
INCREMENTAL PROCESSING AND OPTIMIZATION

OF UPDATE STREAMS

Mengmeng Liu

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2016

Supervisor of Dissertation

Signature

Zachary G. Ives

Professor of Computer and Information

Science

Co-supervisor of Dissertation

Signature

Boon Thau Loo

Associate Professor of Computer and

Information Science

Graduate Group Chairperson

Signature

Lyle Ungar, Professor of Computer and Information Science

Dissertation Committee

Susan B. Davidson, Professor of Computer and Information Science (Chair)

Val Tannen, Professor of Computer and Information Science

Andreas Haeberlen, Assistant Professor of Computer and Information Science

Tyson Condie, Assistant Professor of Computer Science, University of California, Los

Angeles (External)



INCREMENTAL PROCESSING AND OPTIMIZATION OF UPDATE STREAMS

COPYRIGHT

2016

Mengmeng Liu



DEDICATION iii

To Zhuowei, Jeremy, and my parents Xindong and Lihua



iv ACKNOWLEDGEMENTS

Acknowledgements

This dissertation is not possible without the help from my advisors, collaborators,

friends and family. I am deeply indebted to those individuals who support me through-

out the years.

First of all, I would like to thank my advisors, Zachary Ives and Boon Thau Loo,

who offered me the opportunity to pursue graduate studies at Penn. Prof. Zachary

Ives led me into the field of database system research, and from him I learned tons of

research ideas which can even be traced back to some database research several decades

ago. He is generally knowledgable in most areas of database systems, and since he has

tremendous experience implementing various systems firsthand himself, he is always a

great resource to consult for solving problems encountered in practice. His knowledge

and vision greatly shapes my taste for database system research, and later on, when I

conducted research and development in industrial labs and companies, I can always recall

the various conversations I had with him, and use those ideas as a foundation to see how

they can be applied to different systems. Zack’s pursuit of perfection has a profound

influence on me, not only in doing research but also everything in life. Every paper

that we wrote together, every experiment that we demonstrated, and every presentation I

made throughout the years, underwent numerous revisions with him, and in retrospect,

each time I learned something new and pushed myself harder the next time around.

Through these endeavors, I learned how to effectively implement an idea, how to present

an experimental result, how to make the paper clear, and how to make the presentation

intuitive and to the point. All of these experiences tremendously helped me in not only

research skills but also almost every aspect in my professional life.

Prof. Boon Thau Loo is not only a great mentor, but also a good friend. I am always



ACKNOWLEDGEMENTS v

amazed to see how deeply he cares about the student, sometimes it feels like the students

are also his own kids. He would go all the way from discussing research to making

arrangements and plans for the benefit of the students. His encouragement makes a

student feel secure and confident, even through difficult times such as having a paper

rejected, or going through difficult things in life. Although he has a busy schedule, he

always makes time to meet with the students, listen to their concerns, provide suggestions

and help them grow. His knowledge in declarative networks and datalog helped shape

and improve my initial research ideas, and I am glad to have the opportunity to work

with him on many papers and presentations together throughout the years.

I would also like to thank the other fantastic professors in the Penn DB group, Prof.

Susan Davidson and Prof. Val Tannen. We have weekly DB group seminars and through-

out the years I learned many great ideas from the seminar, and more importantly, it

helped shape my general sense of database research other than my main research area.

Prof. Susan Davidson is a great mentor in bridging the gap between theory and practice

in database research, and her recommendations in making papers and presentations in-

tuitive and clear have always had a great influence on me. Prof. Val Tannen is an expert

in database theory, and from him I learned the relationship between database theory and

logic, the foundation of datalog, provenance, as well as incremental view maintenance.

He has both a great taste of research and a great sense of humor, and his pursuit of

precision in formulating research problems has a great influence on me as well.

