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ABSTRACT

A UNIFIED DATA-CENTRIC APPROACH TOWARDS AN EXTENSIBLE INTERNET

ARCHITECTURE

Yun Mao

Jonathan M. Smith and Boon Thau Loo

The Internet’s role is changing dramatically, from a means of connecting together PCs and

servers to a ubiquitous communications medium interconnecting mobile personal devices, environ-

mental sensors, and Web services. As new services (voice, video, emergency response, etc.) are

being deployed on the infrastructure, there have been increased demands on extending the existing

Internet architecture for new capabilities, such as efficient and resilient routing among mobile and

wired nodes, location of proximity-based services, and wide-area service discovery and composition.

This dissertation presents an extensible Internet architecture Mosaic— based on declarative

languages and composable views over router, network and host state at different layers—to meet the

demand of the emerging network services. The proposed architecture explicitly separates logical

state representation and acquisition from physical implementation, to enable more extensible and

adaptive protocols and distributed systems, because programmers can focus on high-level logical

operations whose implementations may be separately and transparently optimized.

The dissertation makes the following contributions:

• A unified network architecture (Mosaic) under which new networks can be developed, de-

ployed, selected, and dynamically composed according application and administrator needs.

• A declarative programming language (Mozlog) to concisely specify high-level network protocol

specifications.

• A runtime system prototype that can translate Mozlog specifications into efficient implemen-

tations.

To validate the approach, we evaluate the work in the context of a heterogeneous, dynamic

Internet environment where end hosts are connected via both wired and wireless media and have

diverse application requirements. We demonstrate that in Mosaic, new network services can be

readily introduced by either concisely specifying protocols in Mozlog or dynamically selecting and

composing existing network services at low overheads.
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Chapter 1

Introduction

1.1 Motivation

The Internet’s role is changing dramatically, from a means of connecting together PCs and servers

to a ubiquitous communications medium interconnecting mobile personal devices, environmental

sensors, and Web services. As new services (voice, video, emergency response, etc.) are being de-

ployed on the infrastructure, there have been increased demands on extending the existing Internet

architecture for new capabilities, such as efficient routing among mobile and wired nodes, location

of proximity-based services, and wide-area service discovery and composition.

Overlay networks [69] that use the existing Internet to provide connectivity for new services

are deployable [70]. They also enable innovation. However, despite deployment at global scale and

emerging support for legacy applications [42], overlay networks now face several hurdles. First, they

are often optimized for a specific application and may not be useful in all contexts. Second, overlay

networks are generally targeted at and limited to niche vertical domains (e.g., mobility [99, 60],

security [44], reliability [7]). Third, the networks do not normally interoperate or share their

functionality. For example, resiliency [7] and mobility [84] provided by one overlay cannot easily

be leveraged by other overlay networks. Recent proposals for “clean slate” redesign of the Internet

itself will exacerbate this problem, as more and more overlays are proposed and implemented.

Example 1.1.1 Alice and Bob use private networks behind separate NATs, and wish to communi-

cate regularly via VoIP or video conferencing, occasionally sharing data from internal web servers
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with trusted friends. As Alice and Bob travel regularly, and their IP addresses change, continued

contact and communications should be seamless.

Alice and Bob can use a combination of i3 [84] for NAT traversal, ROAM [99] for mobility,

RON [7] for reliability, and if DoS attack prevention is important, a secure overlay such as SOS [44]

can be added. One may argue that a custom overlay such as Skype [82] may address some of

the needs of Alice and Bob. However, a monolithic approach does not easily accommodate future

application needs and changing network conditions. For example, RON may be excessive for a

network with limited failures, and hence it may be desirable to remove it; whereas, in a partially-

connected network, epidemic routing [90] would be desired. Further, Alice and Bob may require

session-layer mobility support, hence requiring DHARMA [60] instead of ROAM [99].

Combining overlays to achieve desired capabilities is challenging in practice. One must first

have a composable network architecture, unlike today’s Internet. The architecture should provide

interoperability among those separately designed and implemented overlay networks, and provide

the mechanics of automatically interconnecting the overlays. Then, one must also identify combina-

tions of overlays that can work together and provide the right set of capabilities. Emerging systems

such as OCALA [42] have shown that bridging between different overlays requires significant “glue

code.” Layering one overlay over another is generally not even feasible yet, as each layer assumes

it is running directly over IP.

1.2 Approach Overview

In this dissertation, we present a new point in the design space of network architectures that aims

to achieve extensibility based on the application of database techniques to the networking domain.

We propose a unified, extensible data-centric network architecture that allows for (1) extensible

capabilities for logical naming of data in the form of views1, (2) unified declarative queries for

distributed data management and state acquisition. We argue that our approach enables (1) rapid

authoring and deployment of new network services, either in the form of overlay networks on existing

IP networks or a clean slate network redesign, (2) application-aware adaptivity to select and compose

overlay networks to meet application needs, and (3) seamless support for legacy applications within

the infrastructure.
1In database terminology, a view is a virtual or logical table composed of the result set of a query.
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Logical-physical data model separation and distributed data acquisition and transformation are

the cornerstones of the modern database field [37, 57, 33]. Hence, we propose that a declarative,

database-inspired architecture using query languages is an ideal interface to these capabilities.

Declarative languages provide both optimization and strong static verification possibilities, and

declarative query languages focus on distributed data acquisition and transformation. Moreover,

because such languages allow for very general definitions and are concise, they are much more

extensible over time. Views can be composed, new queries and requests can be deployed, and new

optimization or processing techniques can be invented and deployed without breaking compatibility.

Such properties differentiate our approach from work on Active Networks [87], which typically used

general programming models and only had a limited treatment of distributed coordination and

data acquisition.

Our architecture uses declarative networks to build extensible network architectures that achieve

a good balance of flexibility, performance and safety [56, 55]. Declarative networks are specified

using distributed recursive query languages. Queries are executed using a distributed query pro-

cessor to implement the network protocols, and continuously maintained as distributed views over

existing networks and host state.

Declarative languages such as NDlog [55] are a natural and concise way to implement a variety of

routing protocols and overlay networks. For example, traditional routing protocols can be expressed

in a few lines of code [56], and the Chord [85] distributed hash table in 47 lines of code [55].

When compiled and executed, these declarative networks perform efficiently relative to imperative

implementations. The orders of magnitude reduction in code size significantly increases programmer

productivity. Moreover, these declarative specifications allow mobile services to be easily composed,

and added to the infrastructure.

1.3 Evaluation of the Hypothesis

The key hypothesis explored in this dissertation is that a data-centric declarative architecture Mo-

saic is readily extensible to introduce new network services, yet at a low overhead when compared

to a conventional network architecture. The remainder of the dissertation explores this hypothesis

by: defining Mosaic; describing its specification language Mozlog and its implementation; demon-

strating how it can be used to introduce new services by specifying them in Mozlog, and dynamically

3



selecting and composing existing services; and presenting evaluation results of the implementation.

To evaluate the hypothesis, several questions shall be answered in the dissertation:

• Is Mosaic extensible enough to rapidly introduce emerging network services? In this dis-

sertation, we build various network services, including mobility, reliability, multicast, and

confidentiality, at different layers and demonstrate their feasibility in the context of a hetero-

geneous, dynamic Internet environment.

• Does the unified architecture achieve its goal of seamless application-aware selection and

composition of network services? To assess its effectiveness, we evaluate it in the context

of overlay networks, where services are realized and deployed. The runtime composition of

existing overlay networks delivers the benefits that none of the existing ones can provide

alone.

• What is the impact of the architecture on performance? Adopting the Mosaic architecture

might degrade network performance. We study the performance overhead via macro and

micro-benchmarks in a controlled LAN environment, an emulated distributed environment in

Emulab, and a realistic WAN environment in PlanetLab.

1.4 Summary of Contributions

The main finding of this research is that Mosaic is able to introduce a diverse group of network

services rapidly at a low cost using data-centric specification and composition. Specifically, the

dissertation makes the following contributions:

• A data-centric network architecture (Mosaic) under which new network services can be devel-

oped, deployed, selected, and dynamically composed according application and administrator

needs.

• A declarative programming language (Mozlog) to concisely specify high-level network protocol

specifications.

• A runtime system prototype that can translate Mozlog specifications into efficient implemen-

tations.

4



1.5 Organization

The remainder of this dissertation presents the Mosaic architecture, its programming language

Mozlog, and its use cases and evaluation of its effectiveness.

Chapter 2 describes the background of the dissertation work. This includes the concept of declar-

ative networking and the options for extending network services by composing existing services.

Chapter 3 presents an architectural overview of the Mosaic architecture. Chapter 4 describes the

Mozlog language, the compiler details and the runtime system implementation. Chapter 5 uses

several concrete examples to demonstrate how to use Mozlog language to introduce new network

services. Chapter 6 demonstrates services introduction by composing existing network services.

Chapter 7 summarizes related work. Finally, Chapter 8 concludes the dissertation and discusses

future directions.
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Chapter 2

Background

Given that the Mosaic architecture is built upon declarative networking, we begin with a brief

overview of its capabilities and its query language NDlog in this chapter. Then we introduce the

concept of network composition, as an important method to extend network services in the Mosaic

architecture.

2.1 Declarative Networking

The high level goal of declarative networks is to build extensible architectures that achieve a bal-

ance between flexibility, performance and safety. Declarative networks are specified using Network

Datalog (NDlog), which is a distributed recursive query language used for querying network graphs1.

Declarative queries are a natural and compact way to implement a variety of routing protocols

and (overlay) networks. For example, traditional routing protocols such as path vector and distance-

vector protocols can be expressed in a few lines of code [56], and the Chord distributed hash table in

47 lines of code [55]. When compiled and executed, these perform efficiently relative to imperative

implementations.

NDlog is based on Datalog [73]: a Datalog program consists of a set of declarative rules. Each

rule has the form:

p :- q1, q2, ..., qn.

1The authors of the declarative networking work have used both NDlog [54, 53] and OverLog [55, 15] as the
language name, mostly interchangeably. In this dissertation, we consider them synonymous and use NDlog for
consistency.
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It can be read informally as “q1 and q2 and ... and qn implies p”. Here, p is the head of the rule,

and q1, q2,...,qn is a list of literals that constitutes the body of the rule. Literals are predicates with

attributes , which are bound to variables or constants by the query, Boolean expressions that involve

function symbols (including arithmetic) applied to attributes, or Assignment statements.Predicates

in Datalog are typically relations, although in some cases they may represent functions. The

predicates in traditional Datalog rules are relations, and we will refer to them interchangeably as

predicates, relations, or tables.

Datalog rules can refer to one another in a cyclic fashion to express recursion. The order in

which the rules are presented in a program is semantically immaterial; likewise, the order predicates

appear in a rule is not semantically meaningful. Commas are interpreted as logical conjunctions

(AND). The names of predicates, function symbols, and constants begin with a lowercase letter,

while variable names begin with an uppercase letter.

Network Datalog (NDlog) is a distributed variant of traditional Datalog, primarily designed for

expressing distributed recursive computations common in network protocols. We illustrate NDlog

using a simple example of two rules that compute all pairs of reachable nodes:

r1 reachable(@S,D) :- link(@S,D).

r2 reachable(@S,D) :- link(@S,Z), reachable(@Z,D).

The rules r1 and r2 specify a distributed transitive closure computation, where rule r1 computes

all pairs of nodes reachable within a single hop from all input links, and rule r2 expresses that “if

there is a link from S to Z, and Z can reach D, then S can reach D.” By modifying this simple

example, we can construct more complex routing protocols, such as the distance vector and path

vector routing protocols.

NDlog supports a location specifier in each predicate, expressed with @ symbol followed by an

attribute. This attribute is used to denote the source location of each corresponding tuple. For

example, all reachable and link tuples are stored based on the @S address field. The output of

interest is the set of all reachable(@S,D) tuples, representing reachable pairs of nodes from S to D.

2.2 Network Composition

Network composition is the act of combining distinct parts or elements of existing networks to

create a new network with new functionalities. Overlay composition is network composition of
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Feature Representative overlays
resiliency RON, Detour, SOSR
mobility i3, DHARMA, Warp

scalable lookup Chord, Pastry, CAN, Tapestry, OpenDHT
multicast Overcast, ESM, PPLive
anycast Akamai, CoralCDN, CoDeeN, GIA
security SOS, OverDoSe, Cashmere

Table 2.1: A list of representative overlay networks and their features

overlay networks, and so results in a new overlay network. In this section, we introduce the concept

and background of network composition in overlay networks, as an important method to extend

network services in the Mosaic architecture, then we consider composition of overlays along both

data plane and control plane.

2.2.1 Overlay Networks

An overlay network is a virtual network of nodes and logical links that is built on top of an existing

network. It aims to implement and provide a network service that is not available in the existing

network. Most of the logical networks are overlay networks in the sense that they are over-laid

on top of other physical networks. In a broad sense, the most widely used and successful overlay

network is the Internet. In this dissertation, we use the term overlay networks to refer to the logical

networks that are layered on top of IP.

Different overlay networks provide different features or functionalities. Table 2.1 and the fol-

lowing list provides a sampling of overlay networks proposed in the previous decade, categorized

by their features:

• Resiliency: the Internet is sometimes subject to transient failures, e.g. due to BGP misconfig-

uration, fiber link cut, etc. By exploiting the redundancy in the Internet path, many projects

propose to use overlay routing to quickly react to routing failures and provide a resilient net-

work service. Such systems include, but not limited to Resilient Overlay Network (RON) [7],

Detour [80], Scalable One-hop Source Routing (SOSR) [32], etc.

• Mobility: the Internet was not designed with mobile devices in mind. When a mobile device,

such as a PDA or a smartphone, wants access to the Internet at different network attachment

points, its IP address changes, which is disruptive to the communication. While Mobile

IP [39, 68] tries to address this problem within the IP protocol, there are many proposals that
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try to tackle the problem as an overlay network, e.g. ROAM [99] based on Internet Indirection

Infrastructure (i3) [84], Distributed Home Agent for Robust Mobile Access (DHARMA) [60],

and Warp [96], etc.

• Scalable lookup: the lookup service is also known as a Distributed Hash Table (DHT). The

goal is to locate the node that holds responsible for the given key consistently and in a

scalable fashion in an overlay network with a large number of nodes. Such proposals include

Chord [85], Pastry [78], CAN [74], Tapestry [97], and OpenDHT [75].

• Multicast: Multicast is frequently used in distributing multimedia contents, such as video-

on-demand or live broadcast systems. IP multicast capability was built into the IP protocol

suite. Unfortunately, it is not widely deployed and is generally not available as a service for

the average end users, due to security and deployment complexity concerns [71]. Solutions

based on overlays such as Overcast [41], ESM [35] and PPLive [36] tend to address these

issues.

• Anycast: anycast is a network addressing and routing scheme whereby data is routed to the

“best” destination as viewed by the routing topology. It is mainly used to implement DNS or

content distribution systems, such as Akamai [4], CoDeeN [91], and CoralCDN [26, 25], etc.

• Security: a number of overlays provide services with security-related features. Perhaps one of

the simplest examples is a secure VPN service, where network traffic is encrypted by SSL or

IPSec to provide confidentiality. Alternatively, some overlays aim to prevent denial of service

(DOS) attacks (such as Secure Overlay Service SOS [44] and OverDoSe [81]) or to provide

anonymity, such as Cashmere [98].

The list above is by no means a complete or the only taxonomy of features provided by all

overlay networks. However, it does demonstrate that the features that can be provided by overlay

services are rich. Besides, they usually conform to a similar interface with send/receive APIs.

However, the semantics may be completely different. For example, the addresses are logical rather

than physical in many cases: in mobility, addresses are not bind to physical networks; in anycast

and multicast, a group of nodes may be grouped into a single address; DHTs, usually understood

as having a get/put API, may also be approximate to routing towards a the logical keys as the

addresses.
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Unfortunately, those overlays are designed for application specific domains. If a user demands

two or more features simultaneously for the same application, most likely none of the existing

proposed overlay solutions satisfy the requirements. A desirable approach is to compose existing

overlays together to provide a combination of the wanted features. We consider composition of

overlays along both data plane and control plane.

2.2.2 Data plane composition

The data planes of two overlay networks can be composed horizontally by bridging between the

networks, or they can be composed vertically by layering one overlay over the other.

bridging

Network3

(QoS)
S d

IP tunnel

Receiver B

Network2

Network1

(confidentiality)

Sender

Receiver A
Network2

(reliability)

( y)

Figure 2.1: Overlay composition by bridging.

