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ABSTRACT

COMPUTING WITH DISTRIBUTED INFORMATION

Yang Li

Sanjeev Khanna

Boon Thau Loo, Linh T. X. Phan

The age of computing with massive data sets is highlighting new computational challenges.

Nowadays, a typical server may not be able to store an entire data set, and thus data is

often partitioned and stored on multiple servers in a distributed manner. A natural way of

computing with such distributed data is to use distributed algorithms: these are algorithms

where the participating parties (i.e., the servers holding portions of the data) collaboratively

compute a function over the entire data set by sending (preferably small-size) messages to

each other, where the computation performed at each participating party only relies on the

data possessed by it and the messages received by it.

We study distributed algorithms focused on two key themes: convergence time and data

summarization. Convergence time measures how quickly a distributed algorithm settles on

a globally stable solution, and data summarization is the approach of creating a compact

summary of the input data while retaining key information. The latter often leads to

more efficient computation and communication. The main focus of this dissertation is on

design and analysis of distributed algorithms for important problems in diverse application

domains centering on the themes of convergence time and data summarization. Some of

the problems we study include convergence time of double oral auction and interdomain

routing, summarizing graphs for large-scale matching problems, and summarizing data for

query processing.
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CHAPTER 1 : Introduction

The term “Big Data” has quickly become one of the most popular keywords for the 21st

century. A study showed that, as for the year 2014, every minute, Facebook users share

nearly 2.5 million pieces of content, Twitter users tweet nearly 300, 000 times, and Instagram

users post nearly 220, 000 new photos [4]. According to more recent studies, everyday, over

2.5 exabytes (which is 2.5 billion gigabytes) of data is generated all over the world [5], and

Google alone needs to process over 20 terabytes (which is 20 million gigabytes) of these

data [3].

The presence of such massive data sets leads to many technical challenges. One of the key

challenges is how to efficiently store and access these data, as for data of this scale, storing

them on a single server is often infeasible. To overcome this challenge, a natural idea is

to distribute the data to multiple servers. This approach quickly becomes appealing and

one of the key reasons is that for many applications, data are in fact originally generated

in a distributed manner (e.g., think of data generated by Google users all over the world;

naturally these data would be stored at different servers in different locations).

Another key challenge for handling massive data sets is how to efficiently process them and

to extract useful information. In particular, with data stored in multiple locations in a dis-

tributed manner, efficiently processing these data (i.e., efficiently computing with distributed

information) becomes even more challenging since traditional computation paradigm re-

quires placing the entire dataset on a single server. One natural way of computing with

distributed information is to use distributed algorithms: these are algorithms where the

participating parties (i.e., the servers that hold portions of the entire data) collaboratively

compute a function over the entire data set by sending (preferably small-size) messages to

each other, where the computation performed at each participating party P only relies on

the data possessed by P and the messages sent to P . The following two key concepts are

closely connected to design and analysis of distributed algorithms.
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Convergence. Using distributed algorithms, participating parties often follow the follow-

ing pattern: computing based on their own data, sending/receiving messages to/from other

parties, recomputing w.r.t. the received messages, sending/receiving new messages to/from

other parties, and etc. For this pattern to be meaningful, a key property that a distributed

algorithm must have is convergence (preferably rapid convergence: convergence in small

number of steps). In other words, one needs to guarantee that after a certain number of

steps, no party would have intention to send any new messages, and hence the algorithm

terminates. Typically, a distributed algorithm needs to guarantee convergence no matter

what the input data set is and how the data are distributed.

Data summarization. Another key concept of distributed algorithms (or of handling

massive data sets in general) is data summarization: this is the approach of compressing or

summarizing the input data into much smaller size while retaining key information. When

designing distributed algorithms, a natural way of using the data summarization approach is

to ask each party to summarize (i.e., to compress) her input data and the received messages

into a small-size sketch and share the sketch with others.

The typical objective of the data summarization approach is to minimize the total size of

the messages sent between different participating parties, i.e., to minimize the total commu-

nication. This line of research comes from the more general field of sub-linear algorithms:

algorithms whose resource requirements are substantially smaller than the size of the input

data. Designing distributed algorithms with minimum communication is generally referred

to as the distributed model of computation for sub-linear algorithms.

When considering data summarization for distributed algorithms, we mostly focus on the

goal of minimizing the total communication, with one exception where we using data sum-

marization to pre-processing the input data before executing distributed algorithms with

the goal of simplify the computation of the distributed algorithm.

This dissertation considers computation with distributed data. The main focus of this dis-
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sertation is on design and analysis of distributed algorithms for diverse application domains

centering around convergence and data summarization. Along the way, we investigate some

of the important problems in these domains, and makes progress towards a better under-

standing of these problems.

1.1. Double Oral Auction

The concept of computing with distributed data was not formally introduced until late

1970s. However, the principle of performing computation in a distributed manner can be

traced years before that. In particular, in early 1960s, Smith [102] designed a double oral

auction (DOA) experiment for the following market trading problem.

There is a set of unit demand buyers (i.e., each buyer wants to buy an item) and a set of

unit supply sellers (i.e., each seller has an item to sell), and all items are identical. Each

buyer and each seller (i.e., each player) has his own valuation of an item, and the valuation

may differ from player to player. For a buyer, his valuation is the highest price that he is

willing to pay for an item, and for a seller, his valuation is the lowest price that he is willing

to sell his item. The valuation of each player is his private information and naturally,

players intend to keep their valuations private. Moreover, players behave selfishly: each

buyer wants a buy an item for as cheap as possible and each seller wants to sell his item for

as expensive as possible.

The goal of the market trading problem is to determine how the buyers and sellers should

trade with each other and what should be the price for each trade, which we will refer to as

an assignment of the market. In Smith’s experiment, players found an assignment using the

following simple double oral auction (DOA) mechanism. Buyers and sellers call out bids

and offers where all other players can hear and decide whether or not to accept a bid or an

offer. This continues until no more bids and offers are called out.

The DOA mechanism can be thought of as performing computation with distributed data

as follows. The valuations of players (which are the entire data set) are distributed among
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players and players communicate with each other through the bids and offers to compute a

preferable assignment.

Remarkably, as noted by Smith, employing DOA, players consistently arrive at the Wal-

rasian equilibrium, which, intuitively speaking, are assignments where every player is happy

with the outcome and the market achieves maximum efficiency. As noted by Friedman [50],

the outcome of Smith’s experiment, is something of a mystery. How is it that the agents in

the DOA overcome the impediments of both private information and strategic uncertainty

to arrive at the Walrasian equilibrium? In the same survey [50], Friedman summarized

various early theoretical attempts to explain this phenomenon, and concluded with a two-

part conjecture: “First, that competitive (Walrasian) equilibrium coincides with ordinary

(complete information) Nash Equilibrium (NE) in interesting environments for the DOA

institution. Second, that the DOA promotes some plausible sort of learning process which

eventually guides the both clever and not-so-clever traders to a behavior which constitutes

an ‘as-if’ complete-information NE.”

Over the years, the first part of Friedman’s conjecture has been well studied and understood

(see, e.g., [40]), but the second part of the conjecture is still awaiting proper explanation.

Contributions. We focus on giving a theoretical explanation to the second part of Fried-

man’s conjecture. More specifically, we design a mechanism which simulates the DOA

mechanism, and prove that this mechanism always converges to a Walrasian equilibrium in

polynomially many steps. For our mechanism to convincingly simulates DOA, it captures

the following four key properties of the DOA where all earlier attempts lacks in one or a

few of them.

1. Two-sided market: Players on either side of the market can make actions.

2. Private information: When making actions, players have no other information besides

their own valuations and the bids and offers submitted by others.
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3. Strategic uncertainty: The players have the freedom to choose their actions modulo

mild rationality conditions.

4. Arbitrary recognition: The auctioneer (only) recognizes bids and offers in an arbitrary

order.

We further consider the more general scenario where not all players can hear and trade with

each other. In other words, there is a network structure among the players, and a player

can only communicate and trade with their neighbors on the network (the original setting

of Smith’s experiment can be viewed as the special case where the network is a complete

bipartite graph). We show that DOA may not converge in this more general case, and

a randomized variant of our mechanism (which can be viewed as a small modification of

DOA) can be used to overcome this issue and still ensure convergence.

Our study on the convergence of the double oral auction mechanism along with its gen-

eral bipartite graph variant was published in the 11th Conference on Web and Internet

Economics (WINE), 2015 [15] (best paper award).

1.2. Stochastic Matching

In many trading games, data are naturally distributed since players naturally have private

information. The market setting for double oral auction is a simple and classic example

where the private information of each player is just their valuation of an item. The following

is another interesting model for a simple and classic trading game.

Suppose there is a collection of players where each player wants to find another player to

trade. Each player P is given a list of other players that P can trade with, and P can

propose to trade with any player on his list. However, any player on the list may reject

P ’s proposal with some probability. The goal is for each player to make only a few trade

proposal while ensuring that among the accepted proposals, a large number of player pairs

can trade simultaneously.
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The above trading game can be formulated as a graph problem as follows. Create a node

for each player and the neighborhood (i.e., the incident edges) of a player P is the list of

other players that P can trade with. Each edge may be removed with some probability

(i.e., the proposal gets rejected), and we say an edge is realized if it is not removed (i.e.,

the proposal gets accepted). The goal is to identify a bounded degree subgraph where with

high probability, among the set of realized edges in the subgraph, there is a matching of

large size.

Note that for this problem, we are using the data summarization approach to reduce the

size of the trading graph (i.e., to pre-processing the input data). After preprocessing, the

number of neighbors that each player has would be bounded, and hence when the players use

(any) distributed algorithm to find a trading assignment (or a matching), the computation

of the distributed algorithm would be simplified.

This graph problem is formally known as the stochastic matching problem [25], which has

received great attention mainly due to the following application in kidney exchange. Often

patients who need a kidney transplant have a family member who is willing to donate

his/her kidney, but this kidney might not be a suitable match for the patient due to reasons

like incompatible blood-type etc. To solve this problem, a kidney exchange is performed in

which patients swap their incompatible donors to each get a compatible donor.

In terms of the above trading game, each patient-donor pair is a player (or a node) and

the neighbor of a patient-donor pair is the set of all other pairs where a kidney exchange is

possible. The goal is to find a large set of exchange (i.e., a large matching). The reason that

a trade (or an exchange) proposal might be rejected is that when identifying the neighbors

of a patient-donor pair, typically one only has access to the medical record of the patients

and the donors, which can be used to rule out the patient-donor pairs where donation

is impossible (e.g., different blood types), but does not provide a conclusive answer for

whether or not a donation is indeed feasible. Therefore, after proposed one needs to run

more (potentially costly) tests and with some probability, one or both of the donation might
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be infeasible, which would make the exchange itself infeasible.

Contributions. We focus on solving the stochastic matching problem for two generally

considered settings: adaptive and non-adaptive. In the adaptive setting, one can identify

the target low-degree subgraph step by step while the computation is in each step can be

based on the outcome of previous steps (i.e., which of the previously used edges are realized).

In the non-adaptive setting, one needs to output a low-degree subgraph in one shot where

guaranteeing that a large matching would be realized from this subgraph.

We design both adaptive and non-adaptive algorithms for the stochastic matching problem

which achieves the same approximation ratio as the previous best bound [25]. However, the

degrees of the subgraph that our algorithms output are not only exponentially smaller than

the state of the art, but also essentially the best possible.

Our work on the stochastic matching problem was published in the 17th ACM Conference

on Economics and Computation (EC), 2016 [13].

1.3. Convergence Time of Interdomain Routing

In the decade following Smith’s double oral auction experiment, the field of computer net-

working started to flourish. This is the time when several amazing accomplishments were

made and the Internet started to come into our lives. Consequently, these accomplishments

also make 1970s a landmark, or the start, for computing with distributed data: the whole

idea of storing data (and process them) in a distributed manner relies on the ability of trans-

mitting data between any two computers, which was only made possible by the success of

the Internet.

The Internet is a network of networks, formed by many Autonomous Systems (ASes). Each

AS could be a telecommunication company, a university, etc. Some ASes are directly

connected to each other and some ASes need to go through a sequence of other ASes to

form a connection. To ensure connection between any two computers on the Internet, it
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is necessary that any two ASes are connected. With the presence of many possible routes

between ASes, specific routes needs to be chosen and agreed by all ASes. The process where

ASes determine preferable routes to connect to each another is called interdomain routing,

and the current protocol for interdomain routing is BGP, Border Gateway Protocol [97].

The most important difference between interdomain routing and other route-finding meth-

ods is the way in which local policy controls the selection and propagation of routes: rather

than there being a single global definition of ‘best’ route (as in shortest-path protocols),

every AS has its own interpretation. This is because of the asymmetry in the economic

relationships among these network participants; accordingly, BGP is best perceived as a

protocol that tries to compute a Nash equilibrium in a game where all parties are trying to

obtain good routes (by their local definition) but are constrained by the choices of others

(one cannot pick a route through a neighbor without agreement) [93, 46].

Therefore, interdomain routing is naturally a computational problem with distributed in-

formation as follows. The preferences of all ASes along with the network topology (which

are the entire data set) are distributed among ASes and the goal is to determine routes

between any two ASes which is consistent with the preferences, which we will refer to as

stable routes.

It is well known that in general, network policies can conflict to the extent that BGP will be

unable to find stable routes: in this case, the protocol will oscillate indefinitely [81, 80, 88].

There has been a great deal of work on identifying sufficient criteria for BGP to converge to

a unique stable state [60, 62, 64, 107, 52, 104] using abstract models (in particular, stable

paths problems [63]). On the other hand, it was observed that even if BGP does converge,

it may take some time to do so [80, 47]. The slow convergence causes practical difficulties

for network operators, and degradation or loss of service for their customers.

Contributions. We focus on the theoretical aspect of the convergence time of BGP. In

particular, we aim to understand when eventual convergence is guaranteed, how much time
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it requires for the network to actually converge (or to stabilize). We study convergence time

when different restrictions are applied on the structure of the preferences, and establish both

necessary and sufficient conditions (i.e., dichotomy theorems) for convergence in polynomial

time. To the best of our knowledge, prior to our work, the only related studies concerning

polynomial time convergence are given by [52, 99], which only established polynomial time

convergence for the Gao-Rexford criteria.

The key challenge of our work lies in the fact that ASes might act (i.e., change their routes) in

any arbitrary order. In other words, we need to understand how bad the arbitrary activation

order can hurt convergence time and also, how to establish maximum convergence time with

the presence of arbitrary activation.

We further observe that given the preferences of the ASes, many different stable routes are

possible. However, other than being stable, some routes could be considered better for other

objectives. This leads to the question of designing efficient algorithms that add only a few

more preferences (which is consistent with the original preferences) such that the resulting

stable routes has desired properties, such as the length of the longest path in the resulting

stable routes is minimized. We provide both hardness results and approximation algorithms

for this problem.

Our study on understanding BGP convergence time and the problem of obtaining stable

routes with desired properties was published in IEEE International Conference on Computer

Communications (INFOCOM), 2016 [68].

1.4. Maximum Matching with Minimum Communication

During the past several decades and continuing on to recent years, there has been tremen-

dous research on distributed algorithms for graph problems [110, 45, 10, 71, 69]. The

maximum matching problem, one of the most well-studied problems in classical optimiza-

tion, has been extensively studied in the distributed model due to its central role in many

applications [84].
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The distributed setting for the matching problem can be described as follows. The input

graph is adversarially partitioned across k parties and the goal is to design distributed al-

gorithms (or generally referred to as protocols) such that the k parties can jointly compute

a maximum matching. Two natural ways of partitioning the input graph have been consid-

ered: in the edge partition model, each party holds a subset of edges of an input (possibly

multi-) graph while in the vertex partition model the input graph must be bipartite and

each player holds a distinct subset of vertices on the left together with all their adjacent

edges. The performance of the protocol is typically measured by the total communication,

which is simply the total size of all messages sent/received by every parties.

Many variations (especially regarding the communication model) of the aforementioned

distributed setting has been studied. For instance, Huang et al. [71] focused on the k-party

message-passing model with two-way player-to-player communication. This is the model

where any party can send messages to any other party in any order. This is probably the

most general communication model for distributed computation since there is essentially

no restrictions on who can communicate with whom or whether who should send messages

earlier than others. For this model, Huang et al. [71] showed that the communication of

Θ
(
nk
α2

)
bits is both necessary and sufficient for computing an α-approximate matching for

both vertex partition and edge partition models; here n denotes the number of vertices in

the input graph.

The work of Dobzinski et al. [45, 10] considers another distributed computation model

where the input graph is bipartite and each party possesses a distinct vertex on the left

along with all edges incident on this vertex. This is a special setting for the vertex partition

model where the number of parties equals the number of vertices on the left. Dobzinski et

al. [45] focuses on simultaneous communication (or simultaneous protocols) where every

party simultaneously sends a message to a coordinator, and the coordinator computes a

large matching using the messages. Dobzinski et al. [45] showed that for the simultaneous

protocol where each party only sends a random incident edge to the coordinator, the coor-
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dinator can only output an O(
√
n)-approximate matching, which matches the lower bound

of [71].

Contributions. We mainly focus on simultaneous protocols for the k-party vertex parti-

tion model, where there are k parties and each party holds a distinct set of vertices on the left

along with all incident edges; each party simultaneously sends a message to the coordinator,

and the coordinator computes a large matching using all received messages. This model

generalizes the model studied by Dobzinski et al. [45] (which is the case where k = n). We

show that for achieving an α-approximation, Õ(nk
α2 ) bits of communication is still sufficient

for this more restricted communication model (compared to Huang et al. [71]). In partic-

ular, our result implies that the lower bound of Ω(nk
α2 ) bits of communication (of Huang et

al. [71]) is not only tight for the more general two-way player-to-player communication

model, but also tight for the more restricted simultaneous communication model.

Moreover, we should also point out that the setting for the double oral auction (DOA)

experiment (Section 1.1) is also a distributed setting for the (weighted) maximum matching

problem: the weight of an edge between a buyer and a seller equals the valuation of the

buyer minus the valuation of the seller (i.e., the weights of the edges are vertex induced),

and DOA is in fact a distributed protocol that allows the players to compute a maximal

weighted matching in the input graph. Therefore, our work on understanding DOA also

contributes to understanding matching in distributed settings.

Our work on designing simultaneous protocols that compute maximum matching for the

vertex-partition model was published in the 27th Annual ACM-SIAM Symposium on Dis-

crete Algorithms (SODA), 2016 [16].

1.5. Data Provisioning

During the study of computation with distributed information, many interesting models are

introduced. For instance, for the aforementioned market trading and interdomain routing

problems, the goal is to perform distributed computation with private information, while
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ensuring rapid convergence and/or converging to desired states. For the aforementioned

maximum matching problem, the goal is to perform distributed computation with mini-

mum communication, while computing a pre-specified function. With more interest placed

on computation with distributed data, more applications emerge which leads to more in-

teresting models [76, 82, 77, 89]. Here is one of these models that we recently introduced

and studied.

Suppose the entire dataset is collected from k different sources, and the data of different

sources resides on different machines. When performing data analytics, often some sources

are considered less trustworthy than others. Moreover, whether or not a source can be

trusted may depend on many factors which may be subject to change (e.g., the credibility of

the company that collects the data, the business relationship between the companies, etc).

Therefore, an analyst might be interested in considering different subsets of the sources,

combining the data collected by these sources, and perform certain analysis.

A simple solution to handle this issue of combining different subsets of sources is to collect

all data from all sources to a single location. Then, whenever the analyst wants to consider

some subset of sources, he can directly combine the corresponding data and perform the

required computation. However, since the dataset collected by each source could be massive,

there are two issues of this approach: it might be infeasible to place all data to a single

machine, and performing (potentially costly) computation on such large dataset over and

over (i.e., whenever a source becomes/is no longer trusted) could be rather computationally

inefficient.

The overcome these issues, we introduce the following computation model for distributed

data referred to as provisioning. Each source only sends a sketch to the analyst such that for

any subset of the sources, the answer of the designated analytical question can be computed

using only the sketches. The goal is to compute and send sketches with small size (preferably

exponentially smaller than the input size).
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Notice that if we further constrain the model and require each source to directly send the

sketch to the analyst simultaneously, this model essentially degrades to the typical dis-

tributed computation model with simultaneous protocols: given any simultaneous protocol

Π of the distributed computation model, design an algorithm for provisioning as follows:

each source runs the protocol Π as if it is trusted and sends the message (which will be the

sketch for provisioning) to the analyst; whenever the analyst wants to analyze for a subset

of sources, he runs Π only over the sketches sent from trusted sources (and ignore the other

sketches). The correctness of this algorithm is guaranteed by the correctness of the protocol

Π. If Π is randomized, one only need to boost the probability of success accordingly, which

in all applications that we considered, only leads a blowup of factor k.

Contributions. We design provisioning algorithms for database Select-Project-Join (SPJ)

queries with standard aggregation functions including count, sum, average, and quantiles.

The sketch size of our algorithms are all poly(log n, k), where n is the size of the en-

tire dataset, and k is the number of sources. Moreover, the algorithms are also time

efficient in the sense that the running time for computing and sending the sketches is

O(n) + poly(log n, k), and the running time for computing the answer of any subset of

sources is poly(log n, k). Notice that using the provisioning model, the total running time

for computing the answer of all subsets of sources is 2k · poly(log n, k), while for the afore-

mentioned simple solution where each source sending all data, reading the data for each

subset of sources already takes time 2k · n.

Our study on designing algorithms for the provisioning model was published in 19th Inter-

national Conference on Database Theory (ICDT), 2016 [14].
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CHAPTER 2 : Double Oral Auction

Starting from this chapter, we explain in more details the problems centering around dis-

tributed information that we studied, along with the methodologies that we developed. We

begin with two simple trading games that we mentioned in the previous section, namely

the double oral auction and the stochastic matching problem.

In particular, in this chapter, we will focus on the convergence property of double oral

auction (DOA)1. We will first formalize the buyer-seller trading market used in the DOA

experiment and design a mechanism for this market that simulates DOA. Then, we prove

that this mechanism always converges to a Walrasian equilibrium in polynomially many

steps, which proves the second part of Friedman’s conjecture. Finally, we further consider

the more general scenario where not all players can trade with each other, and show that

DOA may not converge in this more general case. To overcome this issue, we propose a

randomized variant of our mechanism (which can be viewed as a minor modification of

DOA) which still ensure convergence. We start with a short introduction on the history of

DOA.

2.1. Background

The study on double oral auction started from a market experiment conducted by Cham-

berlin in which prices failed to converge to a Walrasian equilibrium [28]. Chamberlin’s

market was an instance of the assignment model with homogeneous goods. There is a set

of unit demand buyers and a set of unit supply sellers, and all items are identical. Each

agent’s value or opportunity cost for the good is their private information and preferences

are quasi-linear. Chamberlin concluded that his results showed competitive theory to be

inadequate. Vernon Smith, in an instance of insomnia, recounted in [103] demurred:

“The thought occurred to me that the idea of doing an experiment was right, but what

was wrong was that if you were going to show that competitive equilibrium was not re-

1The full paper of this work can be find in [15].
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alizable . . . you should choose an institution of exchange that might be more favorable to

yielding competitive equilibrium. Then when such an equilibrium failed to be approached,

you would have a powerful result. This led to two ideas: (1) why not use the double oral

auction procedure, used on the stock and commodity exchanges? (2) why not conduct the

experiment in a sequence of trading days in which supply and demand were renewed to

yield functions that were daily flows?”

Instead of Chamberlin’s unstructured design, Smith used a different design, a double oral

auction (DOA) scheme, in which both buyers and sellers call out bids or offers which

an auctioneer recognizes [102]. Transactions resulting from accepted bids and offers are

recorded. This continues until there are no more acceptable bids or offers. At the conclusion

of trading, the trades are erased, and the market reopens with valuations and opportunity

costs unchanged. The only thing that has changed is that market participants have observed

the outcomes of the previous days trading and may adjust their expectations accordingly.

This procedure was iterated four or five times. Smith was astounded: “I am still recovering

from the shock of the experimental results. The outcome was unbelievably consistent with

competitive price theory.” [103](p. 156)

As noted by Daniel Friedman [50], the results in [102], replicated many times, are some-

thing of a mystery. How is it that the agents in the DOA overcome the impediments of

both private information and strategic uncertainty to arrive at the Walrasian equilibrium?

A brief survey of the various (early) theoretical attempts to do so can be found in Chapter

1 of [50]. Friedman concluded his survey of the theoretical literature with a two-part con-

jecture. “First, that competitive (Walrasian) equilibrium coincides with ordinary (complete

information) Nash Equilibrium (NE) in interesting environments for the DOA institution.

Second, that the DOA promotes some plausible sort of learning process which eventually

guides the both clever and not-so-clever traders to a behavior which constitutes an ‘as-if’

complete-information NE.”

Over the years, the first part of Friedman’s conjecture has been well studied (see, e.g., [40];
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see also Section 2.4) but the second part of the conjecture is still left without a satisfy-

ing resolution. The focus of this paper is on the second part of Friedman’s conjecture.

More specifically, we design a mechanism which simulates the DOA, and prove that this

mechanism always converges to a Walrasian equilibrium in polynomially many steps. Our

mechanism captures the following four key properties of the DOA.

1. Two-sided market: Agents on either side of the market can make actions.

2. Private information: When making actions, agents have no other information besides

their own valuations and the bids and offers submitted by others.

3. Strategic uncertainty: The agents have the freedom to choose their actions modulo

mild rationality conditions.

4. Arbitrary recognition: The auctioneer (only) recognizes bids and offers in an arbitrary

order.

Among these four properties, mechanisms that allow agents on either side to make actions

(two-sided market) and/or limit the information each agent has (private information) have

received more attention in the literature (see Section 2.2). However, very little is known for

mechanisms that both work for strategically uncertain agents and recognize agents in an

arbitrary order. Note that apart from resolving the second part of Friedman’s conjecture,

having a mechanism with these four properties itself is of great interest for multiple reasons.

First, in reality, the agents are typically unwilling to share their private information to other

agents or the auctioneer. Second, agents naturally prefer to act freely as oppose to being

given a procedure and merely following it. Third, in large scale distributed settings, it is

not always possible to find a real auctioneer who is trusted by every agent, and is capable

of performing massive computation on the data collected from all agents. In the DOA (or

in our mechanism) however, the auctioneer only recognizes actions in an arbitrary order,

which can be replaced by any standard distributed token passing protocol, where an agent

can take an action only when he is holding the token. In other words, our mechanism serves
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more like a platform (rather than a specific protocol) where rational agents always reach a

Walrasian equilibrium no matter their actual strategy. To the best of our knowledge, no

previous mechanism enables such a ‘platform-like’ feature.

2.2. Our Results and Related Work

We design a mechanism that simulates DOA by simultaneously capturing two-sided market,

private information, strategic uncertainty, and arbitrary recognition. More specifically,

following DOA, at each iteration of our mechanism, the auctioneer maintains a list of active

price submission and a tentative assignment of buyers to sellers that ‘clears’ the market

at the current prices (note that this can also be distributedly maintained by the agents

themselves). Among the agents who wish to make or revise an earlier submission, an

arbitrary one is recognized by the auctioneer and a new tentative assignment is formed. An

agent can submit any price that strictly improves his payoff given the current submissions

(rather than being forced to make a ‘best’ response, which is to submit the price that

maximizes payoff). We show that as long as agents make myopically better responses,

the market always converges to a Walrasian equilibrium in polynomial number of steps.

Furthermore, every Walrasian equilibrium is the limit of some sequence of better responses.

We should remark that the fact that an agent always improves his payoff does not imply

that the total payoff of all agents always increases. For instance, a buyer can increase his

payoff by submitting a higher price and ‘stealing’ the current match of some other buyer

(whose payoff would drop).

To the best of our knowledge, no existing mechanism captures all four properties for the

DOA that we proposed in this paper. For most of the early work on auction based algorithms

(e.g., [101, 79, 39, 40, 22]), unlike the DOA, only one side of the market can make offers.

By permitting only one side of the market to make offers, the auction methods essentially

pick the Walrasian equilibrium (equilibria are not unique) that maximizes the total surplus

of the side making the offers.
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For two-sided auction based algorithms [24, 23], along with the ‘learning’ based algorithms

studied more recently [91, 74], agents are required to follow a specific algorithm (or protocol)

that determines their actions (and hence violates strategic uncertainty). For example, [24]

requires that when an agent is activated, a buyer always matches to the ‘best’ seller and a

seller always matches to the ‘best’ buyer (i.e., agents only make myopically best responses,

which is not the case for the DOA). [74] has agents submit bids based on their current

best alternative offer and prices are updated according to a common formula relying on

knowledge of the agents opportunity costs and marginal values. [91], though not requiring

agents to always make myopically best responses, has agents follow a specific (randomized)

algorithm to submit conditional bids and choose matches. We should emphasize that agents

acting based on some random process is different from agents being strategically uncertain.

In particular, for the participants of the original DOA experiment (of [102]), there is no a

priori reason to believe that they were following some specific random procedure during the

experiment. On the contrary, as stated in Friedman’s conjecture, there are clever and not-

so-clever participants, and hence different agents could have completely different strategies

and their strategies might even change when, for instance, seeing more agents matching with

each other, or by observing the strategies of other agents. Therefore, analyzing a process

where agents are strategically uncertain can be distinctly more complex than analyzing the

case where agents behave in accordance with a well-defined stochastic process. In this paper,

we consider an extremely general model of the agents: the agents are acting arbitrarily while

only following some mild rationality conditions. Indeed, proving fast convergence (or even

just convergence) for a mechanism with agents that are strategically uncertain is one of the

main challenges of this work.

Arbitrary recognition is another critical challenge for designing our mechanism. For exam-

ple, the work of [95, 91] deploys randomization in the process of recognizing agents. This

is again in contrast to the original DOA experiment, since the auctioneer did not use a

randomized procedure when recognizing actions, and it is unlikely that the participants

decide to make an action following some random process (in fact, some participants might
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be more ‘active’ than others, which could lead to the ‘quieter’ participants barely getting

any chance to make actions, as long as the ‘active’ agents are still making actions).

The classical work on the stable matching problem [51] serves as a very good illustration for

the importance of arbitrary recognition. Knuth [78] proposed the following algorithm for

finding a stable matching. Start with an arbitrary matching; if it is stable, stop; otherwise,

pick a blocking pair and match them; repeat this process until a stable matching is found.

Knuth showed that the algorithm could cycle if the blocking pair is picked arbitrarily. Later,

[98] showed that picking the blocking pairs at random suffices to ensure that the algorithm

eventually converges to a stable matching, which suggests that it is the arbitrary selection

of blocking pairs that causes Knuth’s algorithm to not converge.

The setting of Knuth’s algorithm is very similar to the process of the DOA in the sense

that in any step of the DOA, a temporary matching is maintained and agents can make

actions to (possibly) change the current matching. But perhaps surprisingly, we show that

arbitrary recognition does not cause the DOA to suffer from the same cycling problem as

Knuth’s algorithm. The main reason, or the main difference between the two models is

that our assignment model involves both matching and prices, while Knuth’s algorithm

only involves matchings. As a consequence, in our mechanism, the preferences of the agents

change over time (since an agent always favors the better price submission, the preferences

could change when new prices are submitted). In the instance that leads Knuth’s algorithm

to cycle (see [78]), the fundamental cause is that the preferences of all agents form a cycle.

However, in our mechanism, preferences (though changing) are always consistent for all

agents.

Based on this observation, we establish the limit of the DOA by introducing a small friction

into the market: restricting the set of agents on the other side that each agent can trade

with2. We show that in this case, there is an instance with a specific adversarial order of

2In Chamberlin’s experiment, buyers and sellers had to seek each other out to determine prices. This
search cost meant that each agent was not necessarily aware of all prices on the other side of the market.
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recognizing agents such that following this order, the preferences of the agents (over the

entire order) form a cycle and the DOA may never converge. Finally, we complete the

story by showing that if we change the mechanism to recognize agents randomly, with high

probability, a Walrasian equilibrium will be reached in polynomial number of steps. This

further emphasizes the distinction between random recognition and arbitrary recognition

for DOA-like mechanisms.

Organization: The rest of this chapter is organized as follows. In Section 2.3, we formally

introduce the model of the market and develop some preliminaries. Section 2.4 establishes a

connection between the stable states of the market and social welfare. Our main results are

presented in Section 2.5. We describe our DOA style mechanism and show that in markets

with no trading restrictions, it converges in a number of steps that is polynomially bounded

in the number of agents. We then show that when each agent is restricted to trade only with

an arbitrary subset of agents, the mechanism need not converge. A randomized variant of

our mechanism is then presented to overcome this issue. Finally, we conclude with some

directions for future work in Section 2.6.

2.3. Preliminaries

We will use the terms ‘player’ and ‘agent’ interchangeably throughout the paper. We use

B to represent a buyer, S for a seller, and Z for either of them (i.e., a player). Also, b is

used as the bid submitted by a buyer and s as the offer from a seller.