Besides the school work, I also did two fruitful summer internships at Microsoft Bing

and IBM Research - Almaden respectively. I would like to thank my mentor, Jingren Zhou

at Microsoft, who guided me into the field of big data systems in large-scale distributed

environment deployed real-life in industry. The internship project on optimizing multiple

scans of data streams on top of their big data system, SCOPE and Cosmos, has a great

influence not only on my research but also on my career later. I would also like to thank

my mentor, Ioana Stanoi at IBM Research - Almaden, who guided me into a project

of designing and implementing temporal relationships on top of an entity resolution

system. It was a very interesting project, and these experiences enriched my skills and

understanding of the field.

This dissertation benefited from many great feedback provided by my thesis com-



vi ACKNOWLEDGEMENTS

mittee members, Susan Davidson, Val Tannen, Andreas Haeberlen, and external member

Tyson Condie. I would also like to thank Susan Davidson, Val Tannen and Andreas

Haeberlen to sit on my WPE-II committee.

I would like to give my special thanks to Mike Felker for helping me go through many

tedious details of administrative tasks, and also to Cheryl Hickey and many other staff at

the department who made my life much easier.

My time at Penn would not be so enjoyable without the friends I made at Penn, includ-

ing all the DB group members: Medha Atre, Olivier Biton, Sarah Cohen-Boulakia, Ling

Ding, Anat Eyal, Todd J. Green, Xiaocheng Huang, Marie Jacob, Grigoris Karvounarakis,

Svilen Mihaylov, Sudeepa Roy, Julia Stoyanovish, Nicholas Taylor, Allen Zhepeng Yan,

Nan Zheng; as well as many Chinese friends with whom I spent many memorable week-

ends: Ling Ding, Peter Du, Liang Huang, Xiaocheng Huang, Changbin Liu, Qian Liu,

Tingting Sha, Gang Song, Wenqing Wang, Bin Yan, Zhepeng Yan, Zhuoyao Zhang, Lim-

ing Zhao, Jianzhou Zhao, Wenchao Zhou, Qihui Zhu, and many others.

I would also like to take this opportunity to thank my parents Xindong Liu and Lihua

Hu, for their love, encouragement and sacrifice. This dissertation is not possible without

their support for me and my family, and I dedicate this dissertation to them.

Last but not least, I dedicate this dissertation to my husband, Zhuowei Bao. We

have known each other since high school, and made a decision to come to the United

States to pursue our graduate studies together. Throughout the years, we have underwent

everything together, and I cannot imagine finishing this dissertation without the support

and encouragement from him. This is like a dream come true.



ABSTRACT vii

ABSTRACT

INCREMENTAL PROCESSING AND OPTIMIZATION OF UPDATE STREAMS

Mengmeng Liu

Zachary G. Ives and Boon Thau Loo

Over the recent years, we have seen an increasing number of applications in network-

ing, sensor networks, cloud computing, and environmental monitoring, which monitor,

plan, control, and make decisions over data streams from multiple sources. We are inter-

ested in extending traditional stream processing techniques to meet the new challenges of

these applications. Generally, in order to support genuine continuous query optimization

and processing over data streams, we need to systematically understand how to address

incremental optimization and processing of update streams for a rich class of queries com-

monly used in the applications.

Our general thesis is that efficient incremental processing and re-optimization of up-

date streams can be achieved by various incremental view maintenance techniques if we

cast the problems as incremental view maintenance problems over data streams. We fo-

cus on two incremental processing of update streams challenges currently not addressed

in existing work on stream query processing: incremental processing of transitive clo-

sure queries over data streams, and incremental re-optimization of queries. In addition

to addressing these specific challenges, we also develop a working prototype system As-

pen, which serves as an end-to-end stream processing system that has been deployed as

the foundation for a case study of our SmartCIS application. We validate our solutions

both analytically and empirically on top of our prototype system Aspen, over a variety of

benchmark workloads such as TPC-H and LinearRoad Benchmarks.
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Chapter 1

