, 15, 78, 100] and

file systems [72], in which a directed-acyclic-graph (DAG) representation is used

to describe dependencies.

Alternatively, data provenance may be more compactly represented using al-

gebraic representation [9, 32]. Algebraic representations encode provenance using

the binary operations + and ∗ (representing, for example, union and join). For in-

stance, let α, β, and γ represent base tuples, a tuple τ with provenance of α+ β ∗ γ

means that τ is derivable if α exists or both β and γ are existent.

There have been several efforts to generalize provenance models and allow

provenance interoperability. Green et al. [32] proposed provenance semiring, a

provenance model that is useful for a variety of applications and generalizes pre-

vious models of provenance (such as lineage [16], why-provenance [9]) and query

answering on annotated relations. The Open Provenance Model (OPM) [71] is a

standardization effort that proposes an amalgamation of concepts from existing

provenance systems, and aims to improve the provenance interoperability.

Maintenance and Querying. Provenance data are usually stored as additional

tuple fields or separate tables in relational databases (such as Orchestra [33] and

PermDB [29]), XML files (such as Kepler [100], ES3 [25]) and RDF files (such as

Taverna [78]). In our NETTRAILS system, provenance information is maintained

in an internal distributed relational database. While potential inconsistencies due

to transient state could be resolved by maintaining provenance in bi-temporal

databases [47, 54], NETTRAILS inherently captures and maintains temporal infor-

mation along with the provenance data.

To facilitate access to the provenance data, provenance systems allow users to

specify queries written in SQL [78, 100], XQuery [23], or query languages specifi-

cally designed for provenance (such as ProQL [48]). ProQL supports a wide variety

of applications with derived data, and can be used to assess trust and derivabil-
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ity, detect side effects, as well as compute data annotations in particular prove-

nance semirings. To improve query performance, recent work [3, 4] studies prove-

nance labeling for efficiently evaluating reachability queries over large provenance

graphs in a variety of workflow settings.

Visualization, an alternative approach to retrieve information from provenance,

has been previously studied in VisTrails [10], in which workflow specifications

can be compared side by side, and workflow specifications can be adjusted by

example-based refinement [92].

Applications. Provenance has been implemented and integrated in many prac-

tical systems. Probabilistic databases, such as Trio [105], Mystiq [85, 86], and

Panda [46], have applied provenance for efficient management of temporal and/or

uncertainties. Trio, in particular, supports an uncertainty data model by associat-

ing each tuple with a confidential level, and updating the confidential levels of

derived tuples based on their provenance. Collaborative data sharing systems

(CDSS), such as Orchestra [33], uses provenance for trust management and rec-

onciling conflicts among data from multiple sources. PASS [72] and Sprov [42]

track file modification histories and causalities in file systems. PA-S3fs [73] and

RAMP [45] focus on file systems and MapReduce workloads on the emerging

cloud platform. Workflow systems, such as VisTrails [10], myGrid/Taverna [78],

Kepler [100], Chimera [23], and ZOOM [15], use provenance support in scien-

tific computations, to facilitate verification, reproducibility, and collaboration. Vis-

Trails, for instance, captures the evolution of workflow specifications — the history

of refining a workflow specification (e.g., the addition or deletion of a module, and

the modification of a parameter). Several surveys [7, 17, 24] provides further de-

tails about workflow provenance systems.
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Provenance Security. McDaniel et al. [68] outlines requirements for secure net-

work provenance, emphasizing the need for provenance to be tamper-proof and

non-repudiable. Hasan et al. proposes Sprov [42] that implements secure chain-

structured provenance for individual documents; however, it lacks important fea-

tures that are required in a distributed system, e.g., a consistency check to ensure

that nodes are processing messages in a way that is consistent with their current

state. Pedigree [83] captures provenance at the network layer in the form of per-

packet tags that store a history of all nodes and processes that manipulated the

packet. It assumes a trusted environment, and its set-based provenance is less

expressive compared to NETTRAILS’s graph-based dependency structure.

Provenance Privacy. More recently, researchers have studies, more specifically,

the tradeoffs between privacy and utility for workflow provenance. For example,

[18, 19] proposed the module privacy that ensures that the probability of guessing

the correct outputs of a module, given the revealed inputs in the provenance, is

below a given threshold. This is achieved by hiding a subset of the inputs (or

outputs) of the modules in the provenance graph exposed to the users.