Definition 2.1 (Market). A market is denoted by G(B, S, E, val), where B and S are the

sets of buyers and sellers, respectively. Each buyer B ∈ B is endowed with a valuation of

the item, and each seller S ∈ S has an opportunity cost for the item. We slightly abuse the

terminology and refer to both of these values as the valuation of the agent for the item. The

valuation of any agent Z is chosen from range [0, 1], and denoted by val(Z). Finally, E is

the set of undirected edges between B and S, which determines the buyer-seller pairs that

may trade.
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Let m = |E| and n = |B|+ |S|.

Definition 2.2 (Market State). The state of a market at time t is denoted St(P t,Πt)

(S(P ,Π) for short, if time is clear or not relevant), where P is a price function revealing

the price submission of each player and Π is a matching between B and S, indicating which

players are currently paired. In other words, the bid (offer) of a buyer B (seller S) is P (B)

(P (S)), and B, S are paired in Π iff (B,S) ∈ Π. In addition, we denote a player Z ∈ Π iff

Z is matched with some other player in Π, and denote his match by Π(Z).

Furthermore, the state where each buyer submits a bid of 0, each seller submits an offer of

1, and no player is matched is called the zero-information state.

We use the term zero-information because no player reveals non-trivial information about

his valuation in this state.

Definition 2.3 (Valid State). A state is called valid iff (a1) the price submitted by each

buyer (seller) is lower (higher) than his valuation, (a2) two players are matched only when

there is an edge between them, and (a3) for any pair in the matching, the bid of the buyer

is no smaller than the offer of the seller.

In the following, we restrict attention to states that are valid.

Definition 2.4 (Utility). For a market G(B, S, E, val)at state S(P ,Π), the utility of a

buyer is defined as val(B)−P (B), if B receives an item, and zero otherwise. Similarly, the

utility of a seller is defined as P (S)− val(S), if S trades his item, and zero otherwise.

Note that what we have called utility is also called surplus.

Definition 2.5 (Stable State). A stable state of a market G(B, S, E, val) is a state S(P ,Π)

s.t. (a1) for all (B,S,∈)E, P (B) ≤ P (S) (a2) if Z /∈ Π, then P (Z) = val(Z), and (a3) if

(B,S) ∈ Π, then P (B) = P (S).

Suppose S(P ,Π) is not stable. Then, one of the following must be true.

1. There exists (B,S) ∈ E such that P (B) > P (S). Then, both B and S could strictly
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increase their utility by trading with each other using the average of their prices.

2. There exists Z 6∈ Π such that P (Z) 6= val(Z). This agent could raise his bid (if a

buyer) or lower his offer (if a seller), without reducing his utility and having a better

opportunity to trade.

3. There exists (B,S) ∈ Π such that P (B) > P (S) (P (B) < P (S) results in an invalid

state). One of the agents could do better by either raising his offer or lowering his

bid.

Definition 2.6 (ε-Stable State). For any ε ≥ 0, a state S(P ,Π) of a market G(B, S, E, val)

is ε-stable iff (a1) for any (B,S,∈)E, P (B)−P (S) ≤ ε (a2) if player Z /∈ Π, P (Z) = val(Z),

and (a3) if (B,S) ∈ Π, P (B) = P (S).

Note that the only difference between a stable state and an ε-stable state lies in the first

property. At any ε-stable state, no matched player will have a move to increase his utility

by more than ε.

Definition 2.7 (Social Welfare). For a market G(B, S, E, val) with a matching Π, the

social welfare (SW) of this matching is defined as the sum of the valuation of the matched

buyers minus the total opportunity cost of the matched sellers. We denote by SWΠ the SW

of matching Π.

Definition 2.8 (ε-approximate SW). For any market, a matching Π is said to give an

ε-approximate SW if SWΠ ≥ SWΠ∗ − nε for any Π∗ that maximizes SW. In other words, on

average, the social welfare collected from each player using Π is at most ε less than that

collected using Π∗.

2.4. Stable State and Social Welfare

In this section we mainly establish the connection between stables states and social welfare in

the market. We emphasize that most results in this section are well known in the literature

and stated here for the sake of completeness.
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The problem of finding a matching that maximizes SW can be formulated as a linear

program (LP) (see [23] for example). For any edge (B,S,∈)E, let xB,S be the variable

indicating whether (B,S, )is selected in the matching or not, and define weight of the edge,

wB,S = val(B)− val(S). Therefore, the LP (primal) and its dual can be defined as follows.

max
∑

(B,S,∈)E

wB,S · xB,S min
∑
B∈B

yB +
∑
S∈S

yS

s.t. ∀B∗ ∈ B,
∑

(B∗,S,∈)E

xB∗,S ≤ 1 s.t. ∀(B,S,∈)E, yB + yS ≥ wB,S

∀S∗ ∈ S,
∑

(B,S∗,∈)E

xB,S∗ ≤ 1 yB, yS ≥ 0

xB,S ≥ 0

In the following, we will refer to the above linear programs as ‘primal’ and ‘dual’, respec-

tively. The dual variables y can be interpreted as the utilities that agents enjoy assuming

every buyer gets an item and every seller sells the item. Since it only depends on the price

function, we call this price-wise utility. The constraint yB + yS ≥ wB,S essentially states

that the sum of the utilities obtained by (B,S) must be at least as large as their gains from

trade.

We use xΠ to denote the characteristic function of matching Π, i.e., xΠ
B,S = 1 iff (B,S) ∈ Π,

and use yP to denote the price-wise utility function of a price function P , i.e., yPB = val(B)−

P (B) and yPS = P (S) − val(S). It is well known that SW is maximized at a Walrasian

equilibrium (see [23]) and we state here a similar result for stable states.

Theorem 2.1. A state S(P ,Π) is stable iff xΠ is an optimal solution for the primal and

yP is an optimal solution for the dual.

Proof. To see the forward direction, assume S(P ,Π) is a stable state. We first verify that

xΠ and yP are indeed feasible solutions. xΠ is clearly feasible since it is characteristic

function of a valid matching. yP preserves non-negativity constraint of dual, since no

23



player could submit a price exceeding his valuation in P . Moreover, we can write yPB +yPS =

val(B)− P (B) + P (S)− val(S) = wB,S + P (S)− P (B). By property (a1) of stable states,

P (S) ≥ P (B), hence yPB + yPS ≥ wB,S , preserving the dual constraint and implying that yP

is also feasible.

To prove optimality of xΠ and yP , using weak duality, we only need to verify that value of

primal is equal to value of dual.

∑
B∈B

yB +
∑
S∈S

yS =
∑

(B,S)∈Π

(val(B)− P (B) + P (S)− val(S)) +
∑
Z /∈Π

yPZ (2.1)

=
∑

(B,S)∈Π

(val(B)− val(S)) =
∑

(B,S,∈)E

wB,S × xΠ
B,S (2.2)

(1) to (2) uses properties (a1) and (a2) of stable states, P (B) = P (S) for (B,S) ∈ Π, and

P (Z) = val(Z) for Z /∈ Π. Thus xΠ and yP are optimal solutions of primal and dual,

respectively.

For the reverse direction, assume (xΠ, yP ) is a pair of optimal primal and dual solutions .

Since yP is a feasible solution, as we just stated, yPB +yPS ≥ wB,S will give us P (S) ≥ P (B),

thus property (a1) of stable states holds. For properties (a2) and (a3) of stable states, since

∑
B∈B

yB +
∑
S∈S

yS =
∑

(B,S,∈)E

wB,S × xΠ
B,S

∑
(B,S)∈Π

(val(B)− P (B) + P (S)− val(S)) +
∑
Z /∈Π

yPZ =
∑

(B,S)∈Π

val(B)− val(S)

∑
(B,S)∈Π

(P (S)− P (B)) +
∑
Z /∈Π

yPZ = 0

Since P (S) ≥ P (B) and also yP is a non-negative vector, both terms in the last expression

must be zero, which implies that properties (a2) and (a3) of stable states also hold. Therefore

S(P ,Π) is a stable state.
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Theorem 2.1 states that any stable state maximizes SW. In other words, a stable state is

a Walrasian equilibrium of the market. Moreover, any pair of optimal primal and dual

solutions can form a stable state. We now show that for a sufficiently small ε, an ε-stable

state is almost as good as stable states in terms of achieving maximum SW.

Theorem 2.2. For any market G(B, S, E, val), for any ε > 0, any ε-stable state realizes

an ε-approximate SW. Moreover, for

δ = min {|val(Z1)− val(Z2)| | Z1, Z2 ∈ B ∪ S, val(Z1) 6= val(Z2)} ,

we have for 0 ≤ ε < δ/n, any ε-stable state maximizes SW.

To simplify the notation, we treat an agent who is unmatched as being matched with

themselves. To this end, for each buyer we introduce a dummy seller with an opportunity

cost equal to his valuation, similarly for each seller. An agent matched with their dummy

counterpart is interpreted as being unmatched. We denote the dummy seller of buyer B as

SB and the dummy buyer of seller S as BS .

Proof. We define the following ε-primal and ε-dual pair.

max
∑

(B,S,∈)E

(wB,S − ε)xB,S min
∑
B∈B

yB +
∑
S∈S

yS

s.t. ∀B∗ ∈ B,
∑

(B∗,S,∈)E

xB∗,S ≤ 1 s.t. ∀(B,S,∈)E, yB + yS ≥ (wB,S − ε)

∀S∗ ∈ S,
∑

(B,S∗,∈)E

xB,S∗ ≤ 1 yB, yS ≥ 0

xB,S ≥ 0

Given a ε-stable state S(P ,Π), since property (a1) of ε-stable states is equivalent to val(B)−

P (B)+P (S)−val(S) ≥ wB,S−ε, yP is a feasible solution of ε-dual (non-negativity constrains
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hold since P is valid price function). By properties (a2) and (a3) of ε-stable states,

∑
B∈B

yPB +
∑
S∈S

yPS =
∑

(B,S)∈Π

(val(B)− P (B) + P (S)− val(S)) +
∑
Z /∈Π

yPZ

=
∑

(B,S)∈Π

(val(B)− val(S)) = SWΠ

On the other hand, if we take a matching Π∗ that maximizes SW, and plug xΠ∗ into the

ε-primal, we have

∑
(B,S,∈)E

(wB,S − ε)xB,S =
∑

(B,S,∈)E

wB,SxB,S −
∑

(B,S,∈)E

εxB,S ≥ SWΠ∗ − nε

The last inequality comes from the fact that n is an upper bound on the number of possible

pairs (i.e., number of possible 1’s in xB,S) for any matching. By the weak duality, any value

of ε-primal is less than or equal to any value of ε-dual, thus SWΠ ≥ SWΠ∗ − nε.

We now proceed to prove the condition for an ε-stable state to maximize SW. Fix a matching

Π∗ that maximizes SW. Construct graph G′(V ′, E′) with vertices V ′ = B ∪ S and edges

E′ = {(B,S) | (B,S) ∈ Π ∨ (B,S) ∈ Π∗}

As any player can be matched with at most one other player in each matching, the degree

of each node in G′ is at most two. Consequently, the connected components of G′ could

only be cycles or paths. Note that such cycles and paths are formed by the different pairs

of the two matchings. We now prove that for any of those cycles or paths, the local SW of

the two matchings are the same.

For any cycle B0, S0, B1, S1, . . . , Bk, Sk, B0, pair (Bi, Si) belongs to one matching while pair

(Bi+1, Si) belongs to the other one. If we only consider these players, every buyer gets an

item and every seller sells the item, thus the SW of both matchings are the same.
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For any path Z0, Z1, Z2, Z3, . . . , Zk, wlog, we can assume val(Z0) ≥ val(Zk). If Z0 is a seller,

add his dummy buyer to the left of the path. If Zk is a buyer, add his dummy seller to the

right of the path. Therefore, the path starts with a buyer and ends with a seller. We can

denote the path as B0, S0, B1, S1, . . . , Bk, Sk.

For the same reason as cycle case, the players in the middle contributes same amount of SW

to both matchings, thus the difference of SW is val(B0)− val(Sk). Since Π∗ is a matching

that maximizes SW, it must be the case that (Bi, Si) ∈ Π∗ and (Bi+1, Si) ∈ Π.

If the difference of SW is 0, then we are done. Suppose not, then val(B0)− val(Sk) ≥ δ. By

properties (a1) and (a3) of ε-stable states,

P (Bi+1) = P (Si) ≥ P (Bi)− ε⇒ P (B0) ≤ P (Bk) + kε

We now have

val(B0)− val(Sk) = P (B0)− P (Sk) (2.3)

≤ P (Bk) + kε− P (Sk) ≤ (k + 1)ε ≤ nε < δ (2.4)

where (3) is because both B0 and Sk are matched in Π∗ but not in Π, implying that their

submitted prices are equal to their valuation.

Thus on one side we have val(B0)−val(Sk) ≥ δ, and from the other side by inequality (2.4)

above we have val(B0)− val(Sk) < δ, a contradiction. It concludes that all such cycles and

paths generate the same SW for both matchings and thus Π also maximizes SW.

Note that [40] also shows that a ε-stable state realizes an ε-approximate SW. However,

the bound on ε given in Theorem 2.2 is new. In [23], using ε-complementary slackness,

Bertsekas shows that for integer valuations, any ε-stable state achieves maximum SW if

ε < 1/n. Therefore, for fractional valuations, by scaling valuations with a suitably large

factor L, one can make the valuations integers, and deduce that ε < 1/(nL) suffices for
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achieving maximum SW. Note that L is at least 1/δ but can possibly be much larger.

We should point out that the bound ε < δ/n is not an immediate consequence of the fact

that any matching in an ε-stable state is an ε-approximate SW, by arguing that the smallest

non-zero difference in SW of two matchings is at least δ. Consider a market whose trading

graph is a complete bipartite graph, with four players, where val(B1) = 0.1, val(S1) = 0.05

val(B2) = 0.2001, val(S2) = 0.15. The difference of valuation price between any two players

is lower bounded by 0.05 (δ = 0.05) but B1, S1 yields a SW of 0.05 and B2, S2 yields a SW

of 0.0501 and the difference in SW could be made arbitrarily small.

Finally, it is worth mentioning that the fact that ε-stable state gives ε-approximate SW

does have a corollary as follows, which is a weaker result compared to Theorem 2.2: If for

any (B,S,∈)E, val(B) − val(S) is an integer multiple of δ, then for any 0 ≤ ε < δ/n, an

ε-stable state always maximizes SW.

2.5. Convergence to a Stable State

We establish our main results in this section. We will start by describing a mechanism

in the spirit of DOA, and show that for any well-behaved stable state, there is a sequence

of agent moves that leads to this state. When the trading graph is a complete bipartite

graph, i.e, the case of the DOA expriment, we show that convergence to a stable state

occurs in number of steps that is polynomially bounded in the number agents. However,

convergence to a stable state is not guaranteed when the trading graph is an incomplete

bipartite graph. We propose a natural randomized extension of our mechanism, and show

that with high probability, the market will converge to a stable state in number of steps

that is polynomially bounded in the number of agents.

2.5.1. The Main Mechanism

To describe our mechanism, we need the notion of an ε-interested player.

Definition 2.9 (ε-Interested Player). For a market at state S(P ,Π) with any parameter
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ε > 0, a seller S is said to be ε-interested in his neighbor B iff either (a) P (B) ≥ P (S) and

S /∈ Π, or (b) P (B) − P (S) ≥ ε and S ∈ Π. The set of buyers interested in a seller S is

defined analogously.

When the parameter ε is clear from the context, we will simply refer to an ε-interested

player as an interested player.

Mechanism 1. (with input parameter ε > 0)

• Activity Rule: Among the unmatched buyers, any buyer that neither submits a new

higher bid nor has a seller that is interested in him, is labeled as inactive. All other

unmatched buyers are labeled as active. An active (inactive) seller is defined analo-

gously. An inactive player changes his status iff some player on the other side matches

with him.3

• Minimum Increment: Each submitted price must be an integer multiple of ε. 4

• Recognition: Among all active players, an arbitrary one is recognized.

• Matching: After a buyer B is recognized, B will choose an interested seller to match

with if one exists. If the offer of the seller is lower than the bid b, it is immediately

raised to b. The seller action is defined analogously.

• Tie Breaking: When choosing a player on the other side to match to, an unmatched

player is given priority (the unmatched first rule).

In each iteration, players are partitioned into two sets based on whether they are matched or

not. The unmatched players are further partitioned into active players and inactive players.

The only players with a myopic incentive to revise their submissions are those that are not

matched.

Observe that since a buyer will never submit a bid higher than his valuation, and a seller

3This is common for eliminating no trade equilibria.
4This is part of many experimental implementations of the DOA.
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will never make an offer below his own opportunity cost, by submitting only prices that are

integer multiples of ε, an agent might not be able to submit his true valuation. However,

since an agent can always submit a price at most ε away from the true valuation, if we

pretend that the ‘close to valuation’ prices are true valuations, the maximum SW will

decrease by at most nε. By picking ε′ = ε/2, if the market converges to an ε′-stable state,

we still guarantee that the SW of the final state is at most nε away from the maximum SW.

When a buyer B chooses to increase his current bid: if s denotes the lowest offer in the

neighborhood of B, and s′ denotes the lowest offer of any unmatched seller in the neighbor-

hood of B, then the new bid of B can be at most min {s+ ε, s′}. We refer to this as the

increment rule. This may be viewed as a consequence of rationality – there is no incentive

for a buyer to bid above the price needed to make a deal with some seller. A similar rule

applies to sellers. With a slight abuse of the terminology, we call either rules increment rule.

Notice, a player indifferent between submitting a new price and keeping his price unchanged

will be assumed to break ties in favor of activity.

Note that the role of the auctioneer in Mechanism (1) is restricted to recognize agent

actions, but never select actions for agents. In fact, the existence of an auctioneer is not

even necessary for the mechanism to work. Minimum increment can be interpreted as

setting the currency of the market to be ε. Arbitrary recognition can be achieved by a first

come, first served principle. Activity rule and matching are both designed to ensure that

players will keep making actions (submitting a new price or forming a valid match) if one

exists.

We first prove some properties of Mechanism (1).

Claim 2.5.1. For any market, if we use Mechanism (1) with any input parameter ε > 0

and start from any state that satisfies properties (a1) and (a3) of ε-stable states, any state

reached satisfies properties (a1) and (a3) of ε-stable states.

By the increment rule and matching rule respectively, the reached state satisfies properties
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(a1) and (a3) of ε-stable states.

If a state S(P ,Π) satisfies ∀(B,S,∈)E,P (B) ≤ P (S), then we call it a valid starting state.

Note that a valid starting state satisfies properties (a1) and (a3) of ε-stable states (a valid

Π matches a buyer to a seller only if the bid price of the buyer is at least the offer price

of the seller). In the following, we only consider markets that begin with a valid starting

state, and hence a matched player will never have a move to increase his utility by more

than ε.

Claim 2.5.2. For any market, if we use Mechanism (1) and begin with a valid starting

state, then any final state of the market is ε-stable.

Claim 2.5.1 ensures that the final state satisfies properties (a1) and (a3) of ε-stable states,

and property (a2) of ε-stable states holds because an unmatched buyer will always submit

a new higher bid to avoid being inactive, unless he reaches his valuation. Same for the

unmatched sellers.

Note that by Theorem 2.2, if a market converges to an ε-stable state, it always realizes

ε-approximate SW.

Definition 2.10 (Well-behaved). A stable state S(P ,Π), is well-behaved iff (a1) for any

(B,S,∈)E, if B /∈ Π and S /∈ Π, then P (B) < P (S). An ε-stable state S(P ,Π), is well-

behaved iff not only property (a1) is satisfied but also (a2) for any (B,S,∈)E, if either

B /∈ Π or S /∈ Π, then P (B) ≤ P (S).

Note that the states ruled out by properties (a1) and (a2) of well-behaved states are the

corner cases where a buyer-seller pair having the same valuation (thus having no contribu-

tion to SW) are not chosen in the matching, or players who can obtain utility at most ε

stop attempting to match with others.

Theorem 2.3. For any ε > 0, if we use Mechanism (1), and start from the zero-information

state, any well-behaved ε-stable state can be reached via a sequence of at most n moves.

Hence, any well-behaved stable state is also reachable.
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Proof. Given an ε-stable state S(P ,Π), sort all pairs in Π in decreasing order of prices (ar-

bitrarily break the ties), and denote the ordering as O. We propose a two-stage procedure:

first stage handles the players in the matching and second stage deals with the remainders.

Note that we only need to justify that the increment rule and unmatched first rule hold for

every action.

In stage one, choose pairs of players following the order defined by O. For each pair (B,S),

let the buyer submit P (B), and then, let the seller submit P (S) = P (B) and match with

B. When B submits P (B), no seller is submitting a price lower then P (B), hence the

increment rule is satisfied. The unmatched sellers are submitting 1, and hence either no

one is interested in B or all of them are interested in B (if P (B) = 1, i.e., P (B) is no less

than the seller prices). In the later case, B can directly match with S.

For S, assume the highest bid he can see in his neighborhood is P (B′) submitted by buyer

B′. By property (a1) of ε-stable states, P (B′) ≤ P (S) + ε = P (B) + ε. Among the

unmatched neighbors of S, B is the one submitting the highest price, and P (S) = P (B) ≥

max {P (B′)− ε, P (B)}, the increment rule is satisfied. Since S matches with unmatched

buyer B, the unmatched first rule is also satisfied.

In stage two, choose the unmatched players with an arbitrary order and let them submit

their valuations. For any unmatched buyer B, by property (a2) of well-behaved states,

P (S) ≥ P (B) for any seller S visible to B, hence the increment rule is satisfied. In addition,

for any unmatched seller S, by property (a1) of well-behaved states, P (B) < P (S), thus B

cannot match with S. By analogy, any unmatched seller will also make a valid move and

remain unmatched.

Thus, after exactly n steps the two stages end, and the market is in state S(P ,Π).
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2.5.2. Complete Bipartite Graphs

We now prove that market with complete bipartite trading graph will always converge when

using Mechanism (1).

Theorem 2.4. For a market whose trading graph is a complete bipartite graph, if we use

Mechanism (1) with any input parameter ε > 0, and begin with any valid starting state,

then the market will converge to an ε-stable state after at most n3/ε steps.

We need the following lemma to prove Theorem 2.4.

Lemma 2.5.3. For a market G(B, S, E, val) whose trading graph is a complete bipartite

graph, if we use Mechanism (1) with any input parameter ε > 0, then at any state S(P ,Π)

reached from a valid starting state, for any (B,S,∈)E, if P (B) > P (S), then both B and

S are matched.

Proof. Assume by contradiction that there exists some (B,S,∈)E with P (B) > P (S) and,

wlog, B being unmatched. Since in the starting state, P (B) ≤ P (S), let t be the first

time that this happens. Therefore, at time t − 1, either P (B) ≤ P (S) or B is matched.

Note that since the prices are integer multiples of ε, a state with P (B) > P (S) implies

P (B) − P (S) ≥ ε. On the other hand, since property (a1) of ε-stable states always holds,

P (B)− P (S) ≤ ε. Thus P (B) = P (S) + ε at time t.

If P (B) ≤ P (S) at time t − 1, P (B) > P (S) can only be a consequence of either B or S

being recognized. If B is recognized and submits a bid of P (S) + ε, since S is interested

in B, by the matching rule, B will be matched. If S is recognized and submits an offer of

P (B) − ε, by the increment rule, B must be matched (otherwise S would not submit an

offer lower than P (B)), a contradiction.

Assume that B was matched to some seller S′ at time t− 1. The only valid action at time

t − 1 that can make B unmatched is if some buyer B′ overbids B and match with seller

S′. If S = S′, then after the move, P (B) < P (S), a contradiction. If S 6= S′, then this
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move will not change the bid of B or offer price of S, and hence, P (B) = P (S) + ε in time

t− 1. Since the trading graph is a complete bipartite graph, S is a neighbor of B′. By the

increment rule, B′ can only submit a price at most equal to P (S) + ε = P (B), thus B′ is

unable to overbid B, a contradiction.

Definition 2.11 (γ-feasible). A market state S(P ,Π) is said to be γ-feasible iff there are

exactly γ matches in Π.

Proof of Theorem 2.4. Assume at any time t, the state of the market is γt-feasible. Define

the following potential function

ΦP =
∑
Si∈S

P (Si) +
∑
Bi∈B

(1− P (Bi))

Note that the value of ΦP is always an integer multiple of ε. We will first show that γt

forms a non-decreasing sequence over time, and then argue that, for any γ, the market can

stay in a γ-feasible state for a bounded number of steps. Specifically, we will show that, if

γ does not change, ΦP is a non-increasing function and can stay unchanged for at most γ

steps. Since the maximum value of ΦP is bounded by n, it follows that after at most (γn)/ε

steps, the market moves from a γ-feasible state to a (γ + 1)-feasible state (or converges).

We argue that γt forms a non-decreasing sequence over time. Since any recognized player

is unmatched, if the action of an unmatched player Z results in a change in the matching,

Z either matches with another unmatched player, or matches to a player that was already

matched. In either case, the total number of matched pairs does not decrease.

Furthermore, we prove if γ does not change, then ΦP is non-increasing. Moreover, the

number of successive steps that ΦP stay unchanged is at most γ.

To see that ΦP is non-increasing, first note that ΦP can increase only when either a buyer

decreases his bid or a seller increases his offer. Assume an unmatched buyer B is recognized

(seller case is analogous), and the price function before his move is P . To increase ΦP ,
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since B can only increase his bid, he must increase an offer by overbidding and matching

with a seller S, resulting in the two of them submitting the same price b. The buyer bid

increases by b− P (B) and the seller offer increases by b− P (S). Since B is unmatched, by

Lemma 2.5.3, P (B) ≤ P (S), and hence ΦP will not increase.

We now bound the maximum number of steps for which ΦP could remain unchanged. A

move from a buyer B that does not change ΦP occurs only when B overbids a matched

seller S, where the bid and the offer are equal both before and after the move. We call this

a no-change buyer move. By analogy, a no-change seller move can be defined.

In the remainder of the proof, we first argue that a no-change buyer move can never be

followed by a no-change seller move, and vice versa. After that, we prove the upper bound

on the number of consecutive no-change moves to show that ΦP will eventually decrease

(by at least ε).

Assume at time t1, a buyer Bt1 made a no-change move and matched with a seller St1 , who

was originally paired with the buyer B′t1 .5 We prove that no seller can make a no-change

move at time t1 + 1. The case that a seller makes a no-change move first can be proved

analogously. Suppose at time t1 + 1, a seller St1+1 is recognized and decreases his offer by

ε. Since Bt1 made a no-change move, we have

P t1(B′t1) = P t1(Bt1) (2.5)

Denote the lowest seller offer (highest buyer bid) at any time t by st (bt). By Lemma 2.5.3,

P t1(Bt1) ≤ P t1(S) for any seller S, hence P t1(Bt1) ≤ st1 . Moreover, since P t1(Bt1) =

P t1(St1) ≥ st1 , we have

P t1(Bt1) = st1 (2.6)

In other words, a buyer can make a no-change move, only if his bid is equal to the lowest

5An action at time time t will take effect at the time t+ 1, and P t is the price function before any action
is made at time t.
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offer. Similarly, if St1+1 can make a no-change move at time t1 + 1, his offer is equal to

the highest bid. Since the highest bid at time t1 (bt1) is at most st1 + ε (property (a1) of

ε-stable states), after Bt1 submits a bid of st1 + ε, he will be submitting the highest bid at

time t1 + 1. Hence

P t1+1(St1+1) = bt+1 = P t1+1(Bt1) = P t1+1(B′t1) + ε (2.7)

Therefore, at time t1 + 1, after St1+1 decreases his offer by ε, the unmatched buyer B′t1

is interested in St1+1. By the unmatched first rule, St1+1 will match with an unmatched

player, hence this cannot be a no-change move.

This proves that a no-change seller move can never occur after a no-change buyer move and

vice versa. We now prove the upper bound on the number of consecutive no-change buyer

moves.

For any sequence of consecutive no-change buyer moves, if there exists a time t2 such that

st2 > st2−1, for any unmatched buyer B at time t2, P t2(B) ≤ st2−1 < st2 . By Equation (2.6),

no buyer can make any more no-change move. Moreover, since any no-change buyer move

will increase the submission of a matched seller who is submitting the lowest offer, after at

most γ steps, the lowest offer must increase, implying that the length of the sequence is at

most γ.

To conclude, the total number of steps that the market could stay in γ-feasible states is

bounded by (n/ε)γ. As γ ≤ n, the total number of steps before market converges is at most

n3/ε.

2.5.3. General Bipartite Graphs

In this section, we study the convergence of markets with an arbitrary bipartite trading

graph. Although by Theorem 2.3, using Mechanism (1), the market can reach any well-

behaved ε-stable state, when the trading graph of a market can be an arbitrary bipartite
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Figure 1: Unstable market with general trading graph and Mechanism (1)

graph, there is no guarantee that Mechanism (1) will actually converge.

Claim 2.5.4. In a market whose trading graph is an arbitrary bipartite graph, Mecha-

nism (1) may never converge.

Consider the market shown in Figure 1. In this market, there are four buyers (B1 to B4) all

with valuation 1 and four sellers (S1 to S4) all with opportunity cost 0. Moreover, the trading

graph is a cycle of length 8, as illustrated by the first graph in Figure 1. Assume at some

time t, the market enters the state illustrated by the second graph, where B1, B2, S1, B3, S2

are submitting 5ε, S3, B4, S4 are submitting 6ε, and pairs (B2, S1), (B3, S2) and (B4, S4)

are matched.

At time t + 1, since B1 is unmatched, he can be recognized and submit 6ε. S1 is the only

interested seller, hence B1, S1 will match and the offer of S1 increases to 6ε, which leads to

the state shown in the third graph. Similarly, at time t+ 2, since S3 is unmatched, he can

be recognized and submit 5ε. B4 is the only interested buyer, hence B4, S3 will match and

bid of B4 increases to 6ε, which leads to the state shown in the fourth graph.

Notice that the states at time t and t + 2 are isomorphic. By shifting the indices and

repeating above two steps, the market will never converge.

Observe that the cycle described in Claim 2.5.4 is caused by an adversarial coordination
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between the actions of various agents. To break this pathological coordination, we introduce

Mechanism (2) which is a natural extension of Mechanism (1) that uses randomization. We

first define this mechanism, and then prove that on any trading graph, with high probability,

the mechanism leads to convergence in a number of steps that is polynomially bounded in

the number of agents.

Mechanism 2. (with input parameter ε > 0)

• Activity Rule: Among the unmatched buyers, any buyer that neither submits a new

higher bid nor has a seller that is interested in him, is labeled as inactive. All other

unmatched buyers are labeled as active. An active (inactive) seller is defined analo-

gously. An inactive player changes his status iff some player on the other side matches

with him.

• Minimum Increment: Each submitted price must be an integer multiple of ε.

• Bounded Increment Rule: In each step, a player is only allowed to change his

price by ε.

• Recognition: Among all players who are active, one is recognized uniformly at ran-

dom.

• Matching: After a player, say a buyer B, is recognized, if B does not submit a new

price, then B will match to an interested seller if one exists. If the offer of the seller

is lower than the bid b, it is immediately raised to b. The seller action is defined

analogously.

• Tie Breaking: When choosing a player on the other side to match to, an unmatched

player is given priority (unmatched first rule).

Notice that we ask players to move cautiously through the bounded increment rule. Players

can either change the price by ε or match with an interested seller, and always favor being

active. Note that, any move in Mechanism (1) can be simulated by at most (1/ε+ 1) moves
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in Mechanism (2) (1/ε for submitting new price and 1 for forming a match). The following

is an immediate consequence of results shown in Section 2.5.1.

Corollary 2.5. For any market, if we use Mechanism (2), (i) starting from the zero-

information state, any well-behaved ε-stable state can be reached in n(1/ε + 1) steps, and

(ii) beginning with a valid starting state, properties (a1) and (a3) of ε-stable states always

hold, and the final state is ε-stable.

We are now ready to prove our second main result, namely, for any trading graph, with

high probability, Mechanism (2) converges to a ε-stable state in a number of steps that is

polynomially bounded in the number of agents. We will utilize the following standard fact

about random walk on a line (see [90], for instance).

Claim 2.5.5. Consider a random walk on {0, 1, 2, ..., N} such that for any i ∈ [1, N ], the

random walk transition from state i to state (i − 1) happens with probability α, and for

any i ∈ [0, N − 1], the random walk transition from state i to state (i + 1) happens with

probability β, for some α + β = 1. Then starting from any i ∈ [0, N ], with probability at

least 1/2, the random walk either reaches the state 0 or the state N , after O(N2) steps.

Theorem 2.6. For any market G(B, S, E, val), if we use Mechanism (2) with any input

parameter ε > 0, and begin with a valid starting state, the market will converge to an ε-stable

state after at most O((n3/ε2) log n) steps with high probability.

Proof. Let utB and utS denote the number of active buyers and sellers at time t, respectively,

and let ut = utB+utS. We will first show that utB and utS are both non-increasing functions of

time and then argue that for any u, with high probability the market will remain in a state

with u active players for a number of steps that is polynomially bounded in the number of

players.

We first prove utB and utS are non-increasing. Note that the only move that can make a new

player active is one where a player, say a buyer B, matches to a currently matched seller S.