Introduction

In the past decade, with the decreasing cost and the growing adoption of wireless sen-

sors, embedded devices and mobile phones, we are seeing a new class of monitoring and

control applications that instrument the environments for security, environmental control,

intelligent resource management and human assistance. Examples of such applications

include intelligent power grids, smart hospitals, home health monitors, energy-efficient

data centers, and building visitor guides. To support these applications, there is a need

for systems to bring together disparate data from databases (e.g., site information, pa-

tient treatments, maps) with data from the Web (e.g., weather forecasts, calendars), from

streaming data sources (e.g., resource consumption within a server), and from devices

embedded within an environment (e.g., generator temperature, RFID readings, energy

levels). Data has been generated at an unprecedented rate, and how to store, manipu-

late and make sense of this enormous amount of data becomes a crucial problem. It is

increasingly important to be able to turn the raw observations into high-level decision-

making and control, such as triggering alarms, identifying problematic users, notifying

overloaded machines, or predicting abnormal events.

There are many fundamental questions about how to develop these monitoring and

control applications in this emerging sensing world. Motivated from decades of success

from relational data management systems (RDBMS), we seek a programming environ-

ment and runtime system that can be generalized to any application domain. The most

important notion we can learn from relational data management systems is “data inde-

1



2 CHAPTER 1. INTRODUCTION

pendence”, which encompasses two levels. From the physical level, it means that user

applications should be immune from the changes on how to access the data, such as the

change to a storage device, or an indexing strategy. From the logical level, it means that

higher level abstractions such as user views should be hidden away from the changes to

the logical schema, such as tables, columns or rows. These data independence notions

can be easily applied to data management of monitoring and control applications as well.

In order for our intelligent environments to reach their full potential, what is necessary

is an extensible, multi-purpose data acquisition and integration substrate through which

the applications can acquire data — without having to be coded with special support for

new devices or network types. The key question is how to develop this unified declar-

ative query and integration substrate, which supports a multitude of stream and static

data sources on heterogeneous, possibly unreliable networks. Computation should be ex-

pressed in a single query language and “pushed” to where it is most appropriate, taking

into account capabilities, battery life, rates of change, and network bandwidth.

In the last several years, the database community has started to develop novel solu-

tions for managing these monitoring and control applications: a handful of data stream

management systems from both industry and academia have been proposed [14, 24, 51,

77, 88]. These data stream management systems (DSMS) have three major differences

compared to traditional relational data management systems (RDBMS). First, since data

sources become continuous, DSMSs require a dynamic data model, which usually makes

”timestamp” first-class citizens. Here the ”timestamp” could mean the data generation

time, or the data arrival time, that could be associated with each single data tuple. Dy-

namic data sources also make the data model evolve: traditional set semantics of relational

schema needs to be replaced by mutable data models. Second, the computational model

in DSMSs needs to be continuous rather than static. Since data streams keep arriving to the

systems, in order to compute results based on a pre-defined query for the newly arrived

data, DSMSs need to continuously compute the results in a streaming non-blocking fash-

ion. Finally, DSMSs usually require query planners, or query optimizers, to continuously

search for the best execution plans based on the evolving streaming data characteristics.
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1.1 Motivations

In the following paragraphs, we start with three prominent examples from the emerging

monitoring and control applications and discuss their unique challenges and require-

ments.

Example 1. One of the central questions any major network ISP provider is interested

in is, given any two access points in the network, whether they are connected at any

given point of time, and if connected, what is the optimal path between any two access

points. An access point may join or leave the network, and therefore the paths between

the access points are usually dynamic. The need for connectivity monitoring is even

more pressing in the realm of sensor networks, where any individual sensor is more

likely to run out of power or become unresponsive. All-pairs reachability and shortest

paths is usually the core computation behind proximity-type queries, which is extremely

valuable to applications that require an understanding of contagiousness and influence

of networks. Hence, it is often a challenging and important task to understand how to

efficiently compute and maintain the all-pairs end-point connectivity status.

