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ABSTRACT

COORDINATE-BASED ROUTING FOR HIGH PERFORMANCE ANONYMITY

Micah Sherr

Matt Blaze and Boon Thau Loo

Today’s Internet routing protocols, while arguably robust and efficient, are not

designed to support anonymous communication. Internet packets must include accu-

rate destination addresses to be routable and truthful source information to achieve

reliability. While there have been several attempts at providing anonymity with the

use of application-level overlay networks, these solutions focus almost exclusively on

maximizing anonymity, typically at the expense of performance.

This dissertation shows that it is both possible and practical to design, secure,

and scale decentralized overlay networks for high performance anonymous routing.

Our techniques utilize virtual coordinate systems that embed link information (for

example, latency, jitter, and loss) in n-dimensional coordinate planes. Such coor-

dinate systems enable nodes to estimate pairwise network metrics between remote

peers without requiring direct measurements. We introduce methods for scalably

disseminating coordinate information as well as security mechanisms for enforcing

truthful coordinate advertisements. By allowing nodes to estimate the end-to-end

performance of possible routes, our overlay routing infrastructure empowers appli-

cations to intelligently select high performing anonymous paths.

Unlike existing anonymity systems that depend on central authorities or direc-

tories, our coordinate routing system does not rely on a priori trusted nodes or

third-party authorities. This lack of centralization enables our system to scale to po-

tentially millions of nodes and offer anonymity that does not depend on the trustwor-

thiness of select nodes or services. Moreover, the ability to estimate the end-to-end

performance of potential anonymous paths and prune likely underperforming routes

permits the anonymization of high bandwidth and low latency network services (for
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example, voice-over-IP, streaming video multicast, etc.) whose communication re-

quirements have previously been considered too restrictive for anonymity networks.
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Chapter 1

Introduction

Cryptographers have been inventing means to protect the contents of confidential

communiques for thousands of years [46]. In that time, well-studied and robust tech-

niques have been developed to securely share secrets, even across large, decentralized,

and untrustworthy networks [24]. To prevent unauthorized parties from learning the

contents of her communications, a principal (Alice) encrypts her messages prior to

transmission. The network routes Alice’s messages on a best-effort basis towards

their intended recipient (Bob). Nodes along the path from Alice to Bob routinely

inspect and duplicate Alice’s packets (a requirement of any packet-switched net-

work), yet even the most curious eavesdropper cannot discern meaningful content

from Alice’s messages without the decryption key.

Although Alice and Bob may confidently employ cryptographic solutions to pre-

serve the secrecy of their messages across the network, the fact that the two parties

are communicating is easily discernible. The information content (i.e., payload) of

Alice’s messages is secure, but the endpoints of the communication must be exposed

to permit the messages to be propagated through the network. In-transit capture or

post facto analysis of Alice’s packets reveal the two participants as well as the time

and duration of their communication.
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Interestingly, the design of the Internet seems incompatible with anonymous com-

munication. IP packets contain source and destination addresses that identify the

communicating parties.1 If Bob’s address is hidden or absent, unicast message de-

livery is impossible. (Although broadcast may be used to connect the two parties,

broadcast scales poorly beyond the local subnet and is infeasible as an Internet-wide

anonymity technique.) Alice may attempt to shield her identity by falsifying the

source address in transmitted packet headers. However, since many important net-

working features (e.g., flow control, reliability, error handling, network diagnostics,

etc.) depend on bidirectional communication [75, 76], doing so significantly impairs

Alice’s ability to communicate.

There are many reasons, both legitimate and illicit, why Alice and Bob may wish

to hide the fact that they are communicating. Uses for anonymity on the Internet

include (but are not limited to) the following:

• Protection from censorship/repressive governments. Anonymity allows con-

stituents of repressive regimes to access and produce news media, blogs, support

groups, etc.

• Whistle-blower protection. Anonymity affords whistle-blowers the ability to

publicize perceived wrongdoings without fear of retribution.

• Unmonitored access to health and medical information. Embarrassment or

fear of discrimination may be impediments to accessing online health and medical

resources. Anonymity provides a mechanism for individuals to freely access medi-

cal information, as well as anonymously participate in online support groups and

1Note that while IP addresses are generally sufficient for message delivery, they do not neces-
sarily constitute a reliable mapping between logical communication endpoints and the conversing
participants. There is a wide detachment between packets intercepted on the wire and the indi-
viduals who send and receive them [17, 18]. For example, proxy services, virtual private networks
(VPNs), dynamic IP addresses, mobile IP, and network address translation (NAT) all obfuscate
the communicating parties. Most literature on anonymity ignores this potentially harder problem
of resolving identity. For simplicity, we adopt a similar convention and equate network addresses
with human identity.
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discussion boards.

• Privacy protection. Anonymity prevents data brokers from associating online

behavior with a particular identity.

• Blind auctions. To ensure fair auctions, online auction houses often mask the

identity of bidders until the conclusion of bidding. This is known as a blind auction.

Bidders can either trust the bidding site to provide anonymity to all parties, or they

can themselves employ anonymity techniques to ensure that their identity is not

revealed until the bidding has concluded [105].

• Isotropism. Anonymity networks can be used to construct specialized broadcast

media called isotropic channels in which eavesdroppers cannot discern the sender

of any particular transmission. Isotropic channels can be used to share secrets with

confidentiality that asymptotically reaches perfect secrecy [43, 3, 97].

• Anonymity in Non-Internet Systems and Networks. The Internet is be-

coming increasingly connected to traditionally isolated networks (for example, the

PSTN and SMS networks). The Internet may be leveraged to achieve a level of

anonymity not previously attainable on these disparate systems. For example,

anonymous emailers can be used to send anonymous SMS messages [32], and voice-

over-IP services permit caller-ID spoofing [77, 108]. Additionally, anonymous tech-

niques designed for use on computer networks are sometimes applicable to offline

technologies [72].

• Illicit and illegal activities. The ability to communicate anonymously reduces

the fear of discovery for both illicit and illegal online activities. The latter cate-

gory includes copyright infringement and other crimes against intellectual property,

access to illegal materials, communication supporting organized crime and/or ter-

rorism, and other subversive or unlawful activities.
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initiator responder

participant

participant

participant

Figure 1.1: A sample three-participant anonymous path.

• Law enforcement. Law enforcement agencies may utilize anonymity networks for

online sting operations. Anonymity hides the identity of law enforcement officials

who infiltrate online communities where crimes are committed.

A myriad of techniques have been proposed for achieving anonymity on the In-

ternet [14, 28, 84, 83, 61, 101, 37, 99]. Such approaches typically rely on overlay

networks in which cryptography is used to route messages towards their intended

recipients without revealing either the content or destination of messages to eaves-

droppers. These techniques operate at the application-layer and typically do not

require the cooperation of Internet service providers (ISPs) or autonomous systems

(ASes).

In keeping with standard terminology [116], we will refer to the originator of

the communication as the initiator (Alice). The end-to-end communication occurs

between the initiator and a responder (Bob), the latter of whom need not be aware

of the anonymity protocol.

Internet anonymity protocols typically operate as follows. The initiator sends her

messages towards the responder through a series of randomly selected anonymizing

proxies (also called relays). The chosen relays are known as participants. Partici-

pants serve as intermediaries between the communication endpoints. Cryptography

prevents an eavesdropper who intercepts a message in transit from one participant to
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Figure 1.2: A map of the Tor network.

another from discerning the identities of the initiator and/or the responder. The last

participant in an anonymous path (also called an anonymous circuit) relays the mes-

sage to the responder. Reply traffic generated by the responder typically traverses

the reverse path towards the initiator. An example three-participant anonymous

path is depicted in Figure 1.1.

1.1 Problems with Existing Anonymity Systems

One of the must studied anonymity services is the Tor network [28], a collection

of approximately 1500 quasi-permanent onion routers located mostly in the United

States and Europe (see Figure 1.2). Tor is loosely based on the concept of onion

routing [82] in which session keys are generated by the initiator and distributed to

participants via a multiply encrypted onion. The onion allows each participant to

decipher only the previous and next hop along the anonymous path, preventing (for

instance) a rogue participant from discerning the identities of the initiator and/or

responder. Importantly, Tor is a source-routing technique – that is, the initiator

selects the participants that form the anonymous path. Initiators discover partici-

pants by downloading a copy of a directory maintained by centralized servers. Tor
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Figure 1.3: Bandwidth speeds on the Tor network, as measured using the SpeakEasy
bandwidth tester from a source in New Jersey.

and other anonymity services are discussed in depth in the next chapter. Since Tor

has received significant study from the academic community and because it operates

today as a live anonymity network servicing hundreds of thousands of users [60], it

will serve as the basis for comparison for the work presented in this dissertation.

Unfortunately, Tor often produces anonymous paths with poor performance. For

example, Figure 1.3 shows the upstream and downstream bandwidths obtained using

the SpeakEasy bandwidth tester [104] from a source in New Jersey to five web servers

located throughout the United States using standard IP networking and the Tor

network. Anonymizing connections with Tor results in an approximately tenfold

decrease in both upstream and downstream bandwidth.

We postulate that several factors contribute to Tor’s poor performance: First,

the Tor network is comprised of just 1500 anonymizing routers, hence the number
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of clients accessing the network greatly exceeds the number of available relays, caus-

ing significant congestion in the network. Second, the Tor path selection algorithm

selects participants according to a weighted probability distribution in which nodes

are ranked according to self-reported available bandwidths [27, 65]. These band-

widths are not necessarily accurate (in fact, adversaries may falsely advertise high

bandwidths to attract traffic [8]). Finally, Tor defines performance only in terms of

bandwidth. However, e2e path performance is better characterized using multiple

metrics (e.g., bandwidth availability, bandwidth capacity, latency, jitter, loss-rates,

etc.). Although bandwidth is arguably a node characteristic [2, 50], latency, jitter,

and loss-rate are link characteristics and require a pair of nodes to be meaningful.

These latter link-based performance metrics are incompatible with the existing Tor

implementation.

1.2 Achieving High Performance Anonymity

In this dissertation, we show that it is both possible and practical to design, secure,

and scale decentralized overlay networks for high performance anonymous routing.

Unlike existing anonymity systems in which path selection is based on self-reported

node characteristics (e.g., bandwidth [28, 27]), our proposed coordinate routing sys-

tem utilizes link characteristics to accurately estimate the e2e performance proper-

ties of potential anonymous paths. Our path selection algorithm considers multiple

performance metrics (e.g., latency, jitter, loss, number of AS crossings, etc.) and

produces high performance anonymous paths using probability distributions over

candidate paths’ cost estimations.

We argue that there exist several applications that can benefit from anonymity

with tunable performance and security properties. At one extreme, an anonymous

email system may require very strong anonymity while imposing no constraints on

bandwidth or latency. Here, maximizing network diversity to reduce the feasibility of
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omniscient eavesdropping is paramount. At the other extreme, a unidirectional video

broadcast application may select a path of participants that maximizes bandwidth

and minimizes jitter with no demands for end-to-end latency, and be willing to

tolerate anonymity that provides only probable innocence [83]. In between extremes,

a low-bandwidth VoIP application may desire paths that minimize e2e latency, while

achieving strong anonymity that ensures that paths traverse multiple ASes.

A (non-comprehensive) list of applications that may benefit from high perfor-

mance anonymity include:

• Voice-over-IP (VoIP): VoIP applications require low latency, jitter, and loss

for seamless and uninterrupted audio. The bandwidth requirements of VoIP are

modest.

• Internet TV (IPTV): Multicast IPTV streams require high bandwidth connec-

tions with little jitter, but can tolerate high latency and modest loss.

• Video conferencing: Video conferencing requires high bandwidth, low latency,

and low jitter. Some amount of loss may be tolerated.

• Gaming: Online multiplayer games typically require very low latency, but do not

impose significant bandwidth requirements.

• Large file transfers: Transferring large files requires high bandwidth, but makes

no demands on latency or jitter.

To estimate link characteristics without requiring pairwise measurements, our

techniques utilize virtual coordinate systems that embed link information in n-

dimensional coordinate planes [19, 16, 66, 93]. Such coordinate systems enable nodes

to estimate pairwise network metrics between remote peers without requiring direct

measurements.

Our use of coordinate systems is novel in two respects. First, we are the first

to demonstrate that several link characteristics other than latency (e.g., jitter, loss,
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number of AS crossings, etc.) can be accurately embedded in a coordinate system.

Second, we utilize coordinates to select high performance paths, defining the neces-

sary aggregation function for each performance metric in order to determine the e2e

cost of a multihop route.

Additionally, unlike existing anonymity systems that depend on central authori-

ties or directories, our Application-Aware Anonymity (A3) coordinate routing system

does not rely on a priori trusted nodes or third-party authorities. This lack of cen-

tralization enables our system to scale to potentially hundreds of thousands of nodes

and offer anonymity that does not depend on the trustworthiness of select nodes or

services.

1.3 Research Questions

This dissertation explores the following research questions:

• How can we scale anonymity networks? Increasing the size of anonymity

networks improves both performance and anonymity. As the ratio of clients

to available participants shrinks, so does congestion in the overlay network.

Additionally, larger networks likely provide increased geographic and admin-

istrative heterogeneity, which in turn impose real-world barriers for colluding

eavesdroppers. Our coordinate-based anonymity network is designed to scale

to hundreds of thousands of nodes.

• What are the pertinent e2e performance metrics for anonymous com-

munication? Previous approaches have attempted to produce anonymous

paths with greater e2e bandwidths than that achieved via random participant

selection [103, 27]. However, as previously described, there are several appli-

cations that impose communication requirements other than bandwidth. We

identify several e2e performance metrics in this dissertation, and show how

each may be accurately embedded in a coordinate system.
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• How does an initiator create high performance anonymous paths?

We propose link-based routing algorithms that utilize coordinate embedding

systems to accurately estimate the e2e properties (i.e., latency, jitter, etc.) of

potential anonymous paths. Our A3 architecture empowers initiators to instan-

tiate anonymous paths that meet their specific communication requirements.

• How do our techniques impact anonymity? Intuitively, a routing algo-

rithm should select participants uniformly at random from the set of all nodes

to maximize anonymity (since knowledge of a portion of the anonymous path

leaks no information about the initiator or responder). We purposefully deviate

from this approach in order to provide anonymous paths with greater perfor-

mance. We investigate the tradeoffs between anonymity and performance and

analyze the impact on anonymity of our proposed routing algorithms.

• How can coordinate systems be protected from manipulation? The

systems presented in this dissertation utilize coordinate embedding systems

to estimate the cost of potential overlay routes. To produce high performing

paths, such estimations must be accurate. The distributed nature of coordinate

systems make them particularly vulnerable to insider manipulation [45], as

peers can advertise false coordinates or delay responses to measurement probes.

This dissertation explores methods of defending coordinate systems from such

attacks.

1.4 Contributions

This dissertation makes the following contributions:

• Anonymous Path Selection Strategies. (Chapter 3) Unlike previously

proposed anonymous routing algorithms [27, 103] in which relays are selected

based on self-reported node characteristics (e.g., available bandwidth), our
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coordinate-based relay selection strategies estimate the end-to-end performance

properties of candidate routes by aggregating link characteristics (the proper-

ties of connections between nodes). Link characteristics provide better esti-

mates of path properties and support metrics that cannot be represented as

a node characteristic (e.g., latency, loss, and jitter). We propose routing al-

gorithms that select anonymous relays based on the estimated cost of paths’

constituent links.

• Coordinate-based Source-Routing for Anonymity. (Chapters 4 and 6)

This dissertation proposes the use of coordinate embedding systems for effi-

ciently estimating the e2e cost of potential anonymous routes. We introduce the

Application-Aware Anonymity (A3) system [99, 95] that leverages coordinate

systems to construct onion paths [82] with tunable anonymity and performance

properties. A3 does not rely on a priori trusted nodes, secrets, or services, and

is designed to scale to millions of simultaneous users.

• Veracity. (Chapter 7) This thesis presents Veracity [96, 100], a decentralized

method of protecting coordinate embedding systems from insider manipulation.

Veracity does not depend on any centralized authorities or preshared secrets,

and is well-suited for securing the coordinate systems used by A3.

• Coordinate-based Source-Routing for Performance. (Chapter 8) We in-

troduce Contour [94], an overlay routing system that exploits triangle-inequality

violations (TIVs) on the Internet to produce (non-anonymous) paths that per-

form better than their standard IP routing equivalents.

1.5 Organization

The remainder of this dissertation is presented as follows. In Chapter 2, we describe

prior work in anonymous communication. We introduce link-based anonymous relay
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selection algorithms in Chapter 3 and describe practical deployment models in Chap-

ter 4. The anonymity properties of link-based selection strategies are examined in

Chapter 5. In Chapter 6, we present the Application-Aware Anonymity (A3) system

that enables initiators to construct high performance anonymous paths. Veracity,

a coordinate protection layer that protects the accuracy of A3’s path predictions,

is introduced in Chapter 7. In Chapter 8, we propose the Contour detour rout-

ing system that leverages virtual coordinate systems to produce high-performance

(non-anonymous) paths in overlay networks. We conclude in Chapter 9.
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Chapter 2

Related Work

The A3 anonymity system presented in this dissertation expands upon prior results

from the security, anonymity, and networking communities. This Chapter describes

the previous research on which our system is built.

2.1 Terminology

Internet anonymity systems attempt to hide the identities (network addresses) of one

or more communicating parties from eavesdroppers. Typically, messages are passed

using application-layer overlay routing with the identities of the initiator and/or the

responder obscured using cryptography.

We do not address in this dissertation the interesting, but mostly orthogonal,

subject of covert channels [51, 70] in which one or more of the communicating parties

attempts to conceal the existence of the communication channel itself. Unlike in

anonymity networks, any party that is privy to a covert channel can decipher the

communicating endpoints. In contrast, anonymity systems hide the identities of

the communicating parties even if the eavesdropper intercepts with perfect fidelity.

A promising, but unexplored, area of future research is the combination of covert

channel techniques with anonymizing networks.
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We adopt the following definitions based loosely on Pfitzmann’s and Köhntopp’s

proposal of a unified anonymity terminology [71].

Definition 1. (Anonymity Set) An anonymity set is a finite collection of parties

who may be responsible for an action.

Definition 2. (Anonymity) Anonymity is the state of being not identifiable with

absolute (probabilistic) certainty within an anonymity set.

Definition 3. (Initiator/Responder Anonymity) A transmission preserves initia-

tor/responder anonymity if it does not reveal the identity of an initiator/responder

with absolute (probabilistic) certainty. An anonymity system provides initiator/ re-

sponder anonymity if the actions of its parties do not reveal the identities of the

initiators/responders with absolute (probabilistic) certainty.

Definition 4. (Perfect Initiator/Responder Anonymity) Let A be the anonymity set

as defined by Definition 1. A transmission α achieves perfect initiator/responder

anonymity if for all x ∈ A, the probability that x initiated α is |A|−1. An anonymity

system provides perfect initiator/responder anonymity if and only if the transmis-

sions of its parties preserve perfect initiator/responder anonymity.

There is a spectrum in the certainty that an eavesdropper can assign to its belief

that a particular party is a communicating party. Michael Reiter and Aviel Rubin

introduce the following terminology for assessing the degree of anonymity offered by

an anonymity system [83]:

Definition 5. (Provably Exposed) The eavesdropper can prove that a party partici-

pated in the communication.

Definition 6. (Exposed) The communicating parties are easily identifiable via packet

headers. That is, no anonymity technique is used to hide the initiator or responder.

For example, standard IP routing exposes the initiator and responder.
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Definition 7. (Possible Innocence) There is a nontrivial probability that another

party is the communicating party.

Definition 8. (Probable Innocence) The probability that a node is a party in the

communication is less than 1/2.

Definition 9. (Beyond suspicion) The eavesdropper can perceive the communicated

messages, but all parties in the system have equal probability of being the initia-

tor/responder. This corresponds to Definition 4.

Definition 10. (Absolute privacy) The eavesdropper cannot perceive the transmis-

sion of a message. Absolute privacy may be achieved using covert channels [70].

Ideally, an anonymity system forces an eavesdropper to consider each party in

the system as having an equal probability of being the initiator and/or responder for

an intercepted message or stream of messages (i.e., “beyond suspicion”). Although

some anonymity systems deliver such strong anonymity (a notable example is David

Chaum’s dining cryptographers scheme [13]), such approaches often assume particu-

lar network topologies (e.g., complete graphs) and eavesdropper configurations, and

are unsuitable for deployment on the Internet. In practice, the ability of eaves-

droppers to perform traffic analysis, timing analysis, and other attacks on Internet

anonymity systems (many of which are enumerated in Section 2.4) allows them to

construct non-uniform probability distributions over the anonymity set. Hence, A3’s

goal is to achieve anonymity that provides the communicating parties with at least

“probable innocence”.

2.2 Anonymity Systems

In this section, we briefly describe the Crowds [83] and onion routing [82] anonymity

systems. A3 utilizes both techniques to construct anonymous paths. Both Crowds

and onion routing are loosely based on Chaum’s seminal work on untraceable com-

munication [14].
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2.2.1 Crowds

In Crowds, traffic is relayed through a series of participants (proxies) called jondos.

An initiator initiates an anonymous connection by choosing a small random subset

of jondos, F . For each member of the set, the initiator transmits a signed message

containing a symmetric key, Kf , that will later be used for encryption and decryption.

To protect the confidentiality of the key, the message is encrypted with the public

key of the jondo. Formally, the initiator I transmits

I → ∀f ∈ F : {{Kf}Kf+
}KI−

where Kf+ is the public key belonging to jondo f , KI− is the initiator’s private key,

{X}Kf+
is the encryption of X using Kf+, and {Y }KI− denotes that Y has been

signed using the private key KI−.

After distributing the symmetric keys to all members of F , the initiator randomly

chooses a jondo j ∈ F and sends the message

I → j : i, {R, data}Kj

where i is a key identifier (i.e., it denotes Kj), R is the responder’s address, data is

the contents of the message, and Kj is the symmetric key shared between I and j

via the previous protocol step.

With probability (1− pf ), jondo j will deliver data to R. With probability pf , j

will instead forward the message to a successor jondo, j′, chosen randomly from j’s

random subset of jondos. In the latter case, j will send

j → j′ : i′, {R, data}Kj′

where Kj′ is the symmetric key shared between j and j′ and i′ is a key identifier for

Kj′ .