Let B′ be the buyer that is currently matched to S. Then at time t+ 1, the buyer B moves

out of the set of active players, while the buyer B′ possibly joins the set of active players.
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Thus the number of active players remains unchanged. A similar argument applies to case

when a seller is recognized and matches to a currently matched buyer.

In the remainder of the proof, we first show that if there exists an adjacent buyer-seller pair

such that both players are unmatched and the buyer bid is not below the seller offer (we call

such a pair to be an active pair), then after O(n log n) steps, with probability 1−O(1/n2),

ut will decrease. Next, in the absence of active pairs, we argue that either ut decreases or an

active pair appears in the market after O((n/ε)2 log n) steps, with probability 1−O(1/n2).

Note that if an active pair appears, by the same argument, after O(n log n) more steps,

ut will decrease with high probability. Since ut ≤ n, we can conclude that the market

converges in O((n3/ε2) log n) steps with high probability.

We first prove that, the existence of an active pair will lead to decrement of ut. For any

active pair (B,S). By the unmatched first rule, recognizing either B or S will increase the

number of matches. Recognizing any other player who makes a move to match with B

or S, will also increase the number of matches (note that only unmatched players will be

recognized). Both cases decrease ut by 2. In other words, as long as ut does not decrease,

(B,S) will remain to be an active pair. Assume at time t1, there is an active pair (B,S).

Let Yt be the random variable which is 1 iff B or S is recognized at time t. Hence, for any

t ≥ t1 where ut = ut1 ,

Pr(Yt = 1) =
2

ut1
≥ 2

n

It follows that after n steps from t1 the probability that none of B or S is chosen is less

than 1/2. Therefore, after 2n log n steps, with probability 1 − (1/n)2, either one of B and

S has been recognized or ut has already decreased. In either case, ut decreases.

Next, in the absence of active pairs, we prove that after a bounded number of steps, either

ut decreases or an active pair appears. Consider the following potential function

Φ =
∑
B∈B

P (B) +
∑
S∈S

P (S)
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If there is no active pairs, by the design of the Mechanism (2), when recognized, any buyer

will increase Φ by ε and any seller will decrease Φ by ε. Thus, at any time t with no active

pairs, the probability that Φ increases by ε is P tB = utB/u
t, and the probability that Φ

decreases by ε is P tS = utS/u
t (note that P tB or P tS might be 0).

In the following, we will use Claim 2.5.5 to prove that as long as ut does not change

and no active pair appears, after a bounded number of steps, with high probability, Φ

will have reached its upper or lower bound. If Φ reaches its upper bound then all buyers

must be submitting their true valuations and all sellers must be submitting 1. Thus every

unmatched buyer is inactive and ut must have decreased. A similar situation also happens

when Φ reaches its lower bound.

To use Claim 2.5.5, see that if ut does not change and no active pair appears, P tB and P tS

will also remain unchanged. During this time period, we can denote the probability of Φ

increases by ε as PB and the probability of Φ decreases by ε as PS. Let α = PS, β = PB, and

nodes be {0, ε, 2ε, . . . , n} (hence N = n/ε). Thus this is a random walk, and by Claim 2.5.5,

after O((n/ε)2) steps, the probability of Φ reaches its upper bound n or lower bound 0 is

at least 1/2. Therefore, after O((n/ε)2 log n) steps, with probability at least 1 − O(1/n2),

Φ reaches 0 or n.

To conclude, after O((n/ε)2 log n) steps, ut will decrease with probability at least 1 −

O(1/n2). As ut ≤ n, by union bound, the market will converge after O((n3/ε2) log n)

steps with probability 1−O(1/n).

2.6. Conclusions and Future Work

In this chapter, we resolved the second part of Friedman’s conjecture by designing a mech-

anism which simulates the DOA and proving that this mechanism always converges to

a Walrasian equilibrium in polynomially many steps. Our mechanism captures four key
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properties of the DOA: agents on either side can make actions; agents only have limited

information; agents can choose any better response (as opposed to the best response); and

the submissions are recognized in an arbitrary order. An important aspect of our result is

that, unlike previous models, every Walrasian equilibrium is reachable by some sequence of

better responses.

For markets where only a restricted set of buyer-seller pairs are able to trade, we show that

the DOA may never converge. However, if submissions are recognized randomly, and players

only change their bids and offers by a small fixed amount, convergence is guaranteed. It

is unclear that the latter condition is inherently necessary, and it would be an interesting

future work to obtain a convergence result for a relaxed notion of bid and offer changes

where players can make possibly large adjustments as long as they are consistent with the

increment rule. Another interesting direction of future work is to understand if similar

convergence results can established for the more general trading model where, instead of

having the notion of buyers and sellers, any agents can trade with each other.
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CHAPTER 3 : Stochastic Matching

Our work on the double oral auction for the simple buyer-seller trading game, discussed in

the previous chapter, mainly focused on establishing convergence time. In this chapter, we

will switch to another simple trading game, i.e., the stochastic matching problem, where

our focus will (temporarily) switch to data summarization1. We will first formally define

the stochastic matching problem and two types of algorithms for solving the stochastic

matching problem, namely adaptive algorithms and non-adaptive algorithms. Then, we

design an adaptive and a non-adaptive algorithms respectively for the stochastic matching

problem which achieves the same approximation ratio as the previous best bound [25] with

a much better degree bound. We will start by defining and briefly motivation the stochastic

matching problem.

3.1. Background

The stochastic matching problem concerns the problem of finding a maximum matching in

presence of uncertainty in the input graph. Specifically, we are given an undirected graph

G(V,E) where each edge e ∈ E is realized with some constant probability p > 0 and the

goal is to find a maximum matching in the realized graph. To find a large matching, an

algorithm is allowed to query edges in E to determine whether or not they are realized.

Obviously, there is a trivial solution for the stochastic matching problem: simply query

all edges in E to see which edges are realized and compute a maximum matching over

the realized graph. However, in many applications, determining whether or not an edge is

realized could be both costly and time consuming (we will elaborate more on this later in

this section). Consequently, to minimize cost, it is preferable that an algorithm queries as

few edges as possible, and to minimize the time consumed in the query process, an algorithm

should have only a few rounds of adaptivity whenever possible (or minimize the degree of

adaptivity), meaning that it is preferable if the decision of “which edges to query next”

1The full paper of this work can be found in [13].
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does not depend on the outcome of previous queries since in this case, many edges can be

queried in parallel. A more formal definition of this model is presented in Section 3.2.

3.1.1. Kidney Exchange

A canonical and arguably the most important application of the stochastic matching prob-

lem appears in kidney exchange. Typically, organ donation comes from deceased donors

since many organs cannot be harvested from a living donor without jeopardizing the health

of the donor. Fortunately, kidney is an exception, and a healthy living donor is able to

donate one of his/her two kidneys without facing major life threatening consequences.

The possibility of having living donors triggers the idea of kidney exchange: often patients

have a family member who is willing to donate his/her kidney, but this kidney might not be

a suitable match for the patient due to reasons like incompatible blood-type etc. To solve

this problem, a kidney exchange is performed in which patients swap their incompatible

donors to each get a compatible donor.

This setting can be modeled as a maximum matching problem as follows. Create a graph

G(V,E) where each patient-donor pair is a vertex and there is an edge between two vertices

iff the two patient-donor pairs can perform a kidney exchange. Consequently, a maximum

matching in this graph identifies the maximum number of patient-donor pairs that are able

to perform an exchange.

To construct such a graph for kidney exchange, typically we only have access to the medical

record of the patients and the donors, which contains information like blood type, tissue

type, etc. This information can be used to rule out the patient-donor pairs where donation

is impossible (e.g., different blood types), but does not provide a conclusive answer for

whether or not a donation is indeed feasible. In order to be (more) certain that a donor

can donate to a patient, more accurate tests must be performed before the transplant, that

includes crossmatching, antibody screen, etc2, which are both costly and time consuming.

2American Transplant Foundation, http://www.americantransplantfoundation.org/.
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The stochastic matching problem captures the essence of the need of extra tests for kidney

exchange: an algorithm selects a set of patient-donor pairs to perform the extra costly

and time consuming tests (i.e., query the edges), while making sure that w.h.p. there is

a large matching among the pairs that pass the extra tests (i.e., in the realized graph).

The objective of querying as few edges as possible captures the essence of minimizing the

total cost and the objective of having small degree of adaptivity captures the essence of

minimizing patient’s waiting time by performing the extra exams between many patient-

donor pairs in parallel.

The kidney exchange problem has been extensively studied in the literature, particularly

under stochastic settings (see, e.g., [43, 12, 86, 106, 8, 11, 17, 42, 44]); we refer the interested

reader to [25] for a more detailed discussion.

3.2. Our Results and Related Work

We now formally define the model for the stochastic matching problem. For any graph

G(V,E), let opt(G) denote the maximum matching size in G. With a slight abuse of

notation, we sometimes also use opt(X) := opt(G(V,X)) for X ⊆ E, i.e., X is a set of

edges instead of a graph. Throughout, we use n to denote |V |.

In the stochastic setting, for the input graph G(V,E), each edge in E is realized indepen-

dently w.p.3 p. When sampling each edge w.p. p, for any set of edges X ⊆ E, we slightly

abuse the notation and use Xp to denote both a random variable that corresponds to sam-

pling edges in X w.p. p, as well as a specific realization of the random variable Xp. We call

each possible realized graph G(V,Ep) a realization of G.

In the stochastic matching problem, we are given a graph G(V,E) and our goal is to compute

a matching M in G(V,Ep), such that w.h.p. (taken over both the randomness of the

algorithm and the randomness of the realization Ep ⊆ E), the size of M is close to opt(Ep).

An algorithm is allowed to query any edge e ∈ E to determine whether or not e ∈ Ep, and

3Throughout, we use w.p. and w.h.p. to abbreviate “with probability” and “with high probability”,
respectively.
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we consider the following two classes of algorithms.

• Non-adaptive algorithms. A non-adaptive algorithm specifies a subset of edges

Q ⊆ E, queries all edges in Q in parallel, and outputs a matching among the edges

realized in Q.

• Adaptive algorithms. An adaptive algorithm proceeds in rounds where in each

round, based on the edges queried and realized thus far, the algorithm chooses a new

set of edges to query in parallel. We say the degree of adaptivity of an algorithm is d

if the algorithm makes at most d rounds of adaptive queries.

In general, the goal is to design algorithms where the number of per-vertex queries is

independent of n. For adaptive algorithms, the degree of adaptivity is further required to

be independent of n.

We remark that throughout, we always assume opt(G) = ω(1/p) to obtain the desired

concentration bounds. This assumption essentially says that the expected matching size in

the realized graph is bounded from below by a sufficiently large constant.

3.2.1. Related Work

Prior to our work, the state of the art adaptive and non-adaptive algorithms for stochastic

matching are that of [25], which is an adaptive (resp. non-adaptive) algorithm that achieves

a (1− ε)-approximate (resp. (1
2 − ε)-approximate) matching in expectation, while both the

number of per-vertex queries and the degree of adaptivity (for the adaptive algorithm) is

1
pO(1/ε) . Note that while in these algorithms, the number of per-vertex queries and degree

of adaptivity is independent of n, the exponential dependence on 1
ε , limits the practical

appeal of the algorithm. [25] raised an open problem regarding the possibility of avoiding

the exponential dependency on 1
ε for both the number of per-vertex queries and the degree

of adaptivity.

Other variants of the stochastic matching setting have also been studied in the literature.
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[26] considered the setting where each vertex can only pick two incident edges to query and

the goal is to find the optimal set of edges to query. Another well studied setting is the

query-commit model, whereby if an algorithm decides to query an edge e, then e must be

part of the matching the algorithm outputs in case e is realized [38, 7, 30, 19, 65].

3.2.2. Our Results

We provide algorithms for the stochastic matching problem with exponentially smaller num-

ber of queries and degree of adaptivity (for the adaptive algorithm) compared to the best

previous bounds of [25]. In particular,

Theorem 3.1 (Informal). For any ε > 0, there exists a poly-time adaptive (1−ε)-approximation

algorithm for the stochastic matching problem which queries O
(

log (1/εp)
εp

)
edges per vertex

and has degree O
(

log (1/εp)
εp

)
of adaptivity.

The formal statement of Theorem 3.1 is presented in Section 3.5 (as Theorem 3.3).

Theorem 3.2 (Informal). For any ε > 0, there exists a poly-time non-adaptive (1
2 − ε)-

approximation algorithm for the stochastic matching problem which queries O
(

log (1/εp)
εp

)
edges per vertex.

The formal statement of Theorem 3.2 is presented in Section 3.6 (as Theorem 3.4).

These results provide an affirmative answer to an open question raised by [25] regarding the

possibility of avoiding the exponential dependency on 1/ε for both the number of per-vertex

queries and the degree of adaptivity.

One of the key property of our results is that we provide instance-wise approximation

guarantees, i.e., for 1 − o(1) fraction of the realizations of G, the algorithm outputs a

competitive solution. This is a stronger guarantee than the expectation guarantee provided

in [25] which states that expected size of the matching output by the algorithm is competitive

with the expected size of the maximum matching among all realizations. We remark that

our instance-wise guarantee is of particular interest to the key application of the kidney
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exchange problem.

Finally, it is worth mentioning that even when the input graph is a complete graph, one

needs to query Ω(log(1/ε)/p) edges per each vertex to simply ensure that the number of

isolated vertices in the realized graph is at most εn. This is due to the fact that if one

queries less than ln(1/ε)/2p edges per vertex, the probability that no edge incident on a

vertex is realized is (1 − p)ln(1/ε)/2p ≥ exp(−2p · ln(1/ε)/2p) = ε. On the other hand, it is

easy to see that for any constant p > 0, any realization of a complete graph has a perfect

matching w.h.p. Hence, Ω(log(1/ε)/p) is a simple lower bound on the number of per-vertex

queries for any (1 − ε)-approximation algorithm even on complete graphs. Our per-vertex

query bounds in Theorem 3.1 and Theorem 3.2 only ask for slightly more than this simple

lower bound.

3.2.3. Our Techniques

To explain the high-level idea underlying our algorithms, it will be convenient to focus

on the case when Gp has a perfect matching; however, we emphasize that our algorithms

do not require this property. The idea behind both of our algorithms is to construct a

matching-cover of the input graph G and query the edges of the cover in the algorithm.

Roughly speaking, a γ-matching-cover of a graph G(V,E) is a collection of matchings of G

of size γ ·(|V | /2) that are essentially edge-disjoint (see Section 3.4.1 for a formal definition).

One of the main technical ingredient of our work is a structural result proving that: for

any algorithm that outputs a γ-matching cover with Θ(1/εp) matchings, w.h.p. the set of

realized edges in the cover contains a matching of size (1 − ε) · γ · (|V | /2). We prove this

result through a constructive argument based on the Tutte-Berge formula (see Section 3.3

for more details on Tutte-Berge formula).

Next, we show that there is a simple adaptive (resp. non-adaptive) algorithm that com-

putes a 1-matching-cover (resp. 1/2-matching-cover) with Θ(1/εp) matchings, which imme-

diately implies that w.h.p. the algorithm achieves a (1 − ε)-approximation (resp. (1
2 − ε)-

48



approximation).

Finally, to eliminate the assumption that Gp has a perfect matching, we establish a vertex

sparsification lemma (see Section 3.4.2) which allows us to reduce the number of vertices in

any instance G from |V | to O(opt(G)/ε), while w.h.p. preserving the maximum matching

size to within a factor of (1 − ε). In the sparsified graph G(V, E), although we only have

opt(Gp) = Ω(|V|) instead of having a perfect matching, we can show that, with some more

care in the analysis, the constant gap between opt(Gp) and |V| is enough for us to establish

the approximation ratios of our algorithms.

Comparison with [25] The adaptive algorithm of [25] can be summarized as follows:

maintain a matching M , and at each round find a collection of vertex-disjoint augmenting

paths of length O(1/ε) in the input graph G(V,E) with respect to M ; query the edges of the

augmenting paths and augment M if possible. Using the well-known fact that a matching

with no augmenting path of length O(1/ε) is a (1− ε)-approximate matching, the authors

show that the found matching of the algorithm is a (1− ε)-approximation in expectation.

In this process, the probability that an augmenting path of length O(1/ε) “survives” the

querying process is only pO(1/ε); hence, one needs to repeat the whole process roughly

1
pO(1/ε) times, which leads to the same degree of adaptivity and per-vertex queries. The

non-adaptive algorithm of [25] is designed based on similar framework of using augmenting

paths.

On the other hand, our algorithms exploit the structure of matchings in a global way

(using the Tutte-Berge formula) instead of locally searching for short augmenting paths.

In particular, through the use of matching covers, we completely eliminate the need of

searching for the augmenting paths and hence avoid the exponential dependency on 1
ε ,

which is essentially the length of the augmenting paths. It is worth mentioning that however

most of these differences only appear in the analysis; the description of our algorithms and

algorithms of [25] are both simple and similar (modulo the extra sparsification part of our
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algorithm).

Organization: The rest of this chapter is organized as follows. In Section 3.3, we introduce

some notation and preliminaries used in our analysis. In Section 3.4, we establish our key

lemmas which play an important role in both our adaptive and non-adaptive algorithms.

The description and analysis of our adaptive algorithm and our non-adaptive algorithm are

presented in Section 3.5 and Section 3.6, respectively. Finally, we introduce in Section 3.7 a

barrier for obtaining a better approximation using non-adaptive algorithms, and conclude

in Section 3.8 with some future directions.

3.3. Preliminaries

Notation. Throughout for any set of edges X ⊆ E, V (X) denotes the set of vertices

incident on X. For two integers a ≤ b, [a, b] denotes the set {a, . . . , b} and [b] := [1, b].

Tutte-Berge formula. In our proofs, we crucially rely on the Tutte-Berge formula which

generalizes the Hall’s marriage theorem for characterizing perfect matchings in bipartite

graphs to maximum matchings in general graphs. For any graph G(V,E) and any U ⊆ V ,

odd(V − U) denotes the number of connected components with odd number of vertices in

G(V \ U,E). We have,

Lemma 3.3.1 (Tutte-Berge formula). The size of a maximum matching in a graph G(V,E)

is equal to

1

2
min
U⊆V

(
|U |+ |V | − odd(V − U)

)

See, e.g., [84] (Chapter 3) for a proof of this lemma.

Finally, we have the following simple concentration result on the size of a maximum match-

ing in Gp.
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Claim 3.3.2. For any graph G(V,E) with opt(G) = ω(1/p),

Pr (opt(Gp) ≥ p · opt(G)/2) = 1− o(1).

Proof. Fix any maximum matching M in G. E [|Mp|] = p · |M | = p · opt(G). Hence, by

Chernoff bound, w.p. 1− o(1), |Mp| ≥ E [|Mp|] /2 ≥ p · opt(G)/2. Noting that Mp is also a

matching in Gp concludes the proof.

3.4. Matching Covers and Vertex Sparsification

In this section, we present our main technical results, namely the matching-cover lemma and

the vertex sparsification lemma, which lie in the core of both our adaptive and non-adaptive

algorithms. We start by describing the matching-cover lemma. As explained earlier, the

matching-cover lemma is already sufficient for establishing the approximation guarantee

of the algorithms as long as opt(G) = Ω(n). To tackle the case where opt(G) is much

smaller than the number of vertices, we next introduce a simple vertex sparsification lemma

that provides a way of reducing the number of vertices in any graph G(V,E) from |V | to

O(opt(G)) while preserving the maximum matching size approximately, for any realization

of G(V,Ep).

3.4.1. Matching-Cover Lemma

We start by defining the following process which takes any graph as an input, and outputs

a list of matchings (i.e., a matching-cover).

Definition 3.1 (Incremental Matching Selection Process). We say an algorithm is an

incremental matching selection process (IMSP) iff for any input graph G, the algorithm

selects a sequence of matchings M1,M2, . . . ,Mr one by one from G such that for any i ∈ [r],

for any edge e selected in the i-th matching Mi where e also appears in Mj for some j < i,

the edge e must be realized.

We refer to the matchings an IMSP outputs as a matching-cover, and we say that an IMSP
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outputs a γ-matching-cover iff for all i ∈ [r], |Mi| ≥ γn
2 . The following claim states the key

property of any IMSP, which will be used in our proofs.

Claim 3.4.1. For any IMSP A and any graph G, denote by M1,M2, . . . ,Mr the matching-

cover that A outputs on G; then for any i ∈ [r], conditioned on any realization of M1,M2, . . . ,Mi−1,

and any choice of the matching Mi, each edge e ∈Mi is realized w.p. at least p, independent

of any other edges in Mi.

Proof. For the edges e ∈Mi that appear in previous matchings, by the definition of IMSP, e

is realized w.p. 1(≥ p), which is trivially independent of any other edges in Mi. For the set of

edges E′ that do not appear in any previous matching, E′ is disjoint with M1,M2, . . . ,Mi−1

and the set of realized edges in M1,M2, . . . ,Mi−1 is independent of realization of edges in

E′. Therefore, by the definition of the stochastic setting, each edge in E′ is realized w.p. p,

independent of other edges.

We are now ready to state the matching-cover lemma, which is the main result of this

section.

Lemma 3.4.2 (Matching-Cover Lemma). For any parameter 0 < ε, p < 1, any graph G,

and any IMSP A, denote by M1, . . . ,Mr the γ-matching-cover of G that A outputs. If

r ≥ 32 log(2e/γ)
εp and γ · n = ω(1), then, w.p. 1 − o(1), there is a matching of size at least

(1− ε)γn2 among the realized edges in the matching-cover.

We remark that Lemma 3.4.2 holds even for multi-graphs, which is a property required

by our algorithms (due to the usage of vertex sparsification). We first provide a high-level

summary of the proof. Suppose by contradiction that the output of IMSP A does not

contain a large matching; then, by Tutte-Berge formula, there should exist a set of vertices

U ⊆ V where removing U from the graph results in many connected components (CC) with

odd number of vertices, namely U is an odd-sets-witness (see Fig 2.a for an example of an

odd-sets-witness). Our strategy is to show that, for any fixed set U , the probability that U

ends up being an odd-sets-witness is sufficiently small, and then use a union bound over all
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U

Odd-size 
Connected 
Components: 
more than |U|.

Even-size 
Connected 

Components: 
any number.

(a) A candidate odd-sets-witness U .

U

Odd-size 
Connected 
Components: 
more than |U|.

Even-size 
Connected 

Components: 
any number.

(b) Thick (red) edges are matching Mi. Solid edges
are realized while dashed edges are not.

Figure 2: An example of adding a large matching Mi to an odd-sets-witness (the red/thick
edges). The number of odd components does not decrease but the total number of connected
components indeed decreases.

possible choices of U to argue that w.h.p. no such odd-sets-witness can arise.

To see that w.h.p, each U does not lead to an odd-sets-witness, we again use the Tutte-

Berge formula: if the edges realized in the first i matchings leave many odd-size CC’s, then

the large matching Mi+1 must eliminate most of them. Note that this is not enough to

show that the number of odd-size CC’s will decrease w.h.p. since it is possible that Mi+1

eliminates two odd-size CC’s by connecting them through a chain of even-size CC’s (see

the long chain in Fig 2.b for an illustration). The length of the chain could be arbitrarily

long and even if one edge on the chain is not realized, the two odd-size CC’s will still end

up being disconnected. A key observation here is that though the number of odd-size CC’s

might not decrease (requiring all edges on the chain to be realized), but the total number

of CC’s will decrease w.h.p. (any realized edge on the chain reduces the number of CC’s).

Using this fact, we show that after enough number of rounds, the total number of CC’s will

drop significantly and even if all of them are odd-size CC’s, it is not enough for being a

odd-sets-witness.

of Lemma 3.4.2. If the edges realized in the matching-cover do not contain a matching of

size more than (1− ε)γn2 , then, by Lemma 3.3.1, there exists a set of vertices U where the
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number of odd-size connected components after removing U , i.e., odd(V − U), satisfies

(1− ε)γn
2
≥ 1

2

(
|U |+ |V | − odd(V − U)

)

which implies that odd(V − U) ≥ |U | + (1 − γ + εγ)n. In this case, we say U leads to an

odd-sets-witness and denote this event by EU . Using this fact, we only need to prove the

following lemma.

Lemma 3.4.3. For any U ⊆ V , Pr[EU ] ≤ 2−2γn log(2e/γ).

We first show that Lemma 3.4.3 implies Lemma 3.4.2. We will apply a union bound over

all candidate sets U to show that probability that there exists some U where EU happens

is o(1). In order to so, we argue that the number of different choices of U ’s that need

to be considered is at most 2γn log(2e/γ). To see this, note that every odd-size set must

contain at least one vertex, and there are only n vertices that could be part of the odd-

size sets. Thus, we have n ≥ odd(V − U). On the other hand, as we just established,

odd(V − U) ≥ |U |+ (1− γ + εγ)n, and combining the two inequalities, we have

|U | ≤ n− (1− γ + εγ)n ≤ γn (3.1)

Therefore, it suffices to consider the sets U with cardinality at most γn, and only

(
n+ γn

γn

)
≤
(e(1 + γ)n

γn

)γn
≤
(2e

γ

)γn
= 2γn log(2e/γ)

such choices of U exists. Now, we can apply a union bound over all such choices of U , and

by Lemma 3.4.3 w.p. at least 1− 2−γn log(2e/γ) = 1− o(1) (recall that γn = ω(1)), there is

no odd-sets-witness, proving Lemma 3.4.2. It remains to prove Lemma 3.4.3, and as stated

in Eq (3.1) we can assume, wlog, that |U | ≤ γn.

of Lemma 3.4.3. Recall that the goal is to show that w.h.p., U does not lead to an odd-

sets-witness (i.e., EU does not happen). We first define some notation. For any i ∈ [r],
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Mp(i) denotes the set of edges in Mi that are realized and are not incident on vertices in U ,

and Gi denotes the graph after realizing the edges in the first i matchings. We use cc(Gi)

to denote the number of connected components in Gi and use Ei to denote the event that

the number of odd-size connected components in Gi is at least |U |+ (1− γ + εγ)n.

Let Yi be a random binary variable where Yi = 1 iff cc(Gi−1) − cc(Gi) < εp · γn/16 (and

Yi = 0 otherwise), which is the event that the edges of Mp(i) do not reduce the number of

connected components in Gi−1 by more than εp · γn/16. Suppose for at least half of the

rounds, Yi = 0; then, the number of connected components after the IMSP selects the r

matchings is less than

n− r

2
· εp · γn

16
≤ n− 32 log(2e/γ)

εp
· 1

2
· εp · γn

16
≤ (1− γ)n.

On the other hand, since having |U | + (1 − γ + εγ)n odd-size connected components (i.e.,

EU happens) implies that there are more than (1− γ)n connected components,

Pr[EU ] = Pr
(
EU ,

∑
i∈[r]

Yi ≥
r

2

)
(3.2)

Hence, we can focus on upper bounding the probability that EU happens and for more than

half of the rounds, Yi = 1. In the following, we first establish a key property regarding

the probability that Yi = 1 (Lemma 3.4.4) and then show how to use this property to

bound the probability of the target event in Eq (3.2) (Lemma 3.4.6). To simplify the

presentation, we use Mp(ii, i2, . . . , ij) to denote the set of edges realized in the matchings

Mp(i1),Mp(i2), . . . ,Mp(ij), and, with a slight abuse of notation, use Yi to denote the event

that Yi = 1. In particular, we show that

Lemma 3.4.4. For any Mp(1, . . . , i− 1),

Pr (Yi, Ei−1 |Mp(1, . . . , i− 1)) ≤ exp

(
−3εp · γn

16

)
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Proof. Recall that Ei−1 is the event that the number of odd-size connected components in

Gi−1 is at least |U |+ (1− γ + εγ)n. We have,

Pr[Yi, Ei−1 |Mp(1, . . . , i− 1)]

=Pr[Yi |Mp(1, . . . , i− 1), Ei−1] · Pr[Ei−1 |Mp(1, . . . , i− 1)] (Chain rule)

≤Pr[Yi |Mp(1, . . . , i− 1), Ei−1]

hence, we only need to show that Pr[Yi |Mp(1, . . . , i− 1), Ei−1] ≤ exp
(
−3εp·γn

16

)
, which is,

roughly speaking, the probability that the i-th matching Mi does not reduce the number of

connected components by a lot, given that the graph Gi−1 contains many odd-size connected

components.

To proceed, we need the following definition. For any graph H, we say a set of edges E′ form

a component-based spanning forest of H, if E′ is a spanning forest of the graph obtained by

contracting each connected component in H into a single vertex (and any edge (u, v) ∈ E′

becomes an edge between the connected components that u and v respectively resides in).

It is straightforward to verify that if we add any component-based spanning forest E′ ⊂ E

to H, the number of connected components in H would reduce by |E′|. The following claim

is the key to obtain the target upper bound on Pr[Yi |Mp(1, . . . , i− 1), Ei−1].

Claim 3.4.5. Whenever Ei−1 happens, there exist at least εγn
2 edges of Mi that form a

component-based spanning forest of Gi−1.

Proof. Since the matching Mi has size at least γn/2 (by definition of being in a γ-matching-

cover), the edges of Mi can reduce the number of odd-size sets from at least |U |+(1−γ+εγ)n

(i.e., Ei−1 happens) down to at most |U | + (1 − γ)n (by Lemma 3.3.1). Therefore, after

adding edges of Mi to Gi−1, at least εγn odd-size sets will disappear. For each odd-size set

S that disappears, Mi must contain at least one edge between S and another connected

component. Therefore, for the largest component-based spanning forest obtained by the
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edges in Mi, at least εγn vertices (i.e., connected components) have degree at least one,

which implies the number of edges in the forest is at least εγn
2 .

Let Ti ⊆ Mi be the the set of (at least) εγn
2 edges promised by Claim 3.4.5 (conditioned

on Ei−1) and ti be the number of edges realized in Ti. By Claim 3.4.1, each edge in Ti is

realized w.p. at least p independent of each other, hence, E [ti | Ei−1] ≥ εp · γn/2. Note

that ti is a lower bound on cc(Gi−1)−cc(Gi) (i.e., the decrement of the number of connected

components from Gi−1 to Gi), and Yi = 1 iff cc(Gi−1)− cc(Gi) ≤ εp · γn/16, which implies

that no more than εp ·γn/16 edges is realized in Ti (which is 1/8 of the expectation). Hence,

by Chernoff bound,

Pr[Yi |Mp(1, . . . , i− 1), Ei−1] ≤ Pr[ti ≤
εp · γn

16
| Ei−1]

≤ exp

(
−1

2
·
(

7

8

)2

· εp · γn
2

)
= exp

(
−49

64
· εp · γn

4

)
≤ exp

(
−48

64
· εp · γn

4

)
≤ exp

(
−3εp · γn

16

)

which concludes the proof of Lemma 3.4.4.

Having Lemma 3.4.4, we are now ready to upper bound the probability that Yi happens in

more than half of the rounds.

Lemma 3.4.6. For any collection of r/2 rounds i1, i2, . . . , ir/2,

Pr[Yi1 ,Yi2 , . . . ,Yir/2 , EU ] ≤ 2−3γn log(2e/γ).

Proof. Assume wlog that i1 < i2 < . . . < ir/2. First of all, EU happening implies that

Ei1−1, Ei2−1, . . . , Eir/2−1 should all happen4; therefore,

Pr[Yi1 ,Yi2 , . . . ,Yir/2 , EU ] ≤ Pr[Yi1 ,Yi2 , . . . ,Yir/2 , Ei1−1, Ei2−1, . . . , Eir/2−1] (3.3)

4It is straightforward to very that the number of odd-size connected components is monotonically de-
creasing.
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After reorganizing the terms, we have,

Pr[Yi1 ,Yi2 , . . . ,Yir/2 , Ei1−1, Ei2−1, . . . , Eir/2−1]

=Pr[Yi1 , Ei1−1,Yi2 , Ei2−1, . . . ,Yir/2 , Eir/2−1]

=Πj∈[r/2]Pr[Yij , Eij−1 | Yi1 , Ei1−1,Yi2 , Ei2−1, . . . ,Yij−1 , Eij−1−1] (Chain rule)

We will upper bound each of the r/2 terms separately. Fix a j ∈ [r/2], denote the event

(Yi1 , Ei1−1,Yi2 , Ei2−1, . . . ,Yij−1 , Eij−1−1) by E∗. Note that E∗ is completely determined by

Mp(1, . . . , ij−1), which is also determined by Mp(1, . . . , ij − 1) since ij − 1 ≥ ij−1. We have

Pr[Yij , Eij−1 | Yi1 , Ei1−1,Yi2 , Ei2−1, . . . ,Yij−1 , Eij−1−1] = Pr[Yij , Eij−1 | E∗]

=
∑

Mp(1,...,ij−1)

Pr[Mp(1, . . . , ij − 1) | E∗] · Pr[Yij , Eij−1 | E∗,Mp(1, . . . , ij − 1)]

=
∑

Mp(1,...,ij−1) s.t. E∗happens

Pr[Mp(1, . . . , ij − 1) | E∗] · Pr[Yij , Eij−1 |Mp(1, . . . , ij − 1)]

(E∗ is determined by Mp(1, . . . , ij − 1))

≤
∑

Mp(1,...,ij−1) s.t. E∗happens

Pr[Mp(1, . . . , ij − 1) | E∗] · exp

(
−3εp · γn

16

)
(By Lemma 3.4.4)

= exp

(
−3εp · γn

16

)

Therefore

Pr[Yi1 ,Yi2 , . . . ,Yir/2 , EU ] ≤ exp
(
− 3εp · γn

16
· r

2

)
≤ exp(−3γn log(2e/γ)) ≤ 2−3γn log(2e/γ)

where the second equality is by the choice of r.