Example 2. With more and more sensors, RFIDs and embedded devices instrumented in

the environments, we have a huge opportunity to integrate the data gathered from the

physical world, with the data that we store in databases and data warehouses in static

forms, to drive new insights into decision-making and control. To make such integrated

applications successful, systems need to bring together data from different sources, static

or dynamic, and transform those raw observations through complex logic into smart

alerts or decisions. For example, to build a smart hospital, we could instrument the

clinics and medical devices with sensors, so that we could monitor the status of patients

in real-time.

In these real-time environmental monitoring applications, usually it requires sys-

tems to continuously monitor various signals to generate meaningful output in real-time.

Decision-making and control tasks can become very complex when they correlate mul-

tiple data sources and perform complex operations over them. Hence, finding the best

execution strategy can be particularly important: an inferior strategy may be overwhelm-

ingly bad and will impact the timeliness of streaming result delivery. Indeed, there are
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plenty of decisions to make on how to execute a complex task, e.g., which two data

stream sources to join first, which function to carry out one before another, whether the

computation should be performed in-network or at a centralized place, and so on and

so forth. As the search space grows larger, and as it is in general hard to estimate how

bad a strategy could become, planning or optimizing for the most cost-efficient strategy

could become quite expensive itself. Indeed, as the data characteristics of stream sources

become volatile, constant re-planning is necessary to meet the up-to-date conditions, since

a locally optimum plan is unlikely to become optimal forever and may deteriorate the

overall performance of real-time execution.

Example 3. As cloud computing becomes increasingly popular, more and more companies

and institutions need to instrument real-time monitoring, alerting and anomaly detection

into their normal 24 * 7 operation of their data centers. For example, a public cloud service

provider needs to monitor the user behaviors across multiple machines to determine the

aggregate usage to avoid a user from impacting others on a multi-tenancy cluster. Hence,

multiple data streams need to be monitored, such as the CPU consumption, memory

consumption or network usage for each user at every machine; and then be combined,

correlated and aggregated to determine important global indicators such as the energy

efficiency of the entire data center.

Real-time monitoring and alerting requires timely data stream integration, execution

and optimization. A cost-based optimization engine for data streams allows the system

to spend the majority of its resources on query execution once the various cost parame-

ters have been properly calibrated: it can be applied to highly complex plans and has the

potential to provide significant benefit if a cost estimation error was made, but it should

incur little overhead if a good plan was chosen. Unfortunately with a large number of

bursty data sources and complex queries, traditional cost-based query optimization tech-

niques from relational data management systems is too expensive to perform frequently.

In order to reduce the overhead, we hope to only modify the parts of computations when

necessary, that is, incrementally, across multiple query re-optimizations. It is ideal if we

always guarantee the best plan returned by a query re-optimizer, during cost-based adap-

tivity query processing, but incur little overhead when most of the computations can be
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shared with previous rounds of query re-optimizations. Here the goal of a continuous

optimizer for data stream management systems is often to optimize the aggregate total of

latency of query results, returned in a pipelined real-time fashion, rather than a one-shot

optimization performed on the static data.

Unfortunately there are still several limitations of existing data stream management

systems that make them insufficient to fully support monitoring and control applications.

In general, in order to support genuine continuous query optimization and processing

over data streams, we need to systematically understand how to address incremental op-

timization and processing of update streams for a rich class of queries commonly used

in the applications. Specifically, there are two main challenges that we found in existing

data stream management systems that we aim to systematically address in this disserta-

tion. The first is the incremental processing of transitive closure queries over dynamic

streams, and the second is the incremental re-optimization of queries. We will illustrate

both challenges in more detail below.

Challenge A: lack of support for incremental processing of transitive closure queries

over dynamic state. As illustrated in our motivating examples, monitoring and control

tasks could become fairly complex. In particular, transitive closure queries are frequently

used to measure the reachability and influence in various kinds of dynamic networks.