8.2 Forensics in Distributed Systems

Forensics in distributed systems has received a lot of traction in the system research

community. There has been a substantial amount of work in this area. In this

section, We summarize the work in the related topics.

Replay-based debugging. Replay-based debugging is enabled by recording all

the non-deterministic events (such as network communications and interrupts from

the operating systems) at runtime. Once a system fault is detected, users can then

perform deterministic replay to reproduce the fault. Diagnosis is performed by in-
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specting how system states progress towards the fault, facilitated by watchpoints

and breakpoints.

These systems, such as P2 debugger [98], liblog [28], Friday [27], WiDS [61],

MaceMC [50], and QI [79] are designed to diagnose non-malicious faults, such as

bugs or race conditions. When nodes have been compromised by an adversary,

these systems can return incorrect results.

Log-based forensics. Log-based forensics systems capture execution logs at run-

time by inserting additional statements in the source code, or by observing the

inputs, outputs and system calls of each system component. For instance, Pip [88]

logs path instances started from outside inputs; Backtracker [51, 52] records the

objects and their causalities; logs of Magpie [5] are in the form of path instances

consisting of the used system components; and D3S [60] modifies the underly-

ing operating systems to allow automatic injection of state exposers and predicate

checkers. Based on the logs and snapshots taken at runtime, users are enabled to

reason about the causalities between system states, with the support from visual-

ization tools and query engines.

The NETTRAILS system presented in this dissertation provides a

general-purpose abstraction of dependencies, and enables richer functionalities.

Among others, the main difference between NETTRAILS and these existing foren-

sic systems is that NETTRAILS does not require trust in any components on the

compromised nodes. For example, Backtracker [51, 52] and PASS [72] require a

trusted kernel, cooperative ReVirt [6] a trusted VMM, and A2M [14] trusted hard-

ware. ForNet [94] and NFA [106] assume a trusted infrastructure and collaboration

across domains.

Accountability. Systems such as PeerReview [41] and NetReview [39] can au-

tomatically detect when a node deviates from the algorithm it is expected to run.
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Tamper-evident logs are introduced to prevent modifications on history from unau-

thorized peers. In addition, equivocation, i.e. making conflicting statements to

different nodes, are prevented by allowing peers to exchange logs to examine con-

sistency. Attestation-based trusted hardware, such as A2M [14] and TrInc [56], can

be used to further reduce the auditing overhead.

These systems cannot detect problems that arise from interactions between

multiple nodes, such as BadGadget [34] in interdomain routing, or problems that

are related to inputs or unspecified aspects of the algorithm. Also, accountability

systems merely report that a node is faulty, whereas provenance systems also offer

support for diagnosing faults and for assessing their effects on other nodes.

Proofs of misbehavior: Many systems that are designed to handle non-crash

faults internally use proofs of misbehavior, such as the signed confessions in Ngan

et al. [76], a set of conflicting tickets in SHARP [26], or the POM message in

Zyzzyva [53]. In NETTRAILS, any evidence that creates a red vertex in Gν essen-

tially constitutes a proof of misbehavior, but NETTRAILS’s evidence is more gen-

eral because it proves misbehavior with respect to the (arbitrary) primary system,

rather than with respect to NETTRAILS itself. Systems such as PeerReview [41]

can generate protocol-independent evidence as well, but, unlike NETTRAILS’s evi-

dence, PeerReview’s evidence is not diagnostic: it only shows that a node is faulty,

but not what went wrong.

Fault tolerance: An alternative approach to the problem of Byzantine faults is to

mask their effects, e.g., using techniques like PBFT [11]. Unlike NETTRAILS, these

techniques require a high degree of redundancy and a hard bound on the number

of faulty nodes, typically one third of the total. The two approaches are largely

complementary and could be combined.
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8.3 Declarative Networking

Declarative networking [62, 63, 64, 66] is a programming methodology that enables

developers to concisely specify network protocols and services using a distributed

recursive query language, and directly compile these specifications into a dataflow

framework for execution. This approach provides ease and compactness of speci-

fication, and offers additional benefits such as optimizability and the potential for

safety checks.