In bridging (see Figure 2.1), each overlay network runs on top of the same substrate (e.g., the

IP network) directly. However, for a variety of reasons (e.g., sending from a wireless to a wired

network), it may be necessary to send a packet across multiple overlay networks to reach the receiver.

This is usually done via a gateway node that belongs to both networks. If such gateways do not

exist, two nodes from each network need to be connected via an IP tunnel to route packets. In

Figure 2.1, a sending laptop using wireless may use an overlay that provides confidentiality to route

traffic over the wireless links, then use an overlay with reliability guarantees to deliver important

but not time-sensitive data to receiver A, while using a QoS overlay to deliver multimedia traffic

to receiver B.

In layering, logically a packet is routed within a single data plane of an existing overlay network.

However, the data paths between the nodes inside the overlay may be constructed on top of other

overlay networks, rather than the Internet. For example, RON [7] only works for nodes that have

publicly routable IP addresses. As shown in Figure 2.2, by composing RON on top of another

overlay protocol that enables NAT (Network Address Translation) traversal, such as i3, nodes
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Figure 2.2: Overlay composition by layering.

behind NAT should be able to join the RON network.

We note that the two data plane compositions listed above are not mutually exclusive; some

data composition scenarios can combine both layering and bridging.

2.2.3 Control plane composition

An overlay network’s control plane can be layered over either the data plane or the control plane

of another overlay. For example, it is possible to build the control message channels of DHT

protocols such as Chord over the data plane of RON. Typically, the failure detection components

of DHTs assume that hosts unreachable via IP are dead. In fact, some hosts may be alive and

functioning, but temporary network routing failures may create the illusion of node failure to part

of the overlay nodes. If the network failure happens intermittently, churn rate is increased and may

create unnecessary state inconsistency. Using a resilient overlay like RON can overcome some of

the network failures to reduce churn.

Some overlay network protocols have complex, layered control planes. For example, both i3 [84]

and DOA [11] (a delegation-oriented architecture that facilitates deployments of middleboxes) use

DHTs for either forwarding or lookup. RON [7] (an overlay providing resilient packet delivery) and

OverQoS [86] (an overlay providing QoS guarantee) heavily depend on measurements of underlying

network performance characteristics such as latency and bandwidth. When overlay networks are

built from scratch over IP, it is conceivable that different logical overlays built on the same physical

IP topology may duplicate the effort to maintain DHTs or perform network measurements. Nakao,

et al. [65], observed that on PlanetLab, each node had 1GB outgoing ping traffic daily: many overlay
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networks running on the same node were probing the same set of hosts without coordination. Such

duplicated probing traffic can be wasteful, and interactions between probe traffic may introduce

measurement error. A composition-driven approach is to build smaller elements that provide well

defined interfaces (e.g., OpenDHT [75] for DHT lookup and iPlane [58] for measurement) so that

they can be easily composed with upper layer overlay network control planes to share rather than

compete for resources.

2.2.4 Making Composition Decisions

With the proliferation of overlay networks and different possibilities for composition amongst them,

a natural question to ask is where the decision should be made of which overlays to compose, and

how should they be composed.

We argue that it should be a collaborative effort between overlay providers and end users.

Overlay providers should decide the control plane composition at design time. In addition, providers

should provide service descriptions as meta-data for the overlay networks they have deployed, which

articulate the functionalities and composition requirements. For example, if an overlay network

provides confidentiality by encrypting all the traffic, it makes little sense to compose it on top of

another overlay that does compression to save bandwidth consumption, because the compression

needs redundancy in the data, which do not exist in well encrypted packets. Such meta-data is

useful in helping end users make the right composition decisions.

Users at the end-points should take control of the data path composition, given existing func-

tionalities of the overlay networks they have access to. In particular, a sender should be able to

choose which overlay networks to traverse before her traffic reaches the receiver(s) and a receiver

should be able to dictate which overlay networks the packets come from. We argue that the con-

trol decisions made by the end points agrees with the end-to-end argument [79]. End points have

better knowledge of applications, so they can be expected to intelligently compose overlay network

resources to achieve application-specific design goals. This contrasts with a single monolithic over-

lay network attempting to optimize all aspects of the application requirements, such as efficiency,

reliability, mobility, security, etc.

To be clear, we do not require that users must be involved in every composition, but rather

that the end-point should be the locus of control. Ideally, software should automatically discover

available overlay networks and make intelligent composition decisions on behalf of users, perhaps
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with their guidance.

2.2.5 Composition Challenges

From an architectural point of view, there are several challenges to building an extensible architec-

ture to support overlay composition:

• Interoperability: Because the data plane composition decision is made by end users, it

happens dynamically, at runtime. An overlay protocol cannot assume that the underlay is

IP. Instead, it should be able to inter-operate with other overlays, which may not even exist

at the time it is deployed. Unfortunately, because most overlay network designers have IP in

mind as the substrate, the implementation is tightly coupled with the IP protocol itself. A

simple example is that in some implementation, an IP address is stored in a 32-bit integer.

If we were to run the same protocol on a different network, even for protocols like IPv6

without much architectural difference, a new implementation is needed, which leads to the

entire deployment process of testing, router upgrading, user adoption, etc.

• Feature interaction: A rigorous composition specification method requires a proof rule

asserting that if each component behaves correctly in isolation, then it behaves correctly in

concert with other components. Such a rule is subtle because a component need behave

correctly only when its environment does, and each component is part of the others’ envi-

ronments [1]. In network composition, different network protocols provide different services,

with different approaches. Two networks are incompatible if they provide conflicting goals

or use conflicting approaches. To compose incompatible networks together may negate the

effectiveness of the individual services. For example, if network A provides a routing service

with minimal latency, while network B provides a routing service with maximum bandwidth,

layering them together as a composed network may deliver neither feature. Consider another

example where two end-to-end services use encryption and compression respectively. If a

packet is encrypted before it is compressed, the compression algorithm can hardly achieve

any benefit, while doing compression before encryption is perfectly fine. That is, the order of

the service composition may also lead to undesirable feature interaction. A composable net-

work architecture needs to provide the opportunity to validate the compatibility of a proposed

network composition and guide the users towards effective composition.
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2.3 Summary

In this chapter, we introduced the background of declarative networking and the NDlog program-

ming language, upon which our Mosaic network architecture is built on. We then described the

concept of network composition as an important methodology to extend network services. We clas-

sified it into data plane composition and control plane composition and gave motivating examples

respectively. The challenges of network composition is also discussed. In the following chapter, we

present the Mosaic architecture to address some of the challenges.
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Chapter 3

MOSAIC: An Extensible Internet

Architecture

Mosaic is an architecture to design, implement and deploy composable networks based on a data-

centric declarative networking approach using a unified, data-centric declarative programming lan-

guage. In this chapter, we provide an overview of the proposed Mosaic architecture.

3.1 Overview

3.1.1 Infrastructure

Figure 3.1: An illustration of the Mosaic infrastructure.

The Mosaic infrastructure consists of a network of nodes, which can either be integrated

with existing communication infrastructures or run as an independent overlay network. The key

distinction of Mosaic from the existing Internet infrastructure is that the nodes or routers in the

15



network are no longer “dumb” devices, but enhanced with database query processing capabilities.

Therefore, the infrastructure provides distributed query capabilities over all network routing state,

device session state and system monitoring information—in the form of database tables as opposed

to more traditional data structures. At the core of the Mosaic infrastructure is a declarative

networking engine [54, 56, 55, 53]. Declarative networking leverages a database query language for

specifying and implementing network protocols, and employs a dataflow framework at runtime for

communication and the maintenance of network state. The key idea is that declarative recursive

queries [2, 73], which are used in the database community for querying graph structures, are

a natural fit for expressing the properties of various network protocols. The primary goal of

declarative networking is to greatly simplify the process of specifying, implementing, deploying

and evolving a network design. In addition, declarative networking serves as an important step

towards an extensible, evolvable network architecture that can support flexible, secure and efficient

deployment of new network protocols.

On this infrastructure, several network services deployed in the form of overlays may co-exist,

and are not necessarily deployed on all nodes. Individual overlay protocols are specified using

the Mozlog declarative networking language, while compiled and executed in Mosaic. Composed

overlay networks will be instantiated by leveraging existing deployed overlays, either by layering

(above or below) or bridging with them. In addition, private networks outside of the infrastructure

will be bridged via public gateways with overlays deployed on this infrastructure.

At the edges of the infrastructure, there are proxy nodes that communicate directly with wireless

or other embedded devices with limited processing capabilities, route messages on their behalf and

provide location-based services. In Figure 3.1, the client issues a query that is used to identify the

proxy node at the sender (sProxy) and receiver (rProxy), and a route is established based on the

session requirements, device characteristics and infrastructure resource availability.

3.1.2 MOSAIC Engine

Figure 3.2 illustrates the Mosaic engine from the perspective of a single node. Mosaic is positioned

at the network layer in the network stack to replace IP. It exposes a simple interface to the transport

layer by providing two primitives: send(DestAddress, Packet) and recv(Packet). In IP, a packet

consists of an IP header with fixed format and a raw byte data as the payload. In Mosaic, Packet

is represented abstractly as a structured data element, which might be a set of scalar values or even
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Figure 3.2: The Mosaic engine for network layer protocols.

nested tuples. The encoding of this packet is up to the specific overlay protocol, and declarative

mappings or transformations can convert between the packet formats of different overlays (see

Chapter 4). DestAddress is a specially typed tuple, with the first attribute being the identifier of

the overlay network to which the packet belongs. This identifier is used to demultiplex the send

requests to different overlays or IP at the network layer. A send request will trigger a recv event

at the node or nodes who own the DestAddress if the network successfully routes the packet.

3.1.3 Directory Service

For each overlay running on the infrastructure, there is a directory service that maintains the

following information: (1) A unique identifier for the overlay; (2) The list of physical nodes that is

currently executing the overlay; (3) The list of users who can utilize the overlay, and their privileges

(e.g., whether they can bridge with this overlay). These privileges are set by an overlay’s owner; and

(4) Additional meta-data that describes the overlay, such as its attributes, node constraints, etc.

As part of the process of creating a composed overlay, the user may issue queries to the directory,

searching for existing overlays that meet their criteria for composition.

The directory service may be provided either by a centralized server or in a distributed fash-

ion [19, 10] for scalability. The design choice of the directory service is orthogonal to the Mosaic

architecture. In this dissertation, we focus on the use of a centralized server. We note that a central-

ized service is sufficient for maintaining the meta-data information for thousands of infrastructure

nodes, as demonstrated by PlanetLab central [70].

There are two ways to create new network services in Mosaic: (1) by specifying queries as

network protocols to create new networks, and (2) by composing existing networks to create a
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new network with a combination of existing functionalities. We discuss the two approaches in the

following sections.

3.2 Programming New Network Services

In Mosaic, network protocol specifications are written in Mozlog, which is a data-centric declarative

query language based on NDlog [55]. Mosaic takes a Mozlog program, compiles it into distributed

dataflows [55], and deploys it to all nodes that participate the new network in the form of overlays.

After it is deployed, the meta-data of the overlay information is stored at the directory service.

On each single node, multiple overlay networks may be hosted at the same time. The distributed

dataflows compiled from the Mozlog program resemble the execution model of the Click modular

router [47], which consists of elements that are connected together to implement a variety of net-

work and flow control components. In addition, the elements include database operators (such as

joins, aggregation, selections, and projections) that are directly generated from queries. Each local

dataflow participates in a global, distributed dataflow across the network, with messages flowing

among elements at different nodes, resulting in updates to local tables. The local tables store the

state of intermediate and computed query results, including structures such as routing tables, the

state of various network protocols, and data related to their resulting compositions. The distributed

dataflows implement the operations of various network protocols. The flow of messages entering

and leaving the dataflow constitute the network packets generated during query execution.

We describe the Mozlog language in detail in Chapter 4, and provide several case studies in

Chapter 5.

3.3 Composing Network Services

To create a composed overlay network, a Mosaic user (e.g. a network administrator) first uses the

directory service to locate overlay networks that meet their criteria for composition, and retrieves

relative meta-data information. Second, the administrator creates a composition specification, which

is a high-level graph-based description of the desired component overlay networks and their inter-

actions. Then, the specification is compiled into the Mozlog language used by Mosaic’s compiler,

described in Section 6.1. As part of this process, new code is created that “glues” the compositions
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together. Finally the generated Mozlog code is deployed to the physical nodes to start the new

network, and the directory information is updated regarding the newly composed network.

3.3.1 Composition Specifications

i3

Bob’s internal 

networkRON Bob’s 

gateway

Alice’s internal 

network

Alice’s 

gateway

Figure 3.3: Graph of i3 layered over RON, and private networks of Alice and Bob bridged with
RON.

Figure 3.3 shows a graphical representation of a composition specification, based on the example

scenario introduced in Section 1.1. We chose XML as the internal representation to describe the

graph (See Appendix B.1). Each module (node) represents a component overlay network (e.g., i3

and RON) deployed on the infrastructure, or a private network. The links represent connectors,

where vertical and horizontal links denote layering and bridging, respectively. Here, the i3 overlay

is layered over RON; Alice and Bob’s private networks are bridged to RON. In addition to a unique

overlay identifier, each module configuration consists of the following:

• Physical node constraints: When the overlay is first deployed, the user who created the

overlay can constrain the set of nodes on which the overlay may execute. This can be in the

form of a prefix to indicate that nodes must be deployed on particular subnets, or enforce the

inclusion of particular nodes (e.g. Alice’s and Bob’s gateways) must be on both the i3 and

RON networks.

• Attributes: Each overlay network has properties that characterize its capabilities, including

mobility, secure routing, NAT traversal, resilient routing, anonymity, private networks, etc.

These properties can be queried by users to identify overlays that meet their requirements.

• Code: If a module is loaded for the first time, code can be included in the configuration.

This can either be legacy code, or Mozlog specifications for declarative networks.
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• Default gateway: Each module can specify a default gateway for bridging. In the absence

of a specified gateway, the a common physical node sitting on both networks is selected to

serve as the gateway.

• Access control: Mosaic supports restrictions on which users can utilize an overlay, and

their privileges (e.g., layering above or below, and bridging, etc).

The connectors between modules have properties associated with them. Bridging (horizontal

lines) must specify whether there are default gateways to be used, and whether tunneling is per-

mitted. If two modules are specified to be bridged via a default gateway node, both overlays must

run on the specified gateway. Layering (vertical lines) also has constraints on whether the overlay

has to be layered on all or subset of the nodes. In this example, to get the full benefits of RON, all

i3 nodes should utilize RON as their underlay. However, this is not strictly required: i3 nodes that

do not run RON will default to using IP. For both bridging and layering, one can further specify

whether some connections replace existing ones.

3.3.2 Composition Compilation

Once the composition is specified, a composition compiler is used to generate the Mozlog code that

“glues” together different overlay networks based on the specifications. The compiler is a software

deployed either at client-side, or as a service in conjunction with the directory service.

The compilation process can be performed in two different ways. First, a composition can create

overlays, either from scratch where each module contains the code implementing each overlay,

or incrementally where the new overlay is built on existing ones, e.g., by adding new overlays

over them, or bridging overlays via identified gateways. Creating overlays incrementally requires

the composition specifications to refer to existing overlays by their unique identifiers. Second, a

composition can also modify overlays, which involves replacing existing modules with new ones,

and this requires connectors to indicate that they are replacing existing composition links.

Given the above mechanisms, we outline how layering and bridging can be achieved by compiling

modules and connectors, and provide a detailed process description and examples in Section 6.1.

The first step is to perform basic checks to ensure all the links are legal, based on the attribute

constraints and physical node constraints. For example, one cannot layer one overlay over another

if they are configured for completely disjoint sets of nodes. Two overlays cannot be bridged if their
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bridge connector does not permit tunneling and the two overlays do not share any common node.

Once validated, Mozlog rules for composition and all required overlay code are uploaded to relevant

nodes for execution.

Layering

Layering of a control or data plane over another overlay’s data plane is achieved by ensuring

that every protocol uses logical addresses — rather than being bound to physical addresses. At

runtime Mosaic will bind (or rebind) the upper layer’s logical address to the underlay address.