By Lemma 3.4.6, for each collection of r
2 rounds, Yi happens to all of them w.p. at most

2−3γn log(2e/γ). There are at most 2r (which is independent of n) choices of different (at least)

r
2 rounds, hence using union bounds, for n sufficiently large, the prob. that Yi happens in

more than r
2 rounds is at most 2−2γn log(2e/γ), proving Lemma 3.4.3. As discussed earlier,
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Lemma 3.4.3 implies Lemma 3.4.2, which completes the proof.

3.4.2. Vertex Sparsification Lemma

In the following, we give an algorithm that for any 0 < ε < 1, reduces the number of vertices

in any graph G from |V | to O(opt(G)/ε), while preserving the maximum matching size to

within a factor of (1− ε) for any realization Gp of G w.h.p.

For inputsG and ε and a sparsification parameter τ to be determined later, SPARSIFY(G, τ, ε)

works as follows. We create and output a multi-graph G(V, E) where: (i) |V| = τ , (ii) each

vertex v in G is mapped to a vertex V(v) in G chosen uniformly at random from V, and (iii)

for each edge (u, v), there is a corresponding edge between V(u) and V(v). A pseudo-code

of the SPARSIFY algorithm is presented in Algorithm 1. We point out that similar ideas of

randomly grouping vertices for matchings have been also recently used in [16, 31] for the

purpose of reducing space requirement of algorithms in graph streams.

Algorithm 1: SPARSIFY(G, τ, ε). A Matching-Preserving Sparsification Algorithm

Input: Graph G(V,E), sparsification parameter τ , and input parameter ε > 0.
Output: A multi-graph G(V, E) with |V| = τ .

1. Partition the vertices in V into τ groups V := (V1, . . . ,Vτ ), by assigning each vertex
independently to one of the τ groups chosen uniformly at random.

2. For any edge (u, v) ∈ E, add an edge eu,v between the vertices V(u) and V(v) in E .
3. Return the multi-graph G(V, E).

The following lemma states the main property of the SPARSIFY algorithm.

Lemma 3.4.7. For any graph G(V,E), suppose G(V, E) := SPARSIFY(G, τ, ε) for the pa-

rameter τ ≥ 4·opt(G)
ε , and let M be any fixed matching in G with |M | = ω(1); then, w.p.

1 − o(1), there exists a matching M of size (1 − ε) · |M | in G. Moreover, the edges of M

correspond to a unique matching M ′ in G of the same size.

Proof. Let ε′ := ε/4, and let s denote the number of vertices matched in M (i.e., s = 2 |M |).
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Note that τ ≥ 4opt(G)/ε ≥ 4s/ε = s/ε′. For the sake of analysis, we first merge the τ groups

V into s/ε′ super-groups in the following manner. Fix any partition that evenly breaks [τ ]

into s/ε′ non-empty parts P1, P2, . . . , Ps/ε′ (i.e., |Pi| = ε′τ
s for any i ∈ [s/ε′]). For each

partition Pi, define a super-group Si := ∪j∈[Pi]Vj . Then, since in Algorithm 1 each vertex

v ∈ V is assigned to exactly one group chosen uniformly at random, the probability that

v ∈ Si is ε′

s .

We say a super-group Si is good iff Si contains at least one vertex in V (M), and is otherwise

bad. For each super-group Si, let Xi be a random variable where Xi = 1 iff Si is bad

(otherwise, Xi = 0). Let X :=
∑

i∈[s/ε′]Xi be the number of bad super-groups. In the

following, we first show that X is small w.h.p., which implies that there are many good

super-groups, and then show that there is a large matching between the good super-groups.

To see that X =
∑

i∈[s/ε′]Xi is small w.h.p., first notice that

Pr (Xi = 1) =
(

1− ε′

s

)s
≤ e−ε′ ≤ 1− ε′ + ε′2

2
(∀x ≥ 0, e−x ≤ 1− x+ x2/2)

Therefore, we have E [X] =
∑

i∈[s/ε′] E [Xi] ≤ (1 − ε′ + ε′2

2 ) sε′ . On the other hand, since at

most |V (M)| (= s) super-groups could contain a vertex from V (M) (i.e., could be good),

X ≥ s/ε′− s = Ω(s) = ω(1), and hence E [X] = ω(1). To continue, observe that our setting

can be viewed as a standard balls and bins experiment: each vertex in V (M) is a ball; each

super-group is a bin; and Xi denotes the event that the i-th bin is empty. Therefore, the

random variables Xi’s are negatively correlated, and we can apply Chernoff bound [92]:

Pr
(
X ≥ (1 + ε′2)E [X]

)
≤ e−Ωε′ (E[X]) = o(1) (E [X] = ω(1))

Since E [X] ≤ (1− ε′ + ε′2

2 ) sε′ (as shown above), we further have

Pr[X ≥ (1 + ε′2)(1− ε′ + ε′2

2
)
s

ε′
] ≤ Pr

(
X ≥ (1 + ε′2)E [X]

)
= o(1)
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Hence, w.p. 1−o(1), the number of bad super-groups is at most (1−ε′+2ε′2) sε′ , which implies

that the number of good super-groups is at least s
ε′−(1−ε′+2ε′2) sε′ = (ε′−2ε′2) sε′ = (1−2ε′)s.

It remains to show that if at least (1 − 2ε′)s super-groups are good (i.e., contain a vertex

from V (M)), then the edges in M form a matchingM in G of size at least (1− 4ε′) |M | (=

(1 − ε) |M |). To see this, for each good super-group Si, we fix one vertex v ∈ V (M) ∩ Si

and remove all other vertices in Si. For the matching M , at most 2ε′s vertices in V (M)

are removed and hence at least s/2 − 2ε′s = (1 − 4ε′) |M | edges in M remain. Since all

endpoints of these edges are assigned to distinct super-groups, these edges form a matching

M of size at least (1− 4ε′) |M | = (1− ε) |M | in G .

To see the second part of the lemma, simply note that each edge ofM comes from a distinct

edge in M .

For any Gp := G(V,Ep), define Gp as the graph obtained from G by considering only the

edges that correspond to edges in Ep. We are now ready to prove our vertex sparsification

lemma.

Lemma 3.4.8 (Vertex Sparsification Lemma). Let G(V,E) be a graph with maximum

matching size ω(1/p) and let G = SPARSIFY(G, τ, ε) for τ =
4·opt(G)

ε ; then,

Pr
(

opt(Gp) ≥ (1− ε) · opt(Gp)
)

= 1− o(1)

where the probability is taken over both the inner randomness of SPARSIFY algorithm as

well as the realization Ep ⊆ E.

Proof. By Claim 3.3.2, the maximum matching size in Gp is ω(1) w.p. 1−o(1). Now, for any

realizationGp with maximum matching size of ω(1), by construction, Gp = SPARSIFY(Gp, τ, ε).

Hence, by applying Lemma 3.4.7 on any maximum matching M in Gp, we have that Gp has

a matching of size (1− ε) |M | w.p. 1− o(1).
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3.5. A (1− ε)-Approximation Adaptive Algorithm

We now present our adaptive algorithm and prove Theorem 3.1. The following is a formal

restatement of Theorem 3.1.

Theorem 3.3. There is an adaptive algorithm that for any input graph G(V,E), and any

input parameter ε > 0, outputs a matching of size ALG := ALG(Gp) such that,

Pr
(

ALG ≥ (1− ε) · opt
)

= 1− o(1)

where opt := opt(Gp) is the maximum matching size in Gp(V,Ep). The probability is taken

over both the inner randomness of the algorithm and the realization Ep ⊆ E.

Moreover, the algorithm makes only O( log(1/εp)
εp ) rounds of adaptive queries, and queries

only O( log (1/εp)
εp ) edges per vertex.

Our adaptive algorithm in Theorem 3.3 works as follows. We first use our vertex spar-

sification lemma (Lemma 3.4.8) to compute a graph G(V, E) := SPARSIFY(G, τ, ε) where

opt(G) = Ω(|V|). Next, we repeat for O( log (1/εp)
εp ) rounds the following operation. Pick a

maximum matching M from G, query the edges of M , and remove the edges that are not

realized. Finally, return a maximum matching among the realized edges. The pseudo-code

of this algorithm is presented as Algorithm 2.

Algorithm 2: A (1− ε)-Approximation Adaptive Algorithm for Stochastic Matching

Input: Graph G(V,E) and input parameters 0 < ε, p < 1.
Output: A matching M in G(V,Ep).

1. Let G(V, E) := SPARSIFY(G, τ, ε) for τ :=
⌈

4opt(G)
ε

⌉
.

2. Let R :=
⌈

32 log(8e/εp)
ε·p

⌉
, and E∗ ← E .

3. For i = 1, . . . , R, do:
(a) Pick a maximum matching Mi in G(V, E∗).
(b) Query the edges in Mi and remove the non-realized edges from E∗.

4. Output a maximum matching among realized edges in M1,M2, . . . ,MR.

It is straightforward to verify the number of queries and the degree of adaptivity used in
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Algorithm 2: each round of the algorithm queries edges of a matching and hence each vertex

is queried at most once in each round. We now prove the bound on the approximation ratio

of the algorithm.

Proof of Theorem 3.3. Let ôpt := ôpt(Gp) denote the maximum matching size in the graph

Gp. By Lemma 3.4.8, w.p. 1−o(1), ôpt ≥ (1− ε)opt(Gp). Now, it suffices to show that w.p.

1 − o(1), Algorithm 2 outputs a matching of size at least (1 − ε)ôpt, since, with a union

bound, it would imply w.p. 1− o(1),

ALG(Gp) ≥ (1− ε) · ôpt ≥ (1− ε)2 · opt(Gp) ≥ (1− 2ε) · opt(Gp)

and we can replace ε with ε/2 in Algorithm 2 to obtain a (1− ε)-approximation.

To see that ALG(Gp) ≥ (1 − ε)ôpt w.h.p., let L := mini∈[R] |Mi|, i.e., the minimum size

of a matching chosen by Algorithm 2. Since all Mi’s are maximum matchings in E∗ while

E∗ always contains all edges of the optimum matching in Gp, we have L ≥ ôpt and we can

focus on showing ALG(Gp) ≥ (1− ε)L.

It is straightforward to verify that the way Algorithm 2 selects the matchingsM1,M2, . . . ,MR

satisfies the condition of IMSP (Definition 3.1). Moreover, by Claim 3.3.2 and Lemma 3.4.8,

we have, Pr
(

ôpt ≥ p · opt(G)/2
)

= 1− o(1). Therefore, we can use Lemma 3.4.2 with pa-

rameters:

γ =
2L

|V|
≥ ε · p

4
, r =

32 log (2e/γ)

εp
≤ 32 log (8e/εp)

εp
≤ R

which states that w.p. 1− o(1), the realized edges in matchings M1,M2, . . . ,MR contain a

matching of size at least (1− ε)γ|V|2 = (1− ε)L, which completes the proof.
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3.6. A
(

1
2
− ε
)
-Approximation Non-Adaptive Algorithm

In this section, we present our non-adaptive algorithm and prove Theorem 3.2. The following

is a formal restatement of Theorem 3.2.

Theorem 3.4. There is a non-adaptive algorithm that for any input graph G(V,E), any

input parameter ε > 0, outputs a matching of size ALG := ALG(Gp) such that,

Pr
(

ALG ≥ (
1

2
− ε) · opt

)
= 1− o(1)

where opt := opt(Gp) is the maximum matching size in Gp(V,Ep). The probability is taken

over both the inner randomness of the algorithm and the realization Ep ⊆ E.

Moreover, the algorithm non-adaptively queries O( log (1/εp)
εp ) edges per vertex.

Note that any non-adaptive algorithm works in the following framework:

1. Compute a subgraph H(V,Q) of the input graph G(V,E) for some Q ⊆ E.

2. Query all edges in Q and compute a maximum matching in H(V,Qp).

Therefore, the main task of any non-adaptive algorithm is to choose a “good” subgraph

H. Our non-adaptive algorithm chooses a subgraph H as follows. We first use our vertex

sparsification lemma to compute a graph G(V, E) := SPARSIFY(G, τ, ε) where opt(G) =

Ω(|V|). Next, we repeat for O( log (1/εp)
εp ) times the process of picking a maximum matching

from G(V, E) and removing the edges of the matching from E . Let Q be the set of edges in

these matchings; the algorithm returns H(V,Q) as the subgraph H. A pseudo-code of this

algorithm is presented as Algorithm 3.

We now briefly provide the intuition behind Algorithm 3. Similar to the adaptive case,

using the vertex sparsification lemma (Lemma 3.4.8), our task reduces to approximating

the maximum matching in Gp (as opposed to Gp). For the adaptive case, our algorithm

guarantees that every selected matching is of size at least opt(Gp), which allows us to use
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Algorithm 3: A Non-Adaptive
(

1
2 − ε

)
-Approximation Algorithm for Stochastic Matching

Input: Graph G(V,E) and input parameters 0 < ε, p < 1.
Output: A matching M in G(V,Ep).

1. Let G(V, E) := SPARSIFY(G, τ, ε) for τ :=
⌈

4opt(G)
ε

⌉
.

2. Let R :=
⌈

32 log(16e/εp)
ε·p

⌉
.

3. Initially Q← ∅. For i = 1, . . . , R, do:
(a) Pick a maximum matching Mi in G(V, E \Q).
(b) Let Q← Q ∪Mi.

4. Query all edges in Q and return a maximum matching in M1,M2, . . . ,MR.

the matching-cover lemma directly to complete the argument. However, Algorithm 3 does

not have such a strong guarantee since it is non-adaptive. To address this issue, we establish

a weaker guarantee which allows us to obtain a 1/2-approximation. The idea is as follows.

On one hand, if the smallest matching selected by the algorithm is of size at least opt(Gp)/2,

we can still invoke the matching-cover lemma (Lemma 3.4.2) and have that Algorithm 3

outputs a matching of size (1−ε)opt(Gp)/2. On the other hand, we show that if the smallest

selected matching has size less than opt(Gp)/2, then for any maximum matching M∗ in Gp,

we must have selected in Q at least half the edges of M∗, which immediately results in a

matching of size opt(Gp)/2.

We now present the formal proof. In the following, let L := mini∈[R] |Mi|, i.e., the minimum

size of a matching chosen by Algorithm 3. Note that L = |MR| since the size of matchings

chosen by the algorithm is a non-increasing sequence by construction.

Lemma 3.6.1. If L ≥ p · opt(G)/4, then, Pr
(

ALG ≥ (1− ε) · L
)

= 1− o(1).

Proof. Since M1, . . . ,MR are edge disjoint matchings, the process of choosing M1, . . . ,MR

is an IMSP (Definition 3.1). Hence, by Lemma 3.4.2 with parameters:

γ =
2L

|V|
≥ ε · p

8
, r =

32 log (2e/γ)

εp
≤ 32 log (16e/εp)

εp
= R

there exists a matching of size (1 − ε) · γ|V|2 = (1 − ε) · L in Qp w.p. 1 − o(1). Noting that

any matching of Gp in Qp corresponds to a matching in Gp completes the proof.
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We define ôpt := ôpt(Gp) as the maximum matching size in Gp.

Lemma 3.6.2. Pr
(

ALG ≥
(

1
2 − ε

)
· ôpt | ôpt > 2L

)
= 1.

Proof. Let M be any arbitrary matching in G. We have, |M |−|Q ∩M | ≤ L since otherwise,

for the matching M ′ := M \Q, we have |M ′| = |M | − |Q ∩M | > L > |MR|, contradicting

the fact that MR is a maximum matching in the remaining graph.

Now let M be any maximum matching in Gp. Since ôpt > 2L, we have |M | > 2L. Conse-

quently, |Q ∩M | ≥ |M | − L ≥ |M | − |M | /2 = |M | /2. Hence, at least half of the edges in

M are also present in Q, implying that in this case, ALG ≥ ôpt/2 w.p. 1.

We now prove the bound on the approximation ratio of Algorithm 3.

Lemma 3.6.3. Pr
(

ALG ≥ (1
2 − 2ε) · opt

)
= 1− o(1).

Proof. Recall that ôpt := ôpt(Gp). By Claim 3.3.2 and Lemma 3.4.8, we have,

Pr
(

ôpt ≥ p · opt(G)/2
)

= 1− o(1) (3.4)

Let Ewin be the event that ALG ≥
(

1
2 − ε

)
· ôpt. We argue that Pr (Ewin) = 1−o(1). This,

together with the fact that w.p. 1− o(1), ôpt ≥ (1− ε) · opt (Lemma 3.4.8) completes the

proof.

Consider two cases, (i) L < p · opt(G)/4, and (ii) L ≥ p · opt(G)/4. For case (i),

Pr (Ewin) ≥ Pr
(

ôpt > 2L
)
· Pr

(
Ewin | ôpt > 2L

)
≥ Pr

(
ôpt > p · opt(G)/2

)
· Pr

(
Ewin | ôpt > 2L

)
= (1− o(1)) · 1
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where the last equality is by Eq (3.4) and Lemma 3.6.2. For case (ii),

Pr (Ewin) =Pr
(

ôpt > 2L
)
· Pr

(
Ewin | ôpt > 2L

)
+ Pr

(
ôpt ≤ 2L

)
· Pr

(
Ewin | ôpt ≤ 2L

)
=Pr

(
ôpt > 2L

)
+ Pr

(
ôpt ≤ 2L

)
· Pr

(
Ewin | ôpt ≤ 2L

)
(By Lemma 3.6.2)

≥Pr
(

ôpt > 2L
)

+ Pr
(

ôpt ≤ 2L
)
· Pr

(
ALG ≥ (1− ε) · L | ôpt ≤ 2L

)
≥Pr

(
ôpt > 2L

)
· Pr

(
ALG ≥ (1− ε) · L | ôpt > 2L

)
+ Pr

(
ôpt ≤ 2L

)
· Pr

(
ALG ≥ (1− ε) · L | ôpt ≤ 2L

)
=Pr(ALG ≥ (1− ε) · L) = 1− o(1)

where the last equality is by Lemma 3.6.1.

Theorem 3.4 now follows from Lemma 3.6.3 (by replacing ε with ε/2 in Algorithm 3), and

the fact that Algorithm 3 queries O( log (1/εp)
εp ) matchings and hence O( log (1/εp)

εp ) incident

edges are queried for each vertex.

3.7. A Barrier to Obtaining a Non-Adaptive (1− ε)-Approximation Algorithm

The approximation ratio of our non-adaptive algorithm is (1
2 − ε) as opposed to the near-

optimal ratio of (1− ε) achieved by our adaptive algorithm. A natural question, first raised

by [25], is if one can obtain a (1−ε)-approximation using a non-adaptive algorithm, even by

allowing arbitrary dependence on p and ε. In the following, we highlight a possible barrier

to obtain such a result.

Consider a bipartite graph G(L,R,E) constructed as follows: (i) the vertex sets are L =

V1 ∪ V3, R = V2 ∪ V4 and |Vi| = N for i ∈ [4], (ii) there is a perfect matching between

V1 and V2, and a perfect matching between V3 and V4, and (iii) there is a gadget graph

Ĝ(V2, V3, Ê), to be determined later, between V2 and V3 (see Fig 3.a).

Suppose we want to design a non-adaptive (1− ε)-approximation algorithm for the instance

G(V,E) with the parameter p = 2/3. In this case, for any graph Gp, w.h.p., there is a
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V3 V4

Gadget 
Graph

(a) Input graph G(V,E)

V1 V2
V3 V4

Gadget 
Graph

B

A

(b) A realization Gp(V,Ep)

Figure 3: An example of a barrier to (1− ε)-approximation non-adaptive algorithms. The
edges in the gadget graph are not presented in this figure. In part (b), solid red edges (resp.
dashed edges) are the edges that are realized (resp. not realized).

matching M1 between V1 and V2, and another matching M2 between V3 and V4, each of size

(2/3)N − o(N). Hence,

opt(Gp) ≥ |M1|+ |M2|+ (2/3) ·m(A,B)− o(N) (3.5)

where A (resp. B) is the set of vertices in V2 (resp. V3) that are not matched by M1

(resp. M2), and m(A,B) denotes the size of a maximum matching between A and B. A

few observations are in order. First, picking edges of M1 and M2 is crucial for having any

large matching in Gp, and second, for a uniformly at random chosen realization of M1 and

M2, the set A and B are chosen uniformly at random from V2 and V3 (see Fig 3.b). Based

on these observations, we define the following problem.

Problem 1. Given a bipartite graph G(L,R,E), choose a subgraph H(L,R,Q) such that

given two subsets A ⊆ L and B ⊆ R, if m(A,B) ≥ N/3 − o(N) in G, then H contains at

least Ω(N) edges between A and B.

The goal is to solve Problem 1 using a graph H with small number of edges. The previ-

ous discussion implies that any non-adaptive (1− ε)-approximation algorithm has to solve

Problem 1 for the gadget graph Ĝ, when the two sets A and B are chosen uniformly at

random. Otherwise, for the maximum matching size ALG(Gp) in H(V,Qp) and maximum
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matching size OPT(Gp) in Gp, we have:

ALG(Gp) ≤ |M1|+ |M2|+ o(N) ≤ (4/3)N + o(N)

OPT(Gp) ≥ (4/3)N + (2/3)(N/3)− o(N) = (14/9)N − o(N) (by Eq (3.5))

Hence, the approximation ratio of the algorithm on this instance is at most 6/7 + o(1),

bounded away from being a (1− ε) approximation for ε < 1/7.

Although for randomly chosen subsets A and B, no lower bound on the size of H is known,

we show in the following that if A and B are chosen adversarially, then there exist graphs

for which solving Problem 1 requires storing a subgraph with super linear in n number

of edges. Note that the number of queries of any non-adaptive algorithm is at least the

number of edges in H and hence this bound on the number of edges in H implies that

ω(n) queries are needed, or in other words, the number of per-vertex query needs to be a

function of n. The existence of such a graph indicates a barrier to obtain a non-adaptive

(1− ε)-approximation algorithm.

To continue, we need a few definitions. For a graph G(V,E), a matching M is called an

induced matching, if there is no edge between the vertices matched in M , i.e., V (M), except

for the edges in M . A graph G(V,E) is called an (r, t)-Ruzsa-Szemerédi graph ((r, t)-RS

graph for short), if the edge set E can be partitioned into t induced matchings each of size

r. Note than the number of edges in any (r, t)-RS graph is r · t.

Suppose G(L,R,E) is an (r, t)-RS graph with the parameter r = N/3 and induced match-

ings M1, . . . ,Mt. For each i ∈ [t], define Ai (resp. Bi) as V (Mi) ∩ L (resp. V (Mi) ∩ R).

Suppose we choose the pair (A,B) only from the set of pairs F := {(A1, B1), . . . , (At, Bt)}.

Note that between any pair in F , there is a matching of size r = N/3, and moreover all

edges of G are partitioned between these matchings. If the subgraph H(V,Q) has only

o(r · t) edges, a simple counting argument suggests that for 1 − o(1) fraction of pairs in

F , only o(r) edges between the pairs are present in H. Hence, H cannot be a solution to
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Problem 1.

To complete the argument, we point out that there are (r, t)-RS graphs on 2N vertices

with parameters r = N/3 and t = NΩ(1/ log logN) [48, 55]. These constructions certify that

to solve Problem 1 when the sets A and B are chosen adversarially, one needs to store a

subgraph with n1+Ω(1/ log logn) = ω(n · polylog(n)) edges. In conclusion, while this result

does not rule out the possibility of a non-adaptive (1 − ε)-approximation algorithm where

the number of per-vertex queries is independent of n, it suggests that any such algorithm

has to crucially overcome Problem 1 using the fact that the two sets A and B are chosen

randomly instead of adversarially.

3.8. Conclusions and Future Work

In this chapter, we presented our study on the stochastic matching problem. We showed that

there exists an adaptive (1− ε)-approximation algorithm for this problem with O( log(1/εp)
εp )

per-vertex queries and degree of adaptivity. We further presented a non-adaptive (1
2 − ε)-

approximation algorithm with O( log(1/εp)
εp ) per-vertex queries. These results represent an

exponential improvement over the previous best bounds of [25], answering an open problem

in that work.

An interesting direction for future work is to design a non-adaptive algorithm that obtains a

better than 1
2 -approximation while maintaining the property that the number of per-vertex

queries is independent of n. Toward this direction, we highlighted a potential barrier to

achieve a (1− ε)-approximation non-adaptively and we believe that overcoming this barrier

would play a key role in this line of research.

70



CHAPTER 4 : Convergence Time of Interdomain Routing

In the previous section, we discussed our work on the stochastic matching problem, which

was focusing on data summarization. In this chapter, we will present our study on another

graph problem, i.e., the convergence time of interdomain routing1. We first formalize the

interdomain routing problem by introducing both the routing protocol, namely, the Border

Gateway Protocol, and the notation of partial preference systems. We point out that conver-

gence under partial preference systems and convergence under traditional (total) preference

systems are connected through the concept of path linearization. Then, we consider rapid

convergence for partial preference systems under different types of routing preferences and

establishing dichotomy theorems. Finally, we study the problem of completing preferences

while minimizing the path-length in the resulting stable routes. We will start with a brief

introduction of the discovery of interdomain routing.

4.1. Background

The Internet is a network of networks, connected via a common routing protocol which

allows data paths to be found that meet the local policy of each network. This protocol is

‘BGP’, the Border Gateway Protocol [97]. Its most important difference from other route-

finding methods is the way in which local policy controls the selection and propagation of

routes: rather than there being a single global definition of ‘best’ route (as in shortest-

path protocols), every constituent network has its own interpretation. This is because of

the asymmetry in the economic relationships among these network participants; accord-

ingly, BGP is best perceived as a protocol that tries to compute a Nash equilibrium in a

game where all parties are trying to obtain good routes (by their local definition) but are

constrained by the choices of others (one cannot pick a route through a neighbor without

agreement) [93, 46].

BGP policy configuration can be extremely complex and nuanced. Preferences among

1The full paper of this work can be found in [68].
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possible network paths may be set arbitrarily. In practice, typical preferences are rather

more structured. A standard configuration practice is for the first preference decision to be

based on the identity of the neighbor from which the route was received; and then, among

all routes coming from the most-favored neighbors, other characteristics such as path length

are used to break ties [52, 27, 113]. Note that even in this restricted case, the preference

classes over the neighbors may not be consistent across the entire network.

In general, network policies can conflict to the extent that BGP will be unable to find a

stable solution: in this case, the protocol will oscillate indefinitely [81, 80, 88]. Furthermore,

a set of policies may support the existence of multiple possible outcomes, which is typically

also felt to be an error (because policy was not expressed well enough to yield the truly

intended single outcome) [61]. There has been a great deal of work on identifying sufficient

criteria for BGP to converge to a unique stable state [60, 62, 64, 107, 52, 104]. Unlike

as previously suspected, the observed issues with convergence may not arise from router

bugs or network anomalies, nor even from mistakes in the protocol definition, but may be

inherent to the nature of the routing problem being solved. This was shown by the use

of abstract models (in particular, stable paths problems [63]) displaying the same effects,

without any of the complicating apparatus of BGP or its environment.

Even if BGP does converge, experience shows that it may take some time to do so [80, 47],

and even in the absence of policy, when link failure occurs, the path-vector protocol used by

BGP may still need exponential time to converge [75]. The slow convergence causes practical

difficulties for network operators, and degradation or loss of service for their customers. The

technology of ‘route flap damping’, which modifies the timing behavior of BGP in order

to avoid propagating temporary oscillations, has been developed [108], criticized [87], and

readjusted [94], but in a purely empirical fashion that does not address the root cause of

delayed convergence.

The main focus in this paper is on the theoretical aspect of the convergence time of BGP.

In particular, we aim to understand when convergence is guaranteed, how much time it

72



requires for the network to actually converge (or to stabilize). We study convergence time

when different restrictions are applied on the structure of the preferences, and establish both

necessary and sufficient conditions (i.e., dichotomy theorems) for convergence in polynomial

time. To the best of our knowledge, prior to our work, the only related studies concerning

polynomial time convergence are given by [52, 99], which only established polynomial time

convergence for the Gao-Rexford criteria2.

Our results are backed by a general model of routing preference, based on the idea of partial

policy specification [67, 113]. While BGP requires all paths to be ranked in a linear order

(as otherwise it cannot choose a single best path in all circumstances), operators do not

actually think of policy in this way. It is more natural to imagine the linear preference

order as being determined by a combination of a general operator-determined policy, and

subsequent tie-breaking actions that do not reflect ‘genuine’ preferences. The general policy,

as implemented in standard BGP systems via match-action rules, amounts to partitioning

the set of possible paths into disjoint classes: within a class, no preference is given, and

between the classes, preferences might exist. For example, ‘all routes from neighbor 17’

could be a class, which is preferred to the class ‘all routes from neighbor 4’.

4.2. Our Results and Related Work

We first show that convergence is achieved when all possible routes can be put into a global

linear order consistent with the given preferences (i.e., a linearization), which also matches

known conditions for the existence of a unique stable solution [67]. We further establish

that the construction of a linearization (when one exists), though the number of paths being

linearized may be exponentially many, can always be done in time polynomial in the number

of explicitly given preferences (Section 4.4).

For the setting where, instead of linearizing, the routers only follow the specified partial

preferences and act indifferently between unordered paths (hence never voluntarily switch

2[99] also contains a general result regarding convergence time in terms of the number of phases (see
Section 4.4.1 for the definition and more details).
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to a path that is not strictly better than the current path), we present a detailed study of

convergence time of networks (which are guaranteed to converge) with restricted preference

systems. In particular, if each node only specifies preference over at most two paths, where

each path has at most three hops, there still exist instances of networks that may take

exponentially many (in the total number of nodes) steps before convergence. On the other

hand, restricting the preference any further ensures poly-time convergence (Section 4.5). If a

path’s degree of preference is determined only by the identity of the next-hop neighbor, poly-

time convergence is guaranteed [100]. However, using only the next two hops to determine

preference already leads to instances that take exponentially many steps before convergence

(Section 4.6).

Finally, we observe that a given partial policy may admit many possible linearizations

which may result in distinct stable states for the network. A natural question is if one

can efficiently compute a linearization that results in a stable state with some desirable

properties. We consider the problem of computing a linearization that minimizes the hop-

length of the longest path in the resulting stable state. We establish a strong hardness

result by showing that the problem is NP-hard to approximate to within a factor of Ω(n).

To complement the hardness result, we further provide a poly-time algorithm that finds a

path linearization where the length of the longest path only incurs an additive error of at

most l, where l is the length of the longest path in the preference.

Organization: This chapter is structured as follows. After introducing some fundamental

concepts and notation (Section 4.3), we explore the linearization concept and its complexity

(Section 4.4). We then show how possible restrictions of preference expressivity affects con-

vergence time (Section 4.5, 4.6). Finally, we investigate the problem of completing policies

that minimizes the length of the longest path (Section 4.7). We conclude (Section 4.8) by

relating our results to prior work on the algorithmic complexity of BGP.
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4.3. Preliminaries

In BGP, each network router (node) is capable of expressing independent preferences about

its paths to each possible destination. It is well established that it suffices to focus on a

single destination.

Definition 4.1 (Network). A network N is defined as a tuple 〈G(V,E), L, t〉, where G(V,E)

is a directed graph, L is the preference (or policies, see definition below), and t is the

designated destination node.

Throughout this paper, we denote by n the number of nodes in V . We assume that any

v ∈ V is connected to t in G(V,E). Let P denote the set of all simple paths in G(V,E)

that terminate at t, and let Pv for each v in V , be the set of simple paths from v to t. The

preference L contains path preferences expressed as partial orders on Pv for each node v in

V .

Definition 4.2 (Preference). A preference Lv for a node v is a partial ordering �v on all

simple paths from v to t, Pv. For any p, q ∈ Pv, p is ‘better’ than q iff p �v q. Otherwise,

p and q are unordered, and v is ‘indifferent’ between them.

Generally, we write p �L q (or p � q if L is clear from the context) if p is better than q for

some v. In addition, we denote an empty path as ε, which is worse than any path in P. We

say a path p is specified in a preference Lv, denote by p ∈ Lv, if there exists a path q with

p �v q or q �v p.

In the protocol execution, each node tries to find a ‘good’ path to t, according to its own

order, but subject to the requirement that it cannot choose a path unless the relevant

neighbor has chosen the suffix of that path. Since forwarding is destination-based and hop-

by-hop, a node may select a ‘path’, but data need not be constrained to follow that path

if the other nodes along it have chosen differently. Therefore, it is more appropriate to say

that a node chooses an outgoing edge to send traffic; it might continue to send traffic along

that edge even after further network events have diverted the path. We now define the
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possible routing states in the protocol execution more precisely.

Definition 4.3 (State). A state of the protocol execution is a function S from V to E∪{⊥},

such that for each node v, other than t, we either have S(v) = (v, u) when v has selected

the edge (v, u) in E, or S(v) = ⊥ if no neighbor is assigned to v.