The development of declarative networking began in 2004 with an initial goal

of enabling safe and extensible routers [65]. Declarative techniques have been

then widely used in several domains including fault tolerance protocols [97], cloud

computing [1], sensor networks [13], overlay network compositions [67],

anonymity systems [95], mobile ad-hoc networks [58], wireless channel

selection [57], network configuration management [12], and routing convergence

analysis [87, 103].

In the NETTRAILS system, the incremental provenance maintenance and dis-

tributed query processing are enabled by a declarative networking engine. In prin-

ciple, however, the techniques proposed in this dissertation can be generally real-

ized using any sufficiently expressive distributed query processor. The advantage

of using declarative networking is that robust implementations [84] exists that can

be straightforwardly leveraged to develop provenance systems.
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Summary

This thesis research on Secure Time-aware Provenance (STAP) presents an ap-

proach that provides the fundamental functionality required for performing foren-

sics queries — the capability to “explain” the existence (or change) of system state

in a potentially adversarial environment. STAP reveals the dependencies between

system states, and permits system operators to transitively tie observed faults to

their potential causes, and to assess the damage that these faults may have caused

to the rest of the system. We have identified several practical challenges in deploy-

ing STAP, and have presented the solutions that addressed each of the following

main challenges:

Distribution. A key challenge of supporting provenance in distributed system is

to develop an abstract system model in which provenance data can be maintained

efficiently. we demonstrated that it is achievable by modeling the system state as

a set of distributed databases, and by extracting logical dependencies from system

specifications and runtime. Enabled by the distributed query processing capabili-

ties, provenance information is then incrementally maintained as views of system

state during the execution. We analytically and empirically showed that the over-
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head incurred by provenance maintenance is linear in the cost of the base system,

and, therefore, does not affect its scalability.

Time-awareness. Another challenge is to track state changes over time in a re-

laxed system model, in which clocks are not synchronized and messages can be

delayed, reordered or lost. To address this challenge, we examined the fundamen-

tal correlation between provenance and (observable) event ordering in distributed

systems. We then presented an enhanced provenance model that provides a sound

and complete representation that correctly captures the system dependencies.

Security. A final challenge is to provide security guarantees in completely un-

trusted environments, in which the adversary may have compromised an arbi-

trary subset of the nodes, and that he may have complete control over these nodes.

We showed that, despite the conservative threat model, our security enhancement

in STAP still provides strong, provable guarantees: it ensures that an observable

symptom of a fault or an attack can always be traced to a specific event—passive

evasion or active misbehavior—on at least one faulty node, even when the adver-

sary attempts to prevent this.

To demonstrate STAP’s practicality and generality, we have applied it to a va-

riety of different systems, including the Internet’s interdomain routing system, the

Chord distributed hash table, and the Hadoop MapReduce system. The evaluation

has demonstrated that STAP is able to detect a number of different problems that

had been previously described in the literature, and that STAP is practical, both in

terms of its run-time overhead and in terms of the effort required to deploy it.

9.1 Future Directions

We conclude with a list of several promising research directions suggested by the

work in this dissertation.
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9.1.1 Extensions to Thesis

STAP automates fault diagnosis and debugging by systematically maintaining and

querying state dependencies as the system execution progresses. We intend to

further improve its usability to encourage its adoption in academia and industrial

development settings.

One important aspect for future research is to enhance the “readability” of the

returned provenance results. Provenance information could be overwhelmingly

large in systems with complex dependency logic. To address this challenge, we in-

tend to explore the following two complementary approaches: the first approach

focuses on developing an expressive yet easy-to-use interface (e.g., a SQL-like

declarative query language tailored for the STAP model), for users to annotate and

prune provenance data based on a customizable pattern; alternatively, the size and

complexity of provenance information can be controlled by introducing layering

into the provenance system, in which case provenance data can be captured at a

variety of granularities, and be interactively expanded.