These bindings are stored in a separate table that can be updated to facilitate dynamic changes to

layering.

Mosaic allows the control plane of one overlay network to layer over another overlay’s control

plane, accessing its internal state. Here, each overlay exports the state of its composable com-

ponents, in the form of database logical views (query results presented as a named table). An

example of such state is a distributed hash table’s contents, which can be modeled as a relation

with tuples associating keys and values. Importantly, accessing a neighboring protocol’s state can

be done within the overlays’ specification language — there is no “impedance mismatch” between

languages, and interoperability issues are minimal.

Bridging

Depending on requirements, bridging can be done either pre-configured or on-demand in Mosaic.

Pre-configured method. When the composition specification involves bridging multiple over-

lays, forwarding state is created on designated gateways based on the bridge connectors indicated

in the composition specifications. When a sender sends a packet whose destination contains an

address of an overlay in which the sender does not participate, Mosaic routes the packet to the

gateway, which then continues to forward the packet along the bridged overlay. In addition to a

static gateway, the sender can also use a pre-configured anycast service [43, 25] to select and route

packets to one of the overlay nodes, preferably close in terms of network distance to the sender.

On-demand method. The sender utilizes source routing to explicitly describe the data path

to the destination via designated gateways among different overlays found in the specification.
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Alternatively, the gateway holds address translation state that uniquely identifies the flow between

the sender and the receivers, it performs indirection. The on-demand mechanism enables user-

driven dynamic bridging. We will describe several examples of such compositions in Section 6.2

using the Mozlog language.

3.3.3 Dynamic compositions

Mosaic exploits Mozlog’s declarative model to facilitate dynamic overlay composition: since net-

work definitions in Mosaic separate specification from implementation, the system can (assuming

the right constraints are met) freely replace either the IP or an existing overlay underneath one

overlay network with a second overlay network—i.e., it can layer networks. For example, the pro-

tocol used in RON is a modified link-state protocol, which is general enough to operate on any

connected graph. The original RON implementation assumes IPv4 as a substrate, and hence it

is hard-coded to use publicly routable IP addresses. In Mosaic, protocols are written with a

network-agnostic addressing scheme, so a RON overlay can instead use addresses from one or more

lower-level overlay networks, provided they are reachable from one another. This allows Mosaic

to dynamically switch an existing overlay’s underlay based on the network conditions, e.g., an exe-

cuting overlay that utilizes IP can dynamically layer itself over RON when routing losses are high,

or further switch to an epidemic forwarding strategy when the network is disconnected.

Dynamic overlay switching in Mosaic is achieved by changing the binding between an up-

per overlay’s logical addresses and the underlying network and its (lower-level) addresses. This

technique is overlay-agnostic. However, we must be careful to preserve application and overlay se-

mantics. In particular, if dynamically switching maintains the same endpoints on route requests (as

RON, above, does), then the switch is permissible. Likewise, if the lower overlay state is not visible

to the layers above, and all endpoints provide the same functionality (e.g., in a content distribution

network), then the switch is also permissible. In other cases, we would need to re-architect the

overlays and possibly the application to redistribute state over the new underlay, and to be tolerant

of transient states.
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3.4 Summary

In this chapter, we provided an overview of the proposed Mosaic architecture using the data-

centric declarative approach. We described the infrastructure, where each node runs a Mosaic

engine that executes the compiled Mozlog programs. Then we introduced two methods to extend

network services in Mosaic: creating new network services in Mozlog programming and composing

services over existing network services using high-level composition specification. In the following

two chapters, we give concrete examples to demonstrate how to use these two methods respectively

for rapid network service introduction.
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Chapter 4

The Mozlog Language

Mozlog is the domain-specific programming language we design for the Mosaic architecture. Pro-

tocols are written in Mozlog instead of traditional general purpose programming language like C

or Java. Before introducing the language, we highlight the following design goals for the Mosaic

architecture:

• Interoperability: Mosaic should provide interoperability among multiple overlay networks,

including both the control planes and the data planes;

• Dynamic composition: the composition of overlay protocols should be able to changed on the

fly by the application requirements;

• Reusability: overlays previously deployed should be able to compose with emerging overlays

without change;

• Independence: Mosaic should make as few assumptions as possible about the underlying

networks, and should not be confined to network layer protocols;

• Conciseness: given above requirements, the language should remain concise to let the devel-

opers focus on the high-level protocol specification;

• Legacy support: legacy applications should not break despite the use of disruptive overlay

networks.
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In rest of this chapter, we provide the design and implementation of the Mozlog language and

show how it helps Mosaic to achieve those goals. The detailed language grammar and syntax can

be found in Appendix A.

4.1 Language Design

Mozlog is derived from Datalog and NDlog which we have introduced in Chapter 2. In this section,

we focus Mozlog’s distinct features that is required for the Mosaic architecture. We categorize

these features as follows:

• Flexible naming and addressing: Mozlog supports dynamic location specifiers whose types

(e.g., IP address or logical overlay identifier) are determined at runtime. In addition, location

specifiers are decoupled from data attributes and made optional for local data. These two

language extensions not only enable interoperability among multiple overlays, but provide

multi-homing and mobility features (Section 4.1.1).

• Data and control plane integration: Mozlog provides language support for forwarding

on the data plane. This provides extensibility at both the control and data plane, and hence

provides flexible composition of different overlay features on either plane (Section 4.1.2).

• Modularity and reusability: Mozlog allows multiple declarative rules to be composed

and modularized as Composable Virtual Views (CViews). This enables features of different

overlays to be modularized, hence facilitating composition of different features, and improved

resource sharing. As an additional benefit, Mozlog provides more concise specifications and

better abstractions for timeouts and exception handling (Section 4.1.3).

• Special predicates: Mozlog provides several predicates for accessing the tun device and

using TCP. This enables legacy application support at both the network and transport layers

and creates the opportunity to build transport layer overlays (Section 4.1.4).

This section focuses purely on the Mozlog language. We discuss implementation details in

Section 4.2. Detailed use cases and experimental analysis are provided in Chapter 5 and Chapter 6.
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4.1.1 Flexible Naming and Addressing

Location specifiers in NDlog currently have two limitations. First, they are assumed to be IP

addresses, hence limiting their usage to IP-based networks. As a result, it is not possible to

express data placement in terms of overlay identifiers or differentiate data that belongs to different

overlays. Second, location specifiers tightly couple data’s attributes to its location, limiting each

host to store only data at a unique network address. This prevents multi-homing, an important

requirement when each physical host may be simultaneously associated with several logical overlay

networks. Third, mobility is not supported since any change in IP address will invalidate all local

tables.

To address these limitations, we make two modifications. First, we decouple each datum from

its location specifier, and make the location specifier optional. Second, we associate all location

specifiers with a runtime type.

Decoupling Location from Data

Mozlog predicates have the following syntax:

predicate@LocSpec(Attr1, Attr2, ...)

For backward compatibility to NDlog and conciseness, two forms of syntactic sugar are provided

too, where predicate(Attr1,..., @AttrI, ..) is equivalent to predicate@AttrI(Attr1,..., AttrI,

..) and predicate(Attr1,Attr2, ..) is equivalent to predicate@LocalID(LocalID, Attr1,Attr2,

..). That is, in the absence of any location specifier, predicate is assumed to refer to local tuple.

For example, in the following rule,

a1 alarm@R(L, N) :- periodic(10),

cpuLoad(L),

nodeName(N),

monitorServer(R),

L>20.

periodic is a built-in local event that will be triggered every 10 seconds. The predicates cpuLoad,

nodeName, and monitorServer are local tables. The rule specifies that for every 10 seconds, if the
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CPU load is above the threshold 20, an alarm event containing the current load L and hostname N

will be sent to the monitoring server R.

Decoupling data from its location enhances interoperability and reusability. Now multiple over-

lays can interoperate (i.e., exchange state) by sending network-independent data tuples in a common

data representation. Moreover, since these rules are rewritten in a location-independent fashion,

they can be reused on different network types (e.g., i3, RON, or IP). Finally, since it does not bind

addresses to data, the language is friendly to mobility, where host movement (and hence resulting

change in its IP address) does not invalidate its local tables.

Runtime Types for Location Specifiers

Our second modification involves adding support for runtime types to location specifiers. This

feature is necessary for dynamically composing multiple overlays at runtime. Location specifiers

are denoted by an [oID::]nID element, where oID is an optional unique string identifier for an

overlay network, and nID is a mandatory overlay node identifier. For example, i3::0x123456789I

denotes an i3 node with identifier 0x123456789I, and ron::"158.130.7.3:10000" denotes a RON

node with IP address 158.130.7.3:10000. In the absence of any overlay identifier, IP is assumed.

At runtime, Mosaic examines the location specifier of each tuple and routes it along the

appropriate network. For example, a tuple with an IP address as a location specifier is sent directly

via IP. On the other hand, a tuple designated for an overlay network is sent to the corresponding

overlay network. To illustrate the flexibility of our addressing scheme, consider the CPU load

monitoring example from Section 4.1.1. Rule a1 can be rewritten as a2, in which the monitoring

server R refers to an i3 key generated as a hash of its name N instead of an IP address:

a2 alarm@R(L, N) :- periodic(10),

cpuLoad(L),

nodeName(N),

serverName(SN),

L>20,

Key := f_sha1(SN),

R:=i3::Key.

Dynamic location specifiers enable bridging of different overlays easily. For example, a gateway
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node G can physically host two overlay network nodes (one for i3 and another for RON), and is

addressable via either network. A source routing specifier is used to perform forwarding via the

gateway node. For instance, node Dest in RON with address sr::[i3::Gateway key, ron::Dest] is

reachable from all hosts in the i3 network. As an additional benefit, dynamic location specifiers

enable addresses to be updated at runtime to switch between IP networks and various overlays.

We provide a detailed example in Chapter 6.

4.1.2 Data and Control Plane Integration

Declarative networking previously focused on the control plane of networks. Overlay composition

requires the integration of the data and control planes of multiple overlays. To achieve this, Mozlog

enables declarative specification of the data plane behavior. Each overlay network has send and

recv predicates that are used to specify data forwarding within an overlay. We provide an example

based on the data plane of RON:

snd ron.send@Next(Dest, Packet) :- ron.send(Dest, Packet),

localAddr(Local),

Local!=Dest,

ron.RT(Dest, Next).

rcv ron.recv(Packet) :- ron.send(Dest, Packet),

localAddr(Local),

Local==Dest.

Rule snd expresses that for all non-local Dest addresses, the data packet (Packet) is sent along

the next hop (Next) which is determined via a join with RON’s routing table (ron.RT) using Dest

as the join key. These packets are then received via the rule rcv at node (Dest), which generates a

ron.recv(Packet) event at Dest.

In Mozlog, the send and recv predicates are usually not directly used by other rules, but rather

automatically invoked by the Mosaic runtime engine when the location specifier type of a tuple

matches the overlay. As a result, one can bridge the data planes of different overlays together, or

layer the control plane of one overlay network over the data plane of another. We provide a detailed

example in Chapter 6.
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4.1.3 Modularity and Composability

In order to support overlay composition, Mozlog supports Composable Virtual Views (CViews).

These define rule groups that, when executed together, perform a specific functionality.

CView Syntax and Usage

The syntax of CViews is as follows:

viewName[@locSpec](K1,K2,...,Kn, &R1,&R2,...,&Rm)

Each CView predicate has an initial set of attributes K1,K2,...Kn which are already bound to

input values read from another predicate (intuitively, these are like input parameters to a function

call). The remaining attributes, &R1,&R2,...,&Rm, represent the return values from invoking the

predicate given the input values. This is akin to the use of input bindings [72] in data integration,

which were used to pass data into queriable Web forms to retrieve relation results.

We illustrate using a view definition for the following CView predicate ping(SrcAddr, DestAddr,

&RTT):

def ping(Src, Dest, &RTT) {
p1 this.Req@Dest(Src,T) :- this.init(Src,Dest),

T:=f_now().
p2 this.Resp@Src(T) :- this.Req(Src,T).
p3 this.return(RTT) :- this.Resp(T),

RTT:=f_now()-T.
}

Figure 4.1: The ping module in Mozlog CView

Any rule that must compute the RTT between two nodes can simply include the ping predicate

in the rule body. this is a keyword used to express the context of the CView. All predicates

beginning with this are valid only locally within the ping CView. There are two new built-in

events/actions: this.init and this.return. Rule p1, upon receiving event this.init along with

the query keys Src and Dest, takes the current timestamp T, and passes the data to the host Dest as

a ping request. After the destination node receives it in rule p2, a ping response event is immediately

sent back to the source with the timestamp. In rule p3, the source node calculates the round trip

time based on the timestamp and issues a this.return action that finishes the query processing.

We also list a typical ping implementation in NDlog to compare: We note the ping CView in
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p1 pingReq(@Dest,Src,T,E) :- ping(@Src,Dest,E),
T:=f_now().

p2 pingResp(@Src,Dest,T,E) :- pingReq(@Dest,Src,T,E).
p3 pingResult(@Src,Dest,RTT,E) :- pingResp(@Src,Dest,T,E),

RTT:=f_now()-T.

Figure 4.2: The ping module in NDlog

Mozlog written differs from NDlog in three aspects: (1) There is a session identifier E in NDlog to

differentiate between different ping requests. Mozlog hide it from the protocol specification since it

is irrelevant to the ping protocol itself. This improves the readability of the specification. Under

the hood, the Mozlog compiler automatically translates the CView queries into NDlog style rules

and applies various kind of techniques to improve performance. The implementation is discussed

in detail in Section 4.2.2. (2) By using overlay specifiers, the ping CView is not confined to IP

network. Without code modification, it can be used to measure latency between two nodes in any

overlay network in Mosaic. (3) The syntax of CView query processing is modular, which further

improves readability.

Composition and Resource Sharing

CViews are a natural abstraction for composing control plane functionalities over different overlays.

We provide an example to show how to construct trigger sampling in i3 by composing Chord and

RON. The Chord lookup in CView can be written as:

chord.lookup@Ldmk(Key,&DestID,&DestAddr)

Given a query on Key, it returns the lookup result: the Chord ID of the destination and the network

address of the destination. A query with an unbound Key will be rejected by the compiler.

RON maintains several CViews to export the current pair-wise EWMA latency, bandwidth and

loss rate measurement results. The latency CView is:

ron.latency(Src, Dest, &EWMA_RTT)

When an i3 client tries to locate a private trigger that relays its traffic, it can leverage the RON

measurement results and find the best private trigger.

/*schema: (Address, Key, RTT) */

materialize(bestPT, SAMPLE_LIFETIME, 1, keys(1), evict max(3)).
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s1 bestPT(KeyAddr, K, RTT) :- periodic(SAMPLE_INTERVAL),

localAddr(LocalAddr),

K :=f_randID(),

chord.lookup@LANDMARK(K, &_, &KeyAddr),

ron.latency(LocalAddr, KeyAddr, &RTT).

s2 trigger@KeyAddr(NodeID, LocalAddr):-periodic(TRIGGER_REFRESH_INTERVAL),

node(NodeID), localAddr(LocalAddr),

bestPT(KeyAddr, _, _).

The rules s1-s2 are used by a local node LocalAddr to compute a private trigger with the lowest

RTT from itself. Periodically, every SAMPLE INTERVAL seconds, LocalAddr picks a random node

and obtains a sample RTT. The sampling is performed by rule s1 using the chord.lookup CView

predicate to locate a node KeyAddr corresponding to a random identifier K. Then the ron.latency

CView predicate obtains the RTT measurements between LocalAddr and KeyAddr. The use of

CViews allows us to perform multiple distributed operations (Chord lookup, followed by RON

measurement) all within a single rule. Based on the sampling result stored in bestPT, rule s2

periodically refreshes the current best trigger at the node KeyAddr.

To summarize, the advantages of CViews are as follows. First, CViews promote code reuse

and enable functionality composition between different overlays (as with the shared ping CView).

Not only is code reused, but network resources are saved. Second, CViews abstract details of

asychronous event-driven programming. In the ping example, nodes no longer are required to

maintain pending state for every ping message that was sent out: the compiler automatically takes

care of that. This avoids the tedious churn and failure detection rules often required in original

NDlog specifications. This enhances readability and makes the code even more concise: the use of

CViews reduced the number of lines in Chord by 8 rules (from 43 to 35).