Unfortunately, existing data stream management systems do not have native support for

handling recursive queries over dynamic data streams. Most times, they would require

application developers to express even a simple recursive query, such as a reachability-

style transitive closure query, to be written in a user-defined function. This approach is

very flexible. However, it is also error-prone because it requires the application developers

to carefully engineer the logic for recursive queries over dynamic streams without assur-

ance of accuracy. More importantly, without recursion supported as first-class citizens in

the execution graph, data stream management systems lacks the ability to reason about

incremental result generation, in a way that resembles incremental hash joins and incre-

mental aggregates, hence losing the opportunity for generic optimization, parallelism and

common tactics to enable efficient incremental computation.

In order to fully support native recursion in data stream management systems, every
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core component of the system, from the query language, to the query execution engine,

requires major enhancements. At the minimum, the query language needs to have the

expressiveness of recursive queries. From the query execution point of view, a fixpoint

operator is necessary and a loop needs to be introduced to the common DAG model

of the execution graph. To make the problem more challenging, under the data stream

model, data keeps arriving to the systems, hence we need to resort to incremental recur-

sion processing techniques to enable efficient query result generation. In the presence of

both insertions and deletions in update streams, sometimes a single update may have cas-

cading effects on the results of the entire query. Hence, it is important, yet challenging, to

design efficient generic incremental approaches to handle recursive queries over dynamic

data streams.

Challenge B: incapable of re-using work across multiple query re-optimizations. In ad-

dition to handling recursion, the problem of supporting rapid adaptation to runtime con-

ditions during query processing is essential as well. A query optimizer for data streams

typically relies on the data characteristics to make the correct cost estimations, and the

correctness of such cost estimations is vital to the quality of the plan picked by a query

optimizer. However, in the dynamic stream scenarios, data characteristics and properties

and the availability of system resources may be constantly changing. It is very difficult

to effectively choose a good plan for the entire data streams: data statistics may be un-

available or highly variable; cost parameters may change due to resource contentions or

machine failures; and indeed a combination of query plans might perform better than

any single plan. Hence, there is a real need to support rapid re-optimization, that is, con-

tinuously searching for the most cost-efficient plan upon changes of statistics. However,

existing DSMSs have no or very limited support for constant query re-optimizations. In-

deed, in many scenarios, the optimal execution plan would only change when cumulative

changes of statistics take into effect. Often times most of the explorations and cost estima-

tions of plans can be reused; and a re-optimizer could only re-explore query plans whose

costs are affected by an updated cardinality or a delta cost value. If a re-optimizer does

not perform incremental computations across rounds, the overall overhead will quickly

accumulate and will potentially prevent frequent adaptations from happening because
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of delayed latency. We find that the ability to re-use the work across a series of query

re-optimizations greatly affects the overall performance of query processing over the life-

time of stream query processing. This is a problem not well-studied in the context of

full-fledged cost-based query optimizer (instead of heuristic-based query optimizers) for

data streams, because there lacks a systematic analysis of the query re-optimization prob-

lem in a full cost-based manner. There are also huge challenges on how to incrementally

re-optimize while retaining the capabilities of pruning effectively.

Interestingly, although these two challenges seem unrelated from the first glance, in-

deed, they both concern with incremental processing of dynamic state. In the first chal-

lenge, the dynamic state refers to dynamic network links, node arrival and departure, and

so forth. In the second challenge, changes in data statistics and cost parameters of can-

didate plans construct another form of dynamic state. This second form of state can also

be regarded as metadata state, e.g., statistics and summaries of data sources. This view

of the query re-optimization problem as another instance of the incremental computation

problem over dynamic state sheds some new insights on how to address these problems

in a generic and principled way. In both cases, we need to perform some complex com-

putations over the dynamic state in a continuous fashion. In order to achieve desirable

efficiency, we aim to demonstrate the feasibility and benefits of processing a task incre-

mentally, rather than from scratch.