Once the route of jondos between I and R has been established, subsequent traffic

is sent along that route. At each hop, {R, data} is decrypted and re-encrypted using
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the appropriate shared symmetric keys. Reply traffic traverses the path of jondos in

the reverse direction. Routes last until some timeout period, after which the process

repeats, forming a new path from I to R.

As described above, the probability that a jondo will deliver a message to the

responder is 1 − pf . Since the message is delivered as soon as a jondo decides not

to forward it to another jondo, the probability of message delivery (i.e., reception

by the responder) is geometrically distributed with p = (1 − pf ). Therefore, the

probability that the message will reach the responder after traversing i jondos is

pi = (1 − p)i−1p = (1 − pf )(pf )
i−1. Let l be the number of jondos in the path

from initiator to responder. The expected value of l is the mean of the geometric

distribution, and hence

E[l] = 1/p = (1− pf )−1 (2.1)

Note that since
∑∞

i=1 pi = 1 (assuming pf < 1), the message will eventually reach

the responder.

Assuming the eavesdropper (Eve) intercepts a packet from a party X to the

monitored jondo, Eve cannot discern whether X is the initiator (Alice) of the message

or a jondo acting on her behalf. Packet capture does not eliminate any nodes from

the initiator anonymity set since Alice may be upstream of the point of interception.

While the a posteriori (after interception) and a priori (before interception) initiator

anonymity sets are equal, the probability distributions over the sets may differ. If

the eavesdropper intercepts packets from X to the monitored jondo, then X is more

likely the initiator than all other nodes in the anonymity set. Using Equation 2.1, we

can compute the a posteriori initiator probability distribution, assuming a uniform

a priori probability distribution.

Let n represent the number of nodes in Crowds (that is, n = |A|). The proba-

bility that X is Alice is 1
E[l]

= 1 − pf since this is the eavesdropper’s probability of

monitoring the first jondo in the path from Alice to Bob. The probability that any

other of the remaining n− 1 nodes in the anonymity set is Alice is 1− (1− pf ) = pf .
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Since the a priori distribution is uniform, each of the remaining n − 1 nodes is

assigned probability
pf

n−1
of being the initiator.

Since the hop from the last jondo to the responder is unencrypted, an eavesdrop-

per who monitors a jondo knows with certainty whether the jondo forwards messages

to another jondo or to the responder. Otherwise, no information about the responder

is learned (i.e., the a priori and a posteriori responder probability distributions are

equal) and all members of the anonymity set are beyond suspicion.

Crowds, like many other Internet anonymity systems, does not provide anonymity

against a global passive adversary – an eavesdropper who can monitor all traffic on

the network. Such a powerful eavesdropper can trace flows forward to identity the

responder and use intercept logs to “reverse” Crowd paths to locate initiators.

Crowds is also susceptible to active attacks in which an eavesdropper is also a

participant in the system. Crowds relies on hop-to-hop cryptography (the equivalent

of link layer encryption applied on top of an overlay network) to protect the identity

of the responder. An insider who receives a message of the form (i, {R, data}Kj
)

knows Kj and can decrypt the message to learn R. Hence, if the adversary controls

any jondo on the path from the initiator to the responder, then the responder is

trivially exposed.

2.2.2 Onion Routing and Tor

Onion routing [82] is a source-routed anonymity technique in which the initiator

transmits messages via her chosen path of onion routers (participants) towards the

responder. Messages are multiply encrypted, allowing onion routers to discern only

the previous and next hops in the anonymous path. The Tor anonymity network [28,

107] is based on onion routing.1

1The current Tor implementation does not use strict onion routing. Instead, the initiator uses
an iterative “stage” approach in which session keys are distributed to the appropriate onion routing
via already established portions of the anonymous path [28].
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Figure 2.1: A three layered onion. Each onion layer contains the location of the
next hop and key material for backwards and forwards encryption, and is encrypted
under the public key of the node that receives the onion.

To anonymize her traffic, the initiator (Alice) initiates socket connections through

a Tor proxy server, typically running on her machine. The proxy creates a source-

routed path consisting of a number of randomly chosen onion routers that terminates

at an onion exit router. Reply traffic follows the reverse path, traversing through

the onion routers and eventually reaching Alice.

There are two phases involved in the establishment of anonymous onion routed

sockets: onion setup and data transmission [82]. In the onion setup phase, the

initiator chooses a random sequence of onion routers (i.e., participants) that will

form the anonymous path. The initiator’s onion router forms a multiply encrypted

onion in which each layer of the onion contains key seed material for a particular

participant. A three-layered onion is depicted in Figure 2.1. The key seed material

is hashed to generate symmetric keys for relaying anonymous messages.

Upon receiving an onion, a router peels off and decrypts the outermost layer using

its private key. It records its symmetric session key and relays the remaining inner
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onion layers to the next hop, obtained from the Destination Host and Destination

Port fields. Onions are padded with random data to keep the size of the onions fixed.

In the data transmission phase, Alice repeatedly encrypts her message using the

previously distributed symmetric keys, applied in reverse order. For example, if keys

α1, α2, and α3 belong respectively to the first, second, and exit onion routers in a

path, then message M is encrypted as {{{M}α3}α2}α1 . Upon receiving an encrypted

datagram, an onion router decrypts the outermost layer and relays the result to the

next router. Reply traffic is encrypted in the opposite manner: each router encrypts

the reply and forwards the result to its predecessor onion router. To mitigate traffic

analysis attacks, data is always padded to a fixed length and encrypted containers

are used to convey the true length of the data to subsequent onion routers.

Unlike Crowds, onion routing can tolerate the inclusion of adversaries on the

anonymous path. Since next hops are encrypted using the public key of each onion

router, a malicious participant learns only the identities of the subsequent and the

previous hops. Although an adversary on the first hop in an anonymous path trivially

knows the identity of the initiator, it cannot infer the identity of the responder.

Similarly, an eavesdropper on the last hop knows the responder, but cannot deduce

the initiator.

Additional attacks against Tor are described in Section 2.4.

2.3 Path Selection

Routing messages via multihop paths on an application-layer overlay typically yields

significantly poorer communication performance as compared to standard IP rout-

ing. The e2e performance of an anonymous path, whether measured as latency,

bandwidth, or some other metric, is determined by its constituent participants: the

latency of an anonymous path is the sum of the latencies of its parts, the bandwidth
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of a path is determined by the bottleneck imposed by the hop with the least band-

width, etc. Relaying messages through participants delivers anonymity, but it does

so at the expense of performance.

Both anonymity and performance are affected by path selection (also called relay

selection), the algorithm used to select the participants for an anonymous path. If

participants are chosen uniformly at random, irrespective of their effects on e2e path

performance, anonymity is maximized. In such a case, an adversary has no informa-

tion on which to bias the probability distribution over the anonymity set. Although

choosing participants randomly improves anonymity, such a topology-agnostic strat-

egy tends to result in paths with poor performance.

As demonstrated in the following chapter, careful selection of participants may

yield high performance paths. However, such discriminatory path selection inher-

ently imposes a non-uniform distribution over the set of candidate relays. Adversaries

knowledgeable about the performance of inter-relay links can use the non-uniformity

of relay selection to improve its probability of discovering the communicating parties.

An anonymity system’s path selection algorithm therefore affects both the anony-

mity offered by the system as well as the performance of the paths it produces. In

systems that allow source-routing, the initiator can potentially choose a point in

the anonymity-vs-performance spectrum [103, 99], achieving a desired level of per-

formance while maintaining some degree of anonymity. In contrast, in anonymity

systems in which path selection is handled in the network (for example, Crowds), the

initiator has no such freedom. For anonymity systems that fall in this latter category,

both the performance of the path and the anonymity that it offers is dependent on

the selections made by third (and potentially untrustworthy) parties.

As described in later chapters, A3 uses a source-routing approach, enabling the

initiator to tradeoff anonymity and performance [99, 95]. (We defer our discussion

of methods for estimating anonymity and performance to later chapters.) Since Tor

also uses a source-based approach and attempts to achieve reasonable performance
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by sacrificing a modicum of anonymity, and because Tor’s relay selection algorithm

has been shown to enable certain attacks against anonymity [103, 65], we present a

simplified version of the Tor path selection strategy below.

Path Selection in Tor Tor’s relay selection is a two-step process. First, the

initiator builds a list of candidate participants consisting of relays which are marked

in the directory server as being stable (having a sufficiently long uptime), valid

(running a recent version of Tor), and fast (reporting sufficient available bandwidth).

The last participant (exit node) is further constrained to only those relays whose

published policies allow them to forward traffic to the responder. To produce high

bandwidth routes, Tor’s path selection algorithm then sorts relays in increasing order

of bandwidth and computes the sum B =
∑|N |−1

i=0 bi, where bi is the bandwidth of

relay i. The initiator chooses r uniformly at random from [0, B) and selects the node

with index k as a relay, where k is the largest integer such that
∑k−1

i=0 bi ≤ r. The

initiator repeats this procedure to select each relay in the anonymous circuit [27].2

2.4 Attacks on Anonymity

There have been several well-publicized attacks against Internet anonymity systems.

Since A3 borrows concepts from onion-routing and Tor, the attacks described in this

section focus on such anonymity designs.

Although the taxonomy presented below is intended to highlight several of the

more severe attacks against anonymity, it should not be considered a complete enu-

meration of all possible attacks.

2In practice, Tor may apply different weights for entry and exit nodes. For simplicity, we assume
that all nodes may function as entry or exit relays.
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Src A, 153 packets 

Src B, 976 packets 

Src C, 51 packets 

Dest X, 1013 packets

Dest Y, 146 packets

Dest Z, 49 packets

Figure 2.2: Example counting attack.

2.4.1 Counting Attacks

In anonymity systems that utilize mixing [14], participants attempt to aggravate traf-

fic analysis by enqueuing inbound messages and relaying traffic in randomly ordered

bursts. Example mix networks include ISDN-Mixes [72], Web Mixes [9], JAP [35],

and onion-routing [82]. The delay between message reception and forwarding makes

it more difficult for an eavesdropper to associate connection streams. Figure 2.2

shows an example mixing in which a participant receives packets from three sources

(A, B, and C), buffers the messages, and outputs packets to three destinations (X,

Y , and Z).

Serjantov and Sewell describe a passive packet counting attack in which an eaves-

dropper counts the number of incoming and outgoing packets traversing a monitored

participant for a set time period [92]. If the number of incoming packets for one con-

nection (identified by IP address and port number) approximately equals the number

of outgoing packets for another connection, then the attacker can assume with high

confidence that the two connections are part of the same anonymous path. For ex-

ample, an adversary can easily infer the mapping {A → Y,B → X,C → Z} from

the counts depicted in Figure 2.2.

Such attacks work best for lone connections in which only a single connection

traverses a monitored link. Packet counts cannot be easily correlated if multiple

connections are multiplexed on a link, since messages belonging to each connection

may be distributed amongst one or more links exiting the mix. Since larger networks
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provide more opportunity for lone connections, larger networks are more vulnerable

to attack than smaller anonymity networks in which traffic from multiple anonymous

connections are regularly multiplexed over shared links.

2.4.2 Low-Latency Attacks

Mix-based anonymity networks incur heavy performance penalties by storing mes-

sages for relatively long periods before forwarding them to their next hops. Tor and

other low-latency anonymity networks opt to forgo mixing in favor of reducing the

e2e latencies of anonymous paths.

To reduce queuing delay while providing a measure of fair service, Tor enqueues

incoming messages according to streams (i.e., anonymous paths). Onion routers

maintain a bin for each stream, assigning arriving traffic to the appropriate bin. Bins

are serviced in a round-robin fashion, with messages being dequeued and relayed to

their subsequent hops [28].

Although the round-robin approach provides fair queuing, it enables the following

subtle attack on anonymity [64]: Since Tor maintains a bin for each anonymous

stream and services them in a round-robin fashion, the amount of time between

bin accesses (i.e., latency) is thus a function of the number of bins. Therefore, the

addition of an anonymous stream at a given onion router impacts the latency of all

other streams traversing that router. An adversary can exploit this behavior to test

whether a particular router is upstream of a monitored anonymized link. To perform

the attack, the adversary constructs her own anonymous path through the candidate

router. If traffic sent on the adversary’s anonymous path is correlated to an increase

in latency of the monitored connection, then that connection likely flows through

the candidate router. Recent work by Evans et al. improves upon this attack by

creating long cyclical paths through the targeted relay [33].
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2.4.3 Predecessor Attacks

First described by Reiter and Rubin [83] and subsequently analyzed in more depth

by Wright et al. [116], the predecessor attack enables an adversary to discern the

identity of an initiator. The attack exploits the observations that anonymous con-

versations are often longstanding and their underlying connections are subject to

frequent resets. Here, we make the distinction between a longstanding conversation

between the initiator and the responder and the more transient anonymous connec-

tions over which the conversation is carried. Resets, or interruptions in connections

due to churn or other network effects, force the initiator to establish a new connec-

tion in order to continue his conversation. Note that the initiator and responder

remain fixed between resets whereas a new set of participants are chosen for each

connection.

If an adversary controls some fraction of the nodes in the anonymity network,

she can count the number of times each predecessor node participates in an anony-

mous connection for a given conversation. (The predecessor attack is contingent

on the adversary’s ability to discern session-identifying information in transported

messages.) Maintaining such tallies reveals the initiator’s identity since the initiator

is more often the predecessor than any other node.

The countermeasure to the predecessor attack is the use of entry guards, fixed

participants that serve as the first hop in all anonymous paths [116]. Each initiator

chooses an entry guard through which it routes all paths. Since the entry guard

is consistently the first hop of all anonymous paths, nodes under the adversary’s

control do not directly communicate with the initiator, and at worst identify only

the entry guard, effectively thwarting the attack.

2.4.4 Timing Attacks

Tor provides a mechanism for responder anonymity called hidden services in which

the initiator and responder communicate via a rendezvous point in the network [28].
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Although the responder participates in the anonymous connection, his identity is

obscured by the rendezvous point. Hidden services are useful, for example, to host

information (e.g., web pages) without being identifiable.

Steven Murdoch identified a mechanism for locating Tor Hidden Services using

clock skew measurements [63]. To conduct the attack, an adversary induces load on

the hidden service by making frequent requests. The high load causes temperature

changes on the server, which in turn results in increased clock skew. An attacker can

observe the changes in clock skew of a set of potential hosts to deduce the identity of

the responder. The effectiveness of this approach was recently improved by Sebastian

Zander and Steven Murdoch using synchronized sampling techniques [119].

Although Murdoch’s timing analysis attack is targeted at breaking the anonymity

of hidden services, similar timing analyses can be applied to identify the initiator and

the responder of an anonymous circuit. If an eavesdropper controls both the first and

last participants in an anonymous path, she can correlate packets traversing her two

hosts to determine that they belong to the same anonymous path [63, 103]. (Recall

that a design goal of Tor is to limit each participant to knowing only the previous

and next hops.) Since the first participant knows the identity of the initiator and the

last participant has knowledge of the responder, an eavesdropper who controls both

the first and last participants knows the identities of the communicating parties.

Although one or more participants not under the adversary’s control may be located

between the first and last hops on the anonymous path, these intermediary routers

do not perturb timing information sufficiently to mitigate the attack. Of course,

such “middle” participants may purposefully apply jitter to the channel to aggravate

timing analysis, but by doing so, they increase the latency of the path. To provide

low-latency anonymity, Tor does not take such measures.
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2.4.5 Path Selection Attacks

Previously proposed relay selection techniques have focused on improving the band-

width of generated paths [27, 103]. To produce high bandwidth routes, the Tor [28]

path selection algorithm sorts relays in increasing order of bandwidth and computes

the sum B =
∑|N |−1

i=0 bi, where bi is the bandwidth of node i. The initiator chooses r

uniformly at random from [0, B) and selects the node with index k as a relay, where

k is the largest integer such that
∑k−1

i=0 bi ≤ r. The initiator repeats this procedure

to select each relay in the anonymous circuit [27].3

Øverlier and Syverson first identified that Tor’s path selection algorithm is sus-

ceptible to manipulation [68]. By falsely advertising high bandwidths, nodes under

an adversary’s control can exploit the weighted probability distribution and increase

their chances of being selected. If multiple nodes under the attacker’s control are

selected as relays, the adversary can apply a circuit-linking algorithm [8] or perform

timing analysis [63] to discern whether two of its relays reside on the same path. (Tor

is designed to restrict each relay to knowing only the previous and next hop [28].)

If the attacker controls the first and last relays in an anonymous path, he defeats

anonymity since the first and last relays respectively know the identities of the initia-

tor and responder. Bauer et al. demonstrate that when an adversary controlled just

six of 66 nodes in a Tor deployment on PlanetLab [74], the attacker compromised

more than 46% of all anonymous paths [8].

Snader and Borisov [103] propose two modifications to Tor to defend against

Øverlier et al.’s attack. First, to prevent nodes from reporting false bandwidths,

relays report the observed bandwidths of peer relays to the directory server. When

queried for a node’s bandwidth, the directory server reports the median of the node’s

observed measurements. Second, Snader and Borisov introduce a more tunable

3In practice, Tor may apply different weights for entry and exit nodes. For simplicity, we assume
that all nodes may function as entry or exit relays.
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weighting system in which the initiator can tradeoff between anonymity and per-

formance. They define the family of functions

fs(x) =

 1−2sx

1−2s if s 6= 0

x if s = 0
(2.2)

where s is a parameter chosen by the initiator that allows it to tradeoff between

anonymity and performance. After having ranked the relays by bandwidth, the

initiator chooses the relay with index bn · fs(x)c, where n is chosen uniformly at

random from [0, 1). By applying higher values of s, the initiator is able to more

heavily bias her selections towards bandwidth. If s = 0, a relay is chosen uniformly

at random [103]. Each relay is selected independently and without replacement

according to the distribution imposed by Eq. 3.1.

Snader and Borisov’s defense relies on opportunistic measurements – relays report

the observed bandwidths of their peers [103]. There are unfortunately disadvantages

of such an approach. First, a relay can report opportunistic measurements only when

it participates in an anonymous circuit with a peer. Transmitting the observation

to a directory server effectively informs the server of the existence of the circuit as

well as the identities of the two relays that constitute one of its hops. Given that

directory servers may be malicious, revealing segments of the path is undesirable.

Second, the directory cannot discern whether reported measurements are truthful.

Colluding malicious relays may (falsely) report that members of their coalition have

high bandwidth. If there are a sufficient number of attackers to influence the median

of a relay’s measurements, then Øverlier et al.’s attack becomes feasible. Finally,

as noted in Murdoch’s recent work [65], attackers may have access to large botnets

and may therefore join the anonymity network with relays that have sufficient band-

width to attract peers. The use of opportunistic measurements attempts to protect

against false self-reported measurements, but does not prevent an attacker from ac-

quiring high performing nodes to attract traffic. As we show in Chapter 3, link-based

measurements inherently reduce the attacker’s ability to influence path selection.
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In the following chapters, we present novel link-based relay selection strategies to

achieve high performance anonymous paths. Our link-based algorithms drive the

Application-Aware Anonymity (A3) platform that we introduce in Chapter 6, as

well as the Contour detour routing system presented in Chapter 8.
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Chapter 3

Link-Based Path Selection

Existing approaches [28, 27, 103] to producing high performance anonymous paths

have focused exclusively on node characteristics – performance metrics (i.e., band-

width) that may be attributed to individual relays. Node-based relay selection strate-

gies randomly select relays according to a nonuniform probability distribution biased

by the relays’ node characteristics.

In link-based path selection, the e2e performance of a path is computed by ag-

gregating the cost of all links that comprise the path, where cost is defined in terms

of link characteristics such as latency, loss, and jitter. (While bandwidth is a node-

based characteristic, it can also be represented as a link characteristic by consid-

ering the measured available bandwidth on a link connecting two nodes.) The use

of link rather than node characteristics enables not only more flexible routing, as

initiators can construct anonymous routes that meet more specific communication

requirements, but (as we show in Chapter 5) also better protects the identities of

the communicating parties.

3.1 Weighted Path Selection

Our link-based path selection algorithm, Weighted, operates in two phases.
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Metric Path cost

Latency / RTT
∑h

i=1 di
Bandwidth min(d1, d2, ..., dh)

Loss rate 1−
∏h

i=1(1− di)
Jitter (variance)

∑h
i=1 di

Autonomous System (AS) Traversals
∑h

i=1 di

Table 3.1: Link concatenation operators. The distance between successive links is
denoted as d1, d2, ..., dn. We define jitter as the variance (σ2) of a random variable
describing packet inter-arrival time. Assuming that the jitter of two successive links
are independent, then the aggregate variance is their sum, since σ(X+Y )2 = σ(X)2+
σ(Y )2 for independent random variables X and Y .

In the first phase, the initiator rapidly generates (but does not instantiate) can-

didate paths consisting of three relays chosen uniformly at random without replace-

ment. The initiator computes the e2e cost of each generated candidate path using

a link concatenation operator (see Table 3.1). For example, the e2e bandwidth of a

path is the minimum of the bandwidths of its links, whereas the latency of the route

may be estimated by summing the latencies of its hops. Our approach may be ex-

tended to define the performance of a path in terms of multiple metrics by assigning

weights to each metric in a manner that reflects its importance as determined by the

initiator. The e2e path cost estimate is then calculated as the weighted average over

the cost estimates for each individual metric.

In this chapter, we assume that initiators have knowledge of the network distances

between any two relays and can therefore calculate path costs. In the following

chapter, we relax this assumption and describe efficient methods for disseminating

pairwise distance information. For the remainder of this chapter, however, we make

the simplifying assumption that all nodes know all pairwise distances.

In the second phase, the initiator sorts the candidate paths by their cost esti-

mates. Using the family of functions introduced by Snader and Borisov [103]:

fs(x) =

 1−2sx

1−2s if s 6= 0

x if s = 0
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the initiator instantiates the candidate path with index bn · fs(x)c, where n is chosen

uniformly at random from [0, 1). As with Snader’s and Borisov’s algorithm, a larger

value of s more heavily weighs path selection in favor of performance. When s = 0,

each randomly generated path is equally likely to be chosen. For clarity, we will refer

to the special case in which s = 0 as using the Uniform selection strategy.