4.1.4 Special Predicates

To interact with legacy applications and provide more transport layer functionalities, Mozlog sup-

ports several built-in predicates for tun device access and TCP. The tun predicate has the following

schema: tun(IPPacket[,SrcIP, DestIP, Protocol,TTL]). When Mosaic receives an IP packet from
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/dev/net/tun, a tun tuple is injected into the dataflow. IPPacket is the whole IP packet includ-

ing the header. SrcIP, DestIP, Protocol and TTL are corresponding attributes extracted from the

IP header. When tun is an action generated by the rules, IPPacket will be sent to /dev/net/tun.

Optionally, the IP header is updated based on the rest of the attributes if given.

We use the following two rules to demonstrate how to use the tun predicate:

p2p_tun tun@Peer(Pkt) :- tun(Pkt),

Peer:="158.130.7.3:1086".

i3_tun tun@Peer(Pkt) :- tun(Pkt, Src, Dest),

Key:=f_sha1(Dest),

Peer:=i3::Key.

Rule p2p tun sets up a point-to-point UDP tunnel between the local node and the remote

Mosaic node listening at the specific address and port. The peer IP is a constant UDP address.

Similarly, rule i3 tun sets up a tunnel via i3. It uses the SHA-1 hash of the destination tunneling

address as the i3 key.

A second set of new predicates is TCP-related: Each predicate corresponds to a system call for

TCP sockets. They are tcp.listen, tcp.connect, tcp.accept, tcp.read, tcp.write and tcp.close,

provided in the CView syntax. This support provides a foundation for transport layer or session

layer overlay [60, 51, 95] support inside Mosaic.

An example use case would be to use tcp.read and tcp.write to forward packets from Skt1 to

Skt2.

fwdEvent(Skt1, Skt2) :- fwdEvent(Skt1,Skt2),

tcp.read(Skt1, 0, &Packet),

tcp.write(Skt2, Packet, &Size).

tcp.read has the schema of tcp.read(Skt, Len, &Packet). That is, the query takes a socket

descriptor and an integer Len as inputs and returns the actual packet when it is received from

the socket. The socket descriptor is obtained from either tcp.accept or tcp.connect. Similarly,

tcp.write sends Packet to Skt2. As a recursive rule, it keeps forwarding data packets until one of

the sockets is closed.
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4.2 Implementation

The Mosaic platform builds on the P2 [55] declarative networking system and adds significant new

functionality. The P2 planner and dataflow engine have been revised to generate execution plans

that accommodate new language features of Mozlog: specifically, those related to runtime support

for dynamic location specifier, data plane forwarding, and interactions with legacy applications.

4.2.1 Dataflow

Network In

Mux TimedPullPush 
0Queue

Overlay
Recv 

Unwrap

Receive
Demux

TimedPullPush
0
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Robin

LocSpec
Demux

Overlay
Send Wrap

QueueNetwork Out IP
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Figure 4.3: System dataflow with dynamic location specifiers.

Figure 4.3 shows a typical execution plan generated by compiling Mozlog rules. Similar to P2

dataflows, there are several network processing elements (denoted by Network In and Network Out)

that connect to individual rule strands (inside the gray box) that correspond to compiled database

operators. Here, we focus on our modifications, and the interested reader is referred to [55] for

details on the dataflow framework.

To implement dynamic location specifiers and overlay forwarding on the data plane, we modify

the planner to automatically generate three additional Mosaic elements shown in bold in the

dataflow: OverlayRecvUnwrap, OverlaySendWrap, and LocSpecDemux. The elements OverlayRecvUnwrap

and OverlaySendWrap are used for de-encapsulation and encapsulation of tuples from overlay traffic.

At the top of the figure, the Mux multiplexes incoming tuples received locally or from the network.

These tuples are processed by the OverlayRecvUnwrap element that will extract the overlay payload

for all tuples of the form overlay.recv(Packet), where Packet is the payload with type tuple. Since

the payload may be encapsulated by multiple headers (for layered overlays), this element needs to
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“unwrap” until the payload is retrieved. The Packet payload is then used as input to the dataflow

via the ReceiveDemux element, and used as input to various rule strands for execution.

Executing the rule strands results in the generation of output tuples that are sent to a LocSpecDemux

element. This element checks the runtime type of the location specifier, and then demultiplexes as

follows:

• Tuples tuplename(F1, F2, ..., Fn) are local tuples and sent to the Mux.

• Tuples tuplename@IPAddr(F1, F2, ..., Fn) are treated as regular IP-based tuples and sent to

the network directly.

• Tuples tuplename@ovname::ovaddr(F1, F2, ..., Fn) are designated for overlay network ovname

with address ovaddr. A new event tuple ovname.send(ovaddr, tuplename(F1, F2, ..., Fn))

which denotes the send primitive of the overlay network ovname is generated (see Section 4.1.2).

This new tuple is reinserted back to the same dataflow to be forwarded based on the overlay

specification.

4.2.2 Compilation of CViews

The Mozlog-to-NDlog translator requires rewriting and expanding all CView rules into NDlog rules,

which can then be compiled into dataflow strands using the P2 planner. The compilation process

involves a query rewrite that takes as input all CView predicates, and expands them into multiple

NDlog rules based on their view definitions.

Since this process resembles function call compilation, we reuse the terms caller and callee. A

rule that takes an input CView predicate is the caller. The set of rules based on the view definition

(e.g., rules p1-p3 in Section 4.1.3) comprises the operations of the callee.

In a typical C compiler, the caller maintains a stack, pushing local variables (execution context)

and the return address before a call. Similarly, for each CView input predicate viewName[@locSpec]

(K1,...,Kn, &R1,...,&Rm), the execution context is all the bound variables K1,...,Kn and the vari-

ables that appear in the rule body before the CView term. The expanded rules are executed, and

the local variables are stored in a designated internal context table. The local state is stored for

the duration of view execution. Each expanded set of rules replaces the this prefix in the original

view definition with a query context identifier CID that uniquely identifies the current invocation
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of the view, and a return address RetAddr of the caller. When the caller has finished executing all

the rules for the view, the results are returned to the caller (RetAddr).

We use the ping module in Figure 4.1 to demonstrate the CView compilation process.

ping_p1 ping_pingReq(@RI, NI, T, CID, LVReturnAddr):-
ping_init(@NI, RI, CID, LVReturnAddr),
T := f_now().

ping_p2 ping_pingResp(@RI, T, CID, LVReturnAddr):-
ping_pingReq(@NI, RI, T, CID, LVReturnAddr).

ping_p3 ping_return(@LVReturnAddr, Delay, CID):-
ping_pingResp(@NI, T, CID, LVReturnAddr),
Delay := f_now()- T.

Figure 4.4: The result of ping CView translation from Mozlog to NDlog

Figure 4.4 shows the compilation result from the ping module (Figure 4.1). All predicates within

the CView are appended with two fields, CID as the query context identifier and LVReturnAddr as

the return address to the callee.

Suppose the caller rule is

r1 pingResult(@NI, RI, Delay):- periodic(@NI, E, 2),

RI := DESTADDR,

ping(@NI, RI, &Delay).

Rule r1 periodically measures the RTT to the destination node RI. The translation result is

showed in Figure 4.5.

materialize(r1_ctxt, 1000, 1000, keys(1, 2) ).
r1_cxt r1_ctxt(@NI,CID,E,RI) :- periodic(@NI, E, 2),

RI := DESTADDR,
CID := f_rand().

r1_init ping_init( @NI, RI, CID,NI) :- r1_ctxt(@NI,CID,E,RI).
r1_return pingResult(@NI, RI, Delay):- r1_ctxt(@NI, CID, E, RI),

ping_return(@NI, Delay, CID).

Figure 4.5: The result of ping caller translation from Mozlog to NDlog

First, a materialized table r1 ctxt is generated to store query identifiers and query context

(bound variables before the CView term) locally. Second, rule r1 cxt generates a unique query

identifier CID and saves the context variables (NI, E, RI). Then, rule r1 init invokes the ping CView,
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and finally rule r1 return takes the return tuple from ping CView, which is joined with the saved

context, and emits the result pingResult.

4.2.3 Optimizations

We have explored several compiler optimizations. These include tail recursive CView optimization

to reduce communication overhead, inline view expansion by duplicating runtime CView elements

to reduce demultiplexing overhead, and local event shortcut to shorten the dataflow paths and

reduce scheduling overhead.

Tail recursion optimization An interesting optimization opportunity exists when the CView

handler recursively queries itself right before it returns (known as tail recursion in programming

languages).

Source

k
return path without optimization

return path with optimization

Destination

Figure 4.6: An illustration of tail recursive optimization on Chord lookup.

The lookup portion of the Chord DHT protocol implementation (Figure 4.7) recursively queries

the finger nodes until the destination is reached, as showed evidently in rule l4, where the last

query term in the predicate this.return is chord lookup itself.

The Mozlog compiler automatically translates such calls so that the destination node can send

the query results back directly to the query initiator, rather than let the result tuple traverse the

entire call path. To achieve this, the return node address (i.e. the source node) and the original

CID are passed along with each chord.lookup query. This is illustrated in Figure 4.6. As a result,

tail recursion optimization reduces the Chord lookup latency.

Local dataflow optimization When a CView only involves non-recursive, local query terms,

the dataflow can further be optimized at compile time. Syntactically, local CViews are equivalent
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def chord_lookup(@NI, K, &S, &SI){
l1 this.return(S,SI) :- this.init(@NI,K),

node(@NI,N),
bestSucc(@NI,S,SI),
K in (N,S].

l2 this.bestLookupDist(@NI,K,a_MIN<D>) :- this.init(@NI,K),
node(@NI,N),
finger(@NI,I,B,BI),
D := K - B - 1,
B in (N,K).

l3 this.forwardLookup(@NI, a_MIN<BI>,K) :- node(@NI,N),
this.bestLookupDist(@NI,K,D),
finger(@NI,I,B,BI),
D == K - B - 1,
B in (N,K).

l4 this.return( S, SI) :- this.forwardLookup(@NI, BI, K),
f_typeOf(BI) != "null",
chord_lookup(@BI, K, &S, &SI).

}

Figure 4.7: Chord lookup in CView

to function calls in imperative languages, such as C: the bound variables are the function inputs

and unbound variables are the outputs. Therefore, similar to inline function expansion, we can also

expand local CViews. Without inline expansion, every CView rule maps to a rule strand in the

dataflow. With inline expansion, every rule may have multiple instances of the rule strands. Each

instance belongs to a rule that has the CView term in its rule body. The optimization allows to

avoid using temporary tables to save execution context (i.e. no call stacks are saved). We use this

optimization for all TCP related predicates and have observed dramatic performance improvement

(See Section 5.6.1).

4.2.4 Special Predicates

The tun-, and tcp-related special predicates are treated differently from ordinary tuples in the

dataflow by the planner. Each special predicate has a rule strand in the dataflow, between the

ReceiveDemux element and the RoundRobin element(see Figure 4.3).

The tun tuples are mostly used in setting up tunnels to provide network layer legacy support

in Section 4.2.5. In the dataflow, two elements Tun::Tx and Tun::Rx are inserted in the tun rule

strand right after ReceiveDemux. Tun::Rx reads IP packets from the tun device, generates the tun
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tuple, and sends to the next element in the rule strand; Tun::Tx receives a tun tuple, formats it to

an IP packet and writes to the tun device.

The TCP related predicates are used for creating transport layer legacy support (see Sec-

tion 4.2.5). Each TCP predicate has a corresponding input and output event handler. To use

tcp.read as an example, first the CView compiler translates each rule that contains tcp.read to

the NDlog format, which generates a tcp.read.init event and waits for the tcp.read.return event.

The tcp.read.init event is connected to the tcpRead element. It adds the socket descriptor to

the select() pool of the P2 event loop. Once data is available, the P2 event loop calls back to the

element, which then removes the socket descriptor from the select() pool, reads the packet, and

sends a tcp.read.return event tuple containing the packet.

4.2.5 Legacy Support

Mosaic adopts two mechanisms to support legacy applications at different layers. At the network

layer, we use the tun device to provide overlay tunnels between legacy applications. For each end

host, it takes a private IP address from 1.0.0.0/8 to avoid conflict from other public IP networks.

After a legacy application sends a packet to an address in the tun network, the kernel redirects

it to Mosaic, which generates a tun tuple. Currently there is an address translation rule to use

a special mapping table to translate the private IP address to the overlay address. This can be

extended to use any name resolution service in the future by combining DNS request hijacking [42].

After address translation, the packet tunneling rules we described in Section 4.1.4 deliver the IP

packet to the destination via the corresponding overlays.

To use IP layer overlays, such as i3 or RON, IP tunneling is mandatory. For transport layer

overlays that intend to replace or augment TCP, we provide an alternative way to leverage the dy-

namic library call interceptions. The environment variable LD PRELOAD is set to our customized

library to intercept the socket system calls at the user space. Compared to the tun approach at

the IP layer, library interceptions avoid the overhead of an extra memory copy between the kernel

and user space, and expose the connection oriented primitives from the application to the trans-

port overlays. Based on the TCP predicates, we have implemented a SOCKS proxy [49] in our

prototype, which can be viewed as a two-hop transport layer overlay that does source routing to

traverse firewall.

To support a legacy overlay that is not implemented in Mosaic, we build an adapter for the
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overlay to interact with Mosaic via the send and recv primitives. The adapter redirects legacy.send

tuple from the dataflow to the overlay, and inject legacy.recv tuple upon overlay’s packet reception.

Because the legacy overlays are built on IP, they can only be bridged with other overlays or used as

substrates underneath other networks, but cannot be layered on top of another overlay for either

the control or the data plane.

4.3 Summary

In this chapter, we presented the design and implementation of the Mozlog language. Our lan-

guage is based on NDlog, and we described the extension features including flexible naming and

addressing, data and control plane integration, modularity and reusability, and special predicates.

All these extensions are motivated by the requirement from the Mosaic architecture to provide

a extensible, composable and practical network architecture. In the following two chapters, we

present two concrete ways to extend networks, and describe in detail how Mozlog programs are

used and executed to implement the network protocols.
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Chapter 5

Programming Network Services

In this chapter, we describe how to introduce new network protocols in Mosaic by programming

them in Mozlog. We provide several example classes of useful queries in support of reliability,

rendezvous-based communication and mobility (proxy location, customizable routing, and service

discovery). This is not intended to be an exhaustive coverage of all the possibilities of application

scenarios, but an illustration of the ease with which Mozlog queries can be used for implementing

network services that can be easily composed and enhanced for various aspects.

5.1 Resilient Overlay Network

Our first example (rules d1-d5) shows a declarative implementation of Resilient Overlay Network

(RON) [7] over an existing IP infrastructure. RON enables routing around failures, where packets

can be sent via overlay relay nodes that bypass failures in the underlay. Each node maintains a

list of all other participating RON nodes (stored as ron nodes table). At each node NI, rule d1

periodically measures the round-trip time, and propagates this information as link delay tuples to

all other RON nodes. The predicate ping(@NI,R,&RTT) is a CView which consists of a set of rules

that when executed, returns the RTT from NI to R. Based on the link delay measurements, each

node computes one-hop and two-hop paths using rules d2-d3 respectively. Computations stop at

two hops since a single overlay relay is sufficient to route around most failures. We further added

a 0.1s penalty for utilizing a 2-hop indirection. Rules d4-d5 are then used to select the path with

the shortest cost for any given NI to D. In rule d4, min is an aggregate, and the rule will compute
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#define PERIOD 30
d1 link_delay(@RI,NI,R,RTT) :- periodic(@NI,E,PERIOD),

ron_nodes(@NI,R), R!=NI,
ping(@NI,R,&RTT),
ron_nodes(@NI,RI).

d2 path(@NI,D,D,RTT) :- link_delay(@NI,S,D,RTT),
S==NI.

d3 path(@NI,D,N,C) :- link_delay(@NI,NI,N,RTT1),
link_delay(@NI,N,D,RTT2),
N!=NI,
D!=NI,
N!=D,
C=RTT1+RTT2+0.1.

d4 bestPathCost(@NI,D,min<C>) :- path(@NI,D,N,C).
d5 bestPath(@NI,D,N,C):- bestPathCost(@NI,D,C),

path(@NI,D,N,C).

Figure 5.1: RON control plane Mozlog program

the minimum C for each (NI, D) pair. Rule d5 computes the actual best paths, and the bestPath

table stored at each node NI can then be used to route packets over the RON overlay to node N

along the shortest path to D.

