
A Demonstration of the RapidMesh Development Toolkit

Xiaozhou Li∗ Shivkumar C. Muthukumar∗ Changbin Liu∗ Joseph B. Kopena†
Mihai Oprea∗ Ricardo Correa∗ Boon Thau Loo∗ Prithwish Basu‡
∗University of Pennsylvania †Drexel University ‡BBN Technologies
{mshivk,xiaozhou,changbl,mihaio,ricm,boonloo}@seas.upenn.edu,

tjkopena@cs.drexel.edu, pbasu@bbn.com

ABSTRACT
We propose the demonstration of the RapidMesh develop-
ment toolkit for protocol simulation, implementation and ex-
perimentation of wireless mesh networks. RapidMesh uti-
lizes declarative networking, a declarative, database-inspired
extensible infrastructure that uses query languages to specify
network behavior. RapidMesh integrates a declarative net-
working engine with the emerging ns-3 network simulator.
Our demonstration presents the experimental evaluation of a
variety of declarative MANET routing protocols under dif-
ferent dynamic settings on the ORBIT wireless testbed. The
evaluation results are shown in the ns-3 visualizer to display
the mobility pattern of network and to compare the protocol
performance. We also demonstrate the development cycle
for synthesizing and experimenting with new routing proto-
cols.

1. INTRODUCTION
RapidMesh is a development toolkit for network pro-

tocol simulation, implementation and experimentation.
We propose the demonstration of RapidMesh in con-
junction with our paper presentation [5] in WiNTECH
2009. RapidMesh is a step towards building systematic
tools for experimenting with routing protocols for mo-
bile ad hoc networks (MANETs) under a variety of mo-
bility settings. It also aims to provide a unified platform
for evaluating the protocols in simulation and testbed-
based emulation modes.

RapidMesh utilizes declarative networking, a declar-
ative, database-inspired extensible infrastructure that
uses query languages to specify network behavior. RapidMesh
integrates a declarative networking engine with the emerg-
ing ns-3 [6] network simulator which is intended as an
eventual replacement for the ns-2 simulator. Network
protocols are specified using declarative specifications,
which are then compiled into ns-3 code for simulation
and analysis. The same declarative specifications can
also be used as actual implementations under the ns-
3 network emulator, thus providing a bridge between
simulation and testbed-based experimentation.

A declarative approach enables modular reuse of re-
sources and functions by allowing network programmers
to say “what” they want, without worrying about the
details of “how” to achieve it. Declarative networks

are specified using Network Datalog (NDlog), which is a
distributed recursive query language for querying net-
works. Declarative queries such as NDlog are a natu-
ral and compact way to implement a variety of rout-
ing protocols and overlay networks. For example, tra-
ditional routing protocols such as the path vector and
distance-vector protocols can be expressed in a few lines
of code [4], and the Chord distributed hash table in 47
lines of code [3]. When compiled and executed, these
declarative networks perform efficiently relative to im-
perative implementations.

2. OVERVIEW

Declarative
Network Protocol

+
Invariant Specifications

Network Protocol 
Design

Simulation
Results ns-3 CodeRapidMesh 

Library

Execution 
Plan 
Compilation

ns-3
Simulation

Developer
Feedback

Specification Protocol implementation

Network 
Emulation

Figure 1: Overview of RapidMesh

Figure 1 provides an overview of RapidMesh. In
the initial design phase, a network protocol design is
used as the basis for specifying the network protocol
using the NDlog declarative networking language. High-
level invariant properties of the protocol can also be
expressed in NDlog as distributed triggers which raise
event alarms when invariants are violated.

In the simulation mode, the RapidMesh compilation
process generates ns-3 code from the NDlog protocol
specifications and invariants. The generated code ei-
ther runs as an ns-3 application, or replaces routing
protocol implementations at the network layer. The
generated code implements dataflows (execution plans)
with a similar execution model with the Click modular
router [2].

In the emulation mode, declarative networking speci-
fications are directly executed and deployed by using the
the ns-3 network emulator. Each ns-3 simulation node

1



connects to the real physical network underneath using
a raw socket. The main advantage of this is ensuring
that all declarative networking protocols are evaluated
in simulation and emulation within a common ns-3 code
base.