1.2 Contributions and Goals

In this dissertation, we study generic approaches towards incremental recursive query

answering over dynamic data streams, and incremental query re-optimization of data

streams. Our general thesis is that efficient incremental processing and re-optimization

of update streams can be achieved by various incremental view maintenance techniques if

we cast the problems as incremental view maintenance problems over data streams. In

particular, we make the following contributions:

• We formulate the problem of computing recursive tasks over dynamic data streams

as a classical incremental view maintenance problem, which facilitates many generic

incremental view maintenance techniques to address the challenges. We develop
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a novel, compact absorption provenance as an annotation attached to each data item,

which enables us to directly detect when view tuples are no longer derivable and

should be removed, where the views are defined over a stream of insertions or dele-

tions. We also develop several heuristics to ensure that the absorption provenance

annotation, maintained in a Binary Decision Diagram (BDD), remains compact un-

der different topologies. We implement all of the above solutions in our Aspen pro-

totype system, and experimentally validate the performance under several different

scenarios. Results show that we have orders of magnitude savings compared to

prior approaches in various settings.

• We explore whether full-fledged cost-based incremental techniques for query re-

optimization can be developed, where an optimizer would only re-explore query

plans whose costs were affected by an updated cardinality or cost value; and whether

such incremental techniques could be used to facilitate more efficient adaptivity in

dynamic scenarios. We propose a rule-based and declarative approach to query re-

optimization. We develop a formulation of query re-optimization as an incremental

view maintenance problem, for which we develop novel algorithms like incremen-

tal aggregate selection, incremental reference counting and incremental pruning.

We implement our solutions in our prototype system, Aspen, with comprehensive

studies of performance against alternative approaches over a diverse set of work-

loads. Results show that we have an order-of-magnitude performance gains versus

non-incremental approaches to query re-optimization.

• We show that our approaches to incremental re-optimization from the declarative

perspective can be easily incorporated into traditional procedural-based query opti-

mizers (e.g., bottom-up optimizers with dynamic programming and top-down opti-

mizers with branch-and-bounding), without changing their architectures. We study

how to design and implement full-fledged cost-based procedural incremental query

re-optimization frameworks and present both analytical and empirical results.

• We illustrate the design and implementation of our end-to-end stream query pro-

cessing prototype system, Aspen, and demonstrate a campus-motivated smart build-

ing application SmartCIS as a case study.



1.2. CONTRIBUTIONS AND GOALS 9

ASPEN: A Generic Platform 
Answering Queries over Data Streams

(A case study: SmartCIS)

Execution Engine: 
processing the best plan picked by
the optimizer over data streams

Incremental Re-optimizer:
continuously finding the best plan 

for current conditions

Chapter 3: 
Incremental Processing of
Transitive Closure Queries
over Data Streams

Chapter 4:
Incremental Re-optimization of
Queries (Declarative)

Chapter 5: 
Incremental Re-optimization of
Queries (Procedural)

Chapter 6: 
A Case Study: The 
ASPEN/SmartCIS system

Figure 1: The overview of this dissertation.

Figure 1 shows the roadmap of this dissertation. We will demonstrate incremental

processing of transitive closure queries over data streams in Chapter 3. In Chapter 4, we

will illustrate how to address incremental re-optimization of queries through the declara-

tive lens of incremental view maintenance. We then illustrate how our approaches can

be easily applied to traditional procedural-based query optimizers in Chapter 5. We will

demonstrate the design and implementation of our end-to-end stream query processing

prototype system, Aspen, and demonstrate a campus-motivated smart building applica-

tion SmartCIS as a case study in Chapter 6. Below we illustrate the main contributions

of each chapter in more detail.

Incremental processing of transitive closure queries over dynamic data streams (Chap-

ter 3).