3.2 Assumptions and Limitations

The Weighted relay selection strategy estimates the e2e performance of poten-

tial anonymous routes by aggregating the costs of their constituent hops. Since the

anonymity service’s queuing and servicing of messages affect communication perfor-

mance, measurements should be carried out at the application-layer. That is, the

cost of routing between relays R1 and R2 should encompass not only network effects,

but also the message processing expense incurred by R1 to transmit a message and

R2 to process it.

To be effective, link-based routing requires that path performance (whether it be

measured by bandwidth, latency, jitter, etc.) be due primarily to network effects.

If, however, local effects at end nodes (e.g., congestion or queuing delay) dominate

performance, then link-based path selection is less effective since the savings gained

from optimizing link costs is overshadowed by node effects.

The performance and anonymity results in the following chapters assume path

performance is dictated by the network rather than end-host effects. Such an as-

sumption is unlikely to hold for more centralized networks (specifically, Tor [26]) in

which the number of clients may exceed the number of relays by several orders of

magnitude. With such a top-heavy ratio of clients to relays, congestion at the relays

becomes the dominant factor in performance.

Link-based routing is better suited for anonymity networks in which network

characteristics play an important role in determining the performance of anonymous
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paths. Specifically, the Application-Aware Anonymity (A3) framework introduced in

Chapter 6 incorporates a peer-to-peer (p2p) architecture to minimize congestion. A

p2p design has two important advantages over more centralized approaches. First,

since each node is both a potential initiator and relay, a p2p anonymity system in-

herently balances the number of relays and clients. Provided that the relay selection

strategy does not significantly favor certain subsets of nodes (a scenario we investi-

gate later in this chapter), a more distributed architecture alleviates the problem of

congestion, making network performance the determining factor in anonymous path

performance. Second, p2p systems are better suited for the traffic that traverses

anonymity systems. In particular, McCoy et al. have shown that BitTorrent [15], a

p2p file sharing service, accounts for more than 40% of Tor’s bandwidth [60]. Using

a p2p anonymity network to serve p2p traffic is a natural fit.

Although Weighted does not require a p2p architecture, its usefulness is depen-

dent on whether link-based cost estimations accurately reflect the e2e performance

of anonymous paths. It should be emphasized, however, that in the extreme case

in which performance is determined solely by node characteristics, link-based selec-

tion becomes equivalent to (and no worse than) node-based techniques. That is,

congestion at relay R may cause the cost of all links X → R, for all other relays

X (X 6= R), to be equal to one another and a function only of R’s congestion. In

such a case, weighting by link costs clearly becomes equivalent to weighting based

on node costs.

In the remainder of this thesis, we assume that the effects of congestion and

queuing delays at individual hosts do not overshadow the cost of routing between

nodes. The scalable A3 p2p architecture introduced in Chapter 6 supports such an

assumption.
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3.3 The Case for Link-based Selection

In this section, we present the case for link-based path selection. We demonstrate

that link-based anonymous routing is flexible, enabling high performance paths,

whether performance be quantified in terms of bandwidth, latency, or jitter.

We first consider an oracular model in which all measurements (node or link)

in the network are known to the initiator. This enables us to compare node- and

link-based path selection strategies irrespectively of their measurement techniques.

We explore actual implementation strategies in Chapter 4.

Performance Analysis Our performance analysis highlights two main benefits

of link-based path selection over existing node-based techniques. First, link-based

techniques support a variety of performance metrics, hence offering greater flexibility.

In particular, the Weighted selection strategy produces paths with low latency and

jitter, few autonomous system (AS) traversals, and high bandwidth. Second, as with

recently proposed node-based approaches [103], our link-based relay strategy enables

the initiator to carefully tradeoff between anonymity and performance.

Our performance analysis is carried out using a trace-driven path simulator that

takes as input an N × N matrix describing the pairwise network distances (i.e.,

latency, bandwidth, etc.) between relays. The pairwise link distances used as input

to the simulator are obtained from actual network traces [47, 117] as well as our own

measurements carried out on the PlanetLab testbed [74]. Since the performance and

security of link-based path selection is influenced by the underlying topology, we

analyze the results of generating 150 anonymous paths between each of the N(N−1)

pairs of relays. That is, for each pair of relays, we generate anonymous paths between

the pair using the remaining N − 2 nodes in the dataset as potential relays. To

produce each path, Weighted generates (but does not instantiate) 150 candidate

paths1 before randomly selecting the chosen path according to the weighted (e.g., by

1In practice, the number of candidate paths can far exceed 150, as commodity processors can
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Dataset Metric Nodes Description

King [47] Latency 500 Pairwise latencies captured using the King method [42]
Meridian [114] Latency 500 Pairwise latencies obtained using Meridian [114]
S3-BW [117] Available Bandwidth 365 Pairwise bandwidths from PlanetLab measured using

PathChirp [86]
PL-ASes AS Traversals 156 Pairwise number of AS crossings on PlanetLab measured

using traceroute

PL-Jitter Jitter (variance) 259 Pairwise jitter (variance of interarrival times of 30 pings)
on PlanetLab

Tor-BW Available Bandwidth 500 Available (also called “observed”) bandwidth of 500 Tor
nodes, obtained from Tor directory servers

Table 3.2: Network datasets used to evaluate link-based relay selection.

bandwidth) probability distribution.

Table 3.2 describes the trace-driven datasets used as input to our simulator. The

King [47], Meridian [114], and S3-BW [117] datasets are based on measurements

obtained from prior publications and are commonly used in the networking research

community; PL-ASes and PL-Jitter represent newer metrics that are novel to this

work. Due to the lack of existing published traces on these metrics, we conducted our

own measurements using geographically distributed PlanetLab nodes. The Tor-BW

dataset was culled from Tor’s directory servers.

Since simulation time grows geometrically with network size, only the pairwise

measurements for the first 500 relays from the King, Meridian, and Tor-BW datasets

are used as input to the simulator. The remaining datasets contained fewer than 500

nodes, and are used in their entirety.

3.3.1 Bandwidth

Figure 3.1 shows the bandwidth improvement resulting from using Weighted on

the S3-BW dataset. When s = 9, Weighted more than doubles the median available

bandwidth over all pairwise paths to 42.3 Mbps, compared to 20.1 Mbps when relays

are selected uniformly at random (Uniform). (Recall that relay selection is weighted

generate thousands of candidate paths per second. We restricted Weighted to consider only 150
candidate paths since Weighted is invoked at least 150 ·N(N − 1) times per simulation.
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Figure 3.1: E2e available bandwidth us-
ing the S3-BW dataset.
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Figure 3.2: E2e path latencies using the
King dataset.
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PL-Jitter dataset.
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Figure 3.4: E2e AS traversals using the
PL-ASes dataset.

more heavily towards performance when s is increased.) The ability to provide

high performance bandwidth paths using link-based relay selection is particularly

interesting, given that bandwidth is often perceived as a node characteristic [2, 50].

Bandwidth may, of course, be represented as a link characteristic (as is the case in

the S3-BW dataset). This latter characterization enables more flexible routing, as

bandwidth bottlenecks may result from Internet routing policies rather than node

capacities.
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3.3.2 Non-bandwidth Metrics

Figures 3.2 through 3.4 demonstrate Weighted’s ability to produce high perfor-

mance paths for non-bandwidth metrics. The median e2e latency of the anonymous

paths formed using Uniform is 277.2ms (Figure 3.2). The median latency decreases

by 20.6% to 220.1ms when s = 3 and by 52.7% to 131.2ms when s = 15. Addi-

tionally, Weighted decreases the percentage of high latency paths: 93.0% of paths

produced via Uniform have latencies of 250ms or greater compared to just 22.5%

of routes generated using Weighted with s = 3.

Jitter, defined as the variance in interarrival times (measured in ms) of 30 ping

messages, significantly decreased using Weighted. As shown in Figure 3.3, the

median jitter decreased by 26.2% when s = 3 and by 46.3% when s = 9.

It may also be advantageous to minimize the number of AS crossings in an anony-

mous path, both to decrease the probability that a given AS can observe multiple

hops in the path [34] and also to potentially achieve greater path performance (since

routing within an AS is typically low-latency and high-bandwidth). Although analyz-

ing the relationships between AS traversals, anonymity, and performance is beyond

the scope of this dissertation, we include the metric here to emphasize the flexibility

of link-based routing. Figure 3.4 shows the cumulative distribution of AS traversals

for anonymous paths. Using Uniform, 66% of anonymous paths traversed 12 or more

ASes. In contrast, when s = 3 and s = 9, only 10% and 0.3% of their respective

paths crossed 12 or more ASes.
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Chapter 4

Practical Link-Based Path

Selection

Our analysis in the previous chapter assumed that the initiator has knowledge of

pairwise distances between potential relays. In practice, maintaining pairwise dis-

tances will require O(N2) in communication and network state, hence imposing a

significant overhead on the anonymity network.

One practical solution to the above challenge is via the use of network coor-

dinate systems that enable the pairwise distances between all participating nodes

to be estimated to high accuracy with low overhead. Network coordinate systems,

such as Vivaldi [19], PIC [16], NPS [66], and Big Bang Simulation [93] map each

relay to n-dimensional coordinates such that the Euclidean distance between two

relays’ coordinates corresponds to the actual network distance between the pair. Al-

though their individual implementations differ, coordinate systems use distributed

algorithms in which each participant periodically measures the distance between it-

self and a randomly selected peer. By comparing the empirical measurement with

the coordinate-based Euclidean distance estimation, a relay can adjust its coordinate

either towards (in the case of over-estimation) or away from (for under-estimation)

its peer’s coordinate.
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Network coordinate systems are well-suited for link-based relay selection, effec-

tively linearizing the quantity of information that must be stored and communicated:

knowledge of each relay’s coordinate is sufficient for estimating the pairwise distances

between them. Virtual coordinate systems are lightweight, requiring little bandwidth

overhead, and adapt quickly to changes in the network [19]. Additionally, these sys-

tems have proved to operate efficiently at Internet scale. For example, the Vuze [109]

BitTorrent [15] client currently operates a coordinate system consisting of more than

one million nodes [52]. Finally, the Veracity protection system, introduced in Chap-

ter 7, prevents misbehaving relays from falsifying their coordinates to attract traffic,

ensuring the accuracy of advertised coordinates.

4.1 Background: Vivaldi Coordinate System

Since the Vivaldi coordinate system has been the subject of significant study [96, 100,

45, 44] and is the underlying coordinate system used by our A3 implementation, we

briefly describe its operation in this section. Our link-based relay selection strategies

are compatible with any embedding system in which pairwise distances can be esti-

mated using peers’ coordinates. (Other virtual coordinate systems [93, 16] function

similarly to Vivaldi.)

Vivaldi uses a fully distributed spring relaxation algorithm, requiring no fixed

network infrastructure and no distinguished nodes. The system envisions a spring

between each pair of nodes, with the resting position of the spring equaling the

network latency between the pair. At any point in time, the distance between the

nodes in the coordinate space determines the current length of the spring connecting

the nodes.

Nodes adjust their coordinates after collecting published coordinate and latency

measurements from a randomly chosen neighbor. Consider a node i that wishes

to update its coordinate Ci. It picks a randomly chosen neighbor j, retrieves its

39



coordinate Cj and performs a round-trip measurement RTTij from itself to j. The

squared error function,

Eij = (RTTij − ||Ci − Cj||)2 (4.1)

(where ||Ci − Cj|| is the distance between their coordinates) denotes the estimation

error between the coordinates of i and j. Using Vivaldi’s spring relaxation algorithm,

Eij reflects the potential energy of the spring connecting the two nodes. Vivaldi

attempts to minimize the potential energies over all springs. In each timestep of

the algorithm, nodes allow themselves to be pulled or pushed by a connected spring.

The system converges when the squared error function (i.e., the potential energies)

is minimized below a threshold.

Our coordinate-based anonymity system is novel in its use of coordinate systems

to embed non-latency metrics. We generalize the squared error function (Equa-

tion 4.1) as

Eij = (Dij − ||Ci − Cj||)2 (4.2)

where Dij denotes an arbitrary network measurement (e.g., latency, jitter, loss)

between nodes i and j. Since closeness between two coordinates denotes lower cost

(for example, small link latency), link bandwidths (in which greater distances are

more desirable) must be encoded. If bij denotes the bandwidth between nodes i and

j, then Dij = B − bij, where B is the maximum possible bandwidth in the network.

4.2 Metrics

To assess the accuracy of a virtual coordinate, we measure the median error ratio

of a node ni, defined as the median over the error ratios∣∣D(ni, nj)− ||Cni
− Cnj

||
∣∣

D(ni, nj)
(4.3)

between ni and all other nodes nj (ni 6= nj). Coordinate estimation errors are due

to the presence of network triangle inequality violations that cannot be expressed

using Euclidean geometry.
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Conceptually, Equation 4.3 computes the difference between the computed dis-

tance between ni and nj based on coordinates (||Cni
−Cnj

||) and the actual measured

distance (denoted by D(ni, nj)). The accuracy of a node’s coordinate increases in-

versely with its median error ratio. The use of median provides an intuitive measure

of a coordinate’s accuracy and is more robust than average to the effects of outlier

errors. Previous approaches [19, 66, 118] define similar metrics.

To gauge the accuracy of the system as a whole, we define the system error

ratio as the median over all peers’ median error ratios. To show lower performance

bounds, we also consider the 90th percentile error ratio – i.e., the 90th percentile

of nodes’ median error ratios.

4.3 Performance Impact of Coordinate Systems

Since network distances cannot be perfectly embedded using Euclidean geometry,

estimation errors may impact the performance of anonymous paths. To quantify the

accuracy of coordinate systems, we executed the Vivaldi [19] embedding system on

the King, PL-ASes, and PL-Jitter datasets. We utilized the Vivaldi implementation

from the Bamboo DHT [7], configured to use a five dimensional coordinate plane.1

Figure 4.1 plots the cumulative distribution function (CDF) of nodes’ median

error ratios after stabilization for the three datasets. As expected, the latency dataset

results in lowest error ratios. The system error ratio for the King dataset is just 10.9%

(6.1ms).

Although intended to embed latencies, our results show that Vivaldi is also effec-

tive at embedding non-latency metrics. The system error ratios for the PL-ASes

(AS counts) and PL-Jitter (jitter) datasets are 21.5% (0.45 ASes) and 29.6%

(σ2 = 11.5), respectively. The higher estimation errors (as compared to King) are due

1Although comments in the Bamboo source code recommend the use of five dimensional coor-
dinates [7], similar results were achieved using three dimensional coordinates.
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Figure 4.1: CDF of median error ratios for the King, PL-ASes, and PL-Jitter

datasets.

to the higher fraction of triangle inequality violations in the PL-ASes and PL-Jitter

datasets. However, as we show below, the achieved error ratios are sufficiently low

to generate high performance anonymous paths.

Using the King dataset, Figure 4.2 shows the impact that latency estimation

errors have on the e2e performance of anonymous paths. The figure compares the e2e

performance of paths produced by Weighted when actual distances (“Actual”) and

coordinate-based estimations (“Estimated”) are used. As is apparent from the figure,

the use of virtual coordinates to estimate distances does not significantly degrade

the performance of anonymous paths. For example, when s = 15, the median e2e

path latency is 131.2ms using actual network distances; the use of virtual coordinates

incurs a modest 8% increase in latency, resulting in paths with a median e2e latency

of 141.9ms (still far below the 277.1ms median obtained by Uniform).
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Although jitter and AS traversals do not embed as seamlessly as latency, the use

of coordinate systems to estimate these non-latency metrics achieves paths with sig-

nificantly less jitter and AS traversals than Uniform selection (Figures 4.3 and 4.4).

For example, when s = 15, Weighted decreases jitter by 39.2% and the number of

AS traversals by 16.2% compared to Uniform.

Bandwidth estimation Unmodified coordinate systems have been shown to be

ineffective at estimating pairwise bandwidths due to the high incidence of TIVs in

bandwidth measurements [111, 79, 80]. Fortunately, there have been a number of

recent promising proposals that enable more accurate bandwidth estimations. In

particular, there have been several attempts to identify links that cause severe net-

work TIVs [111, 56, 53], enabling initiators to avoid them when forming paths.

Recent work [79, 80] has directly addressed the problem of bandwidth embeddings,

introducing techniques for embedding bandwidth distances in tree structures. Their

results show that pairwise PlanetLab bandwidths can be embedded with a median
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error ratio of approximately 0.25 [79]. Although these coordinate embedding sys-

tem refinements have not been integrated into our implementation, we note that

Weighted is agnostic to the underlying coordinate mechanism. That is, a more

accurate coordinate system leads to more accurate e2e path estimations, which (as

indicated by Figures 4.2 through 4.4) produce higher performance paths. Hence, any

improvements in coordinate system design consequently strengthens the performance

of coordinate-based relay selection.

4.4 Coordinate System Security

The distributed nature of coordinate systems make them vulnerable to manipulation

if not properly defended. Malicious relays may advertise false coordinates or delay

measurement probes, either to make themselves appear more favorable or to cause

disorder in the system. For example, when 30% of Vivaldi nodes lie about their

coordinates, its system error ratio increases by a factor of five [45]. When attackers

collude, a coalition that controls as little as 20% of the network increases estimation

error by 718% [96].

Fortunately, practical techniques exist that mitigate such attacks [16, 89, 44, 118,

100, 96]. In Chapter 7, we introduce Veracity [100, 96], a fully distributed coordinate

system protection layer that prevents colluding malicious nodes from advertising

false coordinates. Veracity is particularly well-suited for anonymity systems due to

its decentralized architecture and its lack of reliance on a priori shared secrets or

trusted nodes.

4.5 Locating the Responder

To estimate e2e path performance, the initiator must predict the distance between

the exit relay (the last participant in the anonymous path) and the responder. If the
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responder is an active participant in the anonymity system, he can also participate

in the embedding system and maintain a coordinate. In such cases, the initiator

can estimate the cost of the last hop as the Euclidean distance between the two

pertinent coordinates. However, if the responder is not an active participant (for

example, the responder may be a website) and therefore has no coordinate, then the

initiator requires some mechanism of estimating the final distance.

In this section, we propose a number of solutions the initiator may employ to

estimate the distance between the exit relay and the receiver.

4.5.1 Closest Relay Services

The initiator may locate the closest relay to the responder using publicly available

network information services. For example, OASIS [38], ClosestNode [115], and

iPlane [57] all provide interfaces for resolving the closest server to any given IP

address. The initiator can anonymously query such services to locate the relay that

is nearest to the responder. (Such a procedure is analogous to anonymously querying

DNS servers to resolve hostnames to IP addresses.) The closest relay can then proxy

requests between the exit relay and the responder.

4.5.2 AS Path

Alternatively, the initiator could derive AS paths between potential exit relays and

the responder using data from the University of Oregon’s Route Views project [1].

Here, the initiator uses the heuristic that shorter AS paths likely yield better per-

formance than longer paths. Such an approach has the advantage that it can be

executed offline by periodically downloading the Route Views dataset. Since AS

path estimation is an expensive operation, it is best suited for applications in which

path generation is infrequent and longstanding.
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of the Weighted strategy on the King dataset. The performance achieved using
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4.5.3 Disconnected Endpoints

Finally, initiators can exclude the first (from the initiator) and last (to the respon-

der) links when ranking paths. Rather than weighting paths based on e2e path

estimations, the initiator can instead rank paths by the cost of the subsequence

R1→R2→R3, where R1, R2, and R3 are the three relays in a candidate path. Since

path selection does not consider the link R3→Responder, our modified path algo-

rithm, Weighted-Detached, does not require the responder to maintain a coor-

dinate.

The obvious cost of using Weighted-Detached is that the first and last

hops may be expensive, incurring poor performance even though the subsequence

R1→R2→R3 may be efficient.
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Our experimental evaluation shows that the performance penalty due to Weight-

ed-Detached is minimal. Figure 4.5 shows the performance of the vanilla and

revised strategies using the King topology with s = 9. For comparison, the perfor-

mance achieved using Uniform is also plotted. Although the unmodified Weighted

algorithm achieves the lowest median e2e path latency (156.3ms), the modified ver-

sion also achieves significantly lower latencies (174.9ms) than Uniform (277.2ms).

As discussed in the following Chapter, Weighted-Detached also offers in-

creased protection against certain anonymity attacks.
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Chapter 5

Anonymity Analysis

In this chapter, we compare the anonymity properties of link-based and node-based

relay selection under various attacker strategies.

5.1 Attacker Model

Prior work utilizes attacker models in which the adversary may supplement the net-

work with additional malicious relays [65]. Link-based path selection is difficult to

accurately assess using such models, as the performance and anonymity of anony-

mous paths depend upon the precise locations of all relays. The network datasets

listed in Table 3.2 reflect actual network distances; adding malicious nodes to these

datasets requires many assumptions about where such misbehaving hosts might be

placed.

Instead, we model an attacker that controls or monitors f · N of an N -node

network (i.e., a trace-driven dataset), where 0 ≤ f < 1. We conservatively assume

that the adversary has complete network information and may select a priori which

of the f · N nodes it controls (e.g., those with highest bandwidth). While this

is a particularly strong threat model, it enables us to explore the limitations of

our techniques by allowing the attacker to select the most “attractive” relays in a
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realistic network topology. Due to the ease at which an adversary may acquire high

performance nodes using a botnet, we view our threat model as conservative, but

realistic.

As with the previous two chapters, we utilize the King, PL-ASes, PL-Jitter,

S3-BW, and Tor-BW datasets described in Table 3.2.

Following existing literature, we consider an anonymous route to be compromised

if and only if the attacker controls its first and last relay [103]. (Recall that in such a

situation, the adversary trivially knows the identities of the initiator and responder,

and can conduct timing attacks [63, 103] to determine that the first and last relay

are the endpoints of the same anonymous path.)

5.2 Node Prevalence: A New Metric for Anony-

mous Path Selection

To quantitatively compare link- and node-based relay selection, we introduce a new

measure of anonymity, node prevalence, defined as follows:

Definition 11 (Node prevalence). The node prevalence of a relay X is the expected

probability that X is present on an anonymous path, assuming a uniform probability

over the a priori sender and receiver anonymity sets.

Intuitively, the node prevalence of a relay measures how often the relay is expected

to be chosen during path selection1. Relays with high node prevalences are more

attractive to attackers (since the adversary can compromise a path if it controls the

path’s first and last relays).