5.2 Internet Indirection Infrastructure

In this example, we demonstrate how to implement Internet indirection infrastructure (i3) [84]

in Mozlog. i3 is a rendezvous-based overlay network that provides a level of indirection between

senders and receivers. In i3, instead of explicitly sending a packet to a destination, each packet is

associated with an identifier; this identifier is then used by the receiver to achieve delivery of the

packet. This indirection mechanism is implemented with the use of triggers. The i3 infrastructure

nodes stores triggers as soft state, and the edge nodes periodically maintain their trigger state on

the infrastructure nodes. In our system, each trigger(@PI,P,NI) condition is encoded in a tuple,

which is stored at the infrastructure node PI; it specifies to route messages on behalf of mobile host

NI with identifier P.

The control plane program is showed in Figure 5.2. Two CViews i3 lookupNoCache and i3 lookup

provide trigger lookup function in i3. They are built upon the CView chord lookup from Chord

DHT [85]. The chord lookup request is either sent to itself if the node is an infrastructure node

(rule l1i) or a landmark node otherwise (rule l1). In rule l3, the lookup result is cached in a
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materialize(triggerCache, 180, 100, keys(2)).

/*input K: key. output: KI: IP that handles key K*/
def i3_lookupNoCache(@NI, K, &KI) {
#ifdef INFRASTRUCTURE
l1i this.lookupResults(@NI, K, S, SI) :- this.init(@NI, K),

chord_lookup(@NI, K, &S, &SI). /*call chord lookup locally*/
#else
l1 this.lookupResults(@NI, K, S, SI) :- this.init(@NI, K),

i3_landmark(@NI, LI), /*call chord lookup through landmark*/
chord_lookup(@LI, K, &S, &SI).

#endif
l2 this.return(KI) :- this.lookupResults(@NI, K, S, KI).
l3 triggerCache(@NI, K, KI) :- this.lookupResults(@NI, K, S, KI).
}
def i3_lookup(@NI, K, &KI) {
l0 this.cachedResult(@NI, K, min<KI>) :- this.init(@NI, K),

triggerCache(@NI, K, KI).
l01 this.return(KI) :- this.cachedResult(@NI, K, KI1),

f_typeOf(KI1) == "null",
i3_lookupNoCache(@NI, K, &KI).

l02 this.return(KI) :- this.cachedResult(@NI, K, KI),
f_typeOf(KI) != "null".

}
l4 trigger(@KI, K, NI) :- periodic(@NI, E, TRIGGER_REFRESH_RATE),

node(@NI, K),
i3_lookupNoCache(@NI, K, &KI).

Figure 5.2: i3 control plane Mozlog program

table triggerCache. In CView i3 lookup, it first examines if the key K is in triggerCache (rule l0.

If so, cached result is directly returned without generating network traffic (rule l02. Otherwise,

the queries in i3 lookupNoCache are executed (rule l01). For an edge node, it periodically issues

i3 lookup queries using their own node id K as the key, and update its trigger which is stored at

network address KI (rule l4).

5.3 Proxy Location

In this example, a mobile host issues an Mozlog query to locate a nearby infrastructure node that

serves as its proxy node either for routing data, or for providing support for location-based services.

The examples are based on ROAM [99] and DHARMA [60].
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5.3.1 DHARMA

DHARMA [60] can also be used to select a nearby proxy node. Unlike ROAM’s DHT, DHARMA

uses a number of designated portal servers, nodes that store information on other nodes in the

infrastructure.

#define R_RATE 5

d1 agentMsg(@PI,NI) :- periodic(@NI,E,R_RATE),

portal(@NI,PI).

d2 pingResp(@RI,NI,E) :- pingReq(@NI,RI,E).

We consider a simple example with one portal server PI, stored on every infrastructure node

NI as a portal(@NI,PI) tuple. Rule d1 is executed at all infrastructure nodes, and will result in

the generation of periodic heartbeats (agentMsg(@PI,NI) tuples) to the portal server PI. Rule d2

generates a pingResp in response to a ping request.

d3 agentList(@PI,NI) :- agentMsg(@PI,NI).

d4 agentCandidates(@MI,AI,E) :-

requestProxy(@PI,MI,S,E),

agentList(@PI,AI), f_coinFlip(S)=1.

Rules d3-d4 are executed on the portal server. Rule d3 stores all incoming agentMsg(@PI,NI)

tuples in a agentList(@PI,NI) table, hence maintaining the list of all candidate infrastructure nodes

NI. These tuples will timeout unless the respective infrastructure nodes periodically refresh their

entries via regular agentMsg messages. In rule d4, a agentCandidates tuple are generated in response

to a mobile host request for candidate proxies (via a requestProxy tuple).

#define P_INTERVAL 5

#define S_RATE 0.2

d5 requestProxy(@PI,NI,S_RATE,E) :-

periodic(@NI,E,P_INTERVAL),

portal(@NI,PI).

d6 pendingPing(@NI,AI,E,T) :-

agentCandidates(@NI,AI,E),
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T=f_now().

d7 pingReq(@AI, NI, E) :- agentCandidates(@NI,AI,E).

d8 pingRTT(@NI,SI,RTT) :- pingResp(@NI,SI,E),

pendingPing(@NI,SI,E,T), RTT=f_now()-T.

d9 leastRTT(@NI,E,min<RTT>) :-

periodic(@NI,E,P_INTERVAL),

pingRTT(@NI,RI,RTT).

d10 leastRTTNode(@NI,RI,RTT) :- leastRTT(@NI,E,RTT),

pingRTT(@NI,RI,RTT).

d11 proxy(@NI,RI) :- leastRTT(@NI,E,RTT),

pingRTT(@NI,RI,RTT).

Query proxy(@NI,RI).

The above rules d5-d11 are executed by a mobile host seeking to locate a nearby proxy node.

Rule d5 results in the mobile host periodically generating a requestProxy tuple to the portal server,

which will return 20% (determined by S RATE) of the nodes from its agentList table as potential

proxy candidates. Similar to the earlier ROAM rules, d6-d11 computes the closest proxy node RI,

which is maintained at the mobile host NI.

5.3.2 ROAM

ROAM is built on top of i3 [84]. The following rules i1,i2 are issued by a mobile host for selecting

the closest infrastructure node as its proxy.

#define SIZE 5

#define S_RATE 60

/*schema: @NI, RTT, KEY, KEYIP; evict policy: max*/

materialize(bestProxy, SAMPLE_LIFETIME, 1, keys(1,4),evict max).

i1 randomKeys(@NI,K) :- periodic(@NI,E,0,SIZE),

K=f_randID().

i2 bestProxy(@NI, RTT, K, KI) :- periodic(@NI,E1,S_RATE),

randomKeys(@NI,K),

landmark(@NI, LI),
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i3_lookup(@LI, K, &KI),

ping(@NI, KI, &RTT).

Query bestProxy(@NI,RTT, K, KI).

The i3 overlay utilizes a DHT to provide the mapping from identifiers to hosts. Our rules assume

that the declarative i3 Mozlog code as described in Section 5.2 is executed on all infrastructure

nodes.

Rule i1 periodically generates SIZE number of random keys stored in randomKeys table using

the built-in function f randID that will return a 160-bit random identifier. Every S rate seconds,

rule i2 generates lookup requests from the mobile host NI to its landmark node LI using CView

i3 lookup, one for each random key K generated in rule i1. After retrieving lookup results from the

i3 landmark, the second CView in the rule ping is triggered to send a RTT measurement request to

the node with address KI, and store the result in the bestProxy table. Note that in the materialize

statement, table bestProxy is defined to have at most 1 row. When exceeding the limit, an eviction

policy is used to evict the tuple with the maximum value. Therefore, each time a new tuple is

inserted to the table, the one with the larger RTT will be evicted. As a result, table bestProxy

holds the proxy with the minimum RTT.

Note that even though ROAM is more complicated than DHARMA in terms of proxy selection

functionality, the rules are substantially simpler. This is because in the DHARMA proxy location

program, we intentionally did not use CViews or the table eviction feature. Therefore, we have

to rewrite ping related rules and the aggregate queries. On the other hand, the i3 proxy location

program can effectively reuse relevant code in CViews.

5.3.3 Flexible Proxy Selection

The Mozlog query language enables higher-level concepts to be easily encoded by making minor

modifications to the above rules. This enables user-customizable proxy selections. For example, by

replacing min with min-k, we can select the top-k nodes to get multiple proxies per mobile host. We

can also adopt different criteria: instead of selecting the closest RTT node, we can select the least

loaded node as long as it is within a RTT bound. We can also limit our proxy selection to nodes

that provide certain services within their location (e.g. transcoding services described in Section
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5.5).

5.4 Customizable Routing

Our next example shows a customizable version of the basic path vector protocol [56]. The query

computes the best paths among all infrastructure nodes. The query takes as input link(@S,D,C)

tuples, where each link from node S to node D denotes connectivity between two infrastructure

nodes; messages can be routed from S to D at cost C.

bp1 path(@S,D,D,P,C) :- link(@S,D,C),

P=f_init(S,D).

bp2 path(@S,D,Z,P,C) :- link(@S,Z,C1),

path(@Z,D,Z2,P2,C2),

C=f_compute(C1,C2),

P=f_concatPath(S,P2).

bp3 bestPathCost(@S,D,AGG<C>) :- path(@S,D,Z,P,C).

bp4 bestPath(@S,D,P,C) :- bestPathCost(@S,D,C),

path(@S,D,Z,P,C).

Query bestPath(@S,D,P,C).

Rules bp1 and bp2 compute all possible paths, and rules bp3 and bp4 compute all-pairs best

paths, which are stored as bestPath tuples at each source node S for source routing. We have left

the aggregation function AGG unspecified. By changing AGG and the function f compute used for

computing the path cost C, the above query can generate best paths based on any metric including

link latency, loss rates, available bandwidth and node load. For example, if the query is used for

computing the shortest paths, f sum is the appropriate replacement for f compute, and min is the

replacement for AGG. The above query can be further restricted by the current sender and receiver

proxies of the communicating devices, and the routes between these two proxies is maintained as a

continuous query, and adapted based on link updates.

We can extend the query by adding constraints based on the session requirements, by introducing

an additional session predicate to the rules above. For example, we can restrict the set of paths

to those with costs below a loss or latency threshold K by adding a session(@S,K) predicate, and

a constraint C<K to the rules bp1 and bp2.
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5.5 Service Discovery

The proxy location query described in Section 5.3 is an instance of service discovery, in which a

nearby routing proxy is located. Once a proxy node is identified, a mobile host can issue additional

queries via its proxy to locate desired resources within its vicinity. In addition, the use of a

declarative framework eases the composition of services. For example, one can query for multiple

services within the infrastructure, and then construct a path (either an explicit path presented

Section 5.4, or a series of triggers supported by i3) along all intermediate service points.

In this example, we build upon the earlier ROAM example, to demonstrate service discovery

and composition with the use of i3 triggers. Here a sender SI performs a discovery of a transcoder,

and then forwards all packets to the transcoder before being delivered to their receivers RI. Our

example is presented with flexibility and composability of our infrastructure in mind. While our

example is based on i3 and ROAM, our infrastructure does not preclude supporting other discovery

and composition mechanisms.

t1 leastLoad(@PI,SI,min<L>) :- proxy(@SI,P,PI),

transcoders(@PI,TI,TID,L).

t2 bestTranscoder(@SI,TI,TID) :- transcoders(@PI,TI,TID,L),

leastLoad(@PI,SI,L).

Query bestTranscoder(@SI,TI,TID).

Each transcoder TI inserts a trigger, stored as a trigger(@PI,TID,TI) tuple at the infrastructure

node PI that owns the identifier TID. These triggers are further registered in the transcoders table

of nearby proxy nodes. The rules t1-t2 are used by a sender SI to locate a least loaded transcoder

TI with identifier TID registered at S’s proxy PI.

When a sender SI wishes to send a packet to a mobile host NI supported by a trigger with iden-

tifier RID, a series of identifiers (TID,RID) is required to first forward each packet to the transcoder

(TID), which then reroutes the packet to the mobile host (RID). We omit the (few) Mozlog rules for

forwarding with triggers. The main takeaway is that i3’s service composition mechanism via mul-

tiple triggers can be easily supported by our infrastructure. In addition, we can use the declarative

interface to query and locate the triggers themselves during service discovery.

As a further enhancement, we can enhance existing queries to support late binding [3]. An
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Mozlog query can be sent along with each packet, which will be routed based on the service re-

quests indicated in the Mozlog query. Support for late bindings require additional Mozlog rules

for publishing and propagating service descriptions among infrastructure nodes to create routing

tables based on service attributes. This provides a flexible data delivery mechanism that allows

applications to track rapid change (e.g., user or network mobility) and support changing service

updates.

5.6 Evaluation

In this section, we present the evaluation of Mosaic on a local cluster and on Emulab. First,

we validate that Mozlog specifications for declarative networks, tunneling and packet forwarding

are comparable in performance to native implementations. Second, we use our implementation to

demonstrate feasibility and functionality, using actual legacy applications that run unmodified on

various composed overlays using Mosaic. Third, we evaluate the dynamic composition capabilities

of Mosaic.

In all our experiments, we make use of a declarative Chord implementation which consists of 35

rules. Our i3 implementation uses Chord and adds 16 further rules. We also implement the RON

overlay in 11 rules. Both i3 and RON can be used by legacy applications via the tun device, as

described in Section 4.1.4.

5.6.1 LAN Experiments

To study the overhead of Mosaic, we measured the latency and TCP throughput between two

overlay clients within the same LAN. The experiment setup was on a local cluster with eight

Pentium IV 2.8GHz PCs with 2GB RAM running Fedora Core 6 with kernel version 2.6.20, which

are interconnected by high-speed Gigabit Ethernet. While the local LAN setup and workload is not

typical of Mosaic’s usage, it allows us to eliminate wide-area dynamic artifacts that may affect

the measurements. We measured the latency using ping and TCP throughput using iperf.

Network Layer Overlay Overhead

In the experiments, we use the tun device to provide legacy application support for network layer

overlays. MTU was reduced to 1250 bytes to avoid fragmentation when headers were added. The
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test latency(ms) throughput (KByte/s)
DirectIP 0.10 97994

OpenVPN 0.30 13951
MozTun 0.50 8353

RON 0.71 5796
i3 1.31 3299

Table 5.1: Overhead comparison in LAN

measurement results are shown in Table 5.1 for the following test configurations:

• DirectIP: Two nodes communicate via direct IP, where iperf can fully utilize the bandwidth

of the Gigabit network. This serves as an indication of the best latency and throughput

achievable in our LAN.

• OpenVPN: OpenVPN [94] 2.0.9 is a widely used tunneling software. We set up a point-to-

point tunnel via UDP between two cluster nodes and disabled encryption and compression.

The performance results provide a baseline for the overhead using the tun device virtualiza-

tion. Compared to DirectIP, the latency increases by around 0.2ms, and the TCP throughput

drops by a factor of more than 6. This overhead is inevitable for all overlay networks sup-

porting legacy applications using the tun device, including those hosted on Mosaic.

• MozTun: We set up a static point-to-point tunnel in Mosaic between two cluster nodes

using the following rule:

tun@PeerIP(Pkt) :- tun(Pkt), PeerIP:=PEERADDR.

MozTun and OpenVPN essentially have the same functionality except that MozTun is imple-

mented in Mosaic. The additional overheads in throughput and latency are solely attributed

to the Mosaic dataflow processing overhead bounded by CPU capacity. In MozTun, the la-

tency increased 0.20ms over OpenVPN, which is negligible when executed over wide-area

networks.

• RON: We ran the RON network using Mosaic and utilize two nodes to run the measure-

ments. Since RON does not provide any benefit in our LAN setting with no failures, the

comparison to MozTun is used to show the extra overhead for rule processing in our imple-

mentation.

• i3: Six nodes were set up as i3 servers, using Chord to provide lookup functionality. The

remaining two nodes were selected as i3 clients. A packet sent by the source i3 client to the
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TCP SOCKS unoptimized SOCKS optimized
throughput (KB/s) 97994 8132 97186

Table 5.2: Overhead comparison in LAN between native TCP, SOCKS proxy in Mosaic, and
SOCKS proxy in Mosaic with optimized dataflow

destination i3 client went through the public trigger of the destination, which was hosted on

the i3 server of another cluster node. Since it introduced a level of indirection plus extra rule

processing overhead, i3 added the most cost among the 5 configurations studied.