STAP mainly explores the authenticity and integrity aspects of security in prove-

nance systems. We plan to extend the exploration to their counterparts, privacy

and confidentiality. It is intriguing to study the tension between privacy and

verifiability, two seemingly contradictory properties. As a first step, the private

and verifiable routing (PVR) [36, 107] provides initial evidence that strong privacy

guarantees can be achieved in interdomain routing, where the functionality of each

node is well-restricted to route selection and advertisement based on a customized

ranking function. We intend to further understand the performance implications

or limits when extending the guarantees to more general systems.
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9.1.2 Looking Beyond

Looking beyond the dissertation work, our long-time research direction is to facil-

itate the development of provably secure and reliable distributed systems. Specif-

ically, we intend to accomplish this by enhancing the iterative development cycle

of distributed systems, with research advances in the following aspects:

Systematic fault diagnosis and recovery. STAP can be used to systematically di-

agnose faults, where “explanations” of a suspicious symptom are compiled as a set

of state dependencies that recursively trace back to the root causes. As the basis for

inferring state dependencies, the high-level dependency logic (captured as deriva-

tion rules in STAP) is of critical importance. To generalize and further automate

the extraction of such dependency logic from a target application, one potential

avenue that we intend to explore is to employ programming language techniques

that perform static (or dynamic) analysis on the information flow of target systems.

In addition to debugging, one intriguing direction is the use of STAP for

provenance-based recovery. STAP maintains sufficient information to reproduce

the system execution trace individually for each node. This brings opportunities

to undo the damages caused by an exposed system fault, by applying the inverse

operations in the reverse order. For example, a mistakenly deleted system state

can be restored by the corresponding insertion. In addition, provenance keeps the

dependency information and thus allows minimal recovery, i.e., the recovery only

impacts the nodes that are actually affected by the fault.

Provenance-driven invariant generation. One important challenge in formal

verification is for system designers to discover the safety properties (or invariants).

The quality of these safety properties directly affects the quality of the verification

results, however, there lacks a systematic approach to extract the safety properties,

and the process largely relies on manual efforts today. To address this problem,
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we are interested in feeding the design bugs or security vulnerabilities exposed

in fault diagnosis (as hints for the safety properties) to refine the invariants in the

design and development phase.

Rigorous verification on design and vulnerabilities. Formal verification pro-

vides sound and complete guarantees by checking that a certain set of properties

holds in all possible execution traces. Our current research focuses on static anal-

ysis, by leveraging prove-by-construction capability enabled by logic-based pro-

gramming languages. We intend to extend the exploration to dynamic verification

techniques, such as model checking, for verifying more complex properties and

performing “what-if” analysis to discover potential vulnerabilities given certain

assumptions on the attack model.
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Correctness Proofs

We have proven that the TAP provenance model has the four properties (Validity,

Soundness, Completeness and Minimality) presented in Section 3.3. The proofs for

the corresponding four theorems are included below.

Lemma 1. For any execution E , and update ∆τ , the provenance graphG(∆τ, E) is acyclic.

Proof. We first show that if there exists a cycle inG(∆τ, E), the cycle cannot include

two vertices located on different nodes. Suppose there exists a cycle that contains

two vertices v1 and v2 located on N1 and N2 respectively. Then, the cycle must con-

tain a least one pair of SEND and RECV vertices in both the path from v1 to v2, and

the path from v2 to v1. Each SEND and RECV corresponds to a message communica-

tion which takes a positive amount of time. Therefore, traversing from v1 along the

cycle back to v1 results in an absolute increment in the timestamp. Contradiction.

If all the vertices in the cycle are located on the same node, then we can order

the vertices according to their associated timestamps (now all the timestamps are

with respect to the same local clock). Such order corresponds to the precedence

of events in the execution. As time always progresses forward, such cycle cannot

exist in G(∆τ, E).
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Theorem 4. (Validity) Given the initial state S0, for any event di@Ni = (ei, ri, ti, ci, e
′
i) ∈

A(∆τ, E), (a) there exists dj@Nj = (ej, rj, tj, cj, e
′
j) that precedes di@Ni in A(∆τ, E),

ei ∈ e′j , and (b) for all τk ∈ ci, τk ∈ Si−1, where S0
d1@N1−−−−→ S1 ...Si−2

di−1@Ni−1−−−−−−→ Si−1.

Proof. Lemma 1 shows that any provenance graph G(∆τ, E) is acyclic, and thus

G(∆τ, E) has a definitive depth. We prove the validity property using structural

induction on the depth of the provenance graph G(∆τ, E).

Base case: The depth of G(∆τ, E) is one. In this case, ∆τ is an insertion or dele-

tion of a base tuple; G(∆τ, E) contains a single INSERT (or DELETE) vertex that cor-

responds to the update of the base tuple. Therefore, A(∆τ, E) consists of a single

event and is trivially valid.