1Snader et al. [103] propose the use of the Gini Coefficient [40] as a summary statistic of the
inequality of relay selection. In contrast, node prevalence measures the popularity of a particular
node. By calculating the node prevalence of each relay, we can study the worst-case anonymity of
a particular path selection technique, which happens when the adversary has under its control the
relays with highest node prevalences (i.e., those used most often in anonymous paths).
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In practice, there may be a nonuniform probability distribution over the sets

of potential initiators and responders. However, since the identities of the commu-

nicating parties are not typically known a priori to the attacker, node prevalence

enables a quantitative comparison of relay selection strategies under this simplifying

assumption (in Section 5.3.4, we describe targeted attacks in which this assumption

does not hold). Two path selection strategies can be quantitatively compared by

comparing their distributions of node prevalences.

In node-based relay selection techniques, high-bandwidth nodes are consistently

perceived as attractive to all initiators, leading to relays with high node prevalences.

In contrast, the likelihood that a node will be attractive for all paths using link-

based approaches is fairly small, since a node’s attractiveness is a function of the

locations of the initiator, responder, and already chosen relays in the path. As we

show below, the ability of link-based relay selection to prevent “hotspots” leads to

increased anonymity since a small coalition of malicious relays cannot easily attract

a disproportionate amount of traffic.

5.2.1 Node Prevalence for Link-Based Relay Selection

We can empirically derive an estimate of node prevalence for a particular topology

by generating multiple paths between all possible pairs of initiators and responders.

For each initiator/responder pairing, we compute for each potential relay the fraction

of paths for which the relay is a participant. We can then estimate the node preva-

lence by averaging those fractions for all pairs of initiators and responders (since,

by Definition 11, all nodes in the topology are equally likely to be the initiator or

responder).

Figure 5.1 plots the maximum of all relays’ node prevalences – the frequency at

which the most popularly chosen node is present in anonymous paths. Even when

Weighted is tuned for high performance (s = 15), the most popular relay is present
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Figure 5.1: The maximum of relays’ node prevalences in the King, S3-BW, PL-Jitter,
and PL-ASes datasets using Weighted.

in less than 5% of paths in the King, S3-BW, and PL-Jitter datasets, and less than

10% of routes using the PL-ASes trace. The corresponding performance of the paths

is shown in Figure 3.1 through 3.4.

5.2.2 Node Prevalence for Node-Based Relay Selection

In comparison, node-based relay selection yields substantially higher node preva-

lences. Figure 5.2 shows the maximum node prevalence for the default Tor path

selection strategy [27] and Snader and Borisov’s proposed refinement [103] using the

Tor-BW dataset. (Tor’s routing algorithm takes no performance parameter and is

shown as a straight line.) For both strategies, high bandwidth relays are attractive

to all initiators. In particular, the highest bandwidth node is present in 36.9% of

all paths produced using the default Tor algorithm. The tunable Snader-Borisov

strategy has a modest maximum node prevalence of 2.0% when s = 3, but results in

much poorer anonymity for greater values of s. When s = 15, 79.2% of paths contain
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Figure 5.2: Maximum node prevalences of relays in the Tor-BW dataset using the
default Tor routing algorithm and the Snader-Borisov refinement.

the node with the greatest bandwidth. Although Figure 5.1 and Figure 5.2 cannot

be directly compared since they use different underlying topologies and metrics, it

is apparent from the figures that while there are no statically-attractive relays as

perceived by Weighted, node-based techniques result in hotspots that are present

in a large fraction of paths.

5.3 Attack Strategies

We next consider various strategies available to the attacker. As described above,

we utilize a conservative attacker model in which the adversary can choose a priori

which relays he will compromise (up to some fraction f of the network). We further

assume that the attacker has complete network knowledge (i.e., pairwise distances)

to which to base his decision. Similarly, since our purpose is to evaluate link-based

selection strategies, we assume that the initiator knows all network distances with

perfect accuracy. We investigate the effect of coordinate-based distance estimations
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Figure 5.3: The percentage of compromised paths as a function of the fraction of
compromised nodes when the attacker uses the BestLinks strategy and the initiator
uses Weighted with the (a) King and (b) S3-BW datasets. Points represent the
mean value with error bars (for s = 15) indicating the 5th and 95th percentiles.
Error bars are omitted for s 6= 15 for readability. In all cases, the 5th-95th percentile
ranges for s 6= 15 were less than that for s = 15.

on anonymity in Section 5.5.

Unless otherwise indicated, the initiator uses the Weighted relay selection strat-

egy for all attacks. The anonymity offered by Weighted-Detached is explored in

Section 5.4.

5.3.1 BestLinks: Compromising Attractive Links

In the BestLinks strategy, the attacker compromises the endpoints of the most

attractive links. Mirroring the behavior of the initiator, the attacker ranks smaller

distances more favorably if the metric is latency, jitter, loss, or AS traversals, and

views larger distances as more advantageous for bandwidth. Given an ordering of

links, the two endpoints of each link are assigned to the attacker until he controls

f ·N relays.

The effectiveness of the BestLinks strategy is depicted in Figure 5.3. The x-axis

denotes the fraction of nodes controlled by the attacker (f), while the y-axis plots the
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Figure 5.4: The percentage of compromised paths when the attacker uses BestNodes
and the initiator uses node-based strategies with the Tor-BW dataset.

resultant percentage of paths that are compromised. As can be observed from the

Figure, Weighted successfully protects most anonymous paths even when the at-

tacker controls 50% of the network. When paths are weighted heavily in favor of per-

formance (s = 15) and 30% of the network is controlled by the attacker, only 12.4%

of the anonymous paths in the King dataset become compromised (Figure 5.3(a)).

Similarly, for bandwidth (Figure 5.3(b)), 16.4% of paths are compromised when 30%

of the network is malicious. Results for the PL-ASes and PL-Jitter datasets are

comparable, and are omitted for brevity.

For comparison, Figure 5.4 shows the percentage of compromised paths for node-

based selection strategies when the attacker uses the BestNodes attacker strategy

on the Tor-BW dataset. Analogous to BestLinks, BestNodes ranks nodes according
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Figure 5.5: The percentage of compromised paths as a function of the fraction of
compromised nodes when the attacker uses the MedianDist strategy and the initiator
uses Weighted with the King dataset.

to their advertised bandwidths, with the attacker controlling the f · N nodes with

greatest bandwidth. BestNodes is particularly successful against the default Tor

algorithm. When the attacker controls the top 10% of relays, he is able to compromise

54.7% of anonymous paths. The Snader-Borisov (“SB”) algorithm fares better for

low values of s. However, the strategy becomes vulnerable when performance is

more highly valued. An adversary who operates the top 30% of high bandwidth

nodes controls 73.1% of paths when s = 15.

5.3.2 MedianDist: Compromising Nodes with Shortest Me-

dian Distances

Alternatively, the attacker may choose the f ·N nodes that have the smallest median

distance between itself and all other nodes. Intuitively, MedianDist locates relays
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that are likely to be chosen due to their proximity to other relays. Figure 5.5 plots

the effectiveness of such a strategy when used with the King dataset. When weighted

most heavily in favor of performance (s = 15), only 16.5% of paths are compromised

when the attacker controls 20% of the network. Results for the remaining link-

based topologies are consistent with King and are omitted for brevity. Although

MedianDist is more effective than BestLinks, link-based relay selection significantly

limits the ability to compromise paths, even against our powerful attacker.

5.3.3 Prevalence: Compromising Nodes with Greatest Node

Prevalence

An attacker who employs the Prevalence strategy controls the relays with the high-

est node prevalences. The Prevalence strategy is near-optimal, since it selects those

relays that (by definition) are most often selected (although not necessarily as the

first and last relays). Since node prevalences depend not only on the network topol-

ogy, but also on the initiator’s relay selection strategy and its associated parameters,

the Prevalence attack is more difficult to perform than the above attack strategies.

We include Prevalence in our results to highlight the resilience of link-based relay

selection against very powerful adversaries.

Figure 5.6 shows the percentage of compromised paths for the King (left) and

S3-BW (right) datasets. When the initiator attempts to produce paths with low e2e

latency (s = 9), 24.2% of anonymous paths are compromised when the attacker

controls the top 30% relays. Similarly, 24.7% of paths become compromised when

30% of the relays in the S3-BW dataset are under the attacker’s control and s = 9.

For node-based relay selection, Prevalence is equivalent to BestNodes, since

a relay with higher bandwidth always has a higher node prevalence than its lower

bandwidth peers. The percentage of compromised paths achieved using BestNodes

against the Tor and Snader-Borisov algorithms is plotted in Figure 5.4. When the
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Figure 5.6: The percentage of compromised paths as a function of the fraction of
compromised nodes when the attacker uses the Prevalence strategy and the initiator
uses Weighted with the (left) King and (right) S3-BW datasets.

adversary controls 30% of the nodes in the Tor-BW dataset, he is able to compromise

73.1% of paths when s = 15.

5.3.4 Confirmation: Determining whether Alice is Commu-

nicating with Bob

The previous attacks attempt to compromise arbitrary paths in the anonymous net-

work. In contrast, an attacker may apply the Confirmation attack to test whether

a fixed pair of nodes (Alice and Bob) is anonymously communicating. Here, the

attacker compromises the nearest node (e.g., having smallest RTT) to Alice that

has not yet been compromised, and does the same with respect to Bob, and contin-

ues compromising nodes in this manner until he has controls f · N nodes. That is,

the attacker compromises the nodes that are nearest to Alice and Bob to maximize

the probability that he controls the first and last relays in their anonymous path

(assuming such a path exists).

The results of using the Confirmation strategy against the King dataset are

shown in Figure 5.7. The figure plots the results of experiments between all pairwise
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Figure 5.7: The percentage of compromised paths when the attacker uses the
Confirmation strategy and the initiator uses Weighted with the King dataset.

initiators and responders. In each experiment, the attacker compromises the f · N

nodes in the manner described above to target the particular initiator and responder

pair. When routes are weighted heavily in favor of performance (s = 9), an attacker

who controls 30% of the network and who can target particular initiator and respon-

der pairs, can verify that they are communicating 34.4% of the time. As discussed

in Section 5.4, a slightly modified Weighted strategy better protects against the

Confirmation attack at the cost of a small degree of performance.

5.3.5 Cluster: Joining the Network with a Cluster of Nodes

An attacker may attempt to compromise a large fraction of anonymous paths by

joining the anonymity network using multiple nodes from the same LAN. Due to

the high bandwidths and low latencies within the LAN, paths composed entirely of

malicious nodes from the LAN will have low e2e cost estimates and will be favored

by the Weighted algorithm.
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Figure 5.8: The percentage of compromised paths as a function of the fraction of
compromised nodes when the attacker uses the Cluster strategy and the initiator
uses Weighted with the King dataset using s = 9.

Since our experimental datasets do not contain large clusters of similarly located

nodes, it was necessary to adapt the attacker model to permit the attacker to insert

nodes. To determine the location for the new nodes, we first use the Vivaldi [19]

virtual embedding system to assign n-dimensional coordinates to each node in the

existing topology such that the Cartesian distance between two nodes’ coordinates

corresponds to the network distance (e.g., latency) between them. To provide the

attacker with a desirable location in the topology, we assign each malicious node

a coordinate that is at most 5ms from the centroid of the network. Hence, any

two malicious nodes are separated by at most 10ms. Locations from the centroid

are randomly chosen according to Muller’s uniform hypersphere point generation

technique [62]. Network distances between a malicious node and another peer are

estimated using the Cartesian distance between the nodes’ coordinates.

Figure 5.8 illustrates the efficacy of the Cluster attack when the initiator uses the

60



Weighted algorithm with s = 9 on the King dataset. When the attacker controls

28.6% of the network (i.e., he adds 200 nodes to the existing 500 node topology), he

compromises just 35.6% of anonymous paths.

It is worth noting that the Cluster attack may be further mitigated by requiring

that adjacent nodes in anonymous paths reside in separate autonomous systems or

have a minimum latency between them.

5.4 Anonymity Benefits of Weighted-Detached

The Weighted algorithm introduced in Section 3.1 ranks candidate paths by the

expected e2e path cost. Unlike node-based relay selection strategies, the e2e path

cost includes the links from the initiator to the first relay and from the last relay to

the responder. The use of the initiator’s and responder’s network locations during

path selection potentially leaks information about the communication participants.

For example, consider the case in which the adversary controls the middle relay

(R2) in a three-relay anonymous path: A→R1→R2→R3→B, where R1, R2, and R3

are relays and A (Alice) and B (Bob) are the respective initiator and responder. Since

the attacker controls R2, she trivially knows the identities of the first (R1) and third

(R3) relays (since she communicates with them directly), and can therefore compute

the cost of routing along the subsequence R1→R2→R3. For all combinations of

possible initiators (α ∈ N) and responders (β ∈ N), the attacker can generate the

set P of all possible three-participant paths, compute their costs, and determine the

ranking r̂ of α →R1→R2→R3→ β in P , where r̂ is normalized to be in the range

[0, 1). From Equation 3.1, the probability that α chose the path α→R1→R2→R3→

β to communicate with β is fs(x)/r̂. The attacker can then use such probabilities to

form a nonuniform probability distribution over the sets of potential initiators and

responders.

The Weighted-Detached strategy introduced in Section 4.5.3 mitigates such
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Figure 5.9: The percentage of compromised paths as a function of the fraction of
compromised nodes when the attacker users the Confirmation strategy and the
initiator uses variants of Weighted with the King dataset.

an attack by excluding the first (from the initiator) and last (to the responder) links

when ranking paths. That is, Weighted-Detached disassociates the communi-

cation endpoints from path selection, weighing path selection only by the cost of

routing between the three relays. An adversary who knows the identities of R1, R2,

and R3 cannot infer any information about the initiator and responder.

5.4.1 Resilience to Confirmation Attacks

Since the initiator considers neither its nor the responder’s locations when producing

high performance paths, Weighted-Detached also mitigates the Confirmation

attack (see Section 5.3.4) in which the attacker attempts to verify that a particular

initiator (Alice) is communicating anonymously with a particular responder (Bob).

Although a strong adversary can compromise the relays that are closest to Alice

and Bob, such an attack strategy is not nearly as effective against Weighted-

Detached as it is against Weighted.
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Figure 5.10: The percentage of compromised paths as a function of the fraction
of compromised nodes when the attacker users the MedianDist strategy and the
initiator uses variants of Weighted with the King dataset.

Figure 5.9 compares the resilience to the Confirmation attack using the two path

selection strategies. Since the positions of the initiator and responder do not influence

relay selection when Weighted-Detached is used, the attacker’s strategy is less

effective. For example, when 30% of nodes are malicious, the attacker compromises

34.4% of paths when the initiator uses the unmodified Weighted technique and

only 18.5% against Weighted-Detached.

5.4.2 Resilience to MedianDist and Prevalence Attacks

Unsurprisingly, the use of Weighted-Detached rather than Weighted does not

significantly impact the effectiveness of the other attack strategies described in Sec-

tion 5.3, since these attacks do not consider the locations of the initiator and re-

sponder. To illustrate, Figure 5.10 plots the percentage of compromised paths when

the attacker utilizes the MedianDist strategy and the initiator uses Weighted or
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Figure 5.11: The percentage of compromised paths as a function of the fraction
of compromised nodes when the attacker users the Prevalence strategy and the
initiator uses variants of Weighted with the King dataset.

Weighted-Detached. The MedianDist strategy is nearly equally (in)effective

against both relay selection techniques. For example, when the attacker controls

30% of the network and the initiator sets s = 15, 29.0% of all Weighted paths

and 28.6% of all Weighted-Detached paths are compromised. Similarly, Fig-

ure 5.11 compares the effectiveness of the Prevalence attack against Weighted

and Weighted-Detached. As before, the performance of the attack does not

increase when Weighted-Detached is used. When 30% of the network is mali-

cious and s = 15, the corresponding path compromise rates are 31.1% and 30.6% for

Weighted and Weighted-Detached, respectively.

5.4.3 Preventing the Predecessor Attack

An anonymized connection between an initiator and responder is often reset due

to node churn, requiring it to be reconstructed using different relays [116]. The

adversary can conduct a predecessor attack to discover the initiator by counting

64



the number of times each relay precedes the attackers’ relays in the anonymous

path [83, 116]. Since the initiator is always present in such circuits, it will have a

higher count than the relays that are chosen randomly whenever the circuit is rebuilt.

Tor mitigates the predecessor attack by using a small number of fixed entry

nodes called guards [27]. Link-based path selection is equally vulnerable to the

predecessor attack, but may also be defended using guards. Guards must be chosen

carefully since their locations affect the performance of a path. However, as described

in Section 4.5.3 (see, in particular, Figure 4.5), link-based routing produces high

performance paths even if the first hop (connecting the initiator to the guard node)

is not considered by the path selection algorithm. Link-based routing may therefore

adopt the same mitigation strategy as Tor [28]; namely, the initiator selects a relay

(having a long uptime) to act as its entry guard for all anonymous paths.

5.5 The Impact of Coordinate Systems on Anony-

mity

Coordinate systems linearize the amount of information required to store pairwise

distances by mapping each node to n-dimensional coordinates. Due to network tri-

angle inequality violations (TIVs) that cannot be represented in Euclidean space,

coordinate systems do not perfectly predict distances. As shown in Figures 4.2

through 4.4, the use of coordinate systems imposes a modest decrease in path per-

formance. In this section, we consider the effects of using coordinate systems on

anonymity.

Coordinate systems effectively transform a topology of pairwise distances in which

TIVs may occur into a similar topology in which no TIVs exist. The lack of TIVs

eliminates “wormhole” effects in the network in which it is advantageous to route
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Figure 5.12: The maximum node prevalences for actual and Coordinate-based (“Co-
ord”) distances for the King, PL-ASes, and PL-Jitter datasets.

through a particular relay rather than connect directly to the receiver.2 Consider,

for example, the case in which an initiator A has very low latency to a relay R.

Although the actual e2e performance of A’s paths may be improved by consistently

routing through R (due to TIVs), the use of Euclidean virtual coordinates likely

overestimates the cost of A → R since the cost of A → R → B can never be less

than A→ B for any responder B.

Such behavior was observed when embedding the King and PL-ASes topologies

using the Vivaldi coordinate system. Figure 5.12 plots the maximum of all relays’

node prevalences for Weighted when actual network distances are used to estimate

path performance (“Actual”) and when coordinate estimates are utilized (“Coord”).

As can be observed from the Figure, the maximum node prevalence – the frequency

in which the most popularly chosen relay is present in anonymous paths – decreases

2In particular, we notice that such “wormholes” are ubiquitous on PlanetLab [74] due to the
mixed availability of Internet and Internet2 connectivity among nodes. When Internet2 connections
are not available between two nodes, lower latency can often be achieved by relaying traffic via
multihop paths in which the largest geographic distance is covered by an Internet2 link.
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Figure 5.13: The percentage of compromised paths on the King dataset when the
attacker uses the MedianDist strategy. “Actual” denotes results obtained using
actual network distances. “Coord” reflects performance when initiators estimate
distances using the coordinate embedding system.

when coordinate systems are utilized.3 Hence, although coordinate systems incur a

modest decrease in communicating performance, they provide slightly greater anony-

mity by diversifying anonymous paths.

To illustrate, Figure 5.13 shows the percentage of compromised paths using the

King dataset when the attacker applies the MedianDist strategy. The figure com-

pares performance results obtained using network distances (“Actual”) to estima-

tions based on the coordinate system (“Coord”). As can be observed from the Fig-

ure, the use of virtual coordinates to estimate distance does not decrease anonymity.

For example, when s = 15 and actual distances are used, an attacker who controls

30% of the network can compromise 29.0% of paths. In comparison, the same at-

tacker can compromise 28.5% of paths when virtual coordinates are used in place of

3The difference in maximum node prevalences between topologies is primarily due to the differing
network sizes. Smaller networks produce higher node prevalences since there are fewer relays that
may be selected.
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actual distances. Analogous results were drawn from comparing the performance of

the BestLinks and Prevalence attacks using actual and virtual distances.
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Chapter 6

Application-Aware Anonymity

(A3)

In this chapter, we introduce Application-Aware Anonymous Routing (A3), a flexible

network overlay that enables senders to intelligently select anonymous relays using

accurate network distance estimations. A3 is a fully-distributed peer-to-peer (p2p)

anonymity system in which all participating nodes serve as potential relays. The core

of the A3 routing algorithm is the Weighted relay selection strategy introduced in

Section 3.1, enabling applications to tradeoff between anonymity and performance.

Unlike existing anonymity systems that depend on central authorities or direc-

tories (e.g., Tor [28]), A3 does not rely on a priori trusted nodes or third-party

authorities. This lack of centralization enables A3 to scale to potentially hundreds of

thousands of nodes and offer anonymity that does not depend on the trustworthiness

of select nodes or services.

In the following sections, we describe A3 and evaluate its anonymity properties

and performance under both simulation and a testbed deployment on PlanetLab.
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6.1 Design Goals, Assumptions, and Limitations

A3 has three principal design goals: (i) to permit flexible high performance anony-

mous routing, (ii) to protect the identities of the anonymous communicants, and

(iii) to avoid reliance on a priori trusted nodes or services. In Chapter 3, we de-

scribed link-based relay selection techniques that achieve the first two goals by using

coordinate-based distance estimations to bias relay selection in favor of high per-

forming paths. In this section, we justify our decentralized trust model and discuss

its implications to security and anonymity.

A3 requires no central authorities and further assumes no pre-shared knowledge.

Anonymity networks that rely on centralized servers (e.g., directories) implicitly

trust such services to behave correctly and honestly. If these centralized services

are malicious, or if they are coerced or compromised, then the network provides no

anonymity to any of its users. A corrupt directory server could, for example, answer

all queries with the identities of malicious peers. Even if the directory servers are

trustworthy, the anonymity network’s centralized trust model presents a valuable

target of attack. For example, although operated by trustworthy individuals, nearly

half of Tor’s directory servers were found to be vulnerable to the Debian OpenSSL

key generation bug [26]. Since the vulnerable directory servers generated private

keys using just 17 bits of entropy [23], an attacker could easily brute-force their keys

to forge “signed” messages purportedly from the directory server.