In summary, the overhead of Mosaic is respectable: the throughput of Mosaic’s point-to-

point tunneling (MozTun) is comparable to that obtained by using well-known tunneling software

(OpenVPN). In the extreme case (level of indirection of i3 with tunneling), the extra latency

(1.2ms) incurred is negligible for an application running on wide-area networks.

Transport Layer Overlay Overhead

Our proof-of-concept implementation of a transport layer overlay is a SOCKS proxy using 18

Mozlog rules. The SOCKS protocol [49] is a transport layer protocol, which can be viewed as a

transport-layer overlay network with one level of indirection for firewall traversal. We used the

library interception technique mentioned in Section 4.2.5 to support legacy TCP applications.

We deployed our SOCKS proxy on the client and used iperf to measure TCP throughput

between the client and the server. From the measurement results in Table 5.2, we observe that

by using a different virtualization technique, the SOCKS proxy achieves better throughput than

OpenVPN in Section 5.6.1. In addition, by applying inline view expansion and local event shortcut

optimizations as described in Section 4.2.3, the throughput increases dramatically and approaches

that of native TCP. The performance improvement obtained by our SOCKS proxy suggests that

Mosaic is able to translate and optimize high-level declarative specifications to efficient implemen-

tations for the data plane. A detailed performance study on the optimization is outside the scope

of this dissertation and is a subject of future work.

5.6.2 Emulab Experiments

In this section, we present an evaluation of our proposed infrastructure using the Mosaic system

on the Emulab [20] testbed. We focus our evaluation on the proxy location queries (see Section 5.3)
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Figure 5.3: Success rate vs sample size for proxy location using DHARMA and ROAM.

for ROAM and DHARMA. Our experimental setup on Emulab consists of 50 nodes organized into

11 routing domains interconnected in a star topology. On each Emulab node, we run 4 Mosaic

processes, for 200 emulated nodes in total.

In our first experiment, we execute the rules of Section 5.3.1 that implement the DHARMA

overlay network. We first randomly pick one node to be the portal server maintaining a list of

current live home agents. The remaining nodes then periodically report their status to the portal

server. In steady state, we randomly pick one of the Emulab nodes as a mobile host. This mobile

host issues a query to the portal server, which triggers additional rules (see Section 5.3.1) to select

k nodes as samples, and then locates the closest node (in terms of network latency) from these

sample nodes as the proxy. If the chosen proxy is within the same routing domain as the mobile

host, the proxy location “succeeds.”

Figure 5.3 shows the success rate of DHARMA as the sample size increases. For any given

sample size, we execute the proxy selection query from 1000 randomly selected locations in the

network. As expected, when the sample size increases, the success rate increases. When the sample

size is as large as the number of infrastructure nodes (200), all nodes are sampled, and hence the

closest proxy is guaranteed to be within the domain. Sampling only 10% of the nodes, DHARMA

achieves a success rate of 85%.

In our second experiment, we execute Declare-Chord on all infrastructure nodes for proxy se-

lection. After starting a 200-node Chord network, each mobile host executes the proxy selection

queries (as described in Section 5.3.2) by repeatedly sampling the infrastructure nodes via Chord

51



lookups. The closest node in network distance is then selected as the proxy. Figure 5.3 shows the

corresponding success rate of ROAM as the sample size increases. As before, we iterate the proxy

selection process from 1000 randomly selected network locations. ROAM’s performance is roughly

that of DHARMA. When the sample size is 20 nodes, the probability of picking a close proxy

is 81%. ROAM has a slightly worse success rate than DHARMA for small k, because the node

identifiers are not uniformly distributed for the small 200-node Chord network. As the number of

Chord nodes increases, the identifier space will be more evenly distributed, and the performance of

ROAM will approach DHARMA. ROAM has the advantage that it avoids the use of a centralized

portal server.

The results on Emulab show that we can implement DHARMA and ROAM to perform effective

location of proxies that map to nearby locations. As shown in Section 5.3, these specifications can

be written in a few Mozlog rules each, significantly easing the process of deploying new mobility-

based solutions. Comparisons between DHARMA and ROAM are not the point of this dissertation,

rather our experiences with two suggests that our infrastructure can be used to rapidly develop

and deploy multiple concurrent mobility-based schemes.

5.7 Summary

In this chapter, we provided a portfolio of concrete examples of Mozlog programs to demonstrate

how to introduce new network services in Mosaic. The examples include a reliability overlay

(RON), rendezvous-based communication service (i3), and several mobility-related services such

as proxy location, customizable routing and service discovery. We then used a local cluster and

Emulab as testbeds to evaluate the performance of the services hosting on our Mosaic platform,

and showed that the performance is respectable compared to native implementations. In the next

chapter, we will describe the second method to extend networks in Mosaic by composing existing

network services.
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Chapter 6

Composing Network Services

In this chapter, we demonstrate Mosaic’s ability to create new network services based on existing

network compositions including bridging, layering and hybrid compositions.

6.1 Compiling Compositions

This section describes how the Mosaic compiler automatically translates specifications into Mozlog

rules. We first define the following reserved tables at each node, which are used in the composition

process later:

• netAddress(@N,OID,Addr) tracks all current addresses Addr of the overlays OID in which the

node participates at node N. If a node has a publicly reachable IP address, a default entry is

added as (0,current ip), where 0 is a reserved ID for the Internet. OID can also refer to a

bridged network, in which case Addr can refer to a source routing address (See Section 6.1.3).

Other overlay specific addresses are maintained by the corresponding overlay modules.

• underlay(@N,OID,Addr) is used in layering. It stores the mapping from an overlay’s OID to its

current underlay’s runtime address Addr at node N for each deployed overlay. By updating

this table, one can switch the underlay being used.

• forward(@N,OID,Addr) is used in bridging. It specifies that all packets designated for overlay

OID are to be sent to the designated gateway with address Addr.
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Algorithm 6.1 Pseudo code for composition process

1 input: spec as the composition specification
2

3 for m in spec.composition.modules :
4 i f m.style=”Extend” :
5 // import the e x i s t i n g n o d e l i s t from the d i r e c t o r y s e r v i c e
6 m.nodelist += que ry d i r e c t o ry (m.oid , ” n od e l i s t ” )
7 // check c on s t r a i n t s f o r b r i d g i n g
8 for l in spec.composition.links :
9 match l with

10 ”Bridg ing ” first , second ” v ia ” gw :
11 // b r i d g i n g the f i r s t network wi th the second v ia the gateway
12 a s s e r t (gw ∈ first.nodelist and gw ∈ second.nodelist)
13 | ”Bridg ing ” first , second :
14 // gateway i s not s p e c i f i e d , f i nd d e f a u l t gateway
15 i f first.defaultgw 6= None :
16 l.gw = first.defaultgw
17 else i f second.defaultgw 6= None :
18 l.gw = second.defaultgw
19 else :
20 r a i s e Exception ( ” cannot s e t gateway address ” )
21 a s s e r t ( l.gw ∈ first.nodelist and l.gw ∈ second.nodelist)
22 // check c on s t r a i n t s f o r l a y e r i n g
23 for l in spec.composition.links :
24 match l with
25 ”Layer ing ” top ” over ” bottom :
26 i f not top.nodelist ⊆ bottom.nodelist :
27 r a i s e Exception ( ”node s e t s are wrong f o r l a y e r i n g ” )
28 compat i b i l i t y che ck (spec.composition.links)
29 for l in spec.composition.links :
30 match l with
31 ”Layer ing ” top ” over ” bottom :
32 l a y e r i n g (top , bottom)
33 ”Bridg ing ” first , second ” v ia ” gw ” as ” bridgename :
34 br idg ing (first ,second ,gw ,bridgename)

6.1.1 Compilation Steps

To create an overlay network composition from scratch, the Mosaic compiler takes as input a com-

position specification as presented in Section 3.3.1, and then generate Mozlog rules that bridge and

layer the appropriate overlay modules. The pseudo code is shown in Algorithm 6.1. In particular,

the following steps are taken:

• Line 3-6: compute the node membership sets to which each overlay module is to be deployed.

If a module is extended from an existing overlay, import existing node list by querying the
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directory service (in function query directory) using the oid of that module.

• Line 8-21: check that any bridging gateway node is shared by both networks to be bridged.

We use a pattern matching syntax to examine and “extract” information from each link l.

When a bridging link specification includes the default gateway (Line 10), we extract the two

networks to be bridged as first and second, and the gateway as gw; when the bridging link

does not include the gateway (Line 13), we first set the gateway to either the default gateway

of the first network (Line 15-16) or the default gateway of the second network (Line 17-18),

or raise an exception when neither exists (Line 20).

• Line 23-27: check that in each layering configuration, the overlay nodes are also members of

the underlay network. Again, we use the pattern matching syntax to extract the overlay as

top and the underlay as bottom.

• Line 28: validate the compatibility of the composition specification. Reject those that may

causes problems in feature interaction. (See Algorithm 6.4 in Section 6.1.4)

• Line 31-32: for each overlay layered over another module, add mappings binding each node’s

logical address in the current overlay to a lower-level underlay address in the underlay table.

The layering function is described in Algorithm 6.2. (Section 6.1.2.)

• Line 33-34: for each overlay module with a bridge, based on the specification, add pre-

configured forwarding state entries in the forward table or on-demand source routing rules to

all member nodes, specifying either the static address of each bridged network’s gateway node

or the anycast address with each bridged network’s ID. The bridging function is described in

Algorithm 6.3. (Section 6.1.3.)

After the compilation, the rules are shipped to the corresponding physical nodes for deployment.

To modify an existing network composition, most of the procedure remains the same except

that the node membership sets of existing overlays are obtained by querying the directory service,

and modified Mozlog rules are uploaded to the physical nodes to implement the new composition.

6.1.2 Layering

Layering of a control or data plane over another overlay’s data plane is achieved through the use

of the underlay table describing bindings from each overlay node to its current runtime underlay
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Algorithm 6.2 pseudo code for layering-related rule generation

1 function layering(top, bottom):
2 input: network top, network bottom // l a y e r top over bottom
3 output: rules for layer bindings
4 for n in top.nodelist :
5 i f top.oid /∈ n.deployed : // network top i s not dep loyed on node n
6 code = fe t ch (top.codeurl )
7 addRules (n , code)
8 addRules (n , "underlay(@n, top.oid, Addr) :- netAddress(@n, bottom.oid,

Addr).")
9 else :

10 updateRules (n , "underlay(@n, top.oid, Addr) :- netAddress(@n, bottom.oid,

Addr)")

address. Abstracting the bindings into a table provides a simple mechanism for switching overlays:

Mosaic can simply update the underlay table — changing both the underlay protocol and node

address as appropriate.

Given a composition specification with layering links, Mozlog rules are generated to implement

the layering. The pseudo code for rule generation is shown in Algorithm 6.2. If the overlay top

is not deployed on the node n, we first add the overlay Mozlog implementation to the code to be

deployed on node n (Line 6-7), then bind the address of network bottom to the underlay table entry

that belongs to network top (Line 8). Note that symbols in italic fonts, including n, top.oid, and

bottom.oid are constants when added into the rule. If top is deployed, then there should be a rule

that binds its underlay table already. We update that rule to the new binding (Line 10).

We illustrate using an example where there are two RON overlays, layered over IP and i3.

Based on the specifications, at every node, there are two instances of RON executing ( ron oid1

and ron oid2), and one instance of i3 (i3 oid). The following Mozlog rules b1 and b2 are generated

to build the two networks:

b1 underlay(@N,ron_oid1,U):-netAddress(@N,0,U).

b2 underlay(@N,ron_oid2,U):-netAddress(@N,i3_oid,U).

Since ron oid1 utilizes IP for routing, rule b1 takes as input netAddress(@N,0,U), based on the

executing node’s default IP address. On the other hand, ron oid2 routes over i3, hence its underlay

tuple stores the address of the underlying i3 oid node retrieved from the local netAddress table.

Note that the layering association is not static. A deployed, running overlay network can switch

the underlying network from one to another by updating its underlay table entries at runtime.
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This enables dynamic overlay composition. We will discuss an example of dynamic switching in

Section 6.2.

Next, the rule to update the netAddress table is generated for the newly created overlay. Because

the rule is overlay specific, it is not automatically generated by the compiler, but provided by the

overlay programmers. For example, consider the i3 and RON overlays with identifiers i3 oid and

ron oid respectively. In i3, its overlay address is the SHA-1 hash of the node’s public key K (as

shown in rule d1).

d1 netAddress(@N,i3_oid, A) :- publicKey(@N,K),

A:=i3_oid::f_sha1(K).

On the other hand, in RON, since its routable address is tightly coupled with its underlay, its

address is its own underlay address (typically the IP address that RON uses) annotated with the

overlay id as shown rule d2:

d2 netAddress(@N,ron_oid, A):- underlay(@N,ron_oid,U),

A:=ron_oid::U.

Finally, data plane forwarding rules may also need to be slightly changed. We update the RON

forwarding rules snd and rcv from Section 4.1.2 in the context of layering:

snd ron_oid.send(@Next,Dest,Packet) :- ron_oid.send(@N, Dest, Packet),

ron_oid.RT(@N, Dest, Next),

underlay(@N, ron_oid, Local),

Local!=Dest.

rcv ron_oid.recv(@N, Packet) :- ron_oid.send(@N, Dest, Packet),

underlay(@N, ron_oid, Local),

Local==Dest.

The local address stored in localAddr is replaced by underlay(ron oid,Local), where Local is

the current underlay address of the overlay ron oid. Note that while the above rules achieve the

same functionality as the previous two rules in Section 4.1.2, they are more flexible in allowing

packets to route over underlays that can be switched at runtime.
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6.1.3 Bridging

Language-level support for bridging is accomplished in either of two ways. The pseudo code is shown

in Algorithm 6.3. In the pre-configured method (Line 11, 19), the gateway GwAddr for overlay oid

is stored in the table. Mosaic routes a packet designated to overlay oid towards Addr, and the

process repeats recursively until the gateway is reached; at that point, the forward table will no

longer have an entry for the overlay oid, and instead it will route the packet according to its own

policy. If GwAddr is set to a static IP address, this is equivalent to setting up an IP tunnel to the

gateway. If Addr is an anycast address, e.g. oasis oid::oid, the forwarding plane will invoke the

Oasis anycast service to locate the closest oid overlay node from the current node, and use it to

enter the overlay.

Alternatively, in the on-demand method, a source route can be set up for each packet (Line

7-9,15-17). Mozlog supports an address type of the form sr::[gateway, dest], which explicitly

describes the data path in terms of logical addresses. All nodes will automatically handle the

forwarding of such messages to the next recipient in the path.

For example, node A is hosted in an internal network with an internal IP address ip a. Thus its

address is recorded in the netAddress table as (a net id, ip a). Here a net id is a unique identifier

of A’s internal network. Recognizing that ip a is an internal IP, the composition server will create a

routing path via the gateway node that sits on both the Internet and the internal net to bridge the

two networks. The bridged network address is encoded in the source routing format as sr::[ip gw,

ip a] and stored in the netAddress table. If we layer RON over the source routing address, node A

can immediately join a RON network without a public IP address.

6.1.4 Feature Interaction

As discussed in Section 2.2.5, certain networks may not be compatible to be composed together.

As a result, it is desirable to reject incompatible compositions at compile stage. A full-fledged

automatic feature interaction analysis is outside the scope of this dissertation, and is considered

as part of the future directions in Section 8.2.1. In this dissertation, we propose a simple solution

to aid compatibility checking for layering. The idea is to let users to create a knowledge base, in

which rules specify that which overlay networks are not allowed to layer on top of which networks.