A node v is connected to t in a state S iff v is connected to t in the graph induced by

the edges chosen in S. We will write PS(v) for the path induced by S from v to t. If v is

not connected, then PS(v) = ε3. If v is connected, PS(v) = S(v)PS(u) when S(v) = (v, u)

( this will always be a simple path); indeed, any intermediate node appearing on PS(v)

is assigned the corresponding suffix of PS(v). When the network converges, these paths

collectively form a tree directed towards t. During the execution, a node is constrained to

only choose among the available paths.

Definition 4.4 (Available paths). If a node v has k out-neighbors u1, u2, . . . , uk in G(V,E),

then the set of available paths for v in state S is AP(S, v) = {(v, ui)PS(ui) | 1 ≤ i ≤ k, (v, ui)PS(ui) ∈ Pv}∪

{ε}.

If the preference specifies a total order over all available paths, a node can always choose the

best available path according to such an order. However, if only given a partial preference,

for the unordered paths, a node still needs to make a decision among them. We consider

the case where for each node v and paths starting from v, those specified in Lv are better

than the remaining, and a node can change its state (and hence the state of the network)

only if it has an improving move.

Definition 4.5 (Improvement and Stable State). A node v has an improving move in a

state S iff there exists a path p∗ = (v, u∗)PS(u∗) in AP(S, v) such that S(v) 6= (v, u∗) and

p∗ is better than PS(v). The corresponding improved state S′ will have S′(v) = (v, u∗). A

state is stable iff no node has an improving move.

Consequently, whenever v is choosing among a set of paths without a total order, v can

switch to an available path that is strictly better than his current path if any. If there is no

3Note that ε is an empty path while ⊥ denotes an ‘empty’ edge.
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such path, v will always stick with the current path (and hence has no improving move).

Remark 4.3.1 (The stable paths problem). Our partial preference system generalizes the

case of the well known stable paths problem (SPP) [63] in the following sense. In SPP,

each path is assigned with a rank (which reflects the priority) and for each node, paths with

the same rank must have the same next-hop (so called the strictness). Since for each node,

different paths with the same next-hop never appear simultaneously (the next-hop node can

only have one path to t), order them arbitrarily will not affect the behavior of nodes in

SPP. In other words, the preference of SPP for each node is (implicity) a total order over

all paths. Partial preference system clearly captures total orders on paths, and it is more

general since paths with different next-hop are allowed to be unordered.

A node can only attempt to make an improvement when it is activated according to a

schedule.

Definition 4.6 (Activation). An activation on v ∈ V at a state S is a state transformation

from S to a state S′ such that only v can change its state to a improved state (if v has an

improving move). We use ρ to denote the transformation function, i.e., S′ = ρ(S, v).

Definition 4.7 (Schedule). A schedule is a sequence of activations defined by a function

α from N to V , where α(τ) = v means that the node v is activated at the time step τ . A

schedule is starvation-free if for each node v and each time τ , there exists some ∆ > 0 such

that v = α(τ + ∆). We will only consider starvation-free schedules.

For an initial state S, we denote by S
(τ)
α the state reached after activating the list of

nodes α(1), α(2), . . . , α(τ) in order (and S
(0)
α is taken to be S). In other words, S

(τ+1)
α =

ρ(S
(τ)
α , α(τ + 1)), for any positive τ . The following claim is an immediate consequence of

the protocol execution model.

Claim 4.3.2. If PS(v) 6= ε for some node v in some state S, for any schedule α and any

τ > 0, P
S
(τ)
α

(v) 6= ε.

Definition 4.8 (Convergence). A network has converged given a schedule α at time τ from

a starting state S, if for any ∆ > 0, we have S
(τ)
α = S

(τ+∆)
α .
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Note that if a network converges, it always converges to a stable state.

Definition 4.9 (Convergence time). Given a starting state and a schedule, if τ is a time

step at which the network N has converged (τ = +∞ if N never converges), we define

the convergence time to be the number of improvements made up to τ . The maximum

convergence time, denoted by CTmax(N), of N is the longest convergence time over all

possible initial states and schedules.

Note that since only the improving moves are counted, the convergence time is not neces-

sarily equal to τ (though it is at most τ), and the definition of maximum convergence time

is consistent for any τ at which N has converged.

4.4. Path Linearization

In this section, we show that whenever the specified partial preferences are free of dispute

wheels (a particular cyclic arrangement of preferences), there is always a total order over all

possible paths that is consistent with the preference such that a unique stable state will be

reached after some bounded amount of time. We refer to such a network as a linearizable

network, and to the process of finding such a total order as path linearization. Our approach

is based on exploiting the structure of the “path digraph” associated with the input instance,

taking advantage of a well-known connection between path digraphs and dispute-wheels.

Moreover, we provide a path linearization algorithm that, though computing a total order

on possibly exponentially many paths, runs in time polynomial in the size of the input

graph and the preference.

4.4.1. Path Digraph and Dispute Wheels

A path digraph is a graph representation for ‘BGP-like’ path problems, where individ-

ual nodes’ preferences govern route selection in a path-vector algorithm. For a network

〈G(V,E), L, t〉, the nodes of the path digraph are all the simple paths in G. The nodes for

paths p and q are connected by a directed edge (p, q) if either p is a suffix of q or some node

in G prefers p to q. Thus in the path digraph any suffix p of a path q (denoted by p → q)
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Figure 4: Some network examples.

is always considered better than the path q itself.

Definition 4.10 (Linearization). For a given network 〈G(V,E), L, t〉, a linearization �P

of all paths P is a total order compatible with both L and the suffix relations. Specifically,

for any p, q ∈ P, (a) if p �L q, then p �P q (preference compatibility), and (b) if p → q

then p �P q (suffix compatibility).

Define a phase of a schedule to be an interval of time during which all nodes are activated

at least once. Then, linearizable networks have the following property.

Theorem 4.1. Any linearizable network will converge to a unique stable state. Moreover,

n phases suffice for any linearizable network on n nodes to converge under any initial state

and any schedule, where n is the number of nodes.

Proof. By [63, 99], absence of dispute wheels implies that the network always converges

to a unique stable state, and convergence will happen in at most n phases. Absence of

dispute wheels is equivalent to acyclicity of the path digraph [67], which is equivalent to

linearizablility of a network.

On the other hand, without such a global linearization, convergence is not guaranteed.

Figure 4a shows a typical example where the network will never converge. Assume each

node ai has preference aiai+1t � ait � aiai+1ai+2t, where subscripts are interpreted modulo
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3. In fact, this network has no stable state, and hence it can never converge. To see this,

consider the number of nodes choosing the direct edge to t in a stable state if there exists

one. If none of the nodes takes the path ait, any ai will take ait when activated (hence

unstable). If only a0 chooses the direct edge a0t, a2 will choose a2a0t and leave a1 no choice

but also choosing the direct edge to t. If a0, a1 both choose the direct edges to t, then a0

will switch to a0a1t. If all nodes choose the direct edge to t, then a0 will switch to a0a1t.

4.4.2. A Polynomial Time Algorithm for Linearization

We assume in the following that the input network is linearizable, and show that an effi-

ciently computable linearization always exists. As our goal is to create a linearization for

possibly exponentially many paths in polynomial time, the output can not be an explicit

representation of the linear order. Hence we design a poly-time computable function that

takes as input an ordered pair of simple paths (p, p′) and outputs yes whenever p is ranked

higher than p′ in the linearization, and no otherwise. We establish the following.

Theorem 4.2. Any linearizable network has a linearization that can be computed in poly-

nomial time.

To linearize a network 〈G(V,E), L, t〉, we first consider the path digraph with respect to

only the specified paths PL. Formally, each path in PL is (i) the trivial path that has only

one node t, (ii) a path in the preference system L, or (iii) a subpath (i.e., a suffix) of some

path in L. We call the following linear order of PL a spine.

Definition 4.11 (Spine). A spine on 〈G(V,E), L, t〉 is a linear order �PL on PL such that

for any p, q ∈ PL, (a) if p �L q then p �PL q, and (b) if p → q then p �PL q. Note that

path t must be the largest element in any spine.

A spine �PL can be created efficiently since the total number of paths in PL is at most

|L| + n|L| + 1 = O(n|L|) (which respectively corresponds to the paths in L, the suffixes

of paths in L, and the trivial path t) and a topologically sorted order of PL can found in

O(n2|L|2) time.
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Now, we show how to use a spine �PL to find a linearization of the network. For each path

p in P \ PL, among all suffixes of p that are in PL, map p to the smallest suffix according

to the order �PL ; the order between two paths p, q that are mapped to two different paths

p′, q′ in PL is compatible with the order between p′ and q′ in �PL ; all paths assigned to the

same path in PL are ordered lexicographically.

Claim 4.4.1. If a network 〈G(V,E), L, t〉 is linearizable, there must exist a spine on PL.

In fact, the restriction of any linearzation to PL is a spine, by Definitions 4.10 and 4.11.

Definition 4.12 (Vertebra). For any path p in P \ PL, the vertebra of p is v(p) =

min�PL {q ∈ PL | q → p}, i.e., the minimal spine path among all of its suffixes. Note that

because t is in PL, v(p) is always well defined.

We now prove Theorem 4.2 by demonstrating the following order.

Definition 4.13 (Spinal order). Given a spine �PL on network 〈G(V,E), L, t〉, define the

spinal order �P on P by p �P q if and only if v(p) �PL v(q), or v(p) = v(q) and p ≥lex q.

We introduce the following three lemmas to approach Theorem 4.2.

Lemma 4.4.2. The spinal order is a linearization of P.

Proof. We must show that the order �P is a total order that is consistent with preference

and suffix compatibility rules.

First of all, the order �P is indeed a total order.

• Reflexivity. Obvious from the definition.

• Transitivity. Suppose p �P q �P r; consider v(p), v(q) and v(r). If v(p) = v(q) =

v(r), we must have p ≥lex q ≥lex r and so p ≥lex r. Hence p �P r. If v(p) �PL v(q),

then either v(q) �PL v(r) or v(q) = v(r). For the first case, since the spine is transitive,

we have v(p) �PL v(r); in the second case, v(q) �PL v(r) trivially. Thus v(p) �P v(r).

The argument for v(q) �PL v(r) is exactly parallel.
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• Antisymmetry. Suppose p �P q and q �P p. Clearly we must have v(p) = v(q),

from which it follows that p ≥lex q and q ≥lex p. Hence p = q as required.

• Totality. Recall that v is defined for all paths. Suppose that ¬(p �P q), for some

distinct p and q. Then ¬v(p) �PL v(q), and since the spine is a total order, we have

either v(q) �PL v(p) or v(p) = v(q). The first case directly implies q �P p. In the

second, it must be that ¬(p ≥lex q) according to the definition of this order. Since

≥lex is a total order, we must have q ≥lex p, from which it follows that q �P p, as

required.

Secondly, the order is compatible with the preferences in L. Suppose that p �L q. Then

p = v(p), q = v(q) and v(p) �PL v(q), so p �P q as required.

Finally, the order is compatible with the suffix relation. Suppose that p→ q. By definition

of vertebra, it must be that v(p) is at least as good as v(q) on the spine, because any

suffix of p is also a suffix of q. If v(p) �PL v(q) then p �P q and we are done. Otherwise,

v(p) = v(q); but in this case, p is a shorter path than q and so lexicographically precedes

it. We have p ≥lex q and p �P q as required.

Lemma 4.4.3. If a spine exists, then it can be constructed in O(|PL|2) time.

Proof. Recall that a spine is a linear order on PL, which extends both the preferences in L

and the suffix relations. Let Π be a binary relation on PL which contains exactly those pairs

of paths (p, q) for which p �L q or p→ q. A topological sort of Π will either fail, indicating

the presence of a cycle and hence nonexistence of a spine, or succeed, and produce a spine.

Extending L to Π can be done in O(|PL|2) time. A topological sort of all paths in Π can

be done in O(|PL|+ |PL|2) time, where |PL|2 is an upper bound on the number of relations

in Π. Therefore, the entire running time is bounded by O(|PL|2).

Lemma 4.4.4. Given any two paths p and q from P, the determination of whether p �P q

or q �P p holds can be made in polynomial time.
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Proof. We may assume a spine has already been constructed, since this takes polynomial

time in any case. To identify the ordering of p and q, we must evaluate and compare v(p)

and v(q), and if they are equal, then compare p and q lexicographically.

We first show that it takes at most O(n) time to evaluate v(p) for a given p. This is achieved

simply by enumerating all suffix paths of p starting from longest to shortest, and output

the first path that is in PL.

Comparison of v(p) and v(q) is done according to the spine. If they are equal, lexicographic

comparison of p and q takes O(n) time.

We conclude that preference queries, for two given paths, take O(n + |PL|) time overall,

once a spine has been constructed.

Proof of Theorem 4.2. Lemma 4.4.1 guarantees that there exists at least one spine. By

Lemma 4.4.2, the corresponding spine order is a linearization of P. In addition, by Lemma 4.4.3

and 4.4.4, we can construct as well as determine preferences between two paths in polyno-

mial time.

4.5. Convergence Time for Restricted Preferences: a Dichotomy Theorem

Although path linearization guarantees convergence after n phases of execution, this does

not mean that the convergence time is polynomially bounded since there could be arbitrarily

long sequences of improving moves during a phase. In this and the next sections, we

study the convergence time of linearizable, but not linearized, networks (i.e., executing the

protocol under partial preferences) over restricted families of preference systems.4 We start

with the following families of preference systems.

Definition 4.14 (〈s, l〉-Preference Systems). A preference L is a 〈s, l〉-preference system

iff for the preference Lv of each node v, (i) there are at most s paths in |Lv|, i.e., |Lv| ≤ s,
4The execution model for partial preferences implicitly assumes that paths specified in the preference is

better than the rest. By simply examining the resulting path digraph, it can be verified that having these
additional preferences does not affect the linearizability of a network.
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Figure 5: A network with constant preference size and constant-length paths, that takes
an exponentially long time to converge.

and (ii) for each path p in Lv, the length of p is at most l, i.e., maxp∈Lv {|p|} ≤ l.

We establish here the following dichotomy: even a linearizable network with only a 〈2, 3〉-

preference system could encounter exponentially many improving moves before convergence,

while any linearizable network with a 〈2, 2〉-preference system (resp. a 〈1, 3〉-preference

system) always converges after at most n2 (resp. 2n) improvements.

4.5.1. Exponential Convergence Time for 〈2, 3〉-Preferences

Our first result shows that there exists a family of (even acyclic) networks such that the

preference of any node contains at most two paths where each path has length at most

three, and yet convergence may take time exponential in the size of the network.

Theorem 4.3. For any k ≥ 1, there exists a network N〈G(V,E), L, t〉, where G is a DAG

on n = 4k + 2 nodes, and L is a 〈2, 3〉-preference system, s.t. the maximum convergence

time of N is 2Ω(n).

Note that G is a DAG immediately implies that the network is free of dispute wheel, and

hence linearizable. A network N satisfying the conditions of the above theorem is depicted

in Figure 5, with the destination node t shown as the ‘ground’. The network consists of a

special node a0, followed by k = bn/4c blocks Bi of four nodes each, named ai, bi, ci and di.

The preferences for each node in a block Bi are Lai = {aibidit � ait}, Lbi = {bicit � bidit},

Lci = {cidit � cit} and Ldi = {diai−1t � dit}. The number of paths in the preference of for

each node is 2 and every path has at most 3 hops.

The central idea is a pattern of activations for the nodes in each block Bi, whereby a ‘flip’

for node ai−1 (that is, when the node changes its state and then returns to the previous
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state) triggers two flips for node ai. Accordingly, the sequence of blocks can be made to

amplify a single flip at a1 into exponentially many flips for the subsequent ai.

For the interest of space, in the following, we will present the activation sequence of each

block and explain how it leads to amplification, while a detailed proof of correctness is

supplied in [68]. The order of each block is defined as follows.

Definition 4.15 (Block Order). For 1 ≤ i ≤ k, let σi be the following ordering of nodes in

Bi:

di, ai, bi, ai, ci, bi, ai, di, ci, ai.

We will refer to this ordering as the block order of Bi.

We consider the block order of activation starting with the following state.

Definition 4.16 (State S1). For any 1 ≤ i ≤ k, the S1 state of the block Bi is defined as

S1(ai) = (ai, t), S1(bi) = (bi, di), S1(ci) = (ci, t), and S1(di) = (di, ai−1).

The activation of the block order on Bi starting from the state S1 is illustrated in Figure 6,

where the red (or thick) edges represent the current state. The following lemma provides

the essential ‘amplification’ step for the exponential time result. Recall that we say that

a node ‘flips’ when it changes its assigned edge and then changes back. The lemma shows

that a flip for node ai−1 can cause a double flip for node ai by activating the nodes in Bi

according to the block order (with the activation of ai−1 interposed). Therefore the node

ai+1 can be made to flip four times, and so on.

Lemma 4.5.1. For any 1 < i ≤ k, suppose that the block Bi is in state S1, the state of

ai−1 is (ai−1, bi−1), and the node ai−1 will shortly change to (ai−1, t). Then there exists a

schedule such that each node makes an improving move when activated, and the final state

of Bi is still S1. Moreover, during activating under this schedule, the state of di flips once

(from (di, ai−1) to (di, t) and then back), and ai flips twice (from (ai, t) to (ai, bi) and back,

twice).

Proof. The schedule we use will activate the nodes of Bi in the block order σi with the
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ci ci

t tBi - State 7 Bi - State 8

ai bi di ai bi di

ci ci

t tBi - State 9 Bi - State 10

ai bi di

ci

tBi - State 11

Figure 6: States resulting from applying activation sequence σi to block Bi.

activation of ai−1 to adopt (ai−1, t) occurring part way through.

The progression of states leading to required effect is shown in Figure 6, and explained in

detail in Table 1. Note that ai−1 will activate and adopt (ai−1, t) after state 2 but before

state 9.

Consequently, the transition to state 2, where node di switches from an unranked path

beginning with (di, ai−1) to its second-best path dit is an improving move, and so is the

transition to state 9, where ai−1 has switched to (ai−1, t) and so di can improve to its best

path, diai−1t.

The claims of the lemma statement can readily be verified from the presented sequence.
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State Activate Old edge New edge Improvement reason

1 di (di, ai−1) (di, t) dit �di diai−1bi−1 . . .
2 ai (ai, t) (ai, bi) aibidit �ai ait
3 bi (bi, di) (bi, ci) bicit �bi bidit
4 ai (ai, bi) (ai, t) ait �ai aibicit
5 ci (ci, t) (ci, di) cidit �ci cit
6 bi (bi, ci) (bi, di) bidit �bi bicidit
7 ai (ai, t) (ai, bi) aibidit �ai ait
8 di (di, t) (di, ai−1) diai−1t �di dit
9 ci (ci, di) (ci, t) cit �ci cidiai−1 . . .
10 ai (ai, bi) (ai, t) at �ai aibidiai−1 . . .

Table 1: Sequence of improving moves for Lemma 4.5.1.

4.5.2. An Upper Bound on Convergence Time

We now investigate the maximum convergence time of linearizable networks. Firstly, note

that any 〈1, l〉-preference system for any positive integer l, will converge after at most 2n

improvements since a node v can only switch from being not connected to t to choosing

some neighbor u where u has a path to t, or switch from choosing some neighbor u to

choosing the neighbor of the only path in v’s preference (when this path becomes available).

Hence, we only need to establish maximum convergence time for 〈2, 2〉-preference systems,

and combining with our construction for showing that 〈2, 3〉-preference systems lead to

exponentially many improvements (Theorem 4.3), we have a dichotomy theorem. In fact,

we will establish the maximum convergence time for networks with 〈2, l〉-preference systems

for any positive integer l, which, as a special case, implies poly-time convergence for 〈2, 2〉-

preference systems.

We define the function L(l, n) for any positive integers l and n, to be the sum of a list of

integers L(l, n) =
∑n

i=1 ai, where a1 = 0 and ai = (l− 1)ai−1 + 2 for all i, and establish the

following theorem.

Theorem 4.4. For any positive integer l, for any linearizable network N〈G(V,E), L, t〉

where L is a 〈2, l〉-preference system, the maximum convergence time of N is at most L(l, n),

where n is the number of nodes in G.
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We first establish that the total number of improvements made by any node v is upper

bounded by the total number of improvements made by the nodes on the best path of v

(Lemma 4.5.2). To utilize this fact, we introduce a process for finding a sequence of the nodes

such that every node v appears after any other node on the best path of v (Lemma 4.5.3).

Examining the nodes under this sequence, we show that for any i, the i-th node in the

sequence can make at most ai improvements, hence proving that L(l, n) is an upper bound

of the total number of improvements.

We denote by Imp(v) the maximum number of improvements that the node v can make.

(The proofs of Lemma 4.5.2, 4.5.3 are deferred to [68].)

Lemma 4.5.2. For any node v in a 〈2, l〉-preference system network whose best path is

denoted by vu1u2 . . . ujt, Imp(v) ≤
∑j

i=1 Imp(ui) + 2.

We use the notion of “good” node to define/find a sequence of the nodes when examining

their number of improvements.

Lemma 4.5.3. For any linearizable network 〈G(V,E), L, t〉, for any T ( V with t ∈ T ,

there exists at least one node v ∈ V \T s.t. either Lv = ∅, or for the best path of v vu1 . . . ujt,

ui ∈ T for all i. We call such a node v a good node for T .

Proof of Theorem 4.4. We will create a list of subsets of V , {Ai}ni=1 by starting from A1 =

{t}, adding one node every step, and ending with An = V . Let ai = max {Imp(v) | v ∈ Ai}.

We will prove in the following that ai ≤ (l − 1)ai−1 + 2. Since the node added at the i-th

step can make at most ai improvements, by summing up the number of improvements of

all nodes, we achieve the upper bound of L(l, n) total improvements.

Starting from A1 = {t}, we now show the transition from Ai−1 to Ai, i.e., how to pick a node

v that forms Ai = Ai−1∪{v} with ai ≤ (l−1)ai−1+2. By Lemma 4.5.3 with T = Ai−1, there

exists a node v with either empty preference, or for v’s best path, vu1u2 . . . ujt, all nodes

except v belong to Ai−1. We pick any such node v (i.e., any good node for Ai−1). For the

first case, v has an empty preference implies that the only improvement v can make is from
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⊥ to one of its neighbor. For the second case, by Lemma 4.5.2, Imp(v) ≤
∑j

i=1 Imp(ui)+2.

Since j ≤ (l−1) and all ui belongs to Ai−1, we have Imp(v) ≤
∑j

i=1 ai−1+2 ≤ (l−1)ai−1+2.

Since ai = max {ai−1, Imp(v)}, ai ≤ (l − 1)ai−1 + 2.

A simple calculation shows that L(2, n) ≤ n2, and for any l ≥ 3, L(l, n) ≤ 2(l − 1)n.

Therefore, in particular, for any network with a 〈2, 2〉-preference system, the maximum

convergence time is at most n2. For a network with 〈2, 3〉-preference system, the maximum

convergence time is at most 2n+1. Combined with Theorem 4.3, which shows that there

exist networks with 〈2, 3〉-preferences that take 2Ω(n) time to converge, we establish that

the convergence time complexity of networks with 〈2, 3〉-preference systems is 2Θ(n).

4.6. Hop-Based Preference Systems

In this section we examine the maximum convergence time of hop-based preference systems.

Definition 4.17 (k-Hop Preference Systems). In a k-hop preference system, every node

chooses paths based only on the next k hops of the paths.

We use v〈u〉k∗ �v v〈w〉k∗ to denote that the prefix v〈u〉k is better than v〈w〉k for the node

v. The well-known preference scheme of Gao and Rexford [52] is an example of a 2-hop

preference system. All adjacencies are classified as customer-provider or peer-peer. Nodes

are required to prefer customer routes over all others, which is a 1-hop preference rule. In

addition, so-called ‘valley’ paths are worst of all: a path that go from a provider, ‘down’ to a

customer, and then back ‘up’ to another provider. The extended transit provider guidelines

of Liao et al. [83] can be treated in the same way. However, it is clear that the definition

of k-hop preference is more general than these, even for the case when k is 2. The simplest

case, when k is 1, covers the pure local preference scheme where initial preference decisions

are based on the identity of the next-hop neighbor.

We establish here the following dichotomy result: any network with a 1-hop preference

system converges in linear time while there exists a family of linearizable networks with

2-hop preferences systems such that the maximum convergence time is exponential.
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4.6.1. Exponential Convergence Time for 2-Hop Preferences

We start by establishing the exponential convergence time result for linearizable networks

with 2-hop preference systems. Note that the example shown in Figure 4a can be directly

transformed into a 2-hop preference system which suggests that there are networks with

2-hop preference systems that never converge, which of course have unbounded maximum

convergence time. The focus of this section is to show exponential convergence time for

networks guaranteed to converge (in fact, even for DAGs).

Theorem 4.5. For any k ≥ 1, there exists a network N〈G(V,E), L, t〉 with n = 4k + 2

nodes forming a DAG and a 2-hop preference system such that the maximum convergence

time of N is 2Ω(n).

ak bk dk . . . a1 b1 d1 a0

ck c1

tBk B1

(a) Topology.

Node 1 2 3 4

ai diai−1∗ bidi∗ dit bici∗
bi cit dit cidi∗ diai−1∗
ci dit t diai−1∗
di ai−1di−1∗ t ai−1bi−1∗

(b) Preferences from best (1) to worst (4).

Figure 7: A network with 2-hop preferences and exponential convergence time.

A slight modification of the construction in Theorem 4.3 will demonstrate the same result

for 2-hop preference systems. Consider the network whose topology is shown in Figure 7a.

The only difference from the network used in Theorem 4.3 is that here ai has an edge

pointing to di, instead of t. The 2-hop preferences are shown in Table 7b.

We show the activation sequence that requires exponentially many steps for convergence on
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this network in the following. The proof of Theorem 4.5 is omitted since it is very similar

to Theorem 4.3.

As before, we break the network into blocks and denote them as Bi and define a new S1

state similar to the previous case.

Definition 4.18 (S1 state, 2-hop case). The state S1 of Bi is the state S1(ai) = (ai, di),

S1(bi) = (bi, di), S1(ci) = (ci, t), and S1(di) = (di, ai−1).

Lemma 4.6.1. For any Bi, starting from state S1, there is an activation sequence of

improving moves, terminating in S1 again, during which node di changes from (di, ai−1) to

(di, t) and back, and node ai changes from (ai, di) to (ai, bi) and back, twice.

State ai bi ci di
1 (ai, di) (bi, di) (ci, t) (di, ai−1)
2 (ai, di) (bi, di) (ci, t) ?(di, t)
3 ?(ai, bi) (bi, di) (ci, t) (di, t)
4 (ai, bi) ?(bi, ci) (ci, t) (di, t)
5 ?(ai, di) (bi, ci) (ci, t) (di, t)
6 (ai, di) (bi, ci) ?(ci, di) (di, t)
7 (ai, di) ?(bi, di) (ci, di) (di, t)
8 ?(ai, bi) (bi, di) (ci, di) (di, t)
9 (ai, bi) (bi, di) (ci, di) ?(di, ai−1)
10 (ai, bi) (bi, di) ?(ci, t) (di, ai−1)
11 ?(ai, di) (bi, di) (ci, t) (di, ai−1)

Table 2: State sequence of block Bi.

We use the same block order as before (Definition 4.15). Table 2 shows the resulting states;

the annotation ‘?’ shows which node made the improving move.

When ai changes to (ai, bi), di+1 will lose its best path and switch to the second best (di, t),

which is always available. When ai flips back to (ai, di), the best path of di+1 appears again,

and di+1 will change to it. As a result, each flip of di will cause ai to flip twice and each

flip of ai will cause di+1 to flip twice. The construction proceeds as in Theorem 4.3.

We note that it is straightforward to extend our construction for 2-hop system to `-hop, for

any ` > 2. As long as all `-hop prefixes with the same first 2 hops are adjacent to each other,
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the extended preference has the exact same effect as the original. Thus the construction

given in Theorem 4.5 in fact shows potential exponential-time convergence for completely

ordered `-hop preference systems for any ` ≥ 2.

4.6.2. Linear-Time Convergence for 1-Hop Preferences

It is well known that whenever BGP preferences constitute a 1-hop preference system, the

network always converges to a stable state after a linear number of improvements.

Theorem 4.6. For any network N〈G(V,E), L, t〉, where L is a 1-hop preference system,

the maximum convergence time of N is at most n+m.

Proof. We prove this through a simple potential function argument. For any state S of

the network, we define an n-dimensional vector W that records the ‘quality’ of the current

solution for each node. Specifically, for each node v ∈ V , we set entry W (v) = i if S(v)

is the i-th best next hop for v, and W (v) = |kv| + 1 otherwise (i.e. if S(v) = ⊥); here kv

denotes the number of out-neighbors of v.

By Claim 4.3.2, after making an improvement, v will be connected to t and can always stick

with its current path, and hence the value W (v) is non-increasing over time.

On the other hand, whenever v makes an improvement, it must switch to a better neighbor,

and the value of W (v) will strictly decrease. It follows that the total number of improving

moves is bounded by ∑
v∈V

W (v) ≤
∑
v∈V

(kv + 1) ≤ m+ n

Hence the system always converges to a stable state in n+m steps.

Note that Theorem 4.6 does not rely on absence of dispute wheels. This indicates that for

1-hop preference, there always exists at least one stable state. The network in Figure 4b is

a typical example where there is a dispute wheel (which leads to multiple stable states) but

the network always converges. Here the nodes a and b prefer each other to the direct edge

92



to t. There are two stable states: {(a, b), (b, t)} and {(b, a), (a, t)}. Which one is reached

depends on which node is activated first.

Note that if allowing activation for multiple nodes simultaneously for networks with dispute

wheels, even if there are stable states, convergence is not guaranteed. Again, consider the

network in Figure 4b. If we start from the state S(a) = (a, t) and S(b) = (b, t), and activate

both a and b. The path abt is available to a, and the path bat is available to b. Hence

the new state will be S(a) = (a, b) and S(b) = (b, a). If we activate both a and b again,

both of them will realize that they are not connected to t, and hence will switch back to

S(a) = (a, t) and S(b) = (b, t). Therefore, the network will keep flipping between those two

states and never converge.

4.7. Linearization that Minimizes Path-Length

In this section, we study the problem of finding a path linearization that minimizes the

length of the longest path in the stable state, which we refer to as the path-length mini-

mization problem (PLM). We define the “length” of a path linearization to be the length

of the longest path in the stable state, and hence PLM is to find a path linearization with

the minimum length. We will only linearize the paths to the extent where the stable state

is unique, and the remaining paths can either be linearized arbitrarily, or left unordered.

In the absence of preferences, PLM can be solved by simply performing a breath first search

from the sink. Surprisingly, the presence of preference makes the problem almost impossible

to tackle: it is NP-hard to approximate PLM to within a factor of Ω(n), (n is the number

of nodes in the network). We further complement the hardness result by presenting an

algorithm that finds a path linearization with length at most (OPT + l), where OPT is the

minimum length achievable by a path linearization and l is the length of the longest path

in the preference.
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s xi x̄i
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(a) Basic gadget for the clause cj =
xi.

v1 v2 . . . vl cj

s xi x̄i

t

(b) Final gadget for the clause cj = xi.

Figure 8: The construction for showing the hardness of PLM.

4.7.1. Hardness of the Path-Length Minimization Problem

Theorem 4.7. For any 2 ≤ l ≤ Θ(n), it is NP-hard to distinguish whether the minimum

length of a path linearization for a given network on n nodes is 2 or at least l.

Proof. We use a reduction from 3SAT. Given a 3SAT instance C = c1 ∧ c2 ∧ . . . cy with

variables x1, x2, . . . , xz, we create the sink t and a special node s with edge (s, t). For

each variable xi, create two nodes that respectively represent xi and xi, with edges (xi, t),

(xi, s), (xi, t), and (xi, xi). For each clause cj , create a node that represents cj with edges

(cj , xi) if xi is in cj , and (cj , xi) if xi is in cj (see Figure 8a for the resulting topology of

a simple clause cj = xi). We further create a list of nodes v1, v2, . . . vl with edges (v1, t),

(v2, t) . . . (vl, t), and (v1, v2), (v2, v3) . . . (vl−1, vl). In addition, for each cj node, create an

edge (vl, cj). The final topology of a simple clause cj = xi is shown in Figure 8b. The xi

nodes have no preference, each xi node has preferences xixit � xit � xixist, each cj node

prefers any path of length 2 to those longer than 2. For any 1 ≤ i ≤ l, vi prefers the path

vivi+1 . . . vlp to the path vit, for any path p starting at a cj node to t of length 3. It is

straightforward to verify that the reduction is poly-time.