A fully distributed system such as A3 has no central point of trust or of failure. Of

course, individual peers may behave dishonestly. However, the lack of centralization

removes attractive targets for attack; the effect of compromising a node is localized

to only a small fraction of the network. Moreover, all of A3’s distributed components

are fortified by various distributed security schemes (described later in this chapter

and in Chapter 7), limiting the effects of even large-scale attacks.

However, A3’s lack of specialized nodes or pre-shared knowledge introduces some

fundamental limitations – most importantly, the impossibility of secure key exchange.

70



Without trusted authorities, an active eavesdropper (Eve) can conduct a man-in-

the-middle (MitM) attack between any two nodes, thwarting any attempted key

exchange. At the extreme, Eve could intercept all of Alice’s traffic and emulate a

fictitious network unbeknowst to Alice. Hence, there is a tradeoff between anony-

mity systems that are fully decentralized with no pre-shared keys and services that

depend on a priori pre-shared information such as certificate authorities. For the

latter, MitM attacks become more difficult as keys can be securely exchanged using

authenticated key agreement protocols. However, as discussed above, the anonymity

of these systems depends on these central authorities.

The distributed A3 architecture, as presented in this chapter, does not protect

against active adversaries that conduct MitM attacks at network edges (i.e., locations

near communication participants). We opt instead to introduce a fully decentralized

architecture that, at the cost of enabling the aforementioned vulnerability, focuses

on protecting the anonymity network as a whole by eliminating central points of

trust. We acknowledge that such a tradeoff is controversial and may be appropriate

only for certain applications. For example, A3 may be particularly well-suited for

applications in which receiver anonymity (the inability to identify the receiver of an

intercepted message) is more paramount than sender anonymity (the inability to

determine its sender).

It is worth emphasizing that although A3 is framed as a fully decentralized anony-

mity network requiring no a priori shared secrets, A3 is not inherently incompatible

with a public key infrastructure (PKI). At the cost of making anonymity dependent

on the security of the certificate authorities, a PKI could be straightforwardly layered

on top of A3 (e.g., by requiring all messages to be signed by their senders).
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6.2 Performance Advantages of a Fully Distributed

Architecture

A3 is a p2p system, and hence any participating node can function as an initiator (the

sender of anonymous content), a participant (an intermediary relay), a responder (the

initiator’s target of communication), or any combination of the above. We argue that

A3’s fully distributed architecture permits greater performance than more centralized

approaches in which traffic is forwarded through a small collection of mostly fixed

relays. As shown in Figure 1.3, Tor suffers from poor performance, likely because

of the relatively few number of relay nodes (≈1500) compared to the number of

clients (prior work estimates the number of Tor users to be between 100,000 and

one million [60]). Overburdened relays suffer from congestion, causing poor e2e path

performance [29]. In contrast, a fully distributed anonymity network in which any

node may act as a relay better equalizes the number of clients and relays, thus

eliminating a large source of congestion.

Furthermore, p2p architectures appear better suited for traffic that traverses

anonymity networks. Existing studies have shown that BitTorrent, a p2p file shar-

ing network, accounts for slightly more than 40% of bandwidth traversing the Tor

network [60]. P2p anonymity networks are better matched at handling traffic from

p2p file sharing applications.

Finally, it has been noted that although Tor clients are geographically diverse, the

vast majority of bandwidth traversing Tor resides in a small fraction of countries [60].

For example, 45% of Tor bandwidth is local to Germany [60]. Autonomous systems

located in such jurisdictions are therefore more likely to be able to observe traffic

traversing the first and last participants of anonymous paths, and can apply the

timing attacks described in Section 2.4.4 to identify the communicating parties.

By encouraging clients to serve also as potential relays, A3 inherently causes the

distribution of clients to match that of relays.
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Although we believe that a fully distributed architecture is best suited for a gen-

eral purpose, performance tunable anonymity network, it is important to note that

such an infrastructure also has certain disadvantages. Mix-based anonymity systems

shuffle streams at relays to aggrevate an observer’s ability to correlate inbound and

outbound traffic [14, 82, 72, 9, 35]. By design, A3 reduces the number of streams

traversing a particular router, and cannot therefore readily apply mixing. (Note that

more centralized low-latency anonymity systems, e.g. Tor, choose not to mix traffic

in favor of providing paths with low latencies [28].) Additionally, larger anonymity

networks are more vulnerable to counting attacks (see Section 2.4.1). However, ex-

ploiting counting attacks typically requires an adversary who has a global view of

the network. A highly distributed p2p architecture makes acquiring such a wide

network view much more arduous.

6.3 System Architecture

A3 is designed as an Internet-scale system in which we envision supporting up to

millions of simultaneous users. To avoid performance bottlenecks, A3 utilizes highly

scalable distributed services.

At a high-level, A3 is divided into four core components:

• A distributed directory service provides efficient node discovery and mes-

sage delivery operations. Our A3 implementation utilizes distributed hash

tables (DHTs) [6] due to their support for scalable lookups.

• An embedded coordinate system (e.g., Vivaldi [19], PIC [16], NPS [66],

etc.) maps nodes to n-dimensional Euclidean coordinates such that the Eu-

clidean distance between any two nodes corresponds to a metric of interest

(e.g., latency, number of AS traversals, etc.) between the two nodes. Co-

ordinate systems are protected from manipulation by the Veracity security

mechanism described in Chapter 7.

73



p2p network

Anonymous Router
Cache

Application

Routing Engine

Coordinate
Embedding

System

Anonymous Path via Onion Routing

A3 Node A3 Network

peer

Lookup request/
response

Anonymous Lookup Tunnel

peer peer

Figure 6.1: A3 system architecture.

• Each peer uses anonymous lookup tunnels to anonymously locate potential

relays.

• Finally, a routing engine serves as an interface between the application, a

node’s anonymous lookup tunnel, and the coordinate embedding system. The

routing engine allows applications to use information obtained from anonymous

lookups to form high performance anonymous circuits.

Figure 6.1 illustrates A3’s high level architecture. Each A3 peer participates in

one or more coordinate embedding systems, with each system representing a sepa-

rate network metric (e.g., latency, jitter, etc.)1. Corresponding to each coordinate

system, each node maintains a coordinate for each network metric. Periodically,

1Alternatively, a single more highly dimensional coordinate embedding system may be used in
which different dimensions are reserved for particular metrics.
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nodes use the distributed directory service to locate a random peer in the network,

and then conduct the underlying coordinate system protocol with that peer in order

to update the local coordinate. To protect the truthfulness of advertised coordinates

and measurement probes, Veracity (see Chapter 7) is layered on top of the coordinate

embedding systems.

Each node maintains an anonymous router cache, a collection of peers’ network

addresses, coordinates, and public keys. The anonymous router cache is used as a

repository of peer information to construct overlay paths. To populate its anonymous

router cache, a node instantiates one or more anonymous lookup tunnels – onion

circuits that provide sender anonymity – to random nodes in the network. The local

node anonymously relays lookup requests to the endpoint of the tunnel. Requests are

resolved by the tunnel’s endpoint and are subsequently relayed backwards through

the lookup tunnel where they are eventually added to the node’s anonymous router

cache.

Selecting relays from the entries in the local node’s anonymous router cache, the

routing engine produces high performance onion routes using the Weighted relay

selection algorithm introduced in Section 3.1.

Below, we describe A3’s operation in more detail.

6.3.1 Distributed Directory Service

A3 makes use of a distributed directory service to locate candidate nodes during path

selection. In addition to scalability, the directory service must meet the following

requirements:

• Hashed node identifiers: Each A3 node must have a globally unique iden-

tifier (GUID), computed by taking a SHA-1 hash of its IP address and port.

Since peers can quickly verify whether or not a GUID matches with an IP

address, this prevents a node from choosing an arbitrary GUID. The crypto-

graphic hash function causes GUIDs to be distributed roughly uniformly over
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the integers [0, 2160).

• Consistent hashing: Given an integer r ∈ [0, 2160), the directory service

should be capable of efficiently delivering a message addressed to r to the node

whose GUID most closely2 maps to r. This mapping must be consistent among

all nodes.

The only functional requirement of the distributed directory service is that it

supports the deliver API function:

deliver(g,m) – deliver message m to node whose GUID is closest to g

Distributed directory services that meet the above two requirements enable nodes

to locate random peers in the network. To find a peer, a node simply addresses a

deliver message to an identifier g chosen uniformly at random from [0, 2160).

In our implementation (see Section 6.4), we utilize distributed hash tables (DHTs)

as our distributed directory service. DHTs meet the above requirements and offer

efficient O(logN) queries (where N is the number of online nodes in the network).

Furthermore, DHTs have been shown to be robust to the high levels of churn that

are present in many p2p systems [85, 7].

Attacks against the Distributed Messaging Service The performance of A3

depends on the reliability of the underlying distributed directory service used to

route messages through the overlay network. DHTs, in particular, are known to

be vulnerable to several classes of insider attack [12, 110]. Unlike the traditional

Internet routing infrastructure in which backbone routers require special resources

(e.g., connectivity and money), messages in an overlay are routed between peers (who

require only Internet connectivity). There are no restrictions as to who can join the

2The distributed directory service is responsible for suitably defining closeness. For example,
the Chord DHT [106] models a circular key space in which a node i with GUID gi is responsible for
all keys in the range gj + 1...gi (modulo the size of the keyspace) where gj is the GUID belonging
to an adjacent node j. Other DHTs [87, 81, 59, 85] have similar definitions.
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network, and therefore a cabal of malicious users can participate and interfere with

messages that pass through nodes under their control.

Malicious nodes can conduct Sybil attacks to increase their influence by regis-

tering multiple identities in the network [31], eclipse attacks in which they falsify

routing update messages to corrupt honest nodes’ routing tables [102], and rout-

ing attacks in which they inject spurious responses to messages that cross their

paths [12]. Fortunately, well-studied techniques exist that defend DHTs against

such attacks [25, 22, 11, 36, 12, 5]. We describe DHT defenses that are compatible

with A3’s design below.

Sybil attack countermeasures that are compatible with a decentralized archi-

tecture include distributed registration in which registration nodes, computed using

iterative hashing of a new node’s IP address, vote on whether the new node can join

the system based on the number of similar requests it has received from the same IP

address [25]. Alternatively, Danezis et al. propose using bootstrap graphs that cap-

ture the relationships between joining nodes and the nodes through which they join

to construct trust profiles [22]. Finally, Borisov suggests the use of cryptographic

puzzles (e.g., finding a string in which the last p bits of a cryptographic hash are

zero) to increase the cost of joining the network [11].

There are also several security techniques that mitigate eclipse and routing at-

tacks. For example, the S-Chord system proposed by Fiat et al. organizes the

network into swarms based on GUIDs [36]. Lookups are relayed between swarms,

and are only forwarded if the lookup was sent from a majority of the members of

the previous swarm. S-Chord is resilient to attacks in which the adversary controls

(1/4− ε0)z nodes, where ε0 > 0, z is the minimum number of nodes in the network

at any given time, k is a tunable parameter, and the number of honest nodes is less

than or equal to zk. Castro et al. propose the use of redundant routing in which

queries are sent via diverse paths [12]. Routing will reach the intended recipient if

all nodes on at least one path are honest. Sanchez et al. improve the redundant
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routing technique in their Cyclone system [5], showing that 85% of requests were

correctly delivered when attackers controlled 30% of a 1024 node network and nodes

sent messages using eight redundant paths.

The impact of utilizing the above secure routing techniques are minimal. All of

the above approaches operate below A3’s protocols and do not affect A3’s operation.

6.3.2 Embedded Coordinate System

The coordinate embedding component of A3 operates as a background process on

each peer, periodically updating the local node’s coordinates. Unlike other coordi-

nate system implementations [19], A3 does not use fixed neighborsets to exchange

coordinates. Instead, A3 nodes periodically locate a random peer by sending a

deliver request to a random GUID. Once a peer is located, the local node mea-

sures some link characteristic (e.g., RTT, bandwidth, etc.) between itself and the

peer, and uses the measured distance and the peer’s coordinates to update its own

coordinates. The use of random peers rather than fixed neighbors enables A3 to

better tolerate churn (since fixed neighbors may leave the network) and encourages

better network diversity (since whenever a peer is chosen, it is chosen approximately

uniformly at random from all A3 nodes).

A3 is compatible with any decentralized coordinate embedding system in which

local nodes update their coordinates by making empirical measurements to other

peers. Since Vivaldi [19] has received the most study recently from the p2p com-

munity [44, 96] and because it has been implemented in both the p2psim [39] peer-

to-peer simulator and the Bamboo DHT [7], our A3 implementation uses Vivaldi to

embed network distances.

Unfortunately, the distributed nature of coordinate systems make them particu-

larly vulnerable to insider manipulation. To illustrate, recent studies [45] on Vivaldi

have shown that when 30% of nodes lie about their coordinates, Vivaldi’s accuracy

decreases by a factor of five. When attackers collude, even 5% malicious nodes have
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a sizable impact on the system’s accuracy.

Although a number of techniques have been proposed to protect coordinate em-

bedding systems [89, 16, 44], all existing work of which we are familiar depends

on either pre-shared secrets (e.g., the identities of special trusted nodes) or cen-

tral authorities. In Chapter 7, we describe Veracity, a fully distributed protection

mechanism for logical coordinate systems that is well-suited for A3.

6.3.3 Anonymous Lookup Tunnels

The routing engine, described in detail in the following section, uses the Weighted

relay selection algorithm to instantiate high performance anonymous paths. In A3,

relays are selected from the entries stored in a node’s anonymous router cache.

Each node populates its anonymous router cache by periodically retrieving the

coordinate, network address, and public key of a random peer. Such lookups must

be anonymized, else a locally-positioned observer can record which relays are known

to a particular node. This information can be conveyed to other eavesdroppers,

who can then deduce the initiator of an anonymous communication by observing the

relays that are present in an anonymous path.

Rejected: Recursive DHT Lookups Distributed hash tables (DHTs) support

both iterative and recursive lookups. In iterative lookups, the requesting node di-

rectly contacts a peer to locate the peer’s neighbor that is closer to the requested key.

The requesting node resends her query to the neighbor, and repeats the procedure

until it locates the node that is closest to the requested key. In contrast, in recursive

lookups, the requesting node contacts only one of its neighbors; the request is then

forwarded from peer to peer until reaching the closest node. The reply traverses the

recursive path in the opposite direction until it reaches the requester.

Recursive lookups therefore provide a modicum of anonymity. A peer who re-

ceives a recursive lookup cannot ascertain whether the request originated from the
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node that sent it the request or from a node further upstream. However, as has

been noted by O’Donnell [67] and Borisov [10], DHTs leak information about the

initiators of recursive lookups by forwarding queries to nodes that are closer to the

destination according to a distance metric. Hence, a node can immediately rule out

any peer that is closer to the origin than itself as the possible initiator of the request.

A3 seeks to achieve a stronger form of anonymity than that provided by recursive

lookups.

Our Approach: Onion Tunnels Similar to the Sybil-attack countermeasure

introduced by Danezis et al. [22], our onion-based anonymous lookup technique ex-

ploits the trust relationship embedded in the introduction graph (sometimes called

the bootstrap graph) of the network. To join A3, a node (Alice) contacts an already

joined node (for clarity, Alice’s “friend”) to gain membership. If the friend is mali-

cious, then it can provide false information to Alice, causing Alice’s overlay routing

table to entirely consist of malicious peers. At the extreme, a malicious friend can

simulate an entire network in an attempt to convince Alice that her communications

are relayed through a series of peer relays. More generally, in any p2p system that

does not rely on a priori shared knowledge (for example, the public key of a certificate

authority), Alice must trust the friend through which she joins the network.

Since her friend must be honest for Alice to achieve any anonymity, we rely on the

friend to bootstrap the join process.3 At a high level, our anonymous lookup tunnel

approach works as follows: Alice uses her friend to discover random peers. Alice’s

friend locates random peers by querying for random keys, using secure DHT lookup

techniques (for example, those listed in Section 6.3.1) to mitigate DHT routing

attacks. The friend relays the network addresses and public keys of located peers to

Alice, where they are stored in Alice’s directory cache. To populate her anonymous

3Although Alice places a priori trust in her friend, A3 does not require that all peers trust
specialized and fixed trusted nodes. With the exception of the first joining A3 node, each peer may
utilize a separate friend to join the network. And, as argued above, a node which joins any fully
distributed system by contacting a peer for membership places implicit trust in that peer.
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router cache, Alice uses entries from her directory cache to form onion routes, the

endpoints of which locate peer nodes on Alice’s behalf without revealing her identity.

It should be emphasized that Alice’s anonymous router cache (used by the routing

engine to form high performance anonymous paths) and her directory cache (used

to build onion paths to locate peers to populate the anonymous router cache) are

independent (although not necessarily disjoint).

We next describe our onion-based anonymous DHT lookup mechanism in more

detail.

When Alice joins A3 via her friend, Alice requests that her friend fetch the net-

work addresses and public keys of w random A3 nodes. The friend uses secure DHT

lookup techniques to locate the w peers, and forwards the results back to Alice, who

then adds the results to her directory cache. Under the assumptions that Alice’s

friend is honest and that secure DHT techniques effectively mitigate routing attacks,

the directory cache consists of w actual (but not necessarily honest) A3 participants.

w should be sufficiently large (on the order of 100 nodes) to enable Alice to form

multiple onion routes.

The members of Alice’s directory cache are used as potential onion relays, the

endpoints of which resolve DHT lookup requests on Alice’s behalf. Alice maintains

z onion routes, consisting of (and terminating with) members of her directory cache.

When onion circuits break due to node churn or network failures, Alice replaces the

broken circuit with a new onion route.

To populate the anonymous router cache, Alice chooses a key r′ uniformly at

random from the GUID keyspace and forwards a DHT lookup request for r′ to the

endpoints of her z anonymous onion circuits. The endpoint of each circuit uses secure

DHT lookup techniques to resolve r′ and relays the results backwards through the

onion circuit. Since onion routes preserve sender anonymity, the endpoints that

resolve DHT lookup requests cannot identify Alice as the requests’ originator. (In

fact, since Alice never directly contacts the w nodes in her directory cache, the
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endpoints have little information that they can use to identify Alice as a likely

requester.) Alice uses a consensus-like approach to ensure that endpoints do not

inject spurious responses to her queries. Alice adds the result of resolving r′ to the

anonymous router cache iff d z
2
e endpoints return the same response.

6.3.4 Routing Engine

The routing engine generates high performance anonymous paths using the relays

stored in the anonymous router cache. To populate the cache, the routing engine

uses an anonymous lookup tunnel to fetch the network addresses, public keys, and

coordinates of random peers. The number of entries in the cache is determined by

the rate at which the routing engine seeks out peers and by the timeout period

after which old entries are removed. If the expiration time for cache entries is too

long, entries in the cache risk becoming stale due to dynamic network conditions. In

contrast, if the expiration time is too short, the number of entries in the anonymous

router cache may be insufficient to allow the formation of high performing circuits.

However, the routing engine can dynamically adjust both the rate at which it makes

requests as well as the cache expiration time. By carefully adapting its parameters,

the routing engine can ensure that a fresh cache of sufficient size is consistently

maintained.

To construct high performance anonymous paths, the routing engine uses the

Weighted algorithm introduced in Section 3.1. Weighted outputs relay paths

using node information stored in the anonymous router cache. If the responder does

not participate in A3 or if the initiator does not know the responder’s coordinate

(i.e., the responder’s information is not present in the anonymous router cache),

then the initiator can either use the Weighted-Detached relay selection strategy

or rely on the closest relay services or AS path estimation techniques described in

Section 4.5.
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Once Weighted (or Weighted-Detached) has selected a three-relay anony-

mous path, the routing engine generates session keys and encodes them within an

onion, multiply encrypted using the relays’ public keys [82]. The routing engine then

disseminates session keys to the selected relays by transmitting the onion, informing

each relay of its previous and next hops. As with traditional onion routing, data is

multiply encrypted using the symmetric session keys, with each relay decrypting the

outermost layer of the communication before forwarding it to the next hop, even-

tually reaching the intended recipient. Backwards traffic traverses the anonymous

circuit in the reverse direction, with each relay adding a layer of encryption using its

symmetric keys.

6.4 Implementation and Evaluation

We now proceed to describe our implementation of A3 and evaluate its performance

under various configurations and attacker scenarios.

6.4.1 Implementation

A3 is implemented as an add-on to the Bamboo DHT [7]. Bamboo was chosen for

its resilience to high levels of node churn [85], its open-source code base, its inclusion

of the Vivaldi coordinate embedding system [19], and its ability to run either in

simulation mode or over an actual network using the same code base (with the

exception of the simulator’s virtualized network layer). Additionally, Bamboo uses

the SEDA [113] event-driven programming paradigm designed for highly scalable

Internet services.

A3 utilizes Vivaldi as the underlying coordinate system, using a five dimen-

sional coordinate plane. Our implementation constructs anonymous paths using the

Weighted or Uniform (i.e., Weighted with s = 0) path selection strategy, as
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configured by the client. As with traditional onion routing [82], A3 disseminates ses-

sion key information to path participants during the onion setup phase and multiply

encrypts messages during the data transmission phase. Onion headers are encrypted

under the participants’ public keys using RSA and data sent via onion paths are

multiply encrypted under AES.

Our setup is as follows. The coordinate embedding process on each node attempts

to find a random peer to update its coordinate every five seconds. Additionally,

clients maintain at least 100 entries in their anonymous router caches. Entries remain

in the cache for 15 minutes. If the anonymous cache has fewer than 100 entries, the

client fetches the network addresses, public keys, and coordinates of random peers,

adding the results to the anonymous router cache, until the cache contains at least

100 entries. As a workload generator, a background process on each node issues

requests for anonymous paths every 15 minutes. The routing engine constructs

an anonymous path using the Uniform or Weighted path strategy (depending

on its configuration) that terminates at a responder selected uniformly at random

from the anonymous router cache. All anonymous paths contain three participants,

excluding the initiator and responder. To measure the RTT, jitter, and loss rates

of anonymous routes, application-layer “ping” messages are sent via the encrypted

tunnel towards the responder. All measurements include both communication and

processing overhead (i.e., applying cryptographic operations and serving messages

at the application layer).