Note that the restriction is directional. For instance, when network A over network B is illegal,

58



Algorithm 6.3 pseudo code for bridging-related rule generation

1 function bridging(first, second, gw, bn):
2 input: network first, network second, gateway gw, bridge name bn
3 output: bridging related rules
4 for n in first.nodelist :
5 i f n 6= gw :
6 i f c on f i g . b r idg ing=”on−demand” :
7 addRules (n , "netAddress(@n,bn,Addr):-netAddress(@gw,second.oid,GwAddr),
8 netAddress(@n,first.oid,MyAddr),

9 Addr:=sr::[GwAddr,MyAddr]". )
10 else : //pre−con f i gured method
11 addRules (n , ”forward(@n,second.oid,Addr):-netAddress(@gw,first.oid,GwAddr).” )
12 for n in second.nodelist :
13 i f n 6= gw :
14 i f c on f i g . b r idg ing=”on−demand” :
15 addRules (n , ”netAddress(@n,bn,Addr):-netAddress(@gw,first.oid,GwAddr),

16 netAddress(@n,second.oid,MyAddr),

17 Addr:=sr::[GwAddr,MyAddr].” )
18 else : //pre−con f i gured method
19 addRules (n , ”forward(@n,first.oid,Addr):-netAddress(@gw,second.oid,GwAddr).” )

network B over network A may still be legal. The constraints in the knowledge base are manually

constructed, and are based on the implementation of the overlay, rather than (automatically)

inferred from overlay attributes or features. Such constraints are stored in a global table kb(X,Y),

where attribute X and Y are overlay names, and X is not allowed to be layered on Y.

Algorithm 6.4 pseudo code for composition compatibility check for layering
input: links from the specification
global: knowledge base kb
output: table conflict, empty when no conflict detected.

l1 layer(A, B) :- links(Type, A, B), Type=="Layer".
l2 layer(A, C) :- layer(A, B), layer(B, C).
l3 conflict(A, B) :- layer(A, B), moduleName(A,X), moduleName(B, Y), kb(X, Y).

The pseudo code for composition compatibility check is shown in Algorithm 6.4. We use the

deductive Mozlog-like syntax because it is straightforward to express the constraints in such a

manner. Rule l1 takes the composition input from the composition specification, finds the layering

links, and stores them in the layer table. Rule l2 populates the layer table by inserting multiple-

level layering relationship recursively in table layer. Finally, rule l3 runs a query on table layer

and kb jointly to find illegal composition relationship, if any, and stores it in the table conflict.
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overlay id address

alice net alice internal ip

br1 sr::[alice gateway ip, alice internal ip]

br2 sr::[ron::alice gateway ip, alice internal ip]

i3 oid i3 oid::alice id

Table 6.1: netAddress table at Alice

Because variables A and B are overlay IDs while table kb stores incompatible overlay names (e.g.

RON, i3, etc), the predicates moduleName are used to convert from IDs to overlay names. As a

result, a non-empty table conflict means the composition specification should be rejected.

6.2 Composition Examples

We now demonstrate Mosaic’s ability to support flexible overlay compositions including bridging,

layering and hybrid compositions. We present two examples, one that revisits the mobile VoIP

example introduced in Section 1.1, and a second example that illustrates dynamic composition.

6.2.1 VoIP between Alice and Bob

Consider the example mentioned in Section 1.1. An overlay composition can solve the problem.

Suppose there is a publicly available i3 overlay network, and Alice uses her gateway node at

home to form a private RON network with Bob and her other friends. Alice and Bob agree on

the composition specification shown in Figure 3.3. Based on the overlay specification, Mosaic

generates the Mozlog rules to compose overlays together.

Because Alice’s situation mirrors Bob’s, we use Alice’s rules and network state to explain the

composition process. First, at Alice’s gateway, we configure the RON overlay network over IP as:

c1 underlay(ron_oid,A):-netAddress(0,A).

We then use bridging to create publicly reachable addresses br1 and br2 as shown in Table 6.1.

br1 bridges the internal network AliceNet with the public IP network, and br2 bridges AliceNet

with the RON network.

Finally, we layer i3 over the bridged networks we create. Because Alice wants to have reliability

for VoIP, we choose the bridging overlay with BR2 as i3’s underlay. The composition rules deployed

at the Alice node is as follows:
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overlay id address

0 alice gateway ip

alice net alice gw internal ip

ron oid ron oid::alice gateway ip

Table 6.2: netAddress table at Alice’s gateway

c2 underlay(i3_oid,A):-netAddress(br2,A).

When Bob initiates a VoIP call to Alice, he first uses Alice’s i3 ID to look up her public trigger,

and sends traffic to Alice via i3’s indirection path. After they have located each other, they switch

to the i3 shortcut data path as the underlay network specifies, which is layered on top of RON and

can traverse internal networks (e.g., those behind NATs) using source routing along the gateways.

6.2.2 Dynamic Composition of Chord over IP and RON

To illustrate dynamic composition, we use the Chord DHT to show the benefit of dynamically

switching the underlying data path from IP to RON. In Chord, temporary network failures may

create non-transitive connectivity between the nodes, possibly creating problems such as invisible

nodes, routing loops and broken return paths [27]. Instead of altering the DHT protocol, an

alternative is to layer Chord over a resilient routing protocol such as RON that eliminates non-

transitivity. Layering Chord over RON can be viewed as trading scalability for performance.

Ch d

Chord

Chord

RON

switchUnderlay (ron_oid)

rule s1

IP

RON

IPswitchUnderlay(0)

rule s1
rule s2

IPswitchUnderlay(0)

Figure 6.1: Dynamic composition of Chord over two different underlays (IP and RON).

The following rules define two type of layering: Chord over IP and Chord over RON (See

Figure 6.1 for the graphical illustration):

s1 underlay(chord_oid,A):- netAddress(OID,A),

switchUnderlay(OID).

s2 underlay(ron_oid,A):- netAddress(0,A).
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In s1-s2, we added a switchUnderlay(OID) predicate to switch Chord’s underlay to that indi-

cated by the OID variable. This switchUnderlay can itself be triggered by an event sent from the

administrator based on changes to the overlay specifications. Rule s1 indicates that Chord uses

IP as the underlying address when OID is 0, and RON when OID is ron oid. Rule s2 defaults RON

to use IP at all times. To switch between the two layering schemes, one only needs to generate

switchUnderlay accordingly.

Dynamic switching is useful because the trade-off between scalability and performance is at

the discretion of the Chord administrators, who can make decisions based on network conditions,

requirements, etc. Suppose a new overlay providing both resiliency and scalability (e.g. SOSR [32])

is available later, one can switch Chord’s underlay from RON to the new one to further improve

scalability. Unlike restarting Chord from scratch, dynamic switching preserves existing state in

the network such as key/value pairs without disrupting the DHT lookup service. Once the Chord

underlay network address is changed on a node, the stabilization process will propagate it to the

node’s successors, predecessor and other nodes that have it in its finger table. We present our

experimental evaluation of this example in Section 6.3.2.

6.2.3 Multicast for Pub/Sub Services

Sender
ID  sos::IP1
ID  overqos::(IP2,20)
ID  sr::[IP4,ipsec::IP3]

IP1

Sender
sos

IP2
anycast

anycastsource
i

OverQoS

IP3IP4
routing

Figure 6.2: A publish/subscribe composition example using multicast.

Consider a stock broker that publishes a stream of stock prices, and sends to the subscribers

via multicast. Some of the subscribers are active traders, who demand the data in a timely fashion.

Some of the users are under DoS attack. Some of them are connected via unsecure wireless links.

In Mosaic, we can compose the existing i3, SOS, OverQoS and IPSec overlays, as in Figure 6.2.

At the top layer, the publisher and the subscribers join an i3 overlay. The published stock
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price has a unique i3 ID, which is known to the subscribers. The subscribers form a multicast tree

in i3 and insert overlay-specific addresses into their leaf triggers. The traders use overqos::(IP2,

20ms) to attain quality of service guarantees (latency within 20ms); the users under DoS attack use

sos::IP1 to allow packets with stock prices pass through, while blocking other unwanted IP traffic.

Users with unsecure connections may redirect the traffic through an IPSec tunnel by inserting

sr::[IP4, ipsec::IP3] into the trigger. In this scenario, the data plane of i3 is layered over different

overlays as well as IP; however, i3 is unaware of this.

6.3 Evaluation

In this section, we present the evaluation of Mosaic on a local cluster and on PlanetLab. First,

we validate that Mozlog specifications for declarative networks, compositions, tunneling and packet

forwarding are comparable in performance to native implementations. Second, we use our imple-

mentation to demonstrate feasibility and functionality, using actual legacy applications that run

unmodified on various composed overlays using Mosaic.

In all our experiments, we make use of a declarative Chord implementation which consists of 35

rules. Our i3 implementation uses Chord and adds 16 further rules. We also implement the RON

overlay in 11 rules. Both i3 and RON can be used by legacy applications via the tun device, as

described in Section 4.1.4.

6.3.1 Wide-area Composition Evaluation

We deployed Mosaic on PlanetLab to understand the wide-area performance effects of using the

system. We purposely chose a composed overlay including i3, RON, source routing, and tunneling

for legacy applications (all implemented within Mosaic in 69 Mozlog rules) to bring the Alice

example from the introduction and Section 6.2.1 to a resolution.

Our experimental setup is as follows. As our end-host, we used a Linux PC in Edison, NJ with

a high speed cable modem connection as the gateway node, which performed NAT for a Thinkpad

X31 laptop. The laptop functioned as our server, using Apache to serve a 21MB file. The file was

downloaded from Salt Lake City, UT with a modified version of wget that records the download

throughput.

These two nodes in NJ and UT, plus three additional nodes in Philadelphia, Berkeley, and
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Ithaca, were used to form a private RON network. We further selected 44 nodes from PlanetLab,

mostly in the US, to run i3. During the experiment, in order to validate the functionality of resilient

routing provided by RON, we manually injected network failures by changing the firewall rules on

the gateway to block the downloader’s traffic 30 seconds after wget was started; then we unblocked

the traffic after another 30 seconds. For the purposes of comparison with the best case scenario,

we repeated the same test using direct IP communication. Note that direct IP loses all the benefits

of our composed overlay (no resilience, NAT, or mobility support), but achieves the best possible

performance. Since our server was behind a NAT, in the direct IP experiment, we had to manually

set up a TCP port forwarding rule on the gateway node to reach the Apache server. We repeated

multiple runs of the experiments and observed no significant differences.
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Figure 6.3: Throughput comparison between overlay composition in Mosaic vs direct IP connection
during network failure. Network failures were injected 30 seconds after experiment start, and
removed after 30 additional seconds.

Figure 6.3 shows the throughput of the download over time for Mosaic and DirectIP. We

make the following observations. First, Mosaic’s performance over the wide area is respectable:

Despite implementing the entire composed overlay (including legacy support for applications using

Mosaic) in Mozlog, we incurred only 20% additional overhead compared to using direct IP, while

achieving the benefits of mobility, NAT support and resilient routing. The majority of the overhead

comes from the extra packet headers for the composed overlay protocols—an overhead that is repaid

with significant functionality. Second, with respect to the functionality of our composed overlay,
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we were able to achieve successful downloads from a server behind a NAT using Mosaic. In

addition, resilient routing was achieved: Our RON network periodically monitored the link status

and recovered from routing failures. Hence, during the period where we injected the routing failures,

Mosaic was able to make a quick recovery from failure, as is shown by the sustained throughput.

On the other hand, DirectIP suffered a failure (and hence a drop of throughput to zero) during the

30-60 second period. Overall, Mosaic was able to complete the download in a shorter time despite

lower throughput, due to the resiliency of RON.

6.3.2 Dynamic Overlay Composition

In our final experiment, we evaluate the dynamic composition capabilities of Mosaic. Our setup

consists of an 8-node cluster, where each node has a similar hardware configuration to the setup in

Section 5.6.1.

As a baseline prior to the dynamic switching experiment, we made static comparisons between

two composed networks: we executed Chord-over-IP and Chord-over-RON on our cluster, which

consists of the Chord overlay on top of IP and RON respectively. Our network size is 16, where

each machine executed two instances of the composed overlay nodes. In the steady state, each node

periodically issues a lookup request. A lookup is accurate if the results of the lookup are correct,

i.e., the results point to the node whose key is the closest successor of the lookup key. Based on this

definition, we compute the lookup accuracy rate, which is the fraction of accurate lookups over the

duration of each experimental run at every 1 minute interval. Network link failures are emulated

by changing the firewall settings in the cluster to drop packets between the selected nodes.

Figure 6.4 shows our evaluation results over a period of 20 minutes, with the first link failure at

the 7th minute, then the second link failure at the 10th minute, and the failures recovered at the

16th minute. When the first link failure occurred, we observed that lookup accuracy of Chord-over-

IP dropped to 93%. The accuracy further dropped to 86% when the second link failure occurred,

only to recover when network connectivity was reestablished. On the other hand, Chord-over-RON

continued to sustain high lookup accuracy (> 99%) even in the face of network failures, due to its

ability to find alternative routes quickly.

Having compared the composed overlays separately, we next evaluate Mosaic’s dynamic switch-

ing capability, where we started with Chord-over-IP, and then switched our composition to Chord-

over-RON after 7 minutes. This dynamic switching is achieved by merely changing the underlay
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Figure 6.4: Lookup accuracy comparison between Chord over IP and Chord over RON.

address of Chord from IP to RON, as described in Section 6.2. Figure 6.5 shows the resulting

lookup accuracy over a period of 15 minutes. We observe that during the process of switching its

underlay from IP to RON, Chord continued to sustain high lookup accuracy, demonstrating that

Mosaic is able to performing dynamic switching seamlessly.
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Figure 6.5: Chord lookup performance during dynamic underlay network switching from IP to
RON.
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6.4 Summary

In this chapter, we first described how to compile high-level network composition specifications

into Mozlog glue code, and then demonstrated it using several concrete examples. We evaluated

the effectiveness of the Mosaic system by using two real-world experiments, including a wide-

area network composition of i3, RON to provide a resilient, mobility-aware composed overlay, and

dynamic switching between a Chord lookup overlay service over regular IP and Chord over a RON

network. The results showed that the performance overhead of Mosaic is respectable compared

to native implementations, while achieving the benefits of network composition.
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Chapter 7

Related Work

In this chapter, we compare Mosaic with other approaches that provide flexible network service

introduction.

7.1 Extensible Protocols and Networks

Ritchie’s STREAMS system [76] provided an extensible architecture for constructing protocols. It

was later shipped with the AT&T System V version of UNIX, and was generalized into stackable

protocol architectures for streams of data. Code adhering to a message handling discipline shared

by all such STREAMS modules could be pushed onto, and subsequently popped from, a logical

stack of processing modules through which streams of message data would pass.

The x-kernel [38] is a framework for implementing and composing network protocols. It provides

a collection of protocol elements (called micro-protocols) along with a generic mechanism for com-

posing them based on layering. It demonstrated that large protocols could be represented in the

form of many smaller components with the layering model while still achieving high performance.

It is intended to be used at end nodes, where packet motion is vertical (between the network layers

and user level) rather than horizontal (between network hosts).

Protocol boosters [21] also provide flexible network processing within the network by altering

protocol configurations. Protocols are modeled in layers in protocol boosters and sub-layers are

allowed to be inserted between two points so that it is transparent to the remainder of the protocol

stack. By adaptively inserting or deleting sub-layers based on local conditions, network performance
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may be improved. For example, audio or video transmission over a wireless link with high loss rate

may be “boosted” by a forward error correction (FEC) module.

PIP [24] exploits the flexibility of source routing as a network evolution mechanism, which

requires an expanded packet header and a different forwarding mechanism that tracks the active

destination in the list of source routes. PIP was proposed as a candidate during the design of

IPv6. It can also be used to support a variety of routing services, including mobility, and provider

selection. The bridging mechanism in Mosaic resembles PIP’s source routing scheme in many

ways.

Active networks [87, 83] allow anyone to write code that will affect a router. Untrusted mobile

code is usually embedded in the packets as in the capsule programming model [92] and executed on

the active routers along the routing path. Since then, new technologies had arisen, in particular new

programming language [63, 29] and security technologies [12] that could provide desirable sets of

tradeoffs amongst security, programmability, usability and performance. Some of the representative

projects include secure active extension environment (ALIEN [6] and SANE [5]), packet language

for active networks (PLAN [34], SNAP [64]), etc.

Compared with Mosaic, active networks are more flexible in terms of dynamic service intro-

duction but also raises many concerns in security because of the untrusted code. In Mosaic, only

trusted users can deploy code in the infrastructure. Besides, the code are not arbitrary code but

database style queries, running inside a query engine sandbox to ensure safety.