Induction case: Suppose the validity of the extracted trace holds for any prove-

nance graph with depth less than k (k > 1). Consider the provenance graph

G(∆τ, E) with depth k. ∆τ is an insertion or deletion of a derived tuple. Suppose

the extracted event is di@Ni = (ei, ri, ti, ci, e
′
i), A(∆τ, E) is valid if, a) the trigger

event has been generated, namely, there exists dj@Nj = (ej, rj, tj, cj, e
′
j) that pre-

cedes di@Ni and ei ∈ e′j , and b) all the preconditions tuples exist, namely, for all

τk ∈ ci, τk ∈ Si−1, where S0
d1@N1−−−−→ S1 ...Si−2

di−1@Ni−1−−−−−−→ Si−1.

We know that, by construction, the INSERT (or DELETE) vertex has an incoming

edge from either a DERIVE (or UNDERIVE) vertex, or a RECV vertex.

• INSERT (or DELETE) has an incoming edge from a DERIVE (or UNDERIVE) vertex.

Again, by construction, the DERIVE (or UNDERIVE) vertex has incoming edges

from vertices representing the triggering event ∆τ ′ (an INSERT or DELETE ver-

tex) and all preconditions τ ′′1 , ..., τ ′′p (EXIST vertices).

By the induction hypothesis, A outputs a valid trace {d′1@N ′1, ..., d′j@N ′j) for

the subgraph for the trigger event ∆τ ′ (i.e., G(∆τ ′, E)), where d′j@N ′j corre-
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sponds to the generation of ∆τ ′ (following the completeness property proved

in Theorem 6). Because of the nature of algorithmA (which is based on topo-

logical sort), d′j@N ′j must be ordered before di@Ni, which satisfies condition

a. Similarly, valid traces are generated for the updates that support the pre-

conditions τ ′′1 , ..., τ ′′p , which satisfies condition b. Therefore, A(∆τ, E) is valid.

• INSERT (or DELETE) has an incoming edge from a RECV vertex. By construction,

the RECV vertex is coupled with a SEND vertex which has an incoming edge

from a DERIVE (or UNDERIVE) vertex. Following the same argument for the

prior case, we can prove that A(∆τ, E) is a valid trace.

Theorem 5. (Soundness) A(∆τ, E) is a subtrace of some E ′ ∼ E .

Proof. We need to show that a) all the events inA(∆τ, E) also appear in E (and thus

in any E ′ ∼ E), and b) the local event ordering pertains on each node, that is, for

any two events d1@Ni and d2@Ni inA(∆τ, E) that are located on the same node Ni,

d1@Ni precedes d2@Ni in A(∆τ, E) iff d1@Ni precedes d2@Ni in E .

Condition a. According to Algorithm 1, an event di@Ni is generated and in-

cluded in A(∆τ, E) for each DERIVE (or UNDERIVE) vertex (and its direct parent

and children) in the provenance graph G(∆τ, E). However, by construction, each

DERIVE (or UNDERIVE) vertex v corresponds to an rule evaluation in E . In the state

transition model, the rule evaluation is modeled (see Definition 5) as an event

dj@Nj = (∆τ ′, r, t, {τ ′′1 , ..., τ ′′p },∆τ), where ∆τ is the trigger event, r and t are the

rule used in and the time of the rule evaluation, each τ ′′i represents a precondition,

and ∆τ is the generated update. We need to show that di@Ni is identical to dj@Nj .

This follows straightforwardly from the construction of G(∆τ, E): In addition

to the DERIVE (or UNDERIVE) vertex v, its parent, either a SEND or INSERT (or DELETE)
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vertex v′ for ∆τ , is also generated. Edges are added from v to its parent v′, from the

trigger event, a INSERT (or DELETE) vertex for ∆τ ′, to v, and from the preconditions,

EXIST vertices for τ ′′1 , ..., τ ′′p , to v. Algorithm 1 reverses this process and generates

event di@Ni from these information, which gives di@Ni = dj@Nj .

Condition b. According to Algorithm 1 (specifically, Line 7), d1@Ni precedes

d2@Ni in A(∆τ, E), iff d2@Ni has a larger timestamp than d1@Ni. However, d2@Ni

is assigned a larger timestamp iff d1@Ni precedes d2@Ni in the actually execution

E . Note that events on different nodes may be reordered in A(∆τ, E), but this is

captured by the equivalence (∼) relation.