6.4.2 Simulation Results

The preliminary experiments described in this section were conducted using Bam-

boo’s simulation mode, enabling us to conduct large-scale experiments using network-

driven traces. Simulation results were averaged over five runs.
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Path Estimation Accuracy The ability to reliably estimate the e2e character-

istics of potential anonymous paths is influenced by the accuracy of the underlying

coordinate system as well as the freshness of coordinate information in nodes’ anony-

mous router caches. Inaccurate coordinate systems or stale cache information will

lead to suboptimal relay selection, since the cost estimates of candidate paths will

not accurately reflect their true costs.

This section aims to demonstrate that the A3 architecture enables nodes to ac-

curately estimate path costs.

Figure 6.2 (top) plots the cumulative distribution of path estimation errors – the

difference between the estimated and actual path costs – for the King dataset. We

make two observations from the Figure. First, the path estimation errors are small,

indicating that cached coordinates are sufficiently accurate and fresh to accurately

estimate path costs. For example, the median path estimation error for the Uniform

selection strategy is only 16.5ms (recall that anonymous routes comprise four hops

and, as shown in Figure 3.2, the median latency in the King dataset is 63.0ms).

Second, we observe that the security parameter (s) does not significantly affect es-

timation accuracy. The median path estimation errors for s = 3 and s = 15 using

the Weighted relay selection algorithm are 14.5ms and 12.6ms, respectively. The

slightly smaller estimation error for s = 15 is expected, given that weighting relay

selection more in favor of performance yields paths with lower e2e latencies.

Similar conclusions were obtained using the PL-ASes and PL-Jitter datasets.

The cumulative distributions of path estimation errors for the PL-ASes and PL-Jitter

datasets are plotted in Figures 6.2 (middle) and (bottom), respectively.

Path Performance The e2e latencies for anonymous paths are shown in Fig-

ure 6.3 (top). Unsurprisingly, Uniform exhibited the worst performance as relays

were selected uniformly at random (without replacement) from the anonymous router
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Figure 6.2: Cumulative distribution of the path estimation errors for the King (top),
PL-ASes (middle), and PL-Jitter (bottom) datasets
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Figure 6.3: Path performance for the King (top), PL-ASes (middle), and PL-Jitter

(bottom) datasets.
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Figure 6.4: Locations of the 202 A3 PlanetLab nodes. Locations are determined
using the GeoIP [58] IP-to-geocoordinates library.

cache, irrespective of any performance implications. The Weighted selection strat-

egy offered improved performance (as indicated by a decrease in e2e latency). When

s = 15 (recall that higher values of s bias the probability distribution more heavily

in favor of performance), the median e2e RTT was 132ms as compared to 259ms for

the Uniform strategy (a 49.0% reduction).

Similarly, A3 is able to produce anonymous paths with fewer AS traversals. When

run against our PlanetLab-based PL-ASes dataset, A3 generated paths whose median

number of AS crossings was 12 using Uniform and 9 when Weighted was used

and s = 15 (see Figure 6.3 (middle)).

Finally, as shown in Figure 6.3 (bottom), A3 significantly reduced the number of

paths that exhibit large amounts of jitter (variance in ping interarrival times). For

example, 43.2% of the paths generated by Uniform had jitter of 200 and higher. In

contrast, the same jitter rates were experienced by only 28.8%, 16.1%, and 11.0% of

paths outputted by Weighted with s = 3, s = 9, and s = 15, respectively.
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6.4.3 PlanetLab Evaluation

In this section, we evaluate A3’s performance on real-world networks. We installed A3

on 202 geographically disperse (see Figure 6.4) PlanetLab [74] nodes as well as three

instances running in our university lab. For all experiments, all nodes joined within

a three minute interval. Latency measurements were conducted at the application

layer and include node processing time.

Bandwidth Overhead To maintain its virtual coordinate, each A3 node period-

ically locates a neighbor using the distributed directory service, queries the located

peer for its coordinate, and conducts an empirical measurement to that peer. In

addition, A3 nodes regularly fetch the coordinates of random peers using anony-

mous lookup tunnels to populate their anonymous router caches. In this section, we

examine how much bandwidth is consumed by these functionalities.
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Service Bandwidth equation (KBps) R2

Bamboo (without Vivaldi or A3) 0.1299 ln(N) + 1.017 0.96
Bamboo with Vivaldi (without A3) 0.1909 ln(N) + 1.545 0.82

Bamboo with Vivaldi and A3 0.4392 ln(N) + 3.402 0.94

Table 6.1: Logarithmic regression analysis of PlanetLab bandwidth requirements. N
denotes the number of peers in the network.

Figure 6.5 shows A3’s bandwidth utilization (measured as the average of all nodes’

bandwidths) for different network sizes on PlanetLab. For comparison, the Figure

also shows the bandwidth cost incurred by Bamboo running with neither Vivaldi

nor A3 (“Bamboo”) as well as Bamboo running with Vivaldi but without A3 (“Vi-

valdi”). Note that A3’s communication cost includes messages used to construct

and deconstruct anonymous paths. (As described above, each relay’s workload gen-

erator produces an anonymous path every five seconds.) Although A3 users may

request more paths in practice (consequently increasing A3’s bandwidth), our pur-

pose here is to show A3’s bandwidth requirements during a fairly steady state, and

to explore how these requirements vary for different network sizes. In our largest

tested deployments, A3 imposes a modest cost of only 3.2KBps over Vivaldi. In all

cases, the bandwidth utilization is far less than the capacity of even dial-up Internet

connections.

Our results also indicate that A3 scales well with network size. When the number

of nodes increased by a factor of more than 5 from 33 to 177, A3’s average bandwidth

consumption increased by just 16% from 4.9 to 5.7KBps. This result is somewhat

unsurprising, given that the distributed directory service routes deliver requests

using O(logN) messages, where N is the network size.

Both the routing engine and the coordinate embedding system (the only two A3

components that send periodic messages) utilize the deliver messaging function.

Hence, the overall communication cost of using A3 is also O(logN). The bandwidth
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Figure 6.7: E2e path performance on PlanetLab.

requirements for much larger deployments can therefore be determined using log-

arithmic regression analysis. Figure 6.6 plots the average bandwidth per node for

networks of up to one million peers. The empirical bandwidth measurements from

Figure 6.5 are overlayed on the Figure. According to our regression analysis, the

bandwidth requirement of an A3 peer in a network with one million nodes is less

than 10 KBps – far within the capabilities of broadband subscribers. Table 6.1 lists

the bandwidth regression equations and their corresponding error values (R2).

Path Performance Figure 6.7 shows the cumulative distribution of e2e path

RTTs for all generated paths over a two-hour period. We tested A3 using three

configurations: Uniform relay selection, Weighted selection with s = 5, and

Weighted selection with s = 15. As can be seen from the Figure, the link-based
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Weighted strategy produced anonymous paths with significantly lower RTTs than

those produced using random selection. In particular, the median path RTTs were

591ms for Uniform, 403ms for Weighted with s = 5 (a 31.8% reduction), and

253ms for Weighted with s = 15 (a 57.2% reduction). Additionally, Weighted

decreased the percentage of high latency paths. For example, 64.8% of paths pro-

duced by Uniform had RTTs that exceeded 500ms. In comparison, only 32.5% of

the routes generated by Weighted with s = 5 had such high RTTs.

6.5 Summary

This chapter presented A3, a flexible, secure and low-overhead architecture and plat-

form for deploying anonymity-based services on the Internet. A3 uses the link-based

relay selection strategies introduced in Chapter 3 to produce paths with low latency

and jitter and few AS crossings. Unlike existing anonymity systems such as Tor, the

A3 platform is fully decentralized and does not depend on a priori trusted nodes.

Simulation results as well as experimentation on PlanetLab reveal that A3 is effec-

tive at producing high performance anonymous paths. For example, in comparison

to random relay selection, A3’s link-based strategies halve the RTTs of anonymous

paths on PlanetLab. Furthermore, A3 is highly scalable, requiring less than 10KBps

of bandwidth per peer for a million-node deployment.
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Chapter 7

Securing Coordinate Systems with

Veracity

In Chapter 3, we introduced link-based relay selection techniques that intelligently

select anonymous relays to produce high performance anonymous paths. To gen-

erate such routes, our Weighted path selection algorithm estimates the e2e cost

of candidate paths by aggregating the costs of each hop. Since there are O(N2)

potential links in a network of N relays, maintaining pairwise distance information

is untenable, particularly given that networks are not static and distances may (and

do) change. To achieve practical link-based selection, we demonstrated in Chap-

ter 4 that virtual coordinate embedding systems may be leveraged to linearize the

information that must be shared among relays, enabling nodes to estimate pairwise

distances given only N virtual coordinates. The A3 anonymity system, introduced

in Chapter 6, utilizes such an approach.

Since initiators use virtual coordinates to estimate path costs, the performance

of link-based routing depends on the accuracy of the coordinate embedding system.

Unfortunately, the distributed nature of coordinate systems make them particularly

vulnerable to insider manipulation. For example, when 10% of the network is mali-

cious, estimation errors for an unprotected Vivaldi coordinate system increase by a
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factor of nearly five [96]. When 30% of nodes misbehave, estimation errors increase

by more than 1100% [96]. A corrupted coordinate system will, at best, decrease

the performance of link-based routing since coordinate-based distance estimations

will be inaccurate. At worst, a carefully orchestrated attack against the coordinate

system may cause malicious nodes to appear more favorable, attracting an undue

proportion of traffic.

This chapter presents Veracity [96], a fully decentralized service for securing net-

work coordinate systems. Veracity provides a practical deployment path while pro-

viding equivalent (or greater) security than previously proposed coordinate security

systems. Unlike prior proposals, Veracity does not require either pre-selected trusted

nodes [44], the triangle inequality test [16], or outlier detection based on a fixed neigh-

bor set [118], allowing Veracity to be practically deployed and react more rapidly to

changes in network conditions. Veracity is also agnostic to the type of decentralized

coordinate system being deployed, and can be employed as a protection service over

existing decentralized coordinate systems [19, 16, 54, 66].

Veracity’s fully decentralized architecture makes it ideally suited for A3. Al-

though Veracity is motivated by the need to protect A3 from insider manipula-

tion, Veracity is also applicable to other (non-anonymity) applications that rely on

virtual coordinate systems, including proximity-based routing [99], neighbor selec-

tion in overlays [21], network-aware overlays [73], and replica placement in content-

distribution networks [20, 112]. In addition to causing significantly decreased accu-

racy and performance, corrupted coordinate systems may serve as stepping stones

for attacks against the applications that rely on them. Attackers who control the

coordinate system may advertise attractive (but false) coordinates for nodes under

their control, increasing the likelihood that such hosts will be selected for routes,

neighbors, or replicas. Such compromises enable myriad attacks against the over-

lying services. For example, malicious nodes may misdirect intercepted messages

sent via overlay routing, return false data when serving as a replica in a content
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distribution network, or partition the keyspace in a distributed hash table. Veracity

protects such applications by preventing malicious nodes from injecting inaccuracy

into the underlying coordinate system.

At a high-level, Veracity utilizes a two-step verification process. The first step

involves a majority vote-based scheme in which a published coordinate has to be

independently verified by a deterministically assigned set of verification nodes before

it is used by peers. An adversary who attempts to disrupt the network by publishing

inconsistent coordinates will fail this verification step, and consequently its coordi-

nates will be ignored. As an additional measure, a second verification step utilizes

a set of randomly chosen peers to independently compute the estimation error due

to a new coordinate, and reject the coordinate if the error is above a threshold.

This second protection mechanism detects attacks in which malicious nodes delay

responses to measurement probes. The combination of the two techniques ensures

that Veracity can tolerate a high fraction of malicious nodes that concurrently report

false coordinates and delay latency measurements.

In this chapter, we focus our implementation and evaluation on Vivaldi since it

is widely used [7], has been the focus of recent work [44, 118] on securing coordinate

systems, and is used as the underlying coordinate system by A3. We demonstrate via

execution in a simulated network environment using realistic network traces [114, 47]

and a deployment on PlanetLab that Veracity mitigates attacks for moderate sizes

of malicious nodes (up to 30% of the network), even when coalitions of attackers

coordinate their attacks. We further show that Veracity is resistant to high levels of

churn and incurs only a modest communication overhead.
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7.1 Comparison to Other Coordinate Protection

Systems

Kaafar et al. [45] first identified the vulnerability of coordinate systems, in which

just 5% of the participating nodes can render the system unusable simply by either

lying about its coordinates or delaying RTT probe replies. Subsequently, there have

been several recent proposals targeted at securing coordinate systems.

PIC detects dishonest nodes by observing that falsified coordinates or delayed

measurements likely induce triangle inequality violations (TIVs) [16]. To verify peers’

coordinates and measurements, honest nodes use distances to trusted landmarks

to detect TIVs. Using a generated transit-stub topology of 2000 nodes, PIC is

able to tolerate attacks when up to 20% of the network was controlled by colluding

adversaries [16]. However, more recent work has indicated that TIVs can potentially

be common and persistent [55], reducing the practicality of PIC’s protection scheme

on real-world networks.

Kaafar et al. propose the use of trusted surveyor nodes to detect malicious

behavior [44]. Surveyor nodes position themselves in the coordinate space using

only other trusted surveyors. Nodes profile surveyors to model honest behavior,

detecting falsified coordinates and measurements as behavior that differs from their

constructed model. Kaafar et al. conclude that their approach is effective when 30%

or less of the network is controlled by malicious and cooperating nodes [44]. Their

technique requires 8% of the nodes to be a priori trusted surveyors [44] – a nontrivial

fraction when the network consists of 100,000 or more nodes.

The RVivaldi system proposed by Saucez et al. protects coordinate systems

using surveyors as well as centralized Reputation Computation Agents (RCAs), the

latter of which assigns reputations (trust profiles) to coordinates [89, 88]. Their

technique is evaluated only against non-cooperating adversaries, and tolerates up to

20% malicious nodes [89].
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Like Veracity, the system proposed by Zage and Nita-Rotaru is fully distributed

and designed for potentially wide-scale deployments [118]. Their approach relies on

outlier detection, reducing the influence of nodes whose coordinates are too distant

(spatial locality) or whose values change too rapidly in short periods of time (temporal

locality). Their technique successfully mitigates attacks when 30% or fewer of the

nodes are under an attacker’s control [118]. However, the temporal locality heuristic

requires that each node maintains an immutable neighborset, a list of neighbors that

a node uses to update its coordinates. Wide-scale deployments involving hundreds

of thousands of nodes are likely to be dynamic with nodes frequently joining and

leaving the system. The high rate of churn will lessen the opportunities for temporal

analysis as nodes leave the system (since less history is available), and cause errors

in such analysis for newly joined nodes for which frequent changes in coordinates

are expected. In contrast, Veracity does not discriminate against spatial or temporal

outliers, and as described in Section 7.7.2, tolerates high levels of churn.

7.2 Attacker Model

Prior studies [45, 44] have demonstrated that coordinate systems are susceptible to

three classes of attacks: disorder attacks in which malicious insiders attempt to de-

crease the accuracy of the system by advertising false coordinates and delaying RTT

responses, and isolation and repulsion attacks in which the attacker respectively at-

tempts to isolate or repulse a subset of targeted nodes. Veracity’s general approach

defends against malicious nodes that falsify their coordinates or induce/report artifi-

cially inflated latencies. Hence, the techniques described in this chapter can mitigate

all three attacks.

We adopt the constrained-collusion Byzantine model proposed by Castro et al. [12]

in which malicious nodes can insert, delete, or delay messages. Given a network of

size N , and some fraction (f < 1) of malicious attackers, there exist independent

coalitions of size cN , where 1/N ≤ c ≤ f .
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7.3 Metrics

To assess the accuracy of a virtual coordinate, we utilize the metrics introduced in

Section 4.1. The median error ratio of a node ni is defined as the median over the

error ratios ∣∣D(ni, nj)− ||Cni
− Cnj

||
∣∣

D(ni, nj)

between ni and all other nodes nj (ni 6= nj), where ||Cni
−Cnj

|| denotes the Euclidean

distance between the coordinates belonging to nodes ni and nj, and D(ni, nj) is the

measured distance (e.g., latency) between them. To quantitatively compare the

performance and security of Veracity and Vivaldi, we define the system error ratio

as the median over all peers’ median error ratios. Finally, to show lower performance

bounds, we also consider the 90th percentile error ratio – i.e., the 90th percentile of

nodes’ median error ratios.

7.4 Overview of Veracity

We first provide an overview of Veracity’s security mechanisms. We base our descrip-

tion on Vivaldi’s coordinate update model. While other decentralized coordinate

systems [16, 54, 66] differ in their implementations, the update models are concep-

tually similar to Vivaldi’s, and hence, Veracity’s techniques are applicable to these

systems as well.

To update its coordinate, a participating node (the investigator) periodically

obtains the coordinate of a selected peer (the publisher) and measures the RTT

between the two nodes. In most implementations, the publisher is typically a pre-

assigned neighbor node of the investigator. In Veracity, we relax the requirement

that a publisher has to be a fixed neighbor of the investigator and instead use a

distributed directory service (see Section 7.5.2) to enable investigators to scalably

select random publishers on demand.

The basic update model of Vivaldi leads to two possible avenues of attacks:
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First, if the publisher is dishonest, it may report inaccurate coordinates. Second, the

publisher may delay the RTT probe response to increase the error of the investigator’s

updated coordinate. To defend against such attacks, Veracity protects the underlying

coordinate system through a two-step verification process in which groups of nodes

independently verify the correctness of another node’s coordinates. We outline

these two processes below, with additional details presented in Section 7.5.

• Publisher coordinate verification: When an investigator requests a coordi-

nate from a publisher, a deterministic set of peers called the verification set (VSet)

verifies the publisher’s claimed coordinate. Veracity assigns each publisher a unique

VSet. Each VSet member independently assesses the accuracy of the coordinate by

conducting its own empirical measurements to the publisher and computes the coor-

dinate’s estimation error. If a majority of the VSet does not accept the publisher’s

coordinate, the investigator discards the coordinate.

• Candidate coordinate verification: Once an investigator verifies the pub-

lisher’s coordinate, it proceeds to update its own coordinate based on its empirical

RTT measurement between itself and the publisher. To detect cases in which the

publisher purposefully delays the RTT probe response, the investigator updates

its coordinate to a new one only if the new coordinate results in no more than a

small increase in estimation error computed amongst an independent and randomly

chosen set of peers (the RSet).

An important benefit of Veracity is that it makes no distinction between intentionally

falsified coordinates and those that are inaccurate due to limitations of the coordi-

nate embedding process. In either case, Veracity prevents the use of inaccurate

coordinates.
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7.5 Veracity Verification Protocols

This section presents details of Veracity’s two-step verification protocol. We first fo-

cus on various mechanisms necessary to realize publisher coordinate verification that

prevents investigators from considering inaccurate coordinates. We then motivate

and describe the candidate coordinate verification that protects against malicious

RTT probe delays by the publisher.

7.5.1 VSet Construction

When a Veracity node joins the network, it computes a globally unique identifier

(GUID) by applying a collision-resistant cryptographic hash functionH (e.g., SHA-1)

to its network address. (To prevent malicious peers from strategically positioning

their GUIDs, Veracity restricts allowable port numbers to a small range.) Given a

node with GUID g, the members of its VSet are the peers whose GUIDs are closest

to h1, ..., hΓ, determined using the recurrence:

hi =

 H(g) if i = 1

H(hi−1) if i > 1
(7.1)

where i ranges from 1 to the VSet size, Γ. A larger Γ increases the trustworthiness of

coordinates (since more nodes are required in the verification process) at the expense

of additional communication.

VSet construction utilizes a hash function to increase the difficulty of stacking

VSets with collaborating malicious nodes. Attackers who control large coalitions of

peers may be able to populate a majority of a particular malicious node’s VSet (for

example, by strategically choosing IP addresses within its assigned range), but such

VSet stacking requires at a minimum dΓ
2
e peers per VSet. In practice, many more

malicious peers are required since the attacker does not have complete discretion

over the IP addresses of its coalition members. Moreover, as nodes join and leave
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Figure 7.1: Publisher coordinate verification. Solid lines denote messages sent via
deliver and dotted lines represent messages sent via direct IP. (a) Publisher dis-
tributes update tuple to VSet members using deliver messages addressed to GUIDs
based on recursive hashes. (b) VSet members measure the RTT between themselves
and Publisher. (c) Investigator queries Publisher and Publisher responds with claim
tuple. (d) Investigator sends evidence query to Publisher’s VSet members. (e) VSet
members send evidence tuples to investigator.

the network, VSet members change (since the nodes whose GUIDs are closest to

h1, ..., hΓ also change), significantly impairing the ability to persistently stack VSets.
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7.5.2 Locating and Updating VSet Members

Veracity utilizes a distributed directory service to resolve VSet members and route

messages based on node GUIDs. Identical to the service described in Section 6.3.1 for

A3, the Veracity directory service implements a single API function, deliver(g,m),

which delivers the message m to the peer whose GUID is closest to g according to a

keyspace distance metric. As with A3, Veracity is compatible with any distributed

directory service that supports the deliver function.

As shown in Figure 7.1(a), when a publisher updates its coordinate, it transmits

an update tuple (g, τ, C, ip) to members of its VSet using the deliver function pro-

vided by the directory service. The update tuple contains the following values: g is

the publisher’s GUID, τ is a logical timestamp incremented whenever the publisher

updates his coordinate, C is the new coordinate, and ip is the publisher’s network

address. Upon receiving the update tuple, each VSet member vi measures the RTT

between itself and ip (Figure 7.1(b)), and computes the error ratio

δ(vi,g) =

∣∣∣RTT (vi, ip)− ||C − Cvi
||
∣∣∣

RTT (vi, ip)
(7.2)

where Cvi
is vi’s coordinate and ||C − Cvi

|| is the distance between the coordinates.

Finally, vi locally stores the evidence tuple (g, τ, C, ip, δ(vi,g)). Nodes periodically

purge tuples that have not recently been queried to reduce storage costs.