If C is satisfiable by an assignment A, consider the preference completion where a xi node
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prefers the direct path xit to the path xist iff xi is true in A. The preference of xi ensures

that among xi and xi, only one can take a path of length 1 and the other will take a path

of length 2. Consequently, each cj node has a path of length 2 (through the literal that

satisfies cj in A), and hence each vi node will take the path vit. The length of the path

linearization is 2. On the other hand, if C is not satisfiable, for any path linearization,

define an assignment where xi is true iff the node xi prefers the path xit to xist. At least

one cj node is not satisfied by this assignment, and hence every out-going neighbor of cj has

a path of length 2, and cj must end up taking a path of length 3. Then, the node vl can take

the path through this cj , and each vi will take the path through vi−1. Consequently, v1 will

end up with a path of length more than l. Since l can be made Ω(n) in this construction,

distinguishing whether the minimum length of a path linearization is 2 or Ω(n) implies

satisfiability of C.

4.7.2. Approximate the Path-Length Minimization Problem

Theorem 4.7 establishes that PLM is hard to approximate to within a factor of Ω(n).

However, note that this hardness result relies on the length of the longest path in the

preference being large (that is, Ω(n)). We complement the hardness result by the positive

result below.

Theorem 4.8. There is a poly-time algorithm that for any linearizable network N〈G(V,E), L, t〉,

outputs a path linearization with length at most (OPT + l), where OPT is the minimum

length of a path linearization of N , and l is the length of the longest path in L. Moreover,

in the path linearization the algorithm outputs, every node only has preference over at most

(|L|+ 1) paths.

We say a path p is compatible with a state S, if for any edge (u, v) on p, the state of u in S,

S(u), is either ⊥ (i.e., no edge is selected) or (u, v). A path p is said to be fully compatible

with S if for any edge (u, v) on p, S(u) = (u, v). A fully compatible path in S is always

available. In addition, we said a node v has stabilized at a state S if v will not change its

state under any schedule.
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Proof. To find a path linearization with the properties stated in the theorem, we first create

a spine (see Definition 4.11) for the given network 〈G(V,E), L, t〉, and argue that the spine

guarantees a unique stable state S for a subset T of nodes where (i) for each node v in T ,

the path of v in the state S belongs to the spine, and (ii) for any node u in V \ T , no path

specified in the preference of u, i.e., Lu, is compatible with S. Since all paths in the graph

induced by S belong to the spine, the longest path among them has length at most l.

For the remaining nodes, since for any node v in V \ T , no path in Lv is compatible with

S, any path p (starting at v) compatible with S can essentially be made the best path of

v in S by letting p be less preferred than any path (starting at v) in the spine, but better

than the rest. To find a path compatible with S for each node in V \T such that the length

of the longest path is bounded, we treat all nodes in T as a ‘super sink’, and perform a

BFS from the super sink to the remaining nodes. Consequently, every path in the resulting

graph would be a combination of a path induced by S and a path in the BFS tree. Since

the depth of the BFS tree is a lower bound of the minimum length of a path linearization

by adding the path of each node v in the resulting graph to the preference of v, we achieve

a stable state where path-length are at most OPT + l. For every node v, since every path

in L can add at most one new path from v to t to the spine, v will have preferences on at

most (|L|+ 1) paths. It remains to show how to find such a state S and a set of nodes T .

We establish the following lemma.

Lemma 4.7.1. Given a network with a spine, where the original preference is replaced by

the spine, in any state S, if T is a subset of nodes that have stabilized, then either (i) there

exists a node v ∈ V \ T , where the best compatible (with S) path in Lv (if any) is fully

compatible, or (ii) for any v ∈ V \ T , no path in Lv is compatible with S.

Proof. We prove by contradiction. For simplicity, a (fully) compatible path always refers

to a path (fully) compatible to the state S. Suppose that for any node v ∈ V \ T , the best

compatible path in Lv (if any) is not fully compatible, and there exists a node v0 ∈ V \ T

who has compatible paths in Lv0 , and the best compatible path is p0. By our assumption,

96



p0 is not fully compatible. Hence, there exists a sub-path of p0 denoted by v1q0 where q0

is a path to t induced by S and v1 /∈ T (i.e., the shortest sub-path to t not induced by S).

Since the path v1q0 is on the spine, it is a path in the preference of v1, Lv1 that is fully

compatible. By our assumption, v1q0 is not the best compatible path in Lv1 . Consider the

best compatible path p1 of Lv1 , and using the same process, we can find a sub-path of p1,

vq1, where the best compatible path of v2 is p2. Eventually, the process must reach the

same node twice and the paths {pi, vi+1qi} forms a dispute wheel, which contradicts the

fact that the network is linearizable.

Then, starting from T = {t} and an empty state S, we can repeatedly apply Lemma 4.7.1,

find nodes whose best fully compatible path is available (which will be selected eventually),

add them to T , and update S accordingly, until for any remaining node, no path in the

preferences is compatible with S.

4.8. Conclusions and Future Work

Partially specified preferences match the way that router configuration is envisaged: definite

policy is established at coarse granularity, and further tie-breaking decisions are essentially

arbitrary. In this chapter, we studied convergence time for partial routing preference systems

and introduced the notion of linearizability to connect partial preference systems to earlier

work on routing correctness and convergence.

We formally established that the routing convergence time is exacerbated by the complexity

of the routing policy. This demonstrates that in order to improve the convergence speed of

BGP, we must think not only about the router implementations, the network environment,

and the protocol design, but also about the nature of the specified policies. In particular,

our result in Section 4.5 shows that the real source of slow convergence is not the number

of alternative paths, nor the length of paths, nor the presence of cycles, but the ability to

express ‘fine-grained’ route preferences. Even if preferences are only allowed to be based on

the two-hop neighborhood, exponential convergence time is possible.
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On the positive side, restricting the preference system does help, though consequently, nodes

might be only allowed to specify preference over either the next hop or a few short paths.

Our work on 1-hop preference systems generalizes the work of Schapira et al. [100]; they

additionally require that path preferences follow the guidelines of Gao and Rexford [52].

The next-hop restriction is in fact a reasonable one, since it matches a typical first-cut BGP

policy—setting local preference based on the neighbor’s identity.

In other related work, Fabrikant et al. [47] consider a braid-like network that may encounter

exponentially many improvements before convergence, using essentially a 〈4, 3〉-preference

system. Our work complements theirs by settling how much restriction one needs to place

on the preference system in order to guarantee poly-time convergence.

We further consider the problem of finding linearization with desired properties and present

our initial study for the property of minimizing the length of the longest path in the stable

state. There are many other interesting and important properties to be considered such as

minimizing congestion, minimizing delay etc, and it is an interesting direction of future work

to study these properties for linearization. Another interesting direction of future work is

to investigate even more general classes of partial preference systems and study their rapid

convergence.
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CHAPTER 5 : Matchings in the Simultaneous Communication Model

So far, we have introduced our work on the double oral auction (Chapter 2) and the in-

terdomain routing problem (Chapter 4). In both problems, there are selfish players acting

following their own myopic incentive, and we focused on understanding the question of

how long it takes for the players to reach an agreement. The stochastic matching problem

(Chapter 3) concerns the problem of finding a maximum matching when information about

the input graph is distributed among multiple players.

In this chapter, we will still focus on the problem of finding a maximum matching, while

in a different computational model, namely, the simultaneous communication model1. As

we will elaborate later in this chapter, the simultaneous communication model has received

significant attention recently, mainly due to its connection to the streaming model of compu-

tation. We first formally define the simultaneous communication model and the maximum

matching problem in this model. Then, we present a randomized protocol and a determin-

istic protocol for this model, and establish their approximation ratio along with the total

communication required. Finally, we generalize out deterministic protocol to a multi-round

variant, which establishes a distinction between simultaneous communication and back and

forth communication. We will start with formally defining the model and discussing our

result.

5.1. Our Results and Related Work

We now formally defining the distributed model of computation considered in this chap-

ter. In the multi-party communication model, the input (in our case, an input graph) is

adversarially partitioned across k players and the goal is to design a protocol such that the

players can jointly compute a function of the original input (in our case, an approximate

matching). We distinguish between two possible ways of partitioning the input graph: in

the edge partition model, each player holds a subset of edges of an input (multi-) graph

1The full paper of the work can be found in [16]. We would like to thank Michael Kapralov and David
Woodruff for helpful discussions.
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while in the vertex partition model the input graph must be bipartite and each player holds

a distinct subset of vertices on the left together with all their adjacent edges. Two mea-

sures of complexity are considered, namely the total communication, which is simply the

total size of all messages sent to the coordinator, and the per-player communication which

is the maximum size of the messages sent by every player. We study both deterministic

and randomized protocols (with public coins), and solely focus on simultaneous protocols,

where every player simultaneously sends a message to a coordinator who outputs the final

answer. Note that simultaneous protocols, in addition to their aforementioned connection

to turnstiles algorithms, are indeed more preferable in distributed settings since they are

naturally round-efficient [110].

Related Work

Matching in the multi-party communication model was previously studied under different

variations [45, 10, 71, 69]. Huang et al. [71] focused on the k-party message-passing model

(with two-way player-to-player communication) and gave a tight bound of Θ
(
nk
α2

)
on the

total communication required to compute an α-approximate matching for both vertex par-

tition and edge partition models. This result immediately implies a lower bound of Θ
(
nk
α2

)
for simultaneous protocols. However, the protocol in their upper bound is not simultaneous,

and thus far it was not known if this lower bound is achievable by simultaneous protocols.

The work of [45, 10] considers the bipartite matching problem in the n-party vertex partition

model (i.e., every player holds a single vertex on the left). In particular, [45] showed that

a protocol in which every player simultaneously sends a random incident edge achieves an

O(
√
n)-approximation, which matches the lower bound of [71]. The authors further studied

deterministic protocols and showed an essentially tight bound on per-player communication

of Θ(n1−ε) bits for achieving an nε-approximation. However, these results do not directly

generalize to an arbitrary number of players.

100



Our Results

For the vertex partition model, we show that the lower bound of Ω(nk/α2) proved for the

message-passing model in [71] is achievable via (the weaker class of) simultaneous protocols,

as long as α ≥
√
k.

Theorem 5.1. There exists a randomized simultaneous protocol that for any k > 1, com-

putes an O(α)-approximate matching in expectation in the k-party vertex partition model,

while using total communication of (i) O(nk/α2) when
√
k ≤ α ≤ k, and (ii) Õ(n/α) when

α > k.

Since Ω(n/α) is always a lower bound on the total communication, our protocol immediately

achieves the optimal communication bound for any α > k. Moreover, when
√
k ≤ α ≤ k

and in the meaningful regime where α ≤
√
n, we have nk/α2 ≥ k, and hence the total

communication is indeed O(nk/α2), which matches the lower bound of [71].

The core idea in our simultaneous protocol is to send a “random matching” from each player

to the coordinator. Note that for the case where k = n, since each player only has one vertex

on the left, a random matching degrades to a random neighbor (as is used by [45]). However,

for arbitrary k, simply sending random neighbors does not result in a protocol with good

approximation guarantees. Indeed, we concentrate the bulk of our efforts on both finding

a proper definition of random matchings for our purpose, and exploring their underlining

structures. We show that picking a random order of the vertices on the right and computing

a maximal matching following this order gives a suitable definition of a random matching.

Our proof is based on a proper decomposition of the random orders, which allows us to

define multiple independent events that were originally based on the same random order.

We should point out that by Theorem 5.1 and the aforementioned lower bound of [71],

for α ≥
√
k, allowing interaction between the coordinator and the players, compared to

simultaneous protocols, does not lead to better performance (under the same communication

bound). This is in contrast to the exponential communication gap between simultaneous
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protocols and interactive protocols established in [45]. The main reason comes from the

differences in the modeling assumptions: [45] focuses on the blackboard model where only

the communication from the players to the coordinator (i.e., writing on the blackboard)

is counted, and players can read the blackboard (which may contain Ω(n) bits) without

additional communication cost. Consequently, one round of interaction in the blackboard

model might lead to Ω(nk) communication in the k-party communication model.

Similar to [45], we also study the power of deterministic protocols and establish a tight

bound of Θ(nk/α) for the total communication for the case of α ≥
√
k. This generalizes

the bounds in [45] to arbitrary values of k.

Theorem 5.2. For deterministic simultaneous protocols that compute an O(α)-approximate

matching in the k-party vertex partition model for any α2 ≥ k > 1, the total communication

of O(nk/α) is sufficient.

Theorem 5.2 is achieved by a novel protocol whereby each player repeatedly finds maximum

matchings that matches distinct sets of vertices on the right, and sends all matchings to the

coordinator. We further extend our deterministic protocol to a multi-round variant which

allows us to break the barrier of α ≥
√
k.

Organization: The rest of this chapter is organized as follows. After introducing some

preliminaries in Section 5.2, we present our randomized simultaneous protocols to prove

Theorem 5.1 in Section 5.3. Then, we present our deterministic protocol in Section 5.4, and

its multi-round variant in Section 5.5. Finally, we conclude in Section 5.6 with some further

directions.

5.2. Preliminaries

Cauchy-Schwarz for multiple vectors.
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Claim 5.2.1. For any k vectors x1, . . . , xk ∈ Rn it holds that:

 n∑
i=1

k∏
j=1

xj,i

k

≤
k∏
j=1

n∑
i=1

xkj,i

Proof. Proof is by induction on k. Note that for k = 2 the claim corresponds to the

Cauchy-Schwarz inequality so the base holds. By Hölder’s inequality we have:

 n∑
i=1

k∏
j=1

xj,i

k

≤


 n∑
i=1

k−1∏
j=1

xj,i

 k
k−1


k−1
k (

n∑
i=1

xkk,i

) 1
k


k

=

 n∑
i=1

k−1∏
j=1

xj,i

 k
k−1


k−1(

n∑
i=1

xkk,i

)

=

 n∑
i=1

k−1∏
j=1

x
k
k−1

j,i

k−1(
n∑
i=1

xkk,i

)

≤

k−1∏
j=1

n∑
i=1

xkj,i

( n∑
i=1

xkk,i

)

=
k∏
j=1

n∑
i=1

xkj,i,

where the second inequality follows from the inductive hypothesis.

Notation. Throughout this chapter, we will use opt to denote the size of a maximum

matching in the input graph G.

5.3. Randomized Protocols

In this section, we establish Theorem 5.1 by presenting a simultaneous protocol for k players

to compute an O(α)-approximate matching for any α ≥
√
k using O(nk/α2) total commu-

nication in the vertex partition model. We should note that technically, similar to the case

for dynamic graph streams, since n/α could be the size of the target matching, the lower
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bound of the total communication should be Ω(max
{
nk/α2, n/α

}
). Consequently, when

α ≥ k, Ω(n/α) becomes the lower bound and when α ≤ k, Ω(nk/α2) is the lower bound.

We give a protocol for each regime. The first regime is easier since at least one player

contains 1/k fraction (which is at least 1/α fraction) of any fixed optimum matching. The

latter case is much more challenging and it is indeed the main contribution of this section.

5.3.1. A protocol with O(nk/α2) communication for
√

k ≤ α ≤ k

We introduce the randomized protocol Prand. As we discussed in the previous section, the

key of Prand is to let every player to send a random matching, which we achieve in Prand

through randomly prioritizing the vertices in R when finding a matching.

Algorithm 4: Prand: a randomized O(α)-approximation simultaneous protocol with
O(nk

α2 ) communication (for
√
k ≤ α ≤ k).

Input : A bipartite graph G(L,R,E) in the simultaneous vertex-partition model with k
players.

Output: A matching M of G with size Ω(opt/α).
1. Let Li be the vertices in L that belong to the i-th player Pi, and let li = |Li|.
2. For each player Pi independently:

(a) Pick a random permutation π(i) of the vertices in R.
(b) Use π(i) to construct a matching Mi as follows: Enumerate the vertices v in R

according to the order π(i), and match v with any unmatched neighbor if one
exists.

(c) Send the first
⌈
li·k
α2

⌉
edges of Mi to the coordinator.

3. The coordinator finds a maximum matching M among all received edges.

We first bound the total communication of Prand. Since each player only sends a matching

of size at most
⌈
li·k
2α2

⌉
, the total communication is O(nk/α2+k). Note that in the meaningful

regime where α ≤
√
n, nk/α2 ≥ k, and the total communication is indeed O(nk/α2). In the

rest of this section, we show that the protocol Prand outputs an α-approximate matching,

and hence prove Theorem 5.1.

Fix a maximum matching M∗ of G (of size opt). Let opti be the number of edges in M∗

that belong to the i-th player Pi. A vertex v ∈ R is said to be good for Pi if v is matched

in M∗ by an edge in Pi. The vertices in R that are not good for Pi are said to be bad for
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Pi. A few remarks are in order.

Remark 5.3.1. (a) Each player Pi will send at least
⌈

opti·k
2α2

⌉
(≤
⌈

opti
2

⌉
since α ≥

√
k)

edges. This is because Prand can find a maximal matching in Pi, where the size of a maxi-

mum matching in Pi is at least opti. As it turns out, it suffices for us to only consider the

first
⌈

opti·k
2α2

⌉
edges sent by Pi. (b) Without loss of generality, assume opti < n/100 for each

player, since otherwise Pi will send a matching of size
opti·k

2α2 ≥ opt
200α (since k ≥ α), which

is an O(α)-approximation.

One key component of our analysis is to decompose picking a random permutation π(i) into

three independent components. π
(i)
pos: randomly pick opti positions in [n] for placing the

good vertices. We will refer to the picked positions as the good positions and the rest as

bad positions; π
(i)
b : pick a random permutation of the bad vertices; and π

(i)
g : pick a random

permutation of the good vertices. Then, placing the good/bad vertices in the good/bad

positions following the orders π
(i)
g /π

(i)
b gives the random permutation π(i). Observe that

the three components π
(i)
pos, π

(i)
b , and π

(i)
g are independent of each other, and hence events

defined on different components are independent, which significantly simplifies the analysis.

Moreover, we should note that, of course, each player does not know which vertices are good

or bad, and hence the decomposition is only for the sake of analysis. We are now ready to

prove that Prand achieves an O(α)-approximation.

Proof. (Proof of Theorem 5.1) Define E∗i to be the event (on π
(i)
b ) that, between Li and

the first n/α (bad) vertices in π
(i)
b , the maximum matching size is at least

opti·k
3α2 . We

partition the players into two types based probability of this event: Type 1 are players with

Pr (E∗i ) ≥ 1/2 and Type 2 are the rest. Let T1 (resp. T2) be the set of players that are

Type 1 (resp. Type 2). Note that the type of each player only depends on the structure of

his input graph and not the protocol.

In the following, we consider the case where players in T1 contain at least opt/2 edges of M∗

(Lemma 5.3.2) and the complement case where players in T2 contain at least opt/2 edges

of M∗ (Lemma 5.3.4), separately.
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Lemma 5.3.2. If
∑

i∈T1 opti ≥ opt/2, then E [|M |] = Ω(opt/α).

Proof. Let k1 = |T1|. Without loss of generality, assume that the Type 1 players are P1, P2,

. . . , Pk1 and the protocol Prand is executed for these k1 players following this specific order.

Define Si (for any i ∈ [k1]) to be the set of the distinct vertices in R that are matched (and

sent) by at least one of the first i players. To simplify the presentation, we further define

S0 = ∅. Then E [|M |] ≥ E [|Sk1 |] since each vertex in Sk1 is matched with a distinct vertex

in L. We will prove that for any i ∈ [k1], if the size of Si−1 is at most
opt
30α , then the i-th

player will match a large number of new vertices in R in expectation. Formally,

Lemma 5.3.3. For any integer i ∈ [k1] we have, E
[
|Si \ Si−1|

∣∣∣|Si−1| ≤ opt
30α

]
≥ 0.49 ·

(
opti·k

6α2 − opt
15α2 ).

Suppose we have Lemma 5.3.3 and define E ′ as the event that there exists an i ∈ [k1] where

|Si−1| > opt
30α . Note that if E ′ happens then |Sk1 | >

opt
30α . Hence,

E [|Sk1 |]

=E
[
|Sk1 |

∣∣E ′] · Pr
(
E ′
)

+ E
[
|Sk1 |

∣∣E ′] · Pr
(
E ′
)

≥ opt

30α
· Pr

(
E ′
)

+
∑
i∈[k1]

E

[
|Si \ Si−1|

∣∣∣∣|Si−1| ≤
opt

30α

]
· Pr

(
E ′
)

≥ opt

30α
· Pr

(
E ′
)

+ 0.49
∑
i∈[k1]

(
opti · k

6α2
− opt

15α2

)
· Pr

(
E ′
)

(by Lemma 5.3.3)

≥ opt

30α
· Pr

(
E ′
)

+ 0.49

(
opt · k
12α2

− opt · k
15α2

)
· Pr

(
E ′
)

(since
∑

i∈[k1] opti ≥ opt/2)

=
opt

30α
· Pr

(
E ′
)

+ Ω

(
opt

α

)
Pr
(
E ′
)

= Ω

(
opt

α

)
(since k ≥ α)

Hence E [|M |] = Ω(opt/α). We now prove Lemma 5.3.3.

Proof. (Proof of Lemma 5.3.3) We need to lower bound the expected number of new vertices

in R that are matched by Pi compare to Si−1. For any β ≥ 1, define g
(i)
β to be the random

variable (on π
(i)
pos) counting the number of good positions that appear in the first 1/β fraction
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of [n]. We will consider the joint event that E∗i happens and the number of good positions

that appear in the first 2/α fraction is at most n/α (i.e., g
(i)
α/2 ≤ n/α).

E

[
|Si \ Si−1|

∣∣∣∣|Si−1| ≤
opt

30α

]
≥E

[
|Si \ Si−1|

∣∣∣∣|Si−1| ≤
opt

30α
, E∗i , g

(i)
α/2 ≤ n/α

]
· Pr

(
E∗i , g

(i)
α/2 ≤ n/α

)

Since E∗i is defined on π
(i)
b and g

(i)
α/2 is defined on π

(i)
pos, they are independent (due to the

decomposition of π(i)). We know that Type 1 players have Pr (E∗i ) ≥ 1/2, so we only

need to bound Pr
(
g

(i)
α/2 ≤ n/α

)
. Since opti < n/100 (by Remark 5.3.1(b)), E

[
g

(i)
α/2

]
<

(2/α) · (n/100) = n/50α. By Markov inequality, Pr
(
g

(i)
α/2 ≥ n/α

)
≤ 1/50. Hence,

Pr
(
E∗i , g

(i)
α/2 ≤ n/α

)
=Pr (E∗i ) · Pr

(
g

(i)
α/2 ≤ n/α

)
≥ 1/2 · 49/50 = 0.49

It remains to lower bound

E

[
|Si \ Si−1|

∣∣∣∣|Si−1| ≤
opt

30α
, E∗i , g

(i)
α/2 ≤ n/α

]

We only consider the first 2n/α vertices of π(i), denoted by π(i)[2n/α], and analyze two

quantities. x: the expected number of vertices in π(i)[2n/α] that are matched, and y: the

expected number of vertices in π(i)[2n/α] that belong to Si−1. We will show that x ≥ opti·k
6α2

and y ≤ opt
15α2 . Since x − y is a lower bound of the expected number of new vertices in R

that are matched in Pi, this will complete the proof.

For the quantity x, g
(i)
α/2 ≤ n/α implies that there are at least n/α bad vertices in π(i)[2n/α],

and by E∗i , there is a matching of size at least
opti·k

3α2 between Li and the first n/α bad

vertices (and hence between Li and π(i)[2n/α]). Since Pi will find a maximal matching, at

least
opti·k

6α2 vertices in π(i)[2n/α] will be matched.
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For the quantity y, since |Si−1| ≤ opt
30α , and each vertex in Si−1 belongs to π(i)[2n/α] with

probability 2/α, the expected number of vertices in Si−1 that belong to π(i)[2n/α] is at

most
opt
15α2 . Therefore,

E

[
|Si \ Si−1|

∣∣ |Si−1| ≤
opt

30α

]
≥ 0.49 · (opti · k

6α2
− opt

15α2
)

We now analyze the case where opt/2 edges of M∗ belong to the players in T2.

Lemma 5.3.4. If
∑

i∈T2 opti ≥ opt/2, then E [|M |] = Ω(opt/α).

Proof. We will show for the Type 2 players that Ω(1/α) fraction of the good vertices will

be matched in expectation. Recall that for any β ≥ 1, g
(i)
β is the random variable (on π

(i)
pos)

counting the number of good positions that appear in the first 1/β fraction of [n]. Then

E
[
g

(i)
β

]
= opti/β. Define gm(i) to be the random variable (on π(i)) for the number of good

vertices that are matched and sent to the coordinator by Pi. Since the size of M is at

least the sum of gm(i), our goal is to lower bound E
[
gm(i)

]
. We establish the following key

lemma.

Lemma 5.3.5. For any player Pi in T2, any integer r ≥ 1, and any π
(i)
pos with g

(i)
α = r,

E
[
gm(i)

∣∣g(i)
α = r

]
≥ 1

4 min
{
r,
⌈

opti·k
6α2

⌉}
, where the expectation is taken over π

(i)
b and π

(i)
g .

Note that 1
4 min

{
r,
⌈

opti·k
6α2

⌉}
≥ 1

4 , and sometimes, we will directly use 1
4 as a lower bound

of the target expectation when applying Lemma 5.3.5. We first demonstrate how to use

Lemma 5.3.5 to prove E [|M |] = Ω(opt/α). To see this, we need to further partition the

Type 2 players into two sub-types, where for Type 2a: opti/α ≥ 1, and for Type 2b:

opti/α < 1. Let the set of players that are in Type 2a (resp. Type 2b) be T2a (resp. T2b).

We consider these two sub-types separately.
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Lemma 5.3.6. If
∑

i∈T2a opti ≥ opt/4, then E [|M |] = Ω(opt/α).

Proof. Fix any player Pi in T2a. We can lower bound the expectation of gm(i) as follows.

E
[
gm(i)

]
≥ E

[
gm(i)

∣∣∣∣g(i)
α ≥

opti
2α

]
· Pr

(
g(i)
α ≥

opti
2α

)

Since a good position appearing in the first n/α fraction of [n] is negatively correlated

to other good position appearing in the first n/α fraction of [n], by Chernoff bounds,

Pr
(
g

(i)
α <

opti
2α

)
≤ 1

e1/12
. Denote by c the constant

(
1− 1

e1/12

)
. Hence

E
[
gm(i)

]
≥ E

[
gm(i)

∣∣∣∣g(i)
α ≥

opti
2α

]
· c

By Lemma 5.3.5,

E

[
gm(i)

∣∣∣∣g(i)
α

opti
2α

]
· c

≥1

4
min

{
opti
2α

,

⌈
opti · k

6α2

⌉}
· c

≥ c
4

opti
6α

= Ω

(
opti
α

)

Therefore, summing over all players in T2a,

E

∑
i∈T2a

gm(i)


=
∑
i∈T2a

E
[
gm(i)

]

=Ω

∑
i∈T2a

opti
α

 = Ω

(
opt

α

)

Lemma 5.3.7. If
∑

i∈T2b opti ≥ opt/4, then E [|M |] = Ω(opt/α).
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Proof. For any player Pi in T2b,

E
[
gm(i)

]
≥ E

[
gm(i)

∣∣∣g(i)
α ≥ 1

]
· Pr

(
g(i)
α ≥ 1

)

Since opti/α < 1, the probability that no good position appears in the first n/α is

Pr
(
g(i)
α = 0

)
=

(
n− n/α

opti

)
/

(
n

opti

)
=

(n− n/α)! · (n− opti)!

n! · (n− n/α− opti)!

=

n/α−1∏
j=0

n− opti − j
n− j

≤
(
n− opti

n

)n/α
≤ exp(−opti

n
· n
α

)

=e−opti/α

≤1− opti
2α

where the last inequality is because e−x ≤ 1− x/2 for any x ∈ [0, 1]. Therefore,

E
[
gm(i)

∣∣∣g(i)
α ≥ 1

]
· Pr

(
g(i)
α ≥ 1

)
≥E

[
gm(i)

∣∣∣g(i)
α ≥ 1

]
· opti

2α

By Lemma 5.3.5,

E
[
gm(i)

∣∣∣g(i)
α ≥ 1

]
· opti

2α

≥1

4
· opti

2α

=Ω

(
opti
α

)
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Summing over all players in T2b,

E

∑
i∈T2b

gm(i)


=Ω

∑
i∈T2b

opti
α


=Ω

(
opt

α

)

Proof. (Proof of Lemma 5.3.5) We need to lower bound the expected number of good vertices

that are matched. It suffices for us to only consider this expectation when the event E∗i does

not happen, i.e., the first n/α bad vertices only have a matching of size less than
opti·k

3α2 to

Li.

E
[
gm(i)

∣∣g(i)
α = r

]
≥E

[
gm(i)

∣∣g(i)
α = r, E∗i

]
· Pr

(
E∗i
)

≥E
[
gm(i)

∣∣g(i)
α = r, E∗i

]
· 1

2

In the following, we claim that when enumerating each of the first min
{⌈

opti·k
6α2

⌉
, r
}

good

positions in the first n/α, (a) Pi still has the budget to send one more edge, and moreover,

(b) with probability at least 1/2, π
(i)
g picks a good vertex that has an unmatched neighbor.

To see property (a), when enumerating any of these good positions, the number of vertices

in R that are matched is strictly less than
opti·k

3α2 (which is an upper bound of the number

of matched bad vertices) plus
⌈

opti·k
6α2

⌉
− 1 (which is an upper bound of the number of good

vertices that have appeared). Since
⌈

opti·k
6α2

⌉
− 1 ≤ opti·k

6α2 , the total number of vertices in R

that are matched is strictly less than
opti·k

2α2 . Since Pi can send at least
⌈

opti·k
2α2

⌉
edges, the

number of matching edges is strictly less than the budget, and hence Pi can send at least

one more edge.
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To see property (b), since, again, at most optik/3α
2 bad vertices are matched, and optik/6α

2

good vertices have appeared, at least opti/2 good vertices that have not appeared have the

property that the vertices they are matched with in M∗ are still unmatched. Hence π
(i)
g

assign a good vertex that can be matched with probability at least 1/2. Therefore,

E
[
gm(i)

∣∣g(i)
α = r, E∗i

]
· 1

2
≥ 1

4
·min

{⌈
opti · k

6α2

⌉
, r

}

5.3.2. A protocol with Õ(n/α) communication for α ≥ k

We introduce the randomized protocol Prand2 . Intuitively, in the regime where α ≥ k, it is

always the case that at least one player will contain a matching of size at least opt/k(≥

opt/α), and hence, one can always obtain an α-approximation by asking every player to send

a (locally) maximum matching. However, in the case where many players have a matching

of size opt/α (e.g., the case of a complete bipartite graph), the total communication could

be as large as nk/α. To resolve this issue, we design a self-sampling scheme which ensures

that when multiple players has a large matching, only a handful of them would actually

end up sending a large matching.

Claim 5.3.8. The protocol Prand2 uses Õ(n/α) communication.

Proof. Since there are only O(log n) different guesses of opt, we only need to show that for

each guess, ˜opt, the total communication is Õ(n/α). Fix an ˜opt, since a player will send

at most ˜opt/α edges to the coordinator, we only need to show that only Õ(n/ ˜opt) players

will pass the coin toss and send a matching to the coordinator. The expected number of
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Algorithm 5: Prand2 : A randomized O(α)-approximation simultaneous protocol with Õ(nα)
communication (for α ≥ k).

Input : A bipartite graph G(L,R,E) in the simultaneous vertex-partition model with k
players.

Output: A matching M of G with size Ω(opt/α).
1. For each player Pi independently,

(a) Let li be the number of vertices in L that are in Pi.
(b) Guess the size of a maximum matching in G (i.e., opt) from
{n/α, n/(2α), n/(4α), . . . , 1}.

(c) For each guessed value of opt, denoted by ˜opt, toss a biased coin and with
probability min

{
2li log n/ ˜opt, 1

}
, find a maximum matching Mi and send the

first (at most) ˜opt/α edges of Mi to the coordinator.
2. The coordinator finds a maximum matching among all received edges.

players that passed the coin toss is

∑
i∈[k]

2li log n/ ˜opt = 2n log n/ ˜opt ≥ 2 log n

By Chernoff bounds, with high probability, at most Õ(n/ ˜opt) players passes the coin toss,

and hence the total communication is Õ(n/α).

Claim 5.3.9. The protocol Prand2 outputs a matching of size Ω(opt/α).

Proof. If opt ≤ n/α, since at least one player (say Pi) contains a matching of size at least

opt/k (which is at least opt/α), it suffices to show that Pi will send a matching of size at

least n/α2 (which is ≥ opt/α). When Pi guesses ˜opt = n/α, the probability that Pi passes

the coin toss is at least 2li log n/ ˜opt ≥ 1, and Pi will send a matching of size ˜opt/α = n/α2.

If opt > n/α, we argue that when every player guesses an ˜opt ∈ [opt/2, opt], a matching of

size Ω( ˜opt/α) (which is also Ω(opt/α)) will be sent to the coordinator. Fix a matching M∗

in G of size ˜opt and consider the vertices in M that belong to L, denoted by LM∗ . LM∗

is partitioned across k players. We refer to any player that contains more than ˜opt/(2α)

vertices in LM∗ as good. Since the size of a maximum matching in any good player Pi is

at least the number of vertices in LM that belong to Pi, any good player that passes the
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coin toss will send a matching of size at least ˜opt/(2α) to the coordinator, and Prand2 would

then output a matching of size Ω( ˜opt/α). We only need to show at least one good player

will pass the coin toss.