Theorem 6. (Completeness) A(∆τ, E) ends with the event that generates ∆τ .

Proof. We need to show that a) A(∆τ, E) contains an event di@Ni that generates

∆τ , and b) di@Ni is the last event in A(∆τ, E).

Condition a. By construction, the INSERT (or DELETE) vertex for ∆τ has an incom-

ing edge from either a DERIVE (or UNDERIVE) vertex, or a RECV vertex.

• INSERT (or DELETE) has an incoming edge from a DERIVE (or UNDERIVE) vertex.

By construction, the DERIVE (or UNDERIVE) vertex has incoming edges from

vertices representing the triggering event ∆τ ′ (an INSERT or DELETE vertex)

and all preconditions τ ′′1 , ..., τ ′′p (EXIST vertices). AlgorithmA (specifically, Line

18 - 31 in Algorithm 1) constructs an event (∆τ ′, r, t, {τ ′′1 , ..., τ ′′p },∆τ), where r

and t are the rule name and time encoded in the DERIVE (or UNDERIVE) vertex.

• INSERT (or DELETE) has an incoming edge from a RECV vertex. By construction,

the RECV vertex is coupled with a SEND vertex which has an incoming edge

from a DERIVE (or UNDERIVE) vertex. Following the same argument for the

prior case, we can prove that A(∆τ, E) contains an event that generates ∆τ .
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Condition b. Now we have proved that some event di@Ni that generates ∆τ

must exist in A(∆τ, E), we next show that di@Ni is the last event in A(∆τ, E). The

provenance graphG(∆τ, E) of ∆τ is a subgraph of the provenance graphG(E), and

is rooted rooted by the INSERT (or DELETE) vertex that corresponds to ∆τ . Since all

other vertices inG(∆τ, E) have a directed path to this INSERT (or DELETE) vertex, the

corresponding events must all be ordered before di@Ni, so di@Ni must necessarily

be the last event in the subtrace.

Theorem 7. (Minimality) No valid trace E ′⊂A(∆τ, E) is sound and complete.

Proof. We prove the minimality property by induction on the syntactic structure

of A(∆τ, E): we show that an event di@Ni ∈ A(∆τ, E) cannot be removed because

it is necessary for some event dj@Nj appeared later in the trace. For presentation

purposes, we suppose A(∆τ, E) = {d1@N1, ..., dm@Nm}.

Base case. According to the completeness property (Theorem 6), the last event

dm@Nm in A(∆τ, E) generates ∆τ . Therefore the base case trivially holds, as the

remove of dm@Nm breaks the completeness property.

Induction case. Suppose the last k events dm−k+1@Nm−k+1, ..., dm@Nm (K ≥ 1)

cannot be remove. We show that event dm−k@Nm−k cannot be removed as well:

According to Algorithm 1, dm−k@Nm−k is constructed from a DERIVE (or UNDERIVE)

vertex v and its direct parent and children. Consider the parent vertex v′, v′ must

have an outgoing edge to some other vertex u in G(∆τ, E). Otherwise, v′ would

not be included in G(∆τ, E) which is a subgraph rooted by ∆τ .By construction, v′

is either a SEND vertex, or a INSERT (or DELETE) vertex.

• v′ is a INSERT (or DELETE) vertex, in which case, u is a DERIVE (or UNDERIVE)

vertex. According to Algorithm 1, an event dj@Nj is constructed from u

and its direct parent and children. Given the edges (v, v′) and (v′, u), we
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know that dj@Nj depends on dm−k@Nm−k, and that dm−k@Nm−k precedies

dj@Nj . By applying the induction hypothesis (dj@Nj cannot be removed

from A(∆τ, E)), we can conclude that dm−k@Nm−k also cannot be removed.

• v′ is a SEND vertex, in which case, u is a RECV vertex that has a outgoing edge

to a INSERT (or DELETE) vertex. By construction, the INSERT (or DELETE) vertex

further has an outgoing edge to a DERIVE (or UNDERIVE) vertex. Following the

similar argument for the prior case, we can prove that dm−k@Nm−k cannot be

removed for validity.
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