7.5.3 Publisher Coordinate Verification

To update its coordinate, the investigator queries a random node (via a deliver

message to a random GUID g) in the network (i.e., the publisher). As depicted in

Figure 7.1(c), the publisher replies with a claim tuple (g,Γ, τ, C, ip). The investigator

immediately discards the publisher’s coordinates if the publisher’s IP address is not

ip, g 6= H(ip), or it deems Γ (VSet size) insufficiently large to offer enough supporting

evidence for the coordinate.
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Otherwise, the investigator transmits the evidence query (g, τ) to each member

of the publisher’s VSet, constructed on demand given g according to Eq. 7.1 (Fig-

ure 7.1(d)). If a VSet member vi stores an evidence tuple containing both g and τ

(logical timestamp), it returns that tuple to the investigator (Figure 7.1(e)). The

investigator then checks that the GUID, network address, and coordinates in the

publisher’s claim tuple matches those in the evidence tuple. If there is a discrep-

ancy, the evidence tuple is ignored.

After querying all members of the publisher’s VSet, the investigator counts the

number of non-discarded evidence tuples for which δ(vi,g) ≤ δ̂, where δ̂ is the investi-

gator’s chosen ratio cutoff parameter. Intuitively, this parameter gauges the investi-

gator’s tolerance of coordinate errors: a large δ̂ permits fast convergence times when

all nodes are honest, but risks increased likelihood of accepting false coordinates.

If the count of passing evidence tuples meets or exceeds the investigator’s evidence

cutoff parameter, R, the coordinate is considered verified. Otherwise, the publisher’s

coordinate is discarded.

7.5.4 Tuning VSet Parameters

To determine an appropriate value for the ratio cutoff parameter δ̂, we examined

Vivaldi’s system error ratio when run against the Meridian [114], King [47], and

S3-Latency [117] datasets, as well as a pairwise latency experiment (PL-Latency)

that we executed on PlanetLab [74]. Table 7.1 provides the properties of the four

datasets as well as Vivaldi’s achieved system error ratio.

An appropriate value for δ̂ should be sufficiently large to accommodate baseline

errors. For example, in our Veracity implementation (see Section 7.7.1), we use a

ratio cutoff parameter δ̂ of 0.4, well above the system error ratio for all datasets.

In the absence of network churn, the VSet membership of a publisher remains

unchanged. With network churn, some of the VSet members may be modified as
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# of Pairwise Latency System
Dataset Nodes Avg. Median Err. Ratio

Meridian 500 71.3 55.0 ms 0.15
King 500 72.7 63.0 ms 0.09

S3-Latency 359 85.8 67.9 ms 0.17
PL-Latency 124 316.4 134.0 ms 0.10

Table 7.1: Properties of the Meridian, King, and S3-Latency, and PL-Latency

pairwise latency datasets, and Vivaldi’s system error ratios for each dataset.

the keyspace of the directory service is reassigned. New VSet members may not

have stored any evidence tuples, but as long as R (evidence cutoff parameter) VSet

members successfully verify the coordinate, the coordinate can be used. In our

experiments, we note that even when R is 4 for a VSet size of 7, Veracity can tolerate

moderate to high degrees of churn while ensuring convergence in the coordinate

system.

7.5.5 Candidate Coordinate Verification

The publisher coordinate verification scheme described in Section 7.5.3 provides the

investigator with evidence that a publisher’s coordinate is accurate. This does not

prevent a malicious publisher from deliberately delaying an investigator’s RTT probe,

thereby causing the investigator to update its own coordinate erroneously. (Recall

that to update its coordinate, the investigator must measure the RTT between itself

and the publisher after having obtained the publisher’s coordinate.)

Once an investigator has validated the publisher’s coordinate, the candidate co-

ordinate verification scheme compares coordinate estimation errors among the in-

vestigator and a random subset of nodes (the RSet) using the investigator’s current

coordinate (CI) and a new candidate coordinate (C ′I) calculated using the publisher’s

verified coordinate and the measured RTT.

The investigator queries for the coordinates of Λ RSet members by addressing

deliver messages to random GUIDs (Figures 7.2(a) and 7.2(b)). As with Γ (VSet
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Figure 7.2: Candidate coordinate verification. Solid lines denote messages sent via
deliver and dotted lines represent messages sent via direct IP. (a) Investigator
queries random nodes (the RSet) for their coordinates. (b) RSet members report
their coordinates to Investigator. (c) Investigator measures the RTTs between itself
and RSet members, and then calculates the error ratios for the current (CI) and
candidate (C ′I) coordinates.

size), a larger Λ (RSet size) increases confidence in the candidate coordinate at the

expense of additional communication. In our experimentation, we found that setting

Λ = Γ = 7 provides reasonable security without incurring significant bandwidth

overhead. The investigator (I) measures the RTT between itself and each RSet

member (Figure 7.2(c)) and computes the average error ratio

err(C,RSet) =

(∑
rj∈RSet

∣∣RTTIrj
−||C−Crj ||

∣∣
RTTIrj

)
Λ

(7.3)

for both CI and C ′I . If the new coordinate causes the error ratio to increase by a factor

of more than the tolerable error factor ∆, then C ′I is discarded and the investigator’s

coordinate remains CI . Otherwise, the investigator sets C ′I as his new coordinate.

The value of ∆ must be sufficiently large to permit normal oscillations (e.g., caused

by node churn) in the coordinate system. Setting ∆ ≥ 0.2 enabled Veracity to

converge at approximately the same rate as Vivaldi for all tested topologies (we
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investigate Veracity’s effect on convergence time in Section 7.7.2).

7.6 Distributed Directory Services

Like A3, Veracity utilizes DHTs to implement the deliver messaging functionality

described in Section 7.5.1. While one can adopt a centralized or semi-centralized

directory service, a fully-decentralized solution ensures scalability, allowing Veracity’s

security mechanisms to be deployable at Internet scale.

While DHTs ensure scalability, they are vulnerable to insider manipulation [110]

due to their distributed nature. Dishonest nodes can attempt to increase their influ-

ence in the network by conducting Sybil attacks, or they can inject inaccurate query

results using eclipse or routing attacks. Section 6.3.1 described a number of previ-

ously proposed DHT security schemes, all of which are compatible with Veracity’s

fully distributed design. Unforeseen attacks that manage to circumvent such mech-

anisms have the effect of artificially increasing the fraction of malicious nodes in the

network (since a greater fraction of messages will be misdirected towards misbehav-

ing nodes), and such attacks can be compensated for by increasing R (the number

of VSet members that must support a publisher’s claimed coordinate for it to be

accepted) and Λ (the RSet size).

7.7 Implementation and Evaluation

In this section, we evaluate Veracity’s ability to mitigate various forms of attacks

in the presence of network churn. We have implemented Veracity by modifying the

Vivaldi implementation that is packaged with Bamboo [7].
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7.7.1 Experimental Setup

Veracity uses Vivaldi as the underlying coordinate system with a 5-dimensional coor-

dinate plane (the recommended configuration in the Bamboo source code [7]). Each

node attempted to update its coordinate every 10 seconds. The size of VSets and

RSets were both fixed at 7 (Γ = Λ = 7). We used a ratio cutoff parameter δ̂ of 0.4

and an evidence cutoff parameter R of 4. That is, at least 4 of the 7 VSet members

had to report error ratios less than 0.4 for a coordinate to be verified. The maximum

tolerable increase in error (∆) for the candidate coordinate verification was set to

0.2.

Our experiments are carried out using Bamboo’s simulation mode as well as on

PlanetLab. In the simulation mode, we instantiated 500 nodes with pairwise latencies

from the Meridian dataset. To distribute the burden of bootstrapping peers, a node

joins the simulated network every second until all 500 nodes are present. Nodes join

via an already joined peer selected uniformly at random.

In our PlanetLab experiments, the 100 participating nodes joined within 3 min-

utes of the first node. The selected PlanetLab nodes were chosen in a manner to

maximize geographic diversity. The simulation and PlanetLab experiments share a

common code base, with the exception of the simulator’s virtualized network layer.

In Sections 7.7.2 through 7.7.4, we present our results in simulation mode in

the absence and presence of attackers, followed by an evaluation on PlanetLab in

Section 7.7.5. We focus our evaluation on comparing Vivaldi (with no protection

scheme) and Veracity based on the accuracy of the coordinate system, convergence

time, ability to handle churn, and communication overhead.
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Figure 7.3: CDFs for median error ratios.

7.7.2 Veracity in the Absence of Attacks

Before evaluating the effectiveness of Veracity at mitigating various attacks, we first

provide a performance comparison between Veracity and Vivaldi in the absence of

any attackers within the simulation environment.

Accuracy of Network Coordinates Figure 7.3 shows the cumulative distribu-

tion functions (CDFs) of the median error ratios for Vivaldi and Veracity, computed

after the system stabilizes. Veracity raises the system error ratio (the median of the

nodes’ median error ratio) by 4.6% (0.79ms) – a negligible difference given latencies

over the wide-area. We observe that Veracity and Vivaldi have near identical CDFs,

indicating that Veracity’s protection schemes do not significantly influence nodes’

coordinates in the absence of an attack.
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Figure 7.4: The system error ratio after 10 new nodes join the network (at t = 0).
The median of the 10 new nodes’ median error ratios is also shown. The coordinate
system had stabilized prior to t = −100.

Convergence Time

To study how Veracity affects the rate at which the underlying coordinate system

converges, we introduce 10 new nodes into the network after the remaining 490 peers

have stabilized. Figure 7.4 plots the system error ratios for Vivaldi and Veracity

before and after the new nodes join the network (“all nodes”). The system error

ratios of both systems modestly increase when the new nodes are introduced and

converge at approximately the same rate. The Figure also shows the median of the

10 new peers’ median error ratios (“new nodes”). Although Veracity incurs a small

initial lag in convergence time, the 10 new coordinates quickly reach within 15% of

their stabilized (final) value in less than 200 seconds.
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Figure 7.5: System error ratio for Vivaldi and Veracity under various degrees of
churn.

The polling frequency – the rate at which nodes attempt to update their coor-

dinate – is directly proportional to the system’s convergence time. Higher polling

frequencies enable faster convergence time at the expense of bandwidth. Although

the values of the x-axis can be increased or decreased by adjusting the polling fre-

quency, the shape of the curves remain fixed. Repeating our experiments with smaller

and larger polling frequencies produced similar results.

Churn Effects

We next compare Vivaldi and Veracity’s ability to handle churn. We adopt the

methodology described by Rhea et al. [85] for generating churn workloads: a Poisson

process schedules events (“node deaths”) in which a node leaves the network. To

keep the simulated network fixed at 500 nodes, a fresh node immediately takes the
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place of a node that leaves. The input to the Poisson process is the expected median

inter-event period.

Figure 7.5 shows the system error ratio for Vivaldi and Veracity for various inter-

event periods. Note that the level of churn is inversely proportional to the inter-

event period. To illustrate near-worstcase performance, the figure also plots the

90th percentile error ratio.

Both Vivaldi and Veracity are able to tolerate high levels of churn. The “break-

ing” point of both systems occur when the inter-event period is less than five seconds,

reflecting a rate at which approximately a quarter of the network is replaced every

10 minutes. Churn affects Veracity since the joining and leaving of nodes may cause

the members of a VSet to more rapidly change, reducing the investigator’s ability

to verify a coordinate. Even at this high churn rate, Veracity’s system error ratio

(0.19) is only slightly worse than its error ratio (0.15) when there is no churn. It is

worth emphasizing that such high churn (i.e., 25% of the network is replaced every

10 minutes) is unlikely for real-world deployments. The near 0-slope in Figure 7.5 for

inter-event periods greater than 10 seconds shows that neither Vivaldi nor Veracity

is significantly affected by more realistic churn rates.

7.7.3 Disorder Attacks

In this section, we evaluate Veracity’s ability to mitigate disorder attacks in which

malicious peers report a falsified coordinate chosen at random from a five dimen-

sional hypersphere centered at the origin of the coordinate system. Points are chosen

according to Muller’s uniform hypersphere point generation technique [62] with dis-

tances from the origin chosen uniformly at random from [0, 2000). Additionally,

attackers delay RTT responses by between 0 and 2000 ms, choosing uniformly at

random from that range. Malicious nodes immediately begin their attack upon join-

ing the network.
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Figure 7.6: Honest peers’ median error ratios achieved by Vivaldi and Veracity
when malicious nodes constitute 10% (top), 20% (middle), and 30% (bottom) of the
network. Median error ratios observed when using Vivaldi in a network with no
attackers is shown for comparison.
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To emulate realistic network conditions, all simulations experience moderate

churn at a median rate of one churn event (a node leaving, immediately followed

by a new node joining) every 120 seconds. This churn rate replaces 10% of the nodes

during the lifetime of our experiments (100 minutes).

Uncoordinated Attacks

Figure 7.6 shows the effectiveness of Veracity at mitigating attacks when 10%, 20%,

and 30% of peers are malicious. The attackers report a new randomly generated

(and false) coordinate whenever probed, randomly delay RTT responses, and are

uncoordinated (i.e., they do not cooperate). As our baseline, we also include the

CDF for Vivaldi in the absence of any attackers.

Malicious attackers significantly reduce Vivaldi’s accuracy, resulting in a 387%

increase in the system error ratio (relative to Vivaldi when no attack takes place)

even when just 10% of nodes are malicious. When 30% of nodes are malicious,

the system error ratio increases dramatically by 1013%. In contrast, Veracity easily

mitigates such attacks since the coordinate discrepancies are discernible in evidence

tuples, causing inconsistently advertised coordinates to be immediately discarded by

investigators. At low rates of attack (10%), the system error ratio increases by only

6% (representing a negligible system-wide median latency error of 4ms). When 30%

of the network is malicious, Veracity limits the increase in system error ratio to 32%

(5.7ms), an 88% improvement over Vivaldi under the same attack.

Malicious nodes may conduct a more intelligent attack by randomly delaying

probes while reporting consistent but erroneous coordinates. That is, each malicious

node randomly generates a coordinate and reports the identical (and false) coordinate

whenever probed. Such a strategy eliminates coordinate inconsistencies among VSet

members. Compared to the previously described attack, this strategy results in

lower estimation errors for Vivaldi but does slightly better against Veracity. Here,

the increase in Vivaldi’s system error ratio is 163% for 10% malicious nodes and 368%
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for 30% malicious. Veracity successfully defends against heavy network infiltrations,

yielding an increase in the system error ratio of just 39% when 30% of the network

is malicious. Veracity reaches its tipping point when 40% of nodes are malicious,

incurring an increase of 118%. We note that this increase is still far below the 497%

increase experienced by Vivaldi.

Coordinated Attacks

We next consider coordinated attacks in which malicious nodes cooperate to increase

the effectiveness of their attack. Malicious nodes offer supportive evidence for coor-

dinates advertised by other dishonest nodes and do not offer any evidence for honest

peers. That is, when queried, they provide evidence tuples with low (passing) er-

ror ratios for malicious nodes and do not respond to requests when the publisher is

honest. We conservatively model an attack in which all malicious nodes belong to

the same attack coalition. To further maximize their attack, each malicious node

randomly generates a fixed erroneous coordinate and advertises it for the duration

of the experiment. Additionally, attackers randomly delay RTT responses.

Figure 7.7 shows Veracity’s performance (measured by the cumulative distribu-

tion of median error ratios) when the malicious nodes cooperate. For comparison, the

Figure also plots the CDFs for equally sized uncoordinated attacks against Veracity

and Vivaldi. Since Vivaldi does not collaborate with peers to asses the truthfulness of

advertised coordinates, there is no equivalent “coordinated” attack against Vivaldi.

For all tested attack strengths, the coordinated attacks did not induce signif-

icantly more error than uncoordinated attacks. The resultant system error ratios

differed little: when attackers control 30% of the network, the system error ratios

are 0.202 and 0.201 for the uncoordinated and coordinated attacks, respectively (for

comparison, Vivaldi’s system error ratio is 0.679).
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Figure 7.7: Honest peers’ median error ratios when attackers conduct uncoordinated
and coordinated attacks. Attackers comprise 10% (top), 20% (middle), and 30%
(bottom) of network peers.
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Figure 7.8: CDF of median error ratios for Veracity, Veracity without Candidate
Coordinate Verification (“VSet-only”), and Veracity without Publisher Coordinate
Verification (“RSet-only”). The attacker controls 20% of the network and conducts
a coordinated attack.

Rejected: VSet-only and RSet-only Veracity

The previous sections show that Veracity’s two protections schemes – publisher coor-

dinate verification and candidate coordinate verification – effectively mitigate attacks

when the adversary controls a large fraction of the network. In this section, we in-

vestigate whether it is sufficient to apply only one of the two techniques to achieve

similar security.

Figure 7.8 shows the cumulative distribution of median error ratios when nodes

utilize only publisher coordinate verification (“VSet-only”) or candidate coordinate

verification (“RSet-only”). We model the attack scenario from Section 7.7.3 in which

20% of the nodes are malicious and cooperating. For comparison, we also show

the CDF when both strategies are utilized (“Veracity”). The VSet-only technique
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Percentage of Inconsistent coords Consistent coords Consistent coords
malicious nodes (Uncoordinated) (Uncoordinated) (Coordinated)

Vivaldi Veracity Vivaldi Veracity Veracity

0% 1.00 1.05 1.00 1.05 1.05
10% 4.87 1.06 2.63 1.11 1.10
20% 8.18 1.12 4.21 1.25 1.22
30% 11.13 1.32 4.68 1.39 1.48
40% 13.90 1.54 5.97 2.18 2.37

Table 7.2: Relative system error ratios (system error ratio of the tested system
divided by the system error ratio of Vivaldi when no attack takes place) for various
attacker scenarios.

achieves nearly the same system error ratio as Veracity (0.19 and 0.17, respectively).

However, using only publisher coordinate verification results in a very long tail of

median error ratios. In particular, the 90th percentile error ratio is 0.29 for Veracity

and 4.42 for VSet-only. Hence, publisher coordinate verification protects the accu-

racy of most nodes, but permits a significant degradation in accuracy for a minority

of peers.

By itself, candidate coordinate verification results in a higher system error ratio

(0.42) than VSet-only or Veracity. Additionally, RSet-only has a longer tail than

Veracity, resulting in a 90th percentile error ratio of 1.05 during the attack.

By combining both techniques, Veracity better protects the underlying coordinate

system, achieving error ratios that nearly mirror those produced by Vivaldi in the

absence of attack (see Figures 7.6 and 7.7).

Summary of Results

To summarize the performance of Veracity under disorder attacks, Table 7.2 shows

the relative system error ratio for various attacker scenarios that we have described,

where each system error ratio is normalized by that obtained by Vivaldi under no

attacks.

Overall we observe that Veracity is effective at mitigating the effects of disorder
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Figure 7.9: Effects of a combined repulsion and isolation attack against three victim
nodes. Points represent the median with error bars denoting the 10th and 90th
percentile of the median error ratios of the three victims. For readability, datapoints
are slightly shifted along the x-axis by −0.5 for Vivaldi and +0.5 for Veracity.

attacks. Even under heavy attack (40% malicious nodes), disorder attacks result in

a relative system error of 1.54, far below Vivaldi’s relative median error of 13.9.

Veracity’s effectiveness matches or exceeds that of the prior proposals discussed in

Section 7.1. In contrast to existing coordinate protection systems, Veracity does not

require pre-selected trusted nodes, triangle inequality testing, nor outlier detection

based on a fixed neighbor set, and is therefore better suited for practical deployment.

7.7.4 Repulsion and Isolation Attacks

While Veracity is intended primarily to defend against disorder attacks, our next

experiment demonstrates the effectiveness of Veracity for protecting against repul-

sion and isolation attacks. We carry out a combined repulsion and isolation attack
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as follows: malicious nodes are partitioned into three coalitions, each of which at-

tempts to repulse and isolate a single victim node. Attackers attempt to repulse

the targeted node towards an extremely negative coordinate (i.e., having −1000 in

all five dimensions) by using the following heuristic: if the victim is closer than the

attacker to the negative coordinate, the attacker behaves honestly. Otherwise, the

attacker reports his accurate coordinate but delays the victim investigator’s RTT

probe response by 1000ms, causing the victim to migrate his coordinate (provided

it passes candidate coordinate verification) towards the negative coordinate.

Figure 7.9 shows the median of the three victim nodes’ median error ratios

achieved during the combined repulsion and isolation attack. In contrast to pre-

vious experiments, we do not use the system error ratio (the median over all peers’

median error ratios), as repulsion and isolation attacks target specific victims and

need not cause a significant degradation in coordinate accuracy for the remaining

peers.

Veracity consistently offers lower median error ratios than Vivaldi. While Ve-

racity does not completely mitigate the effects of repulsion and isolation attacks,

our results suggest that the vote-based verification scheme is amenable to defending

against such attacks.

7.7.5 PlanetLab Results

In our last experiment, we validate our simulation results by deploying Veracity on

the PlanetLab testbed.

Communication Overhead

To quantitatively measure Veracity’s communication overhead in practice, we ana-

lyze packet traces recorded on approximately 100 PlanetLab nodes for both Vivaldi

and Veracity. Traces are captured using tcpdump and analyzed using the tcpdstat

network flow analyzer [30]. Figure 7.10 shows the per-node bandwidth (averaged
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over all nodes) utilization (KBps) for Vivaldi and Veracity.

Veracity incurs a communication overhead since publishers’ coordinates must

be verified by VSets and investigators’ candidate coordinates must be assessed by

RSets. Since Veracity uses a DHT as its directory service, it leverages the scalability

of DHTs: each verification step requires O((Γ + Λ) log2N), where Γ and Λ denotes

the VSet and RSet sizes respectively.

Based on the PlanetLab measurements, we performed logarithmic regression anal-

ysis to extrapolate the per-node bandwidth requirements of Veracity as the num-

ber of nodes increases: 0.1895 logN + 1.228 KBps (r2 = 0.998) for Vivaldi and

3.591 logN − 6.499 KBps (r2 = 0.994) for Veracity. Figure 7.11 shows the ex-

trapolated bandwidth utilization of Vivaldi and Veracity for large networks. For a

large network consisting of 100,000 nodes, Veracity’s expected per-node bandwidth

requirement is a modest 35KBps, making it accessible to typical broadband users.

Accuracy Under Disorder Attacks

Figure 7.12 plots the system error ratio achieved on PlanetLab for varying attacker

infiltrations. Malicious nodes advertise inaccurate (but consistent) coordinates, delay
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Figure 7.12: System error ratio achieved on PlanetLab. Error bars denote the 10th
and 90th percentile error ratios.