In this work, we tackle the challenge of efficiently answering transitive closure queries

over dynamic data streams. Most of the motivating applications of this dissertation, e.g.,

networking monitoring and environmental monitoring and control applications, are heav-

ily reliant on transitive closure computations. In most of such applications, data streams

are generated from distributed devices in a streaming fashion (e.g., from geographically

distributed sensor devices instrumented in the environment), and in a lot of scenarios,



10 CHAPTER 1. INTRODUCTION

centralized monitoring and maintenance is prohibitively expensive in that it requires all

the devices to sync the data over the network continuously to be able to maintain the

global status. Hence, in these applications, a more realistic assumption is a decentral-

ized model, where each node only maintains the local information (e.g., the node’s own

connectivity to other devices) and can perform some computations on its own. The ma-

jority of past work on recursive queries [15, 16] has focused on recursion in the context

of centralized deductive databases, and some aspects of that work have ultimately been

incorporated into the SQL-99 standard and today’s commercial databases. However, re-

cursion is relatively uncommon in traditional database applications, and hence little work

has been done to extend this work to a distributed streaming setting. In contrast to prior

maintenance strategies for recursive views [40, 45], our work aims to minimize the overall

computation overhead — both across the network (which is vital to reduce the communi-

cation overhead) and inside the query plan (which reduces CPU computational latency).

We make the following contributions:

• We specify the connectivity monitoring tasks over dynamic networks as recursive

Datalog rules; this enables us to formulate the problem of computing recursive

tasks over dynamic data streams as a classical incremental view maintenance prob-

lem, which facilitates incremental view maintenance techniques to address the chal-

lenges.

• We develop a novel, compact absorption provenance as an annotation attached to

each data item, which enables us to directly detect when view tuples are no longer

derivable and should be removed, where the views are defined over a stream of

insertions or deletions. This approach improves the overall efficiency (e.g., both

network latency and CPU latency) compared to prior approaches [40, 45].

• We develop several heuristics to ensure that the absorption provenance annotation,

maintained in a Binary Decision Diagram (BDD), remains compact under different

network topologies. This problem of finding the optimal-size provenance is NP-

hard; but our heuristics work well in practice.
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• We propose a novel MinShip operator in the execution engine of a DSMS, which

reduces the number of times that tuples annotated with provenance need to be

propagated across the network and in the query.

• In order to reduce the propagation of tuples that do not contribute to the answer,

we generalize aggregate selection [89] to handle data streams. This approach reduces

the number of tuples being propagated when aggregations exist.

• We implement all of the above solutions in our Aspen prototype system, and exper-

imentally validate the performance under several different practical settings (e.g.,

with different Internet or sensor network topologies). Results show that we have

orders of magnitude savings compared to prior approaches in various scenarios.

This work enables a DSMS to efficiently answer transitive closure type of queries over

data streams in a potentially decentralized execution engine. It reduces network traffic

and query latency compared to previous solutions, hence improves the overall latency

of answering queries. This work also provides foundations for a DSMS to be able to

enrich its query language to handle recursions (e.g., a query language like Datalog),

and it advances the understanding of the general problem of incremental maintenance of

recursive views in a distributed setting.

Enable incremental query re-optimization in a declarative fashion (Chapter 4).

In data stream management systems, it is increasingly important to support rapid

adaptation to runtime conditions during query processing. However, it is often not easy to

effectively choose a good plan during the course of query execution: data statistics may

be unavailable or highly variable; cost parameters may change due to resource contention

or machine failures; and in fact a combination of query plans might perform better than

any single plan.