Since the total number of vertices in LM∗ that belong to the players that are not good is

at most k · ˜opt/(2α) ≤ ˜opt/2, at least ˜opt/2 vertices in LM∗ belongs to the good players.

The expected number of good players that passed the coin toss is at least

∑
Pi is good

2li log n/ ˜opt ≥ ( ˜opt/2)2 log n/ ˜opt = log n

By Chernoff bounds, with high probability, at least one of the good players will pass the

coin toss.

5.4. Deterministic Protocols

When α ≥ k, a simple protocol where every player finds a maximum matching and send

the first n/α edges will achieve the required approximation and communication. Hence,

here we consider the α < k case and introduce the deterministic protocol Pdet. Intuitively,

unlike randomized protocols, deterministic protocols cannot achieve coordination through

objects like “random matchings”, which is the reason why we need an extra α factor in

the communication. The protocol Pdet adapts the approach of repeatedly finding maximum

matchings for each player until either no more vertex (in R) can be matched, or enough

edges has been collected.

If we denote by Li the set of vertices in L that belong to the player Pi and by li the size

of Li, Pi will send at most dk/αe · li edges to the coordinator. Hence the total amount of

communication is (
∑

i∈[k] li)dk/αe = O(nk/α). We now show that the protocol Pdet outputs

an O(α)-approximate matching and hence proving part (i) in Theorem 5.2.

Proof. (Proof of Theorem 5.2, part (i)) Let M be a maximum matching of the edges received

by the coordinator and opt be the size of a maximum matching in G. Denote the sets of
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Algorithm 6: Pdet: A deterministic O(α)-approximation simultaneous protocol with O(nkα )
communication.
Input : A bipartite graph G(L,R,E) in the simultaneous vertex-partition model with k

players.
Output: A matching M of G with size Ω(opt/α).

1. For each player Pi independently:
(a) Find a maximum matching M1 and remove the vertices in R that are matched

in M1; find a maximum matching M2 in the remaining graph and remove the
vertices in R that are matched in M2; repeat for dk/αe times. We refer to the
set of the edges found in this process as a matching-cover.

(b) Send the matching-cover to the coordinator.
2. The coordinator outputs a maximum matching of all received edges.

vertices matched in M by A (in L) and B (in R). No edge between L \ A (denoted by A)

and R \ B (denoted by B) is received by the coordinator. We argue that size of M is at

least opt/(12α). Suppose, by contradiction, that |M | = |A| = |B| < opt/(12α).

Let M∗ be a maximum matching between A and B in G. Since G has a matching of size

opt while A and B each only have at most opt/(12α) vertices, the size of M∗ is at least

opt − |A| − |B| ≥ opt − 2
opt
12α > 5opt/6 > 3opt/4. Denote the sets of vertices matched in

M∗ by A∗ (in L) and B∗ (in R). The vertices in A∗ are partitioned between the k players.

Denote the vertices in A∗ that belong to the player Pi by A∗i , and denote by ni the size of

A∗i . Hence
∑

i∈[k] ni = |A∗| ≥ 3opt/4. Denote the number of vertices in A that belong to

Pi by ai. To simplify the presentation, we further assume for each player Pi, if ai 6= 0, ni

is an integer multiple of ai
2. Let B∗i be the set of vertices matched to A∗i in M∗. We first

make the following observation.

Claim 5.4.1. For any player Pi, the j-th maximum matching found by Pi, for any 1 ≤ j ≤

dk/αe, must match at least (ni − jai) vertices in A∗(i).

Proof. Fix a player Pi. Since no edge between A∗i and B∗i is sent to the coordinator, if a

vertex v ∈ B∗i is matched by the matching-cover of Pi, v must be matched to a vertex in A.

Since the number of vertices in A that belong to Pi is ai, each maximum matching found by

2This can be achieved by removing at most ai vertices from A∗i for each player Pi. Since
∑
i∈[k] ai ≤ |A|,

the size of the remaining matching in M∗ is still at least opt− 2|A| − |B| > 3opt/4.
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Pi can only match at most ai of the vertices in B∗i . Hence when Pi is finding a maximum

matching for the j-th time, at least (ni − jai) vertices in B∗i are unmatched. Consider the

corresponding (ni − jai) vertices in A∗i that are matched with these (ni − jai) vertices in

B∗i in the matching M∗ (denoted by A′′). Since A′′ is not matched with any vertex in B,

Pi must match A′′ with a set of (ni − jai) vertices in B.

As an immediate consequence of Claim 5.4.1, we can establish the following connection

between ni and ai for each player.

Lemma 5.4.2. For each player Pi, min {ni/ai, dk/αe} · (ni − ai)/2 ≤ |B|.

Proof. In the rest of the proof we assume that ni ≥ 1 since otherwise the inequality holds

trivially. Using Claim 5.4.1, Pi matches at least (ni − jai) vertices in A∗(i) in the j-th

matching. Since once a vertex v in B is matched, v will be deleted from the graph, these

(ni − jai) vertices in B must be distinct for each j.

Let β = min {ni/ai, dk/αe}. Then for the first β times of finding maximum matching,

|B| ≥
∑
j∈[β]

(ni − jai)

=
((ni − ai) + (ni − βai))β

2

≥ (ni − ai)β
2

where the last inequality is due to β ≤ ni/ai.

To use Lemma 5.4.2, we partition the players into two groups. The group G1 contains players

Pi where ni/ai ≤ dk/αe, and the group G2 contains the players where ni/ai > dk/αe. Since

at least one of the two groups contains at least half of the edges in M∗, we consider G1

containing half of M∗ and G2 containing half of M∗ separately and show that for either case

|M | ≥ opt/(12α).
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If G1 contains half of the edges in M∗, i.e.,
∑

i∈G1 ni ≥ |M
∗| /2 ≥ 3opt/8 > opt/4, using

Lemma 5.4.2, we have

(ni/ai)(ni − ai)/2 ≤ |B| (= |A|)

which implies ai ≥ n2
i /(2 |A|+ni). Note that ni ≤ |A| since otherwise the player Pi contains

a matching of size larger than |A|, and the edges sent by Pi alone must contain a matching

of size larger than |A|, which contradicts the fact that the coordinator outputs a maximum

matching of size |A|. Therefore, ai ≥ n2
i /(3 |A|). Summing over all players in G1, we have

(|A| ≥)
∑
i∈G1

ai ≥
∑
n2
i

3 |A|
=

∑
n2
i |G1|

3 |A| |G1|

≥ (
∑
ni)

2

3k |A|
≥ opt2

48k |A|

where the second inequality is by the Cauchy-Schwarz. Hence, |A| ≥ opt/(
√

48k) ≥

opt/(4
√

3α) > opt/(12α), a contradiction.

If G2 contains half of the edges inM∗, i.e.,
∑

i∈G2 ni ≥ |M
∗| /2 ≥ 3opt/8, Using Lemma 5.4.2,

we have:

dk/αe(ni − ai)/2 ≤ |B| (= |A|)

which implies ai ≥ ni − 2α |A| /k. Summing over all players in G2, we have

(|A| ≥)
∑
i∈G2

ai ≥
∑
i∈G2

(ni − 2α |A| /k) ≥ 3opt/8− 2α |A|

which implies |A| (1 + 2α) ≥ 3opt/8, and hence |A| ≥ opt/(8α), a contradiction.

5.5. Multi-Round Protocols

Consider the following direct extension of the simultaneous protocol Pdet.

The matchings found by the coordinator form a matching of the entire graph, and the

total size of the matchings is less that n/α, since otherwise the protocol has already found
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Algorithm 7: Pr: An r-round O(α)-approximation deterministic protocol for α ≥ k
1

1+r .

Input : A bipartite graph G(L,R,E) in the simultaneous vertex-partition model with k
players.

Output: A matching M of G with size Ω(opt/α).
1. For l = 1 to r rounds:

(a) In the l-th round, the sites and the coordinator will invoke P: each site finds a
matching-cover with parameter α in the remaining graph and send it to the
coordinator. The coordinator finds a maximum matching Ml among all
received edges.

(b) The coordinator will send the matching Ml to each site, and the site will
remove all vertices matched in Ml from its input.

2. The coordinator outputs M = M1 ∪M2 ∪ . . . ∪Mr as the final matching.

an α-approximate matching. Therefore, the coordinator will use O(kn/α) communication

total.

Theorem 5.3. For any bipartite graph G(L,R,E), in the vertex partition model with k

sites, for any α ≥ k
1
r+1 and any constant r ≥ 1, the r-round protocol Pr outputs a O(α)-

approximation to the maximum matching with O(kn/α) communication.

Proof. It is convenient to consider the rounds from the last to the first. To simplify the

notation, we use the term reversed-round where the l-th reversed-round refers to the (r −

l + 1)-th round.

Denote the matching found by the coordinator in the l-th reversed-round by Ml, and further

denote the sets of vertices in Ml by Al (in L) and Bl (in R). Let al(i) be the number of

vertices in Al that belongs to the i-th site Pi. Denote the total size of the Ml matchings

(for l ∈ [r]) by S, and suppose towards a contradiction that S is less than opt/(2r+2α).

Since there is a matching of size opt in G, there exists a matching of size at least opt/2

that does not intersect with any matching Ml. We denote this matching by M∗ and the

vertices in M∗ by A∗ and B∗. Denote by A∗(i) that vertices in A∗ that belongs to Pi, and

let n∗(i) = |A∗(i)|.

At a high level, our approach is to argue that for each site Pi, for each reversed-round

l ∈ [r], there are many vertices in A∗(i) that have many edges to Bl. Since in the (l+ 1)-th
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reversed-round (i.e., in the previous round), the coordinator receives no edge between A∗(i)

and Bl, we can establish that Pi did not send any edge between A∗(i) and Bl implies that

Pi sent even more edges between A∗(i) and Bl+1 in the (l+ 1) reversed-round. Eventually,

this increment of the number of edges between A∗(i) and Bl+1 leads to a contraction in the

r-th reversed-round (i.e., the first round) on the size of Br.

To formalize the argument, we consider the following invariant for each site

cl(i) = 2
−
(

(l+1)l
2
−1

)
· n∗ l

Πl′<lal′

We first establish the following lower bound (using cl(i)) on the number of vertices in A∗(i)

that Pi must match when finding a maximum matching each time in each round.

Lemma 5.5.1. For any site Pi and any l ∈ [r], if for any l′ < l, dk/αe ≥ cl′(i)/al′(i),

then at the l-th reversed-round, when Pi (using protocol P) find maximum matchings for the

j-th time, for any j ≤ cl(i)/al(i), the number of vertices in A∗(i) that appear in the j-th

matching is at least

(
n∗(i)− jal(i)n

∗(i)

cl(i)

)
/2l−1.

Proof. We fix a site Pi in G1 and simplify the notation by using n∗ to denote n∗(i), al to

denote al(i), and cl to denote cl(i). We prove this by induction on the (reversed) rounds.

Base. For l = 1, which is the last round, c1 = n∗. Using Claim 5.4.1, when finding the j-th

maximum matching, at least (n∗ − ja1) vertices in A∗(i) will be matched. This completes

the proof of the induction base.

Inductive step. Assume the induction property holds for the l-th reversed-round, we now

prove for the (l + 1)-th reversed-round.

In the following, suppose for any l′ ≤ l, dk/αe ≥ cl′/al′ . We first show that there exist

at least n∗/2l vertices in A∗(i) where each of them has at least cl/2al edges to Bl, and
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then show how to use the existence of these high degree (w.r.t. Bl) vertices to prove the

induction property.

Proposition 5.5.2. There exists at least n∗/2l vertices in A∗(i) where each of them has at

least cl/2al edges to Bl.

Proof. We first prove the existence of n∗/2l high degree (w.r.t. Bl) vertices. In the l-th

reversed-round, Pi find maximum matching for cl/al times, and the j-th time matches at

least (n∗ − jaln∗/cl)/2l−1 vertices from A∗(i). Since Pi only matches vertices in A∗(i) to

vertices in Bl (hence forming degree w.r.t. Bl), we only need to show that the matchings

Pi found in the l-th reversed-round match a set of n∗/2l vertices in A∗(i) for at least cl/2al

times. To see this, we show that the set of vertices in A∗(i) that are matched in the j-

th matching must also be matched in the (j − 1)-th matching, and hence the first cl/2al

matchings all hit a set of (n∗ − (cl/2al)(aln
∗/cl))/2

l−1 = n∗/2l vertices. Suppose a vertex

u is matched in the j-th time but not in the (j − 1)-th time, then the match of u in the

j-th time can be added to the maximum matching found in the (j − 1)-th time and forms

a larger matching, a contradiction. Therefore, there exists at least n∗/2l vertices in A∗(i)

where each of them has at least cl/2al edges to Bl.

In the (l+1)-th reversed-round, consider the first cl/al times of finding maximum matchings.

The total number of vertices in R (in particular, the total number of vertices in B∗ and Bl)

that need to be covered is at least

n∗ +
∑

j∈[cl/al]

(
n∗ − jaln

∗

cl

)
/2l−1 ≥ n∗ +

1

2l−1

(
n∗ − aln

∗

cl

)
· cl

2al
= n∗ +

cln
∗

2lal
− n∗

2l
≥ cl+1

where the last inequality uses

cl =
2l+1al
n∗

· cl+1

We now ready to show that the j-th time matches at least (n∗ − jal+1n
∗/cl+1)/2l vertices

in A∗(i), hence proving the induction step.
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When finding the maximum matching for the j-th time, at most jal+1 vertices in Bl can be

matched. For any vertex u that has degree at least cl/2al to Bl, we say the neighborhood

of u in Bl is covered if all neighbors of u in Bl are matched in some of the first j matchings.

As long the neighborhood of u in Bl is not covered, the maximum matching Pi found in the

j-th time must also match u. Among the n∗/2l vertices in A∗(i) that has degree at least

cl/2al to Bl, the number of vertices whose neighborhood in Bl are covered is at most

jal+1

cl/2al
=

2jal+1al
cl

= 2jal+1al ·
n∗

2l+1alcl+1
=
jal+1n

∗

2lcl+1

Hence, at least (n∗− jal+1n
∗/cl+1)/2l many vertices in A∗(i) will appear in the j-th match-

ing.

To use Lemma 5.5.1, similar to the single round case, we partition the sites into two groups.

The group G1 contains the sites Pi where for every round l ∈ [r], dk/αe ≥ cl(i)/al(i), and

group G2 contains the sites where for at least one round l ∈ [r], dk/αe < cl(i)/al(i). One of

the two groups contains more than half of the edges in M∗. In the following, we consider

G1 containing at least half of M∗ and G2 containing at least half of M∗, respectively.

Lemma 5.5.3. If G1 contains more than half of M∗, then S ≥ opt/(2rα).

Proof. Using Lemma 5.5.1, for the r-th reversed round (i.e., the first round), when Pi find

maximum matchings for the j-th time, at least (n∗− jarn∗/cr)/2r−1 vertices in A∗(i) must

be matched with some distinct vertices in Br. Since dk/αe ≥ cr/ar, for the first cr/ar times

of finding maximum matchings,

|Br| ≥
∑

j∈[cr/ar]

(
n∗ − jarn

∗

cr

)
/2r−1 ≥ 1

2r−1

(
n∗ − arn

∗

cr

)
cr

2ar
=
crn
∗

2rar
− n∗

2r
≥ cr+1 −

n∗

2r

Summing over all sites in G1 (to simplify the notation, all summations below are over sites

in Pi),

(kS ≥) |G1| |Br| ≥
∑(

cr+1(i)− n∗(i)

2r

)
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Since n∗ < S,

(2kS ≥)kS +
kn∗

2r
≥ 1

2
(r+1)r

2

∑ n∗(i)r+1

Πl∈[r]al(i)

Using Cauchy-Schwarz inequality (the multiple vectors version, see Claim 5.2.1),

∑ n∗(i)r+1

Πl∈[r]al(i)
=

(∑ n∗(i)r+1

Πl∈[r]al(i)

)
Πl∈[r]

(∑
al(i)

)
/
(

Πl∈[r]

∑
al(i)

)

≥

(∑(
n∗(i)r+1

Πl∈[r]al(i)
Πl∈[r]al(i)

) 1
r+1

)r+1

/Πl∈[r]|Al| ≥
(∑

n∗(i)
)r+1

/Sr ≥
(

opt

4

)r+1

/Sr

where the last inequality is because G1 contains half of M∗ where the size of M∗ is at least

opt/2. Hence

2kS ≥ optr+1

2
(r+1)r

2 Sr

which implies S ≥ opt/(2rk
1
r+1 ) ≥ opt/(2rα).

Lemma 5.5.4. If G2 contains more than half of M∗, then S ≥ opt/(2r+2α).

Proof. For any l ∈ [r], let Gl2 be the set of sites Pi in G2 where l is the smallest reversed-round

(i.e., the latest round) that dk/αe < cl(i)/al(i). Since for any l′ < l̂, dk/αe ≥ cl′(i)/al′(i)

for all sites Pi in G l̂2, we can apply Lemma 5.5.1 to lower bound the size of Bl̂. Formally,

for any l ∈ [r], for each Pi in G l̂2, and consider the dk/αe maximum matchings found by Pi,

(S ≥)|Bl| ≥
∑

j∈[dk/αe]

(
n∗(i)− jal(i)n

∗(i)

cl(i)

)
/2l−1 ≥

(
n∗(i)− al(i)n

∗(i)

cl(i)

)
dk/αe/2r

Since dk/αe < cl(i)/al(i) and n∗ < S,

(2S ≥)S +
al(i)n

∗(i)

cl(i)
dk/αe/2r ≥ n∗(i)(k/α)/2r

122



Summing over all l ∈ [l] and all sites in Gl2,

(2kS ≥)2S
∑
l∈[r]

∣∣∣Gl2∣∣∣ ≥
∑
l∈[r]

∑
Pi∈Gl2

n∗(i)

 (k/α)/2r ≥ (opt/2)(k/α)/2r

Therefore,

S ≥ opt

2r+2α

Hence, either G1 contains half of M∗ or G2 contains half of M∗, S ≥ opt/(2r+2α).

5.6. Conclusions and Future Work

In this chapter, we resolve the per-player simultaneous communication complexity for ap-

proximating matchings in the vertex partition model in the regime where α ≥
√
k. We

extend our protocol to multi-round which breaks the barrier of α ≥
√
k. An interesting di-

rection for future research is to obtain better understandings of matchings using multi-round

protocols.
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CHAPTER 6 : Data Provisioning

We have observed the power of data summarization for finding matchings in various settings

(Chapter 3 and Chapter 5). In this chapter, we will see more usage of data summarization

when handling distributed information. In particular, we will present our work in designing

efficient schemes for data provisioning1. We first formally introduce the provisioning model

and discuss the objective of our algorithms. Then, we present our provisioning schemes

for numerical queries, logical queries, and the more general complex queries, which are

practical queries combing logical, grouping, and numerical queries. We start with defining

and motivating the query provisioning model.

6.1. Background

Query provisioning comes from the more general field of “what if analysis”, which is a com-

mon technique for investigating the impact of decisions on outcomes in science or business.

The main difference is that in our notation, data are distributed in multiple locations while

for “what if analysis” data are typically assumed to be centralized. However, since the goal

is to compute sketches of small size (rather than minimizing communication between play-

ers), one can always centralized the data first and then compute the sketch. In fact, all our

algorithms for numerical queries (which is the main focus of this work) can be (essentially)

directly executed in a distributed manner where the total communication is the same as

the final sketch size. Therefore, for simplicity, in the rest of this chapter, we will directly

focus on provisioning for “what if analysis”.

“What if analysis” almost always involves a data analytics computation. Nowadays such

a computation typically processes very large amounts of data and thus may be expensive

to perform, especially repeatedly. An analyst is interested in exploring the computational

impact of multiple scenarios that assume modifications of the input to the analysis problem.

The general aim is to avoid repeating expensive computations for each scenario. For a given

1The full paper of this work can be found in [14]
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problem, and starting from a given set of potential scenarios, we wish to perform just one

possibly expensive computation producing a small sketch (i.e., a compressed representation

of the input) such that the answer for any of the given scenarios can be derived rapidly from

the sketch, without accessing the original (typically very large) input. We say that the sketch

is “provisioned” to deal with the problem under any of the scenarios and following [41], we

call the whole approach provisioning. Again, the goal of provisioning is to allow an analyst

to efficiently explore a multitude of scenarios, using only the sketch and thus avoiding

expensive recomputations for each scenario.

We apply the provisioning approach to queries that perform in-database analytics [70]2.

These are queries that combine logical components (relational algebra and Datalog), group-

ing, and numerical components (e.g., aggregates and quantiles). Other analytics are dis-

cussed under further work.

Abstracting away any data integration/federation, we will assume that the inputs are re-

lational instances and that the scenarios are defined by a set of hypotheticals. We further

assume that each hypothetical indicates the fact that certain tuples of an input instance

are retained (other semantics for hypotheticals are discussed under further work).

A scenario consists of turning on/off each of the hypotheticals. Applying a scenario to

an input instance therefore means keeping only the tuples retained by at least one of the

hypotheticals that are turned on. Thus, a trivial sketch can be obtained by applying each

scenario to the input, solving the problem for each such modified input and collecting the

answers into the sketch. However, with k hypotheticals, there are exponentially (in k) many

scenarios. Hence, even with a moderate number of hypotheticals, the size of the sketch could

be enormous. Therefore, as part of the statement of our problem we will aim to provision a

query by an algorithm that maps each (large) input instance to a compact (essentially size

poly(k)) sketch.

2In practice, the MADlib project [2] has been one of the pioneers for in-database analytics, primarily in
collaboration with Greenplum DB [1]. By now, major RDBMS products such as IBM DB2, MS SQL Server,
and Oracle DB already offer the ability to combine extensive analytics with SQL queries.
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Example. Suppose a large retailer has many and diverse sales venues (e.g., its own stores,

its own web site, through multiple other stores, and through multiple other web retailers).

An analyst working for the retailer is interested in learning, for each product in, say, “Elec-

tronics”, a regression model for the way in which the revenue from the product depends on

both a sales venue’s reputation (assume a numerical score) and a sales venue commission

(in %; 0% if own store). Moreover, the analyst wants to ignore products with small sales

volume unless they have a large MSRP (manufacturer’s suggested retail price). Usually

there is a large (possibly distributed/federated) database that captures enough information

to allow the computation of such an analytic query. For simplicity we assume in this exam-

ple that the revenue for each product ID and each sales venue is in one table and thus we

have the following query with a self-explanatory schema:

SELECT x.ProdID, LIN_REG(x.Revenue, z.Reputation, z.Commission) AS (B, A1, A2)

FROM RevenueByProductAndVenue x

INNER JOIN Products y ON x.ProdID=y.ProdID

INNER JOIN SalesVenues z ON x.VenueID=z.VenueID

WHERE y.ProdCategory="Electronics" AND (x.Volume>100 OR y.MSRP>1000)

GROUP BY x.ProdID

The syntax for treating linear regression as a multiple-column-aggregate is simplified for

illustration purposes in this example. Here the values under the attributes B,A1,A2 denote,

for each ProdID, the coefficients of the linear regression model that is learned, i.e., Revenue

= B + A1*Reputation + A2*Commission.

A desirable what-if analysis for this query may involve hypotheticals such as retaining

certain venue types, retaining certain venues with specific sales tax properties, retaining

certain product types (within the specified category, e.g., tablets), and many others. Each

of these hypotheticals can in fact be implemented as selections on one or more of the tables

in the query (assuming that the schema includes the appropriate information). However,

combining hypotheticals into scenarios is problematic. The hypotheticals overlap and thus
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cannot be separated. With 10 (say) hypotheticals there will be 210 = 1024 (in practice

at least hundreds) of regression models of interest for each product. Performing a lengthy

computation for each one of these models is in total very onerous. Instead, we can provision

the what-if analysis of this query since the query in this example falls within the class covered

by our positive results.

6.2. Our Results and Related Work

Our goal is to characterize the feasibility of provisioning with sketches of compact size (see

Section 6.3 for a formal definition) for a practical class of complex queries that consist of a

logical component (relational algebra or Datalog), followed by a grouping component, and

then by a numerical component (aggregate/analytic) that is applied to each group (a more

detailed definition is given in Section 6.5).

The main challenge that we address, and the part where our main contribution lies, is

the design of compact provisioning schemes for numerical queries, specifically linear (`2)

regression and quantiles. Together with the usual count, sum and average, these are defined

in Section 6.4 as queries that take a set of numbers or of tuples as input and return a number

or a tuple of constant width as output. It turns out that if we expect exact answers,

then none of these queries can be compactly provisioned. However, we show that compact

provisioning schemes indeed exist for all of them if we relax the objective to computing near-

exact answers (see Section 6.3 for a formal definition). The following theorem summarizes

our results for numerical queries (see Section 6.4):

Theorem 6.1 (Informal). The quantiles, count, and sum/average (of positive numbers)

queries can be compactly provisioned to provide (multiplicative) approximate answers to an

arbitrary precision.

It was shown in [14] that exact provisioning of these queries requires the sketch size to be

exponential in the number of hypotheticals. This highlights the additional power of being

able to produce approximate answers.
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Our results on provisioning numerical queries can then be used for complex queries, as the

following theorem summarizes (see Section 6.5):

Theorem 6.2 (Informal). Any complex query whose logical component is a positive rela-

tional algebra query can be compactly provisioned to provide an approximate answer to an

arbitrary precision as long as its numerical component can be compactly provisioned for the

same precision, and as long as the number of groups is not too large.

It was also shown in [14] that having negation or recursion in the logical component requires

the sketch size to be exponential in the number of hypotheticals. Therefore, further gener-

alizing Theorem 6.2 would require completely new direction and perhaps new techniques.

Our techniques. At a high-level, our approach for compact provisioning can be described

as follows. We start by building a sub-sketch for each hypothetical by focusing solely on

the retained tuples of each hypothetical individually. We then examine these sub-sketches

against each other and collect additional information from the original input to summarize

the effect of appearance of other hypotheticals to each already computed sub-sketch. The

first step usually involves using well-known (and properly adjusted) sampling or sketching

techniques, while the second step, which is where we concentrate the bulk of our efforts, is

responsible for gathering the information required for combining the sketches and specifically

dealing with overlapping hypotheticals. Given a scenario, we answer the query by fetching

the corresponding sub-sketches and merging them together; the result is a new sketch that

act as sketch for the input consist of the union of the hypotheticals.

Related work. Our techniques for compact provisioning share some similarities with

those used in data streaming and in the distributed computation models of [37, 36, 109]

(see Section 6.6 for further discussion and formal separations), and in particular with lin-

ear sketching, which corresponds to applying a linear transformation to the input data to

obtain the sketch. However, due to overlap in the input, our sketches are required to to be

composable with the union operation (instead of the addition operation obtained by linear
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sketches) and hence linear sketching techniques are not directly applicable.

Dealing with duplicates in the input (similar to the overlapping hypotheticals) has also been

considered in streaming and distributed computation models (see, e.g., [35, 32]), which

consider sketches that are “duplicate-resilient”. Indeed, for simple queries like count, a

direct application of these sketches is sufficient for compact provisioning (see Section 6.4.1).

We also remark that the Count-Min sketch [34] can be applied to approximate quantiles

even in the presence of duplication (see [32]), i.e., is duplicate-resilient. However, the

approximation guarantee achieved by the Count-Min sketch for quantiles is only additive

(i.e., ±εn), in contrast to the stronger notion of multiplicative approximation (i.e., (1± ε))

that we achieve in this paper. To the best of our knowledge, there is no similar result

concerning duplicate-resilient sketches for multiplicative approximation of quantiles, and

existing techniques do not seem to be applicable for our purpose. Indeed one of the primary

technical contributions of this paper is designing provisioning schemes that can effectively

deal with overlapping hypotheticals for quantiles.

Further related work. Provisioning, in the sense used in this paper, originated in [41]

together with a proposal for how to perform it taking advantage of provenance tracking.

Answering queries under hypothetical updates is studied in [53, 18] but the focus there is on

using a specialized warehouse to avoid transactional costs. (See also [41] for more related

work.)

Estimating the number of distinct elements (corresponding to the count query) has been

studied extensively in data streams [49, 9, 21, 73] and in certain distributed computation

models [37, 36, 109]. For estimating quantiles, [85, 54, 58, 34, 59, 111] achieve an additive

error of εn for an input of length n, and [66, 33] achieve a (stronger guarantee of) (1± ε)-

approximation.

Organization: The rest of this chapter is organized as follows. We start by introducing

the provisioning model formally and defining the necessary notation in Section 6.3. In
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Section 6.4, we provide our results for numerical queries and prove Theorem 6.1. Section 6.5

contains our results for the complex queries and the proof of Theorem 6.2. We provide a

comparison between the techniques for query provisioning and the distributed computation

model in Section 6.6. Finally, we conclude with several future directions in Section 6.7.

6.3. Preliminaries

Hypotheticals. Fix a relational schema Σ. Our goal is to provision queries on Σ-

instances. A hypothetical w.r.t. Σ is a computable function h that maps every Σ-instance I

to a sub-instance h(I) ⊆ I. Formalisms for specifying hypotheticals are of course of interest

(e.g., apply a selection predicate to each table in I) but we do not discuss them here because

the results in this paper do not depend on them.

Scenarios. We will consider analyses (scenario explorations) that start from a finite set

H of hypotheticals. A scenario is a non-empty set of hypotheticals S ⊆ H. The result of

applying a scenario S = {h1, . . . , hs} to an instance I is defined as a sub-instance I|S =

h1(I)∪ · · · ∪ hs(I). In other words, under S, if any h ∈ S is said to be turned on (similarly,

any h ∈ H \S is turned off), each turned on hypothetical h will retain the tuples h(I) from

I.

Definition 6.1 (Provisioning). Given a query Q, to provision Q means to design a pair

of algorithms: (i) a compression algorithm that takes as input an instance I and a set H

of hypotheticals, and outputs a data structure Γ called a sketch, and (ii) an extraction

algorithm that for any scenario S ⊆ H, outputs Q(I|S) using only Γ (without access to I).

To be more specific, we assume the compression algorithm takes as input an instance I and

k hypotheticals h1, . . . , hk along with the sub-instances h1(I), . . . , hk(I) that they define. A

hypothetical will be referred to by an index from {1, . . . , k}, and the extraction algorithm

will be given scenarios in the form of sets of such indices. Hence, we will refer to a scenario

S ⊆ H where S = {hi1 , . . . , his} by abusing the notation as S = {i1, . . . , is}. Throughout

the paper, we denote by k the number of hypotheticals (i.e. k := |H|), and by n the size of
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the input instance (i.e., n := |I|).

We call such a pair of compression and extraction algorithms a provisioning scheme. The

compression algorithm runs only once; the extraction algorithm runs repeatedly for all

the scenarios that an analyst wishes to explore. We refer to the time that the compression

algorithm requires as the compression time, and the time that extraction algorithm requires

for each scenario as the extraction time.

The definition above is not useful by itself for positive results because it allows for trivial

space-inefficient solutions. For example, the definition is satisfied when the sketch Γ is

defined to be a copy of I itself or, as mentioned earlier, a scenario-indexed collection of all

the answers. Obtaining the answer for each scenario is immediate for either case, but such

a sketch can be prohibitively large as the number of tuples in I could be enormous, and the

number of scenarios is exponential in k = |H|.

This discussion leads us to consider complexity bounds on the size of the sketches.

Definition 6.2 (Compact provisioning). A query Q can be compactly provisioned if there

exists a provisioning scheme for Q that given any input instance I and any set of hypothet-

icals H, constructs a sketch of size poly(k, log n) bits, where k := |H| and n := |I|.

Even though the definition of compact provisioning does not impose any restriction on

either the compression time or the extraction time, all our positive results in this paper

are supported by (efficient) polynomial time algorithms. Note that this is data-scenario

complexity : we assume the size of the query (and the schema) to be a constant but we

consider dependence on the size of the instance and the number of hypotheticals.

Exact vs. approximate provisioning. Definition 6.2 focused on exact answers for

the queries. While this is appropriate for, e.g., relational algebra queries, as we shall see,

for queries that compute numerical answers such as aggregates and analytics, having the

flexibility of answering queries approximately is essential for any interesting positive result.

Definition 6.3 (ε-provisioning). For any 0 < ε < 1, a query Q can be ε-provisioned if there
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exists a provisioning scheme for Q, whereby for each scenario S, the extraction algorithm

outputs a (1± ε) approximation of Q(I|S), where I is the input instance.

We say a query Q can be compactly ε-provisioned if Q can be ε-provisioned by a provisioning

scheme that, given any input instance I and any set of hypotheticals H, creates a sketch of

size poly(k, log n, 1/ε) bits.

We emphasize that throughout this paper, we only consider the approximation guarantees

which are relative (multiplicative) as opposed to the weaker notion of additive approxi-

mations. The precise definition of relative approximation guarantee will be provided for

each query individually. Moreover, as expected, randomization will be put to good use in

ε-provisioning. We therefore extend the definition to cover the provisioning schemes that

use both randomization and approximation.

Definition 6.4. For any ε, δ > 0, an (ε, δ)-provisioning scheme for a query Q is a pro-

visioning scheme where both the compression and extraction algorithms are allowed to be

randomized and the output for every scenario S is a (1 ± ε)-approximation of Q(I|S) with

probability 1− δ.