RTT responses, and do not coordinate their attack. To calculate error ratios (which

requires knowledge of actual pairwise RTT measurements), we conducted pairwise

ping measurements on the PlanetLab testbed. We observe that Veracity effectively

mitigates attacks, yielding an increase in system error ratio (relative to Vivaldi under

no attack) of just 38% when 32% of the network is malicious. In contrast, Vivaldi

suffers an increase of 1679% when 31% of the nodes are dishonest. (The slight

differences between attacker percentages is due to the intermittent availability of

PlanetLab nodes.)

7.8 Summary

This chapter proposes Veracity, a fully distributed service for securing network co-

ordinates. We have demonstrated through extensive network simulations on real
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pairwise latency datasets as well as PlanetLab experiments that Veracity effectively

mitigates various forms of attack. For instance, Veracity reduces Vivaldi’s system

error ratio by 88% when 30% of the network misbehaves by advertising inconsistent

coordinates and adding artificial delay to RTT measurements. Veracity performs

well even against cooperating attackers, reducing Vivaldi’s system error ratio by

70% when 30% of the network is corrupt and coordinates its attacks.

Veracity provides a more practical path to deployment while providing equivalent

(or greater) security than previously proposed coordinate security systems. Unlike

PIC, Veracity does not associate triangle-inequality violations (TIVs) with malicious

behavior [16], and as indicated by our simulation and PlanetLab results, does not

impose additional inaccuracies in the coordinate system when TIVs do exist. Ve-

racity is fully decentralized, requiring no a priori shared secrets or trusted nodes.

In comparison to techniques that require specialized trusted nodes [89, 88, 44], Ve-

racity is well-suited for fully distributed applications (in particular, A3) in which

centralized trust models are incompatible.

122



Chapter 8

Contour: Coordinate-Based

Routing for Performance

The A3 anonymity system uses coordinate-based distance estimations to produce

high performance anonymous routes. In this chapter, we present Contour, a routing

infrastructure that leverages virtual coordinate embedding systems to enable senders

to construct non-anonymous paths whose end-to-end performance exceeds that of

direct communication to the receiver.

8.1 Background: Detour Routing

Detour routing has been proposed as a means of increasing the reliability [4, 41]

and performance [49, 90] of Internet communication. In detour routing, the sender

relays her traffic through one or more relay nodes, forming routes either on a net-

work overlay or through a specialized network routing infrastructure. Reliability is

typically achieved by aggressively rerouting traffic along alternative paths [4, 41].

Detour routing has also been used for performance-based routing [49, 90] by taking

advantage of the prevalence of triangle inequality violations (TIVs) on the Inter-

net [53, 91, 120, 121] to identify alternative routes that lead to decreased latency or

123



increased throughput.

There have been several proposals on using detour routing for reliability and

performance. In Savage et al.’s seminal work on detour routing [90], intelligent

detour routers are required at key access and interchange points. Traffic is routed to

the nearest detour router which then forwards the traffic along tunnels within the

detour network.

The Resilient Overlay Network (RON) [4] proposes building a detour network at

the application-layer, requiring no changes to the underlying network infrastructure.

However, RON requires pairwise measurements to locate alternative routes around

failures. The number of such measurements grows geometrically with the size of the

network, and hence limits the scale of deployment.

While the recently proposed Scalable One-hop Source Routing (SOSR) [41] has

improved scalability, its utility is primarily focused on improving reliability. The

lack of scalability is particularly significant since TIVs are more prevalent in large

networks, hence providing increased opportunities from benefiting from seeking al-

ternative paths.

Coordinate systems such as Vivaldi [19], PIC [16], ICS [54], and NPS [66] have

been proposed in recent years, and their primarily usage has been for neighbor selec-

tion [21] and replica placement [20, 112], and only as a means to estimate pairwise

latencies. Rakotoarivelo et al. suggests the benefits of using coordinate systems to

improve QoS in a peer-to-peer network [78]. Lumezanu et al. propose the Peer-

Wise [56] system for finding mutually advantageous one-hop detour paths. Like

Contour, PeerWise uses virtual coordinate systems to identify TIVs and find candi-

date relays. To our best knowledge, Contour is the first scalable architecture that

uses coordinate systems to improve the performance of Internet routing, with imple-

mentation and deployment on an actual testbed.
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Dataset Nodes Avg. RTT Pairwise links % with TIV

Meridian 2500 151 ms 3122867 95.89%
King 1740 181 ms 1499979 85.56%

S3-Latency 365 400 ms 109615 50.62%

Table 8.1: Triangle inequality violations (TIVs) for various latency datasets.

8.2 Motivation: Trace-driven Analysis

As has been well-documented in prior work [48, 69, 91, 56], triangle-inequality vi-

olations (TIVs) are commonplace on the Internet. We confirmed the prevalence

of TIVs by finding pairs of nodes from the Meridian [114], King [47, 42], and

S3-Latency [117] latency datasets for which there is at least one indirect path with

an e2e latency shorter than that of the corresponding direct route. (Unlike in previ-

ous chapters, we consider all nodes – not just the first 500 – in the three datasets.)

Table 8.1 lists the percentage of pairwise connections in which there exists at least

one TIV.

Our analysis further empirically quantifies the maximum performance improve-

ment that one can reap from a one-hop relay. (Previous work has demonstrated

that little performance may be gained through detour routes with more than one

detour [56].) While this analysis serves as an upper bound, it allow us to conduct

a feasibility study on how much one can gain from detours, and more importantly,

provides a basis of comparison for the Contour system.

Let N represent the set of all nodes in the network and XY denote the latency

between nodes X, Y ∈ N . Given a network-wide view consisting of all |N × N |

distances, we can easily compute the optimum single-hop latency detour route for

each node pair (A,B) ∈ N ×N by finding the node R ∈ N \ {A,B} that minimizes

the latency AR +RB. The maximum RTT improvement is calculated as

2 · (AB − (AR +RB))

AB
(8.1)

Note that Equation 8.1 assumes that network distances are symmetric (and hence
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Figure 8.1: CDF of the percentage improvement (decrease) in RTT achieved by
selecting the optimal single-hop detour relay.

the RTT of a link is twice its latency). Our assumption mirrors that of virtual

coordinate systems, in which the network cost of routing from node A to node B is

equal to the cost of routing from B to A.

Figure 8.1 shows the CDF of the maximum RTT improvements achieved via the

optimal detour path. As expected, the Meridian dataset (in which 96% of links

experience TIVs) exhibits the largest improvement. By comparison, the median

maximum RTT improvement is only 0.09% for the S3-Latency dataset, which is

unsurprising given that only 50.6% of links exhibit a TIV. (As indicated in the last

column of Table 8.1, larger networks contain higher percentages of links with TIVs.

This is not unexpected given that larger networks provide more opportunities to find

detour routes.)

The above optimality analysis serves as an upper bound for performance. In
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Figure 8.2: CDF of percentage RTT improvement (decrease) with knowledge of 3%,
5%, and 100% of all nodes in the Meridian dataset.

practice, selecting an optimal relay node in this fashion is not feasible, since global

knowledge of the network is required. As network size increases, so do the opportu-

nities to generate detour routes that produce significantly improved communication

performance; however, since the number of pairwise distances grows geometrically

with network size, sharing such information among all nodes is infeasible for large

networks, particularly given that network changes occur frequently and must be

propagated to all peers. We now consider whether it is feasible to select a good

relay node given only a small subset of the network. This allows us to tradeoff route

optimality and communication overheads in relay selection, and will be a basis for

the coordinate-based selection strategies described in the next section.

Figure 8.2 shows the cumulative distribution of the percentage decrease in RTT

achieved by detour routes when the sending node only knows the existence of 3%
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(75 nodes), 5% (125 nodes), and 100% (2500 nodes) of the peers in the Meridian

network. That is, the sender knows the RTTs between itself and a relay and between

the relay and the receiver, but knows only a small fraction of such relays. Even when

senders have knowledge of only 3% of potential detour relays, the median percent

reduction in RTT is 23%, and 20% of direct paths could reduce their RTTs by 52%

or more by routing through a known detour.

Although Figure 8.2 is somewhat optimistic as it assumes that nodes know exact

distances between peers, it illustrates that detour routing can deliver significantly

improved e2e performance even when senders have knowledge of only a small subset

of nodes. Hence, rather than attempt to provide nodes with a complete network

graph, Contour enables nodes to produce high performance detour paths using only

a small subset of information about the network.

8.3 System Architecture

In this section, we describe the Contour architecture, followed by a description of

relay selection strategies.

8.3.1 Overview

Figure 8.3 shows an overview of a Contour deployment. In our figure, a sender

(Alice) wishes to send a message to a receiver (Bob). Alice actively participates in

Contour, and thus may generate detour paths that attempt to meet her specific,

per-connection e2e communication performance criteria (e.g., latency, loss, etc.). To

send a message to Bob, Contour selects k detour relays, each of which is used to

form independent single-hop detour paths to Bob. In the absence of an improvement

via the use of a detour, the default Internet route (the direct path) will be used.

Contour may be configured as to the level of message duplication among the
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Figure 8.3: Contour architecture.

k + 1 paths. To maximize performance and resiliency, messages may be duplicated

and sent via each path, with Bob processing the first arriving copy of each message.

Of course, such a technique imposes a substantial bandwidth overhead, and only

achieves maximal performance if Alice, Bob, and the intermediate routers between

them have the available bandwidth to send and receive k+ 1 streams. Alternatively,

Contour may measure the e2e performance characteristics of each of the k+ 1 paths

and send messages through the best performing subset of paths. The number of uti-

lized paths is an application-tunable parameter. Measurements may be periodically

repeated to ensure that the best performing paths are used.

Contour does not require Bob’s active participation (consequently, Alice can uti-

lize Contour to produce high performance paths to arbitrary networked services).

However, since he does not actively participate, Bob cannot be the endpoint of the

direct and detour paths. If Bob is not a relay node, the Contour node closest to him

functions as a transparent proxy, forwarding messages to Bob and sending his re-

sponses to the upstream relay. For such cases, Alice must direct her detour paths to

Bob’s closest node. There are several well-studied techniques to locate a node close to
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a particular target. For example, OASIS maps IP prefixes to geographic coordinates

of known landmarks [38], and the ClosestNode [115] service uses Meridian [114] to lo-

cate the closest server to the requesting client. We consider the challenge of locating

the closest relay node to be orthogonal to the design of Contour.

To scalably generate detour paths, Contour first requires a mechanism to uniquely

identify all nodes, and to select a relay node from the network. Each Contour

node (also called a relay) registers with a distributed directory server. As with A3

and Veracity, Contour requires that the distributed directory server implement the

deliver(g,m) function that delivers message m to the node whose globally unique

identifier (GUID) is closest to g. Also like A3, Contour GUIDs are calculated by

taking a cryptographic hash (e.g., SHA-1) of nodes’ network addresses, and should

therefore be roughly uniformly distributed among some large space. Although Con-

tour is compatible with any consistent hashing service, our implementation uses

distributed hash tables (DHTs) [6] due to their scalability, geographic distribution,

load-balancing properties, and resilience to network churn [85].

Rather than locate potential relays on demand, Contour periodically searches

the distributed directory service for random nodes, storing the resolved network

addresses in a local cache. To preserve freshness, old cache entries are periodically

purged. Shorter timeouts ensure cache entries are more fresh, but reduce the number

of peers that may serve as relays.

To produce a high performance path to Bob, Contour selects k entries from its

cache according to a relay selection strategy (described below) and forms k indepen-

dent single-hop detour paths to Bob using each selected node as the intermediary

relay of a path. Since detour paths do not always provide improved performance,

Alice also creates a direct path to Bob.

8.3.2 Relay Selection Strategies

Below, we introduce the Rand and Coord relay selection strategies.
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Random Relay Selection Strategy (Rand) Rand is a simple strategy in which

Contour selects k nodes uniformly at random from its cache. Despite its simplicity,

we note that Rand is typically sufficient for cases in which the absolute increase in

performance is not critical (e.g. routing around failures), or in cases where TIVs are

so prevalent that picking the best among k nodes suffices.

Coordinate-based Relay Selection Strategy (Coord) The Coord strategy

utilizes virtual coordinate systems (e.g., Vivaldi [19]) to select candidate relay nodes.

As described above, Contour periodically uses the distributed directory service to

locate random peers and populate its cache. For each metric (available bandwidth,

latency, etc.), Alice searches her cache for the k entries Xmetric
1 , ..., Xmetric

k that yield

the k smallest values of

||CA − CXmetric
i
|| � ||CXmetric

i
− CB|| (8.2)

where CA is Alice’s coordinate, CXmetric
i

is the coordinate of cache entry Xmetric
i , and

CB is the coordinate of Bob (if he participates) or the Contour node closest to Bob

(if he does not). CB is obtained by polling the relevant node. The � function

represents a path concatenation operation and is dependent of the particular metric

being used. Table 3.1 lists formulas for computing the cost of a path with h hops

with corresponding distances d1, ..., dh. For example, � is summation for RTT and

minimum for bandwidth.

To rank relays using multiple network metrics, Alice assigns a weight wi ≥ 0

to each metric m1, ...,mz. If c1, c2, ..., cz represents the estimated costs of using a

cache entry as a detour node for metrics m1, ...,mz, she calculates the weighted cost

of using that entry to be
∑z

i=1(wi · ci). Cache entries are sorted based on their

weighted costs, with the entries with the k smallest costs being chosen as the detour

nodes.
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8.4 Evaluation

To evaluate Contour’s ability to produce high performance detour paths, we imple-

mented Contour using a modified version of the Bamboo DHT [7].

Vivaldi is configured to use a five dimension coordinate space, the recommended

configuration specified in the Bamboo source code [7]. Contour nodes locate a ran-

dom peer and cache the peer’s coordinate every five seconds. Cached entries persist

in the cache for fifteen minutes before being purged. All participating nodes serve

as potential relay nodes. As a workload generator, each node generates a single-hop

detour route every five seconds.

8.4.1 Trace-driven Simulation

The first set of experiments is carried out using Bamboo’s simulation mode, enabling

us to conduct experiments at a large scale compared to PlanetLab. In the simula-

tion mode, nodes are instantiated based on the pairwise latencies from the Meridian

dataset, the largest database of pairwise latencies of which we are aware. Figure 8.4

plots the cumulative distribution of median errors (the difference between estimated

and actual latencies) and median error ratios (the percentage difference between esti-

mated and actual latencies) achieved by Vivaldi after stabilization for the Meridian

dataset. In particular, the Figure shows that Vivaldi effectively estimates distances

– the system error ratio (the median of the median errors) is just 8.06ms (14.03%).

Moreover, 96.80% of nodes have median errors of less than 20ms.

To distribute the burden of bootstrapping peers, nodes join the simulated network

at the rate of one node every second until all nodes are present. Nodes join via

an already joined peer selected uniformly at random. Simulations were repeated

ten times. The results described below reflect cumulative distributions across all

iterations.
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Figure 8.4: The cumulative distribution of median error ratios and median errors (in
ms) of the Meridian dataset.

Performance Analysis Figure 8.5 shows the CDF of the performance improve-

ments (shown as decreases in RTT) of the Coord and Rand strategies. We make

the following observations. First, Coord is more effective than Rand at finding

paths with lower RTTs. When one (k = 1), three (k = 3), or nine (k = 9) paths

are considered, Coord consistently outperforms Rand. For example, when k = 5,

Coord decreased the RTT of nearly 60% of paths, reducing the RTT by at least

50ms for 23% of paths and by 100ms for 8% of routes. In comparison, Rand im-

proved the RTT of only 27% of paths. Second, we observe that our performance

improvements are consistent with the trace-driven analysis presented in Section 8.2.

In the steady state, each Contour node caches the coordinates of 180 other Contour

nodes (7% of the network). Contour’s improvements in RTT approach those in the

optimality analysis presented in Figure 8.2. The optimal analysis performs slightly

better as it assumes exact latencies between peers.

Figure 8.6 plots the RTTs measured using the direct route (x-axis) against the
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Figure 8.5: Cumulative distribution of the decrease in RTT (in ms) for k = 1 (top),
k = 5 (middle), and k = 9 (bottom).
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Figure 8.6: The relationship between RTTs measured using the direct path (x-axis)
and RTTs measured using Contour (y-axis) for the Coord (left) and Rand (right)
strategies, with k = 5.

RTTs measured using Coord (left graph) and Rand (right graph) when k = 5.

Since Contour reverts to direct communication when detour routes do not yield

improved performance, no points exist above the identity function. Vertical distance

from the identity function denotes the decrease in RTT obtained using Contour. As

can be discerned from the bottom right quadrant of the graphs, the Coord strategy

is more adept at decreasing RTT for direct routes with otherwise high RTTs. Contour

RTT is able to achieve low latency paths (< 150ms) even when the corresponding

direct RTT path is prohibitively high (> 450ms). Our results indicate that Coord

not only improves upon existing paths (as reflected in Figure 8.5), but is able to

avoid direct paths of high RTTs.

8.4.2 PlanetLab Deployment

To validate our simulation results, we deployed Contour on 163 geographically dis-

tributed nodes on the PlanetLab testbed. End-to-end measurements were conducted

by the sender and included all processing and network overheads incurred by the relay

node. In each experiment, all PlanetLab nodes joined the network within approxi-

mately three minutes of the first participant. Our workload consists of establishing

a Contour path from a random source to destination every five seconds.
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Figure 8.7: (a) Cumulative distribution of percent decreases in RTTs achieved by
Contour on PlanetLab for all direct paths, (b) direct paths with RTTs exceeding
150ms, and (c) direct paths with RTTs exceeding 300ms.
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Latency As discussed in Section 8.2, the prevalence of TIVs tends to increase

with network size, and thus we would expect to see fewer TIVs (and hence worse

detour performance) in the significantly smaller PlanetLab network than in the 2500

node Meridian simulation. Nevertheless, the improvements presented below serve to

provide a lower-bound on the potential of Contour at Internet-scale.

Figure 8.7a shows the CDF of performance improvements (in terms of percent-

age decrease in RTT) as a results of Contour detour paths. For both Coord and

Rand, RTT measurements are conducted using the best of five detour paths (k = 5).

In Figures 8.7b and 8.7c, we additionally show a similar CDF of performance im-

provements when limited to direct paths with RTT of at least 150ms and 300ms

respectively.

We make the following observations. First, Coord performs better than Rand

as expected for finding shortest latency paths. 28% of all paths are improved using

Coord, compared with 11% when Rand is used. Second, we observe that Contour

is highly effective at improving the performance of routes with high RTTs, where

19% (45%) of paths with RTTs of at least 150ms (300ms) are improved. Coord

also outperforms Rand and improves e2e RTT for 39% of the paths that would

otherwise have RTTs exceeding 150ms and 61% of those that have RTTs beyond

300ms. 25% of the paths with RTTs exceeding 300ms experience a 43% reduction

in RTT using Coord.

8.5 Summary

This chapter introduces Contour, a fully distributed and scalable detour routing

system that utilizes distributed directory services and lightweight coordinate systems

to intelligently select detour paths.

Our trace-driven simulation results demonstrate that Contour is highly effective

at producing paths that improve upon performance at low overheads. For instance,
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Contour is able to find paths that decrease the RTT of 20% of the paths by at least

40%. Even on a limited deployment of 163 nodes on PlanetLab testbed, Contour

improves the performance of 61% of paths that would otherwise exceed 300ms.
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Chapter 9

Conclusion

This dissertation presents an architecture for scalable, decentralized, and tunable

anonymity services for the Internet. Our techniques utilize virtualized coordinate

systems in which network distances are embedded in n-dimensional Euclidean space.

By aggregating the distances between overlay nodes’ coordinates, our path selection

strategies accurately estimate the e2e performance characteristics of potential paths,

empowering applications to select high performance anonymous routes.

Our results indicate that the proposed relay selection strategies are highly effec-

tive at producing anonymous paths with low latency, jitter, loss, AS traversals, and

high bandwidth. In particular, our Weighted algorithm reduced e2e path latencies

by more than half, decreased jitter by nearly 40%, and reduced the number of AS

traversals by 16% when compared to selecting relays uniformly at random.

In addition to achieving better performance, we demonstrate that our link-based

relay selection algorithm provides better anonymity than more traditional node-based

techniques. For example, when an adversary controls the top 10% of relays as ranked

by their available bandwidth, she is able to compromise 55% of anonymous paths

on the Tor network when the default node-based Tor relay selection algorithm is

used. In contrast, when the attacker conducts the analogous attack against link-

based selection (here, controlling the endpoints of the top 10% of links as ranked by
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link bandwidths), the adversary can compromise less than 3% of anonymous routes.

To demonstrate the practicality of coordinate-based anonymous routing, we pro-

pose the Application-Aware Anonymity (A3) framework. Unlike most existing anony-

mity systems, A3 is fully decentralized, requiring no fixed infrastructure, specialized

trusted nodes, public key infrastructure, or a priori shared secrets. Our evaluation

of A3 on the PlanetLab testbed reveals that the system is highly scalable, and is

estimated to require a modest 9.5KBps of bandwidth per peer in a one million node

deployment. Additionally, our PlanetLab results mirror simulation studies, demon-

strating that our link-based selection strategy reduces the e2e roundtrip time (RTT)

of anonymous paths by 57%.

We further show that coordinate-based routing techniques are appropriate for lo-

cating high performance non-anonymous paths in overlay networks. To that end, we

introduced Contour, a detour routing system that leverages coordinate embedding

systems to locate overlay paths with e2e performance that exceeds that of direct IP

communication. Experiments conducted on a deployed Contour network on Planet-

Lab show that Contour decreases the RTT of 20% of the paths by at least 40% as

compared to direct connections.

The coordinate-based routing techniques used by A3 and Contour depend on

the accuracy of their underlying coordinate systems. Previous work has shown that

such systems are vulnerable to insider manipulation [45]. To protect the accuracy

of the coordinate system (and consequently, the performance of Contour and A3),

we present Veracity, a vote-based protocol that requires that advertised coordinates

be verified by an independent set of peers before being used. Veracity is fully de-

centralized, requiring no fixed infrastructure, making it ideal for anonymity services

such as A3. Our results show that Veracity can effectively mitigate attacks when up

to 30% of the network is controlled by malicious nodes.

A3, Contour, and Veracity demonstrate the feasibility, effectiveness, and secu-

rity of coordinate-based routing. Coupled together, A3 and Veracity enable high
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performance and secure routing on overlay networks, enabling the anonymization of

network-intensive services previously deemed too restrictive for anonymity services.
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