In the past, query optimization techniques in adaptive query processing systems fall

into three general classes: 1) operator-specific techniques that can adapt the order of

evaluation for specific combinations of operators rather than the full-fledged space [12,

58]; 2) eddies [10, 33] and related flow heuristics, which are highly adaptive but also

continuously devote resources to exploring all plans and require fully pipelined execution;
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3) approaches that use a cost-based query re-optimizer to re-estimate plan costs and

determine whether the system should change plans [54, 56, 72, 85]. Of these, the last cost-

based query re-optimizer is the most flexible, in that it can handle all types of expressible

queries and not limited to a predefined set of operators or combinations. Perhaps most

importantly, a cost-based engine allows the system to spend the majority of its resources

on query execution once the various cost parameters have been properly calibrated: it can

be applied to highly complex plans and has the potential to provide significant benefit if

a cost estimation error was made, but it should incur little overhead if a good plan was

chosen. Unfortunately with a large number of bursty data sources and complex queries,

standard cost-based query optimizations are too expensive to perform frequently. In

order to reduce the overhead, we hope to only modify the parts of computations when

necessary, that is, incrementally, across multiple query re-optimizations. It would be great

if we always guarantee the best plan returned by a query re-optimizer, during cost-based

adaptivity query processing, but incur little overhead when most of the computations

could be shared with previous rounds of query re-optimizations.

Our goal in this line of work is to explore whether full-fledged cost-based incremental

techniques for query re-optimization can be developed, where an optimizer would only

re-explore query plans whose costs were affected by an updated cardinality or a cost

value; and whether such incremental techniques could be used to facilitate more efficient

adaptivity in dynamic scenarios.

We address the problem of incremental re-optimization using a novel approach, which

is based on the observation that query optimization is essentially a search problem involv-

ing the derivation and subsequent pruning of state (namely, alternative plans and their

costs). Building an incremental re-optimizer requires preservation of some form of state

(e.g., , the pruned optimizer memoization table) across optimization runs — but more-

over, it must be possible to determine what plans have been pruned from this state, and

to re-derive such alternatives and test whether they are still viable. Rather than invent-

ing custom semantics for incrementally maintaining state within a query optimizer, we

instead adopt an approach of developing an incremental re-optimizer expressed declara-

tively. From a declarative perspective, we can model the ever-changing state in a query

optimizer as data, and the query optimization process itself as a task expressed as a query
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over the data. A query re-optimization problem is essentially an incremental view main-

tenance problem when we model the entire query optimization process as a set of views

over the dynamic input data. This also connects back to the previous line of work to

support recursive queries over data streams: with an execution engine capable of handle

recursions plus some extensions, we can leverage it to execute the query re-optimization

task as a query. In essence, we are exploring incrementally processing the results of a

query optimizer using a query processor. We develop a variety of novel incremental and

recursive optimization techniques to capture the kinds of pruning used in conventional

optimizers, and to generalize them to the incremental case. An incremental optimizer

following our model can be competitive with a standard optimizer implementation for

initial optimization, and significantly faster for repeated re-optimizations. Moreover, in

contrast to randomized or heuristics-based optimization methods, we still guarantee the

discovery of the best plan according to the cost model. Specifically, we make the following

contributions in this work:

• We define, design and develop a full-fledged cost-based incremental query re-optimizer

that prunes yet supports incremental re-optimization.

• We propose a rule-based and declarative approach to query re-optimization. We

choose an abstraction level of specification that gives us a nice abstraction for incre-

mental processing, effective pruning as well as potential extensions to parallel and

distributed architectures. We develop techniques that decouple plan enumerations

and cost estimations, relaxing traditional restrictions on search order and pruning.

• We develop a variety of novel logic optimization strategies to prune the computation

of query optimization through the new abstraction of the query optimization prob-

lem, namely, aggregate selection with tuple source suppression, reference counting

and recursive bounding.

• We develop a formulation of query re-optimization as an incremental view mainte-

nance problem, for which we develop novel algorithms like incremental aggregate

selection, incremental reference counting and incremental pruning.
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• We implement our solutions in our prototype system, Aspen, with comprehensive

studies of performance against alternative approaches over a diverse set of work-

loads. Results show that we have an order-of-magnitude performance gains versus

non-incremental approaches to query re-optimization.

• We demonstrate that incremental re-optimization can be incorporated to good ben-

efit in existing cost-based adaptive query processing techniques [54, 85], over stan-

dard LinearRoad [9] benchmarks.

Enable incremental