The effort on peer-to-peer style systems mostly in data and file sharing services promoted the

idea of introducing new services using an overlay. Peers use the IP network layer as a virtual link;

each peer serves as a router in the overlay. Arbitrary distributed computing architectures can be

built because these peers are fully programmable nodes without restriction. Early systems such

as X-Bone [88] and the most recent and popular testbed PlanetLab [70] have stimulated many

overlay network designs that go beyond file sharing. Examples of new capabilities include DDoS

resistance [44, 81], performance and reliability [80, 7], and QoS [86]. Overlays such as Internet

Indirection Infrastructure (i3) [84] and TRIAD [30] provide a deployable solution for disruptive data

forwarding capabilities. A list of features provided by overlay services can be found in Section 2.2.1.

Aside from what new capabilities overlays can provide, researchers have also studied how to

design new environments to simplify the development and deployment of new overlay networks.

MACE [45] (formerly known as MACEDON [77]) is a domain-specific C++ language extension to
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describe a distributed system’s behavior from which real operating code can be generated. It also

provides a model checker capable of finding violations of liveness properties which lead the system

to dead states [46].

Declarative networking [56] took a different approach to design networks from a database per-

spective. The entire network state is modeled as structured data from a distributed database. In

this setting, network protocols are equivalent to querying and manipulating relevant state in a dis-

tributed manner. Therefore, the implementation of a network protocol can be viewed as the result

of a distributed database query processing. In declarative networks, a domain-specific programming

language NDlog based on deductive database query languages is proposed to specify network proto-

cols. NDlog programs are demonstrated to be an order of magnitude shorter than the counterpart

imperative implementations. The language itself is even powerful enough (with minor extensions)

to serve as a meta-compiler to compile NDlog programs [15], and work in emerging network envi-

ronments such as mobile adhoc networks (MANET) [52] and sensor networks [14]. In particular,

the P2 system [55] is the implementation of the declarative engine for overlay networks. It takes

an NDlog program and compile them into dataflow runtime graphs which in principle ensemble the

Click extensible router dataflows [47].

The foundation of the dissertation is built on the declarative networking concept. Compared

with P2, Mosaic not only uses the declarative language to do quick prototyping of new overlay

protocols, but also achieves interoperability among existing overlays by using simple yet flexible

query-style interfaces between networks. This allows the system to provide automation in com-

posing different networks together to implement a combination of multiple features. The Mozlog

language provides new features to support composition, as well as legacy application support.

Finally, the Mosaic runtime system performance is optimized by both novel compiler-based tech-

niques and careful engineering efforts so that query executions are up to 10 times faster than

P2. Interestingly but not surprisingly, similar data accessing and optimization techniques exist in

distributed database and its query optimization [48]. For example, accessing data in CView can

be viewed as query with limited access patterns [23]; the inline view expansion optimization in

Section 4.2.3 resembles “view unfolding” in database; the binding patterns and source capability

descriptors have also been studied by Levy et al. [50].
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7.2 Network and Service Composition

Composing a plurality of heterogeneous networks was proposed in Metanet [93], and also examined

in Plutarch [17]. One of the implementation examples to connect multiple networks together

is AVES [67]. Oasis [59] and OCALA [42] provide legacy support for multiple overlays. Oasis

picks the best single overlay for performance. OCALA proposes a mechanism to stitch (similar to

Mosaic’s bridge functionality) multiple overlay networks at designated gateway nodes to leverage

functionalities from different overlays. There are also many projects that focus on application

level service composition, with different emphasis, such as adaptive configuration based on network

conditions [28], fault tolerance and personalization [61], performance and QoS awareness in P2P

environment [31].

In contrast, Mosaic’s primary focus is on overlay network specification and composition within

a single framework. As a result, Mosaic is complementary to OCALA and Oasis. Mosaic’s use

of a declarative language results in more concise overlay network specification and composition,

whose performance is quite comparable to native code. Mosaic also provides support for layering

in addition to bridging. Finally, Mosaic is not limited to IP-based networks, supports dynamic

composition, and routing primitives such as unicast and multicast. These benefits result in better

extensibility and evolvability of Mosaic over existing composition systems.

Another class of composition work is Web service composition, as surveyed by Milanovic and

Malek [62]. Each Web service serves like a remote procedure call over HTTP or HTTPS, and

provides a relatively basic functionality, which is described with additional pieces of information,

either by a semantic annotation of what it does and/or by a functional annotation of how it

behaves. The industry standard specification is Web Service Definition Language (WSDL) [13].

A complicated application logic is built by composing multiple Web services together, which is

described separately in a flow specification, such as Business Process Execution Language for Web

Services (BPEL4WS) [8]. The process of obtaining the composition flow is either manual or in

some cases can be assisted by an AI planning software in the context of semantic Web.

Compared with network service composition, the major difference is that Web services are best

described with request/response models, where usually only a single entity is involved in utilizing

a service (The service may still be provided by multiple providers.) On the other hand, network

services are based on send/receive models, where two (a sender and a receiver) or more (in the case
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of multicast/broadcast) entities participate the process. However, the goal based AI planning work

and automatic composition in Web services may provide a viable path towards automatic network

composition.
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Chapter 8

Conclusions

8.1 Conclusions

In this dissertation, we presented Mosaic, an extensible infrastructure that enables not only the

specification of new network services in a data-centric, declarative language, but also dynamic

selection and composition of such networks. Mosaic provides declarative networking as a fixed

model of computation rather than a fixed service: it uses a unified declarative language (Mozlog)

and runtime system to enable specification of new overlay networks, as well as their composition

in both the control and data planes. It enables the use of many special-purpose services and their

compositions rather than one general-purpose, monolithic architecture that serves all purpose.

We demonstrated Mosaic’s composition capabilities via deployment and measurement on both a

local cluster, and the Emulab and PlanetLab testbed, and showed that the performance overhead of

Mosaic is respectable compared to native implementations, while achieving the benefits of network

composition.

Specifically, the dissertation makes the following contributions:

• A unifying network architecture (Mosaic) under which new networks can be developed,

deployed, selected, and dynamically composed according application and administrator needs.

• A declarative programming language (Mozlog) to concisely specify high-level network protocol

specifications.
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• A runtime system prototype that can translate Mozlog specifications into efficient implemen-

tations.

8.2 Open Questions and Future Directions

In this section, we discuss some open questions and future directions in order to make network

architectures like Mosaic into reality.

8.2.1 Network Feature Interaction

Different network protocols provide different services, with different approaches. Two networks are

incompatible if they provide conflicting goals or use conflicting approaches. To compose incom-

patible networks together may negate the effectiveness of the individual services. For example, if

network A provides a routing service with minimal latency, while network B provides a routing ser-

vice with maximum bandwidth, layering them together as a composed network may deliver neither

feature. Consider another example where two end-to-end services use encryption and compression

respectively. If a packet is encrypted before it is compressed, the compression algorithm can hardly

achieve any benefit, while doing compression before encryption is perfectly fine. That is, the order

of the service composition may also lead to undesirable feature interaction.

Therefore, an ideal composable network architecture should be able to validate the compatibil-

ity of a proposed network composition and guide the users towards effective composition. In this

dissertation, we took a first step. We assume some experts to study the interactions for all possible

composition scenarios in layering, and store the results in a knowledge database for users to query.

Clearly such an approach is not scalable when the number of composable network elements grows.

It also does not analyze the interactions between networks that are bridged together. Analyzing

bridged network interaction is sometimes harder than analyzing layered network interaction be-

cause the bridged networks usually cover different physical networks with different properties in

terms of latency, throughput, confidentiality, etc. These factors make the analysis more compli-

cated. An advanced approach is to automatically infer the features of those network elements, and

deduce the interaction compatibility between the features. It is known to be very hard to analyze

programs written in imperative low-level language like C. On the other hand, writing a composable

network service in a high-level declarative language like Mozlog provides the opportunity for such
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feature analysis. Previous work on feature interaction in the areas of security analysis [18] and

telecommunications services [40, 22] may be inspiring.

Finally, another potential future direction is to provide automatic composition for given features,

given application requirements, network properties and constraints. It is desirable when selecting

and configuring composable networks from a large pool of potential services is beyond what a

user can handle. When network condition changes, the composition should dynamically change

accordingly on the fly to adapt to the new situation.

8.2.2 Composition

In this dissertation, we mainly focused on programming and composing network layer services.

In general, there are more composition opportunities to explore. First, there are many overlay

network protocols that work on the transport or session layers [60, 51, 95]. The challenges are

to define appropriate interfaces and let them interact well with those network layer overlays in

composition. Second, a network protocol usually consists of several smaller components, such as

routing, congestion control aggregation, state storage and buffer management [16]. Composing in

terms of network protocol components provides finer granularity and more flexibility, but at the

potential expense of further complicated feature interaction analysis. Finally, dynamic network

composition scenarios deserve more investigation. In this dissertation, we proposed to impose a

constraint on dynamic composition in Section 3.3.3: all logical-to-physical node mapping before

and after underlay switching should remain the same. In general, the effect of dynamic switching

is overlay specific. If an overlay already has robust state management algorithm built in, it will

probably not be affected by node mapping changes. More study cases need to be examined and it

is desirable to come up with necessary and sufficient conditions for correct dynamic composition.

8.2.3 Performance

In performance evaluation, we noticed that Mosaic runtime system achieves respectable perfor-

mance in wide-area network systems, but still impose relatively high CPU overhead in local area net-

works with gigabit connectivity. We have discussed a few optimization techniques in Section 4.2.3.

There are a few other similar techniques such as loop unrolling, when applying to dataflow ele-

ment loops, may also be implemented. While more compiler optimization techniques might further
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improve the performance, the intrinsic processing overhead in any dynamic software router is in-

evitable. An interesting direction is to optimize via specialized hardware platforms. By augmenting

the Mozlog compiler, one might be able to run the same declarative protocol specification using

special high performance network processors [89] to boost the performance by several orders of

magnitude, without learning the complicated hardware specific programming, e.g. distinguishing

the fast path and slow path. On the other hand, it is also interesting to study the right hardware

acceleration mechanisms that can specifically optimize a data-centric query programming language

for network protocols.

8.2.4 Programming Paradigm

The Mosaic architecture is based on a domain specific programming language in the declarative

logic-style programing paradigm. While the paradigm has many advantages as discussed in the

dissertation, it does have a steep learning curve to typical network protocol designers. The open

question is: what is the right programming paradigm(s) for composing network services? After

all, many research projects also showed advantages in imperative programming paradigm [45] and

functional programming paradigm [9, 66, 34]. In fact, the special predicates provided in Mozlog

resemble imperative system calls in many ways, and most of the database operators can also be re-

written in the compositions of several higher-order functions, such as map for assignments, reduce for

aggregations, and filter for conditions, etc. In the future, the language for network programming

may well support multiple programming paradigms. It should also be intuitive for human designers

to program, and feasible for computers to analyze as described in Section 8.2.1.
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Appendix A

Mozlog Grammar and Syntax

The grammar that specifies the Mozlog language syntax is described in Figure A.1, Figure A.2, and

Figure A.3.

The following conventions are used when describing the grammar:

• Lower-lettered phrases in typewriter font are grammar classes.

• Lower-lettered phrases in italic font are literal constants.

• Precedence is lower for alternative forms that appear later.

• Upper-lettered phrases are literal constants generated by the lexer. In particular, NAME repre-

sents the name of a predicate beginning with a lower-case letter; AGG represents the name of

an aggregation operator (min, max, count, sum, avg are currently supported.); VALUE represents

numerical constants; STRING represents string constants in double quotes; VAR represents vari-

able names starting with a upper-case letter. It may also be the symbol “ ” which read as

do-not-care; FUNC represents function names beginning with “f ”.
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program ::= clauselist

clauselist ::= clause
| clause clauselist

clause ::= rule
| fact
| materialize
| watch
| cview

materialize ::= materialize(functorname,tablearg,tablearg,primkeys).

tablearg ::= VALUE

primkeys ::= keys(keylist)

keylist ::= VALUE
| VALUE, keylist

watch ::= watch(NAME).

cview ::= def functor { clauselist }

fact ::= functor.

rule ::= NAME functor :- termlist .
| NAME delete functor :- termlist.

termlist ::= term
| term, termlist

term ::= functor
| assign
| select

Figure A.1: The grammar: program declarations
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functor ::= functorname functorbody
| functorname@atom functorbody

functorname ::= VAR
| this.VAR

functorbody ::= (functorargs)

functorargs ::= functorarg
| functorarg, functorargs
| @ atom
| @ atom, functorargs

functorarg ::= atom
| aggregate
| & atom

aggregate ::= AGG<VAR>
| AGG<@VAR>
| AGG<*>

function ::= FUNC(funcargs)
| FUNC()

funcargs ::= funcarg
| funcarg, functionargs

funcarg ::= math_expr
| atom

select ::= expr

assign ::= VAR := expr

Figure A.2: The grammar: functor declarations
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expr ::= atom
| function
| ( expr )
| unaryop expr
| expr binaryop expr
| [ ]
| [ exprlist ]

exprlist ::= expr
| expr,exprlist

unaryop ::= not

binaryop ::= + | - | * | / | and | or | ::
| == | != | > | < | >= | <=

atom ::= VALUE | VAR | STRING | NULL

Figure A.3: The grammar: expressions
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Appendix B

Composition Specification

B.1 Composition Specification Example

The following XML code is a demonstration of the composition specification from the Alice-and-Bob

example.

<mosaic>

<bindings>

<subnet>

<name>AliceSubNet</name>

<ip>10.1.1.0</ip><mask>255.255.255.0</mask>

</subnet>

<subnet>

<name>BobSubNet</name>

<ip>10.2.1.0</ip><mask>255.255.255.0</mask>

</subnet>

<node><name>AliceGW</name>

<ip id="AliceSubNet">10.1.1.1</ip>

<ip id="0">123.45.67.8</ip>

</node>

<node> <name>AlicePC</name>

<ip id="AliceSubNet">10.1.1.12</ip>

</node>

<node><name>BobGW</name>

<ip id="0">234.56.78.1</ip>

</node>

</bindings>

<composition>

<module id="AliceNet" Name="IP" type="New">

<constraints>

<subnet>AliceSubnet</subnet>

</constraints>

<nodelist>

<node>AliceGW</node>

<node>AlicePC</node>

</nodelist>

<gateway>AliceGW</gateway>

</module>

<module id="BobNet" Name="IP" type="New">
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<constraints>

<subnet>BobSubnet</subnet>

</constraints>

<nodelist>

<node>BobGW</node>

<node>BobPC</node>

</nodelist>

<gateway>BobGW</gateway>

</module>

<module id="ron_oid" name="RON" type="Extend">

<nodelist>

<node>AliceGW</node> <node>BobGW</node>

</nodelist>

<attributes>

<resiliency>redundancy</resiliency>

</attributes>

<code ref="http://www.mosaic-system.net/ron/v1"/>

</module>

<module id="i3_oid" name="i3" type="Extend">

<nodelist>

<include>AliceGW</include> <include>BobGW</include>

</nodelist>

<attributes>

<mobility>nearestClientProxy</mobility>

</attributes>

<code ref="http://www.mosaic-system.net/i3/v1"/>

<gateway></gateway>

</module>

<link type="bridge" name="AliceBridge">

<module>AliceNet</module>

<module>RON</module>

<gateway>AliceGW</gateway>

</link>

<link type="bridge" name="BobBridge">

<module>BobNet</module>

<module>RON</module>

<gateway>BobGW</gateway>

</link>

<link type="layer" topmodule="i3_oid" bottommodule="ron_oid" />

<link type="layer" topmodule="ron_oid" bottommodule=0 />

</composition>

</mosaic>

B.2 Abstract Syntax of Composition Specification

Figure B.1 illustrates the abstract syntax of the composition specification.
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spec ::= Spec(bindings,composition)

bindings ::= binding
| binding, bindings

binding ::= subnet | node

subnet ::= Subnet(NAME,ADDR,MASK)

node ::= Node(NAME, addrlist)

addrlist ::= addr
| addr, addrlist

composition ::= Composition( modules, links )

modules ::= module | module, modules

module ::= existing | new | extend

existing ::= Existing(NAME, OID)

new ::= New(TYPE, NAME, [nodelist] <, Gateway=NAME, URL>)

extend ::= Extend(NAME, OID, [nodelist])

nodelist ::= NAME | NAME, nodelist

links ::= link | link, links

link ::= layering | bridging

layering ::= Layering NAME Over NAME

bridging ::= Bridging NAME Over NAME < V ia NAME> As NAME

Figure B.1: Abstract syntax of composition specification
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