3. DETAILS OF DEMONSTRATION
Our demonstration will showcase the implementation

and evaluation of declarative MANET routing protocols
on the ORBIT [9] wireless testbed. We select MANET
protocol implementations, ranging from link-state rout-
ing (LS), hazy-sighted link-state routing(HSLS) [8], op-
timized link-state routing (OLSR) [1], dynamic source
routing (DSR), and summary-vector based epidemic rout-
ing. We evaluate these protocols using different mobil-
ity patterns (e.g. random waypoint, Brownian motion,
hierarchical mobility, etc.) supported by ns-3 and un-
der different node speeds by running them in emulation
mode. The network event traces from the emulation
experiment will be replayed in the ns-3 visualizer [7].

The ns-3 visualizer is designed to playback network
events by reading trace logs. It displays the actual
movement of nodes in the arena to show the mobil-
ity pattern, node coordinates and speeds, etc. We have
enhanced the visualizer to show protocol performance
statistics side by side as the visualization progresses.
We use this to show the per-node communication band-
width and route quality metrics: route validity and route
stretch.

Figure 2: Screenshot of the visualizer

To illustrate, Figure 2 shows an example execution
of the current version of our demonstration. The right
panel shows the arena with the nodes and the links con-
necting them. On the left-panel we have one dynami-
cally updating graph for each protocol statistic. This
example shows the traces from a declarative link state
protocol experiment running on the ORBIT testbed
with 35 nodes which communicate with each other via
IEEE 802.11a and move with Brownian motion model.

As another example, the visualization of the DSR
protocol can display the network events like RREQ and
RREP by coloring the nodes along the path. The net-
work statistic plotted in this case is the communication
bandwidth per requested route.

Further, we will demonstrate the development cycle
of RapidMesh by walking through implementing an ex-
ample protocol. We will show the protocol synthesis in
NDlog, compilation to intermediate and ns-3 code using
the RapidMesh compiler and executing it in simulation
mode. Finally, we replay the trace logs in the visualizer.

4. ACKNOWLEDGMENTS
This work is based on work supported in part by NSF

grants CNS-0721845, CNS-0831376, CCF-0820208, and
CNS-0845552.

5. REFERENCES
[1] T. Clausen and P. Jacquet. Optimized link state

routing protocol (olsr). In RFC 3626
(Experimental), 2003.

[2] E. Kohler, R. Morris, B. Chen, J. Jannotti, and
M. F. Kaashoek. The Click Modular Router. ACM
Transactions on Computer Systems, 18(3):263–297,
2000.

[3] B. T. Loo, T. Condie, J. M. Hellerstein,
P. Maniatis, T. Roscoe, and I. Stoica.
Implementing Declarative Overlays. In ACM
SOSP, 2005.

[4] B. T. Loo, J. M. Hellerstein, I. Stoica, and
R. Ramakrishnan. Declarative Routing: Extensible
Routing with Declarative Queries. In ACM
SIGCOMM, 2005.

[5] S. C. Muthukumar, X. Li, C. Liu, J. B. Kopena,
M. Oprea, R. Correa, B. T. Loo, and P. Basu.
RapidMesh: Declarative Toolkit for Rapid
Experimentation of Wireless Mesh Network. In The
Fourth ACM International Workshop on Wireless
Network Testbeds, Experimental Evaluation and
Characterization (WiNTECH), 2009.

[6] Network Simulator 3. http://www.nsnam.org/.
[7] ns 3 visualizer.

http://code.nsnam.org/tjkopena/ns-3-decorator3/.
[8] C. Santivanez, R. Ramanathan, and I. Stavrakakis.

Making link-state routing scale for ad hoc
networks. In ACM MobiHoc ’01, Long Beach, CA,
2001.

[9] O. W. N. Testbed.
http://www.winlab.rutgers.edu/docs/focus/ORBIT.html.

6. DEMONSTRATION LOGISTICS
We will use two laptops to run the ns-3 visualizer

and to provide an overview of RapidMesh development
cycle. We will need access to two power sockets, one to
power each laptop. No Internet access is necessary or
assumed for the demonstration to work. We expect the
demonstration setup time to be within 15 minutes.

2

http://www.winlab.rutgers.edu/docs/focus/ORBIT.html

	Introduction
	Overview
	Details of Demonstration
	Acknowledgments
	References
	Demonstration Logistics