An (ε, δ)-provisioning scheme is called compact if it constructs sketches Γ of size only

poly(k, log n, 1/ε, log(1/δ)) bits, has compression time that is poly(k, n, 1/ε, log (1/δ)), and

has extraction time that is poly(|Γ|).

In many applications, the size of the database is a very large number, and hence the

exponent in the poly(n)-dependence of the compression time might become an issue. If

the dependence of the compression time on the input size is essentially linear, i.e., O(n) ·

poly(k, log n, 1/ε, log (1/δ)) we say that the scheme is linear. We emphasize that in all our

positive results for queries with numerical answers we give compact (ε, δ)-linear provisioning

schemes, thus ensuring efficiency in both running time and sketch size.

Complex queries. Our main target consists of practical queries that combine logical,

grouping, and numerical components. In Section 6.5, we focus on complex queries defined
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by a logical (relational algebra or Datalog) query that returns a set of tuples, followed by a

group-by operation (on set of grouping attributes) and further followed by numerical query

that is applied to each sets of tuples resulting from the grouping. This class of queries

already covers many practical examples. We observe that the output of such a complex

query is a set of p tuples where p is the number of distinct values taken by the grouping

attributes. Therefore, the size of any provisioning sketches must also depend on p. We

show (in Theorem 6.6) that a sketch for a query that involves grouping can be obtained

as a collection of p sketches. Hence, if each of the p sketches is of compact size (as in

Definitions 6.2 and 6.4) and the value p itself is bounded by poly(k, log n), then the overall

sketch for the complex query is also of compact size. Note that p is typically small for the

kind of grouping used in practical analysis queries (e.g., number of products, number of

departments, number of locations, etc.). Intuitively, an analyst would have trouble making

sense of an output with a large number of tuples.

Notation. For any integer m > 0, [m] denotes the set {1, 2, . . . ,m}. The Õ(·) notation

suppresses log log(n), log log(1/δ), log(1/ε), and log(k) factors. All logarithms are in base

two unless stated otherwise.

6.4. Numerical Queries

In this section, we study provisioning of numerical queries, i.e., queries that output some

(rational) number(s) given a set of tuples. In particular, we investigate aggregation queries

including count, sum, average, and quantiles (therefore min, max, median, rank, and per-

centile), and as a first step towards provisioning database-supported machine learning, linear

(`2) regression. We assume that the relevant attribute values are rational numbers of the

form a/b where both a, b are integers in range [−W,W ] for some W > 0.

6.4.1. The Count, Sum, and Average Queries

In this section, we study provisioning of the count, sum, and average queries, formally defined

as follows. The answer to the count query is the number of tuples in the input instance. For
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the other two queries, we assume a relational schema with a binary relation containing two

attributes: an identifier (key) and a weight. We say that a tuple x is smaller than the tuple

y, if the weight of x is smaller than the weight of y. Given an instance I, the answer to

the sum query (resp. the average query) is the total weights of the tuples (resp. the average

weight of the tuples) in I.

We conclude this section by explaining the ε-provisioning schemes for the count, sum, and

average queries. Formally,

Theorem 6.3 (ε-provisioning count). For any ε, δ > 0, there exists a compact (ε, δ)-linear

provisioning scheme for the count query that creates a sketch of size Õ(ε−2k(k+ log(1/δ)))

bits.

Theorem 6.4 (ε-provisioning sum & average). For instances with positive weights, for any

ε, δ > 0, there exists compact (ε, δ)-linear provisioning schemes for the sum and average

queries, with a sketch of size Õ(ε−2k2 log(n) log(1/δ) + k log logW ) bits.

We remark that the results in Theorems 6.3 and 6.4 are mostly direct application of known

techniques and are presented here only for completeness.

The count query can be provisioned by using linear sketches for estimating the `0-norm (see,

e.g., [73]) as follows. Consider each hypothetical hi(I) as an n-dimensional boolean vector

xi, where the j-th entry is 1 iff the j-th tuple in I belongs to hi(I). For each xi, create a

linear sketch (using Õ(ε−2 log n) bits of space) that estimates the `0-norm [73]. Given any

scenario S, combine (i.e., add together) the linear sketches of the hypotheticals in S and

use the combined sketch to estimate the `0-norm (which is equal to the answer of count).

Remark 6.4.1. Note that we can directly use linear sketching for provisioning the count

query since counting the duplicates once (as done by union) or multiple times (as done by

addition) does not change the answer. However, this is not the case for other queries of

interest like quantiles and regression and hence linear sketching is not directly applicable for

them.
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Here, we also describe a self-contained approach for ε-provisioning the count query with a

slightly better dependence on the parameter n (log log n instead of logn).

We use the following fact developed by [21] in the streaming model of computation to design

our scheme. For a bit string s ∈ {0, 1}+, denote by trail(s) the number of trailing 0’s in s.

Given a list of integers A = (a1, . . . , an) from the universe [m], a function g : [m] → [m],

and an integer t > 0, the 〈t, g〉− trail of A is defined as the list of the t smallest trail(g(ai))

values (use binary expression of g(ai)), where the duplicate elements in A are counted only

once.

Lemma 6.4.2 ([21]). Given a list A = (a1, . . . , an), ai ∈ [m] with F0 distinct elements,

pick a random pairwise independent hash function g : [m]→ [m], and let t =
⌈
256ε−2

⌉
. If

r is the largest value in the 〈t, g〉− trail of A and F0 ≥ t, then with probability at least 1/2,

t · 2r is a (1± ε) approximation of F0.

We now define our (ε, δ)-linear provisioning scheme for the count query.

Algorithm 8: Compression algorithm for the count query.

Given an input instance I, a set H of hypotheticals, and an ε > 0:
1. Assign each tuple in I with a unique number (an identifier) from the set [n].
2. Let t =

⌈
256ε−2

⌉
. Pick dk + log (1/δ)e random pairwise independent hash functions

{gj : [n]→ [n]}dk+log (1/δ)e
i=1 . For each hash function gj , create a sub-sketch as follows.

(a) Compute the 〈t, gj〉 − trail over the identifiers of the tuples in each hi(I).
(b) Assign a new identifier to any tuple that accounts for at least one value in the
〈t, gj〉 − trail of any hi, called the concise identifier.

(c) For each hypothetical hi, record each value in the 〈t, gj〉 − trail along with the
concise identifier of the tuple that accounts for it.

Algorithm 9: Extraction algorithm for the count query.

Given a scenario S, for each hash function gj , we use the concise identifiers to compute
the union of the 〈t, gj〉 − trail of the hypotheticals that are turned on by S. Let r be the
t-th smallest value in this union, and compute t · 2r. Output the median of these t · 2r
values among all the hash functions.

We call a sketch created by the above compression algorithm a CNT-Sketch. For each

hash function gj and each hi(I), we record concise identifiers and the number of trailing 0’s

(O(log log n) bits each) of at most t tuples. Since at most t ·k tuples will be assigned with a
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concise identifier, O(log (t · k)) bits suffice for describing each concise identifier. Hence the

total size of a CNT-Sketch is Õ(ε−2k · (k + log(1/δ))) bits. We now prove the correctness

of this scheme.

Proof of Theorem 6.3. Fix a scenario S; for any picked hash function gi, since the t-th

smallest value of the union of the recorded 〈t, gi〉 − trail, r, is equal to the t-th smallest

value in the 〈t, gi〉 − trail of I|S . Hence, by Lemma 6.4.2, with probability at least 1/2,

t · 2r is a (1 ± ε) approximation of |I|S |. By taking the median over dk + log (1/δ)e hash

functions, the probability of failure is at most δ/2k. If we take union bound over all 2k

scenarios, with probability at least 1 − δ, all scenarios could be answered with a (1 ± ε)

approximation.

We now state the scheme for provisioning the sum query; the schemes for the sum and the

count queries together can directly provision the average query, which finalizes the proof of

Theorem 6.4. We use and extend our CNT-Sketch to ε-provision the sum query.

Algorithm 10: Compression algorithm for the sum query.

Given an instance I, a set H of hypotheticals, and two parameters ε, δ > 0, let ε′ = ε/4,
t =

⌈
log1+ε′ (n/ε

′)
⌉
, and δ′ = δ

k(t+1) .

1. Let p =
⌈
log(1+ε′)W

⌉
and for any l ∈ [p], let wl = (1 + ε′)l. For each l ∈ [p], define a set

of k new hypotheticals Hl = {hl,1, hl,2, . . . , hl,k}, where hl,i(I) ⊆ hi(I) and contains the
tuples whose weights are in the interval [wl, wl+1).

2. For each hypothetical hi, let w be the largest weight of the tuples in hi(I), and find the
index γ such that wγ ≤ w < wγ+1. Record γ, and discard all the tuples in hi(I) with
weight less than wγ−t.

3 Consequently, all the remaining tuples of hi(I) lie in the (t+ 1)
intervals {[wl, wl+1)}γl=γ−t. We refer to this step as the pruning step.

3. For each l, denote by Ĥl the resulting set of hypotheticals after discarding the above
small weight tuples from Hl (some hypotheticals might become empty). For each of the
Ĥl that contains at least one non-empty hypothetical, run the compression algorithm
that creates a CNT-Sketch for I and Ĥl, with parameters ε′ and δ′. Record each
created CNT-Sketch.

We call a sketch created by the above provisioning scheme a SUM-Sketch. Since for every

hypothetical we only record the (t+ 1) non-empty intervals, by an amortized analysis, the

size of the sketch is Õ(ε−2k2 log(n) log(1/δ)+k log logW ) bits. We now prove the correctness
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Algorithm 11: Extraction algorithm for the sum query.

Given a scenario S, for any interval [wl, wl+1) with a recorded CNT-Sketch, compute the
estimate of the number of tuples in the interval, denoted by ñl. Output the summation of
the values (wl+1 · ñl), for l ranges over all the intervals [wl, wl+1) with a recorded
CNT-Sketch.

of this scheme.

Proof of Theorem 6.4. For now assume that we do not perform the pruning step (line (2)

of the compression phase). For each interval [wl, wl+1) among the
⌈
log1+ε′W

⌉
intervals, the

CNT-Sketch outputs a (1 ± ε′) approximation of the total number of tuples whose weight

lies in the interval. Each tuple in this interval will be counted as if it has weight wl+1, which

is a (1 + ε′) approximation of the original tuple weight. Therefore, we can output a (1± ε′)2

approximation of the correct sum.

Now consider the original SUM-Sketch with the pruning step. We need to show that the

total weight of the discarded tuples is negligible. For each hypothetical hi, we discard the

tuples whose weights are less than wγ−t, while the largest weight in hi(I) is at least wγ .

Therefore, the total weight of the discarded tuples is at most

nwγ−t ≤
nwγ

(1 + ε′)dlog(1+ε′) (n/ε′)e ≤ ε
′wγ

Since whenever hi is turned on by a given scenario, the sum of the weights is at least wγ ,

we lose at most ε′ fraction of the total weight by discarding those tuples from hi(I). To see

why we only lose an ε′ fraction over all the hypotheticals (instead of ε′k), note that at most

n tuples will be discarded in the whole scenario, hence the n in the inequality nwγ−t ≤ ε′wγ

can be amortized over all the hypotheticals.

6.4.2. The Quantiles Query

In this section, we study provisioning of the quantiles query. We again assume a relational

schema with just one binary relation containing attributes identifier and weight. For any

137



instance I and any tuple x ∈ I, we define the rank of x to be the number of tuples in I that

are smaller than or equal to x (in terms of the weights). The output of a quantiles query

with a given parameter φ ∈ (0, 1] on an instance I is the tuple with rank dφ · |I|e. Finally,

we say a tuple x is a (1± ε)-approximation of a quantiles query whose correct answer is y,

iff the rank of x is a (1± ε)-approximation of the rank of y.

We now turn to prove the main theorem of this section, which argue the existence of a

compact scheme for ε-provisioning the quantiles. We emphasize that the approximation

guarantee in the following theorem is multiplicative.

Theorem 6.5 (quantiles). For any ε, δ > 0, there exists a compact (ε, δ)-linear provision-

ing scheme for the quantiles query that creates a sketch of size Õ(kε−3 log n · (log(n/δ) +

k)(logW + k)) bits.

We should note that in this theorem the parameter φ is only provided in the extraction

phase4. Our starting point is the following simple lemma first introduced by [66].

Lemma 6.4.3 ([66]). For any list of unique numbers A = (a1, . . . , an) and parameters

ε, δ > 0, let t =
⌈
12ε−2 log (1/δ)

⌉
; for any target rank r > t, if we independently sample

each element with probability t/r, then with probability at least 1 − δ, the rank of the t-th

smallest sampled element is a (1± ε)-approximation of r.

The proof of Lemma 6.4.3 is an standard application of the Chernoff bound and the main

challenge for provisioning the quantiles query comes from the fact that hypotheticals overlap.

We propose the following scheme which addresses this challenge.

We call a sketch created by the above compression algorithm a QTL-Sketch. It is straight-

forward to verify that the size of QTL-Sketch is as stated in Theorem 6.5. We now prove

the correctness of the above scheme.

Proof of Theorem 6.5. Given an instance I and a set H of hypotheticals , we prove that

4We emphasize that we gave a lower bound for the easier case in terms of provisioning (φ given at
compression phase and disjoint hypotheticals), and an upper bound for the harder case (φ given at extraction
phase and overlapping hypotheticals).
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Algorithm 12: Compression algorithm for the quantiles query.

Given an instance I, a set H of hypotheticals, and two parameters ε, δ > 0, let ε′ = ε/5,
δ′ = δ/3, and t =

⌈
12ε′−2(log(1/δ′) + 2k + log(n))

⌉
.

1. Create and record a CNT-Sketch for I and H with parameters ε′ and δ′.

2. Let
{
rj = (1 + ε′)j

∣∣∣ j ∈ [0..⌈log(1+ε′) n
⌉]}

. For each rj , create the following

sub-sketch individually.
3. If rj ≤ t, for each hypothetical hi, record the rj smallest chosen tuples in hi(I). If
rj > t, for each hypothetical hi, choose each tuple in hi(I) with probability t/rj , and
record the d(1 + 3ε′) · te smallest tuples in a list Ti,j . For each tuple x in the
resulting list Ti,j , record its characteristics vector for the set of the hypotheticals,
which is a k-dimensional binary vector (v1, v2, . . . , vk), with value 1 on vl whenever
x ∈ hl(I) and 0 elsewhere.

Algorithm 13: Extraction algorithm for the quantiles query.

Suppose we are given a scenario S and a parameter φ ∈ (0, 1]. In the following, the rank of
a tuple always refers to its rank in the sub-instance I|S .

1. Denote by ñ the output of the CNT-Sketch on S. Let r̃ = φ · ñ, and find the index γ,
such that rγ ≤ r̃ < rγ+1.

2. If rγ ≤ t, among all the hypotheticals turned on by S, take the union of the recorded
tuples and output the rγ-th smallest tuple in the union.

3. If rγ > t, from each hi turned on by S, and each tuple x recorded in Ti,γ with a
characteristic vector (v1, v2, . . . , vk), collect x iff for any l < i, either vl = 0 or hl /∈ S.
In other words, a tuple x recorded by hi is taken only when among the hypotheticals
that are turned on by S, i is the smallest index s.t. x ∈ hi(I). We will refer to this
procedure as the deduplication. Output the t-th smallest tuple among all the tuples
that are collected.
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with probability at least 1 − δ, for every scenario S and every parameter φ ∈ (0, 1], the

output for the quantiles query on I|S is a (1 ± ε)-approximation. Fix a scenario S and a

parameter φ ∈ (0, 1]; the goal of the extraction algorithm is to return a tuple with rank in

range (1 ± ε) of the queried rank dφ · |I|S |e. Recall that in the extraction algorithm, ñ is

the output of the CNT-Sketch. Therefore, r̃ = φñ is a (1± ε′) approximation of the queried

rank, and rγ with rγ < r̂ ≤ (1 + ε′)rγ is a (1 ± 3ε′) approximation of the rank. In the

following, we argue that the tuple returned by the extraction algorithm has a rank in range

(1± ε′) · rγ , and consequently is a (1± ε)-approximation answer to the quantiles query.

If rγ ≤ t, the rγ-th smallest tuple of I|S is the rγ-th smallest tuple of the union of the

recorded tuples Ti,γ for i ∈ S. Therefore, we obtain a (1± ε) approximation in this case.

If rγ > t, for any i ∈ S, define T̂i to be the list of all the tuples sampled from hi(I) in the

compression algorithm (instead of maintaining the (1 + 3ε′)t tuples with smallest ranks).

Hence Ti,γ ⊆ T̂i. If we perform the deduplication procedure on the union of the tuples in T̂i

for i ∈ S and denote the resulting list T ∗, then every tuple in I|S has probability exactly

t/rγ to be taken into T ∗ (for any tuple, only the appearance in the smallest index hi(I)

could be taken). Hence, by Lemma 6.4.3, with probability at least 1 − δ′/2k+log(n), the

rank of the t-th tuple of T ∗ is a (1± ε′)-approximation of the rank rγ . In the following, we

assume this holds.

The extraction algorithm does not have access to T̂i’s. Instead, it only has access to the list

Ti,γ , which only contains the (1 + 3ε′)t tuples of T̂i with the smallest ranks. We show that

with high probability, the union of Ti,γ for i ∈ S, contains the first t smallest tuples from

T ∗. Note that for any i ∈ S, if the largest tuple x in T̂i ∩ T ∗ is in Ti,γ , then all tuples in

T̂i∩T ∗ are also in Ti,γ (e.g. the truncation happens after the tuple x). Hence, we only need

to bound the probability that x is truncated, which is equivalent to the probability of the

following event: more than (1 + 3ε′)t tuples in hi(I) are sampled in the compression phase

for the rank rγ (with probability t/rγ).
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Let Li be the set of all the tuples in hi(I) which are smaller than x. Rank of x is less than

or equal to the rank of the t-th smallest tuple in T ∗, which is upper bounded by (1 + ε′)rγ .

Hence, |Li| ≤ (1 + ε)rγ . For any j ∈ hi(I), define a binary random variable yj , which is

equal to 1 iff the tuple with rank j is sampled and 0 otherwise. The expected number of

the tuples that are sampled from L is then E[
∑

j∈L yj ] = |L| · (t/rγ) ≤ (1 + ε′)t.

Using Chernoff bound, the probability that more than (1 + 3ε′)t tuples from L are sampled

is at most δ′

22k+log(n) . If we take union bound over all the hypotheticals in S, with probability

at least 1− δ′

2k+log(n) , for all hi, the largest tuple in T̂i ∩ T ∗ is in Ti,γ , which ensures that the

rank of the returned tuple is a (1± ε)-approximation of the queried rank.

Finally, since there are only n different values for φ ∈ (0, 1] which results in different answers,

applying union bound over all these n different values of φ and 2k possible scenarios, with

probability at least (1−2δ′), the output of the extraction algorithm is a (1+ε) approximation

of the quantiles query. Since the failure probability of creating the CNT-Sketch is at most

δ′, with probability (1− 3δ′) = (1− δ) the QTL-Sketch successes.

Extensions. By simple extensions of our scheme, many variations of the quantiles query

can be answered, including outputting the rank of a tuple x, the percentiles (the rank of x

divided by the size of the input), or the tuple whose rank is ∆ larger than x, where ∆ > 0 is

a given parameter. As an example, for finding the rank of a tuple x, we can find the tuples

with ranks approximately
{

(1 + ε)l
}

, l ∈ [
⌈
log(1+ε) n

⌉
], using the QTL-Sketch, and among

the found tuples, output the rank of the tuple whose weight is the closest to the weight of

x.

6.5. Complex Queries

We study the provisioning of queries that combine logical components (relational algebra

and Datalog), with grouping and with the numerical queries that we studied in Section 6.4.

We start by defining a class of such queries and their semantics formally. For the purposes
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of this paper, a complex query is a triple 〈QL;GA;QN 〉 where QL is a relational algebra or

Datalog query that outputs some relation with attributes AB for some B, GA is a group-by

operation applied on the attributes A, and QN is a numerical query that takes as input a

relation with attributes B. For any input I let P = ΠA(QL(I)) be the A-relation consisting

of all the distinct values of the grouping attributes. We call the size of P the number of

groups of the complex query. For each tuple u ∈ P , we define Γu = {v | uv ∈ QL(I)}. Then,

the output of the complex query 〈QL;GA;QN 〉 is a set of tuples {〈u,QN (Γu)〉 | u ∈ P}.

6.5.1. Positive, Non-Recursive Complex Queries

In the following, we give compact provisioning results for the case where the logical com-

ponent is a positive relational algebra (i.e., SPJU) query. It will be convenient to assume

a different, but equivalent, formalism for these logical queries, namely that of unions of

conjunctive queries (UCQs)5. We review quickly the definition of UCQs. A conjunctive

query (CQ) over a relational schema Σ is of the form ans(x) : − R1(x1), . . . , Rb(xb), where

atoms R1, . . . , Rb ∈ Σ, and the size of a CQ is defined to be the number of atoms in its

body (i.e., b). A union of conjunctive query (UCQ) is a finite union of some CQs whose

heads have the same schema.

In the following theorem, we show that for any complex query, where the logical component

is a positive relational algebra query, compact provisioning of the numerical component

implies compact provisioning of the complex query itself, provided the number of groups is

not too large.

Theorem 6.6. For any complex query 〈QL;GA;QN 〉 where QL is a UCQ, if the numerical

component QN can be compactly provisioned (resp. compactly ε-provisioned), and if the

number of groups is bounded by poly(k, log n), then the query 〈QL;GA;QN 〉 can also be

compactly provisioned (resp. compactly ε-provisioned with the same parameter ε).

5Although the translation of an SPJU query to a UCQ may incur an exponential size blowup [6], in this
paper, query (and schema) size are assumed to be constant. In fact, in practice, SQL queries often present
with unions already at top level.
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Proof. Suppose QN can be compactly provisioned (the following proof also works when QN

can be compactly ε-provisioned). Let b be the maximum size of the conjunctive queries in

QL. Given an input instance I and a set H of k hypotheticals, we define a new instance

Î = QL(I) and a set Ĥ of O(kb) new hypotheticals as follows. For each subset S ⊆ [k]

of size at most b (i.e., |S| ≤ b), define a hypothetical ĥS(Î) = QL(I|S) (though S is not a

number, we still use it as an index to refer to the hypothetical ĥS).

By our definition of the semantics of complex queries, the group-by operation partitions Î

and each ĥS into p = |ΠA(Î)| sets. We treat each group individually, and create a sketch for

each of them. To simplify the notation, we still use Î and Ĥ to denote respectively the por-

tion of the new instance, and the portion of each new hypothetical that correspond to, with-

out loss of generality, the first group. In the following, we show that a compact provisioning

scheme for QN with input Î and Ĥ can be adapted to compactly provision 〈QL;GA;QN 〉

for the first group. Since the number of groups p is assumed to be poly(k, log n), the over-

all sketch size is still poly(k, log n), hence achieving compact provisioning for the complex

query.

Create a sketch forQN with input Î and Ĥ. For any scenario S ∈ [k] (overH), we can answer

the numerical query QN using the scenario Ŝ (over Ĥ) where Ŝ = {S′ | S′ ⊆ S & |S′| ≤ b}.

To see this, we only need to show that the input to QN remains the same, i.e., QL(I|S)

is equal to Î|Ŝ . Each tuple t in QL(I|S) can be derived using (at most) b hypotheticals.

Since any subset of S with at most b hypotheticals belongs to Ŝ, the tuple t belongs to Î|Ŝ .

On the other hand, each tuple t′ in Î|Ŝ belongs to some ĥS′ where S′ ∈ S, and hence, by

definition of ĥS′ , the tuple t is also in QL(I|S). Hence, QL(I|S) = Î|Ŝ .

Consequently, any compact provisioning scheme for QN can be adapted to a compact pro-

visioning scheme for the query 〈QL;GA;QN 〉.

Theorem 6.6 further motivates our results in Section 6.4 for numerical queries as they can

be extended to these quite practical queries. Additionally, as an immediate corollary of
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the proof of Theorem 6.6, we obtain that any boolean UCQ (i.e., any UCQ that outputs a

boolean answer rather than a set of tuples) can be compactly provisioned.

Corollary 6.7. Any boolean UCQ can be compactly provisioned using sketches of size O(kb)

bits, where b is the maximum size of each CQ.

Remark 6.5.1. Deutch et al. [41] introduced query provisioning from a practical perspective

and proposed boolean provenance [72, 57, 56, 105] as a way of building sketches. This

technique can also be used for compactly provisioning boolean UCQs.

Proof Sketch. Given a query Q, an instance I and a set H of hypotheticals we compute a

small sketch in the form of a boolean provenance expression.

Suppose that each tuple of an instance I is annotated with a distinct provenance token.

The provenance annotation of the answer to a UCQ is a monotone DNF formula ∆ whose

variables are these tokens. Crucially, each term of ∆ has fewer than b tokens where b is

the size of the largest CQ in Q. Associate a boolean variable xi with each hypothetical

hi ∈ H, i ∈ [k]. Substitute in ∆ each token annotating a tuple t with the disjunction

of the xi’s such that t ∈ hi(I) and with false otherwise. The result ∆′ is a DNF on the

variables x1, . . . , xk such that each of its terms has at most b variables; hence the size of ∆′ is

O(kb). Now ∆′ can be used as a sketch if the extraction algorithm sets to true the variables

corresponding to the hypotheticals in the scenario and to false the other variables.

Remark 6.5.2. A similar approach based on rewriting boolean provenance annotations,

which are now general DNFs, can be used to provision UCQ¬s under disjoint hypotheticals.

The disjointness assumption insures that negation is applied only to single variables and the

resulting DNF has size O((2k + 1)b) = O(kb).

We further point out that the exponential dependence of the sketch size on the query size

(implicit) in Theorem 6.6 and Corollary 6.7 cannot be avoided even for CQs.

Theorem 6.8. There exists a boolean conjunctive query Q of size b such that provisioning

Q requires sketches of size min(Ω(kb−1),Ω(n)) bits.
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Proof of Theorem 6.8. Consider the following boolean conjunctive query QEXP defined over

a schema with a unary relation A and a (b− 1)-ary relation B.

QEXP ≡ ans() : − A(x1), A(x2), . . . , A(xb−1),

B(x1, x2, . . . , xb−1)

We show how to encode a bit-string of length N :=
(
k−1
b−1

)
into a database I with n = Θ(N)

tuples and a set of k hypotheticals such that given provisioned sketch of QEXP, one can

recover any bit of this string with constant probability. Standard information-theoretic

arguments then imply that the sketch size must have Ω(N) = Ω(kb−1) = Ω(n) bits.

Let (S1, . . . , SN ) be a list of all subsets of [k − 1] of size b− 1. For any vector v ∈ {0, 1}N ,

define the instance Iv = {A(x)}x∈[k−1] ∪ {B(Sy)}vy=1 (this is slightly abusing the notation:

B(Sy) = B(x1, . . . , xb−1) where {x1, . . . , xb−1} = Sy), and a set {hi}i∈[k] of k hypotheticals,

where for any i ∈ [k − 1], hi(I) = {A(i)} and hk(I) = {B(Sy)}vy=1. To compute the i-th

entry of v, we can extract the answer to the scenario Si ∪ {k} from the sketch and output

1 iff the answer of the query is true.

To see the correctness, vi = 1 iff B(Si) ∈ hk(I) iff QEXP(I|Si∪{k}) is true.

6.6. Comparison With a Distributed Computation Model

Query provisioning bears some resemblance to distributed computation: k sites want to

jointly compute a function, where each site holds only a portion of the input. The function

is computed by a coordinator, who receives/sends data from/to each site. The goal is to

design protocols with small amount of communication between the sites and the coordinator

(see [36, 37, 109, 32, 112, 29], and references therein). In what follows, we highlight some

key similarities and differences between this distributed computation model and our query

provisioning framework.

In principle, any protocol where data are only sent from the sites to the coordinator (i.e.,
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one-way communication), can be adapted into a provisioning scheme with a sketch of size

proportional to the size of the transcript of the protocol. To see this, view each hypothet-

ical as a site and record the transcripts as the sketch. Given a scenario S, the extraction

algorithm acts as the coordinator and computes the function from the transcripts of the

hypotheticals in S. The protocol for counting the number of distinct elements in the dis-

tributed model introduced in [36] is an example (which in fact also uses the streaming

algorithm from [21] as we do in Lemma 6.4.2).

For distributed protocols with two-way communication (e.g., [111, 32]), in general, there

is no oblivious way to simulate them in the query provisioning framework. In fact, as

we will show in the following, the power of the distributed computation model with two-

way communication is incomparable to the query provisioning framework. Specifically,

for k sites/hypotheticals (even when the input is partitioned, i.e., no overlaps), there are

problems where a protocol with poly(k)-bit transcripts exists but provisioning requires

2Ω(k)-bit sketches. Conversely, there are problems where provisioning can be done using

poly(k)-bit sketches but any distributed protocol requires 2Ω(k)-bit transcripts. We make

these observations precise below.

Another source of difference between our techniques and the ones used in the distributed

computation model is the typical assumption in the latter that the input is partitioned

among the sites in the distributed computation model (i.e. no overlaps; see, for instance,

[111, 37]). This assumption is in contrast to the hypotheticals with unrestricted overlap

that we handle in our query provisioning framework. A notable exception to the no-overlaps

assumption is the study of quantiles (along with various other aggregates) by [32]. However,

as stated by the authors, they benefit from the coordinator sharing a summary of the whole

data distribution to individual sites, which requires a back and forth communication between

the sites and coordinator. As such the results of [32] can not be directly translated into a

provisioning scheme. We also point out that the approximation guarantee we obtain for the

quantiles query is stronger than the result of [32] (i.e. a relative vs additive approximation).
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Finally, we use two examples to establish an exponential separation between the minimum

sketch size in the provisioning model and the minimum transcript length in the distributed

computation model, proving a formal separation between the two models.

Before describing the examples, we should note that, in the following, we assume that input

tuples are made distinct by adding another column which contains unique identifiers, but

the problems and the operations will only be defined over the part of the tuples without

the identifiers. For instance, ‘two sets of tuples are disjoint’ means ‘after removing the

identifiers of the tuples, the two sets are disjoint’.

A problem with poly-size sketches and exponential-size transcripts. The fol-

lowing SetDisjointness problem is well-known to require transcripts of Ω(N) bits for any

protocol [96, 20]: Alice is given a set S and Bob is given a set T both from the universe [N ],

and they want to determine, with success probability at least 2/3, whether S and T are

disjoint. Similarly, if each of the k sites is given a set and they want to determine whether

all their sets are disjoint, the size of the transcript is also lower bounded by Ω(N) bits. If

we let N = 2k, the distributed model requires Ω(2k) bits of communication for solving this

problem.

However, to provision the SetDisjointness query (problem), we only need to record the pairs

of hypotheticals whose sets are not disjoint (hence O(k2) bits). The observation is that if a

collection of sets are not disjoint, there must exist two sets that are also not disjoint, which

can be detected by recording the non-disjoint hypothetical pairs.

A problem with exponential-size sketches and poly-size transcripts. Consider

a relational schema with two unary relations A and B. Given an instance I, we let a =∑
A(x)∈I 2x; then, the problem is to determine whether B(a) ∈ I or not. Intuitively, A

‘encodes’ the binary representation of a value a, and the problem is to determine whether

a belongs to ‘the set of values in B’.

Let n = 2k, and I =
{
A(x)x∈[k]

}
∪ {B(y)}y∈[n]. It is not hard to show that provisioning
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this problem requires a sketch of size 2Ω(k), even when the input instance is guaranteed to

be a subset of I (i.e., the largest value of A is k).

However, in the distributed model, there is a protocol using a transcript of size poly(k) bits:

every site sends its tuple in A to the coordinator; the coordinator computes a =
∑

A(x) 2x

and sends a to every site; a site response 1 iff it contains the tuple B(a), and 0 otherwise.

6.7. Conclusions and Future Work

In this chapter, we initiated a formal framework to study compact provisioning schemes for

relational algebra queries, statistics/analytics including quantiles and linear regression, and

complex queries. We considered provisioning for exact as well as approximate answers, and

established upper and lower bounds on the sizes of the provisioning sketches.

The queries in our study include quantiles and linear regression queries from the list of in-

database analytics highlighted in [70]. This is only a first step and the study of provisioning

for other core analytics problems, such as variance computation, k-means clustering, logistic

regression, and support vector machines is of interest.

Another direction for future research is the study of queries in which numerical compu-

tations follow each other (e.g., when the linear regression training data is itself the result

of aggregations). Yet another direction for future research is an extension of our model to

allow other kinds of hypotheticals/scenarios as discussed in [41] that are also of practical

interest. For example, an alternative natural interpretation of hypotheticals is that they

represent tuples to be deleted rather than retained. Hence the application of a scenario

S ⊆ [k] to I becomes I|S = I \ (
⋃
i∈S hi(I)). Using our lower bound techniques, one can

easily show that even simple queries like count or sum cannot be approximated to within

any multiplicative factor under this definition. Nevertheless, it will be interesting to identify

query classes that admit compact provisioning in the delete model or alternative natural

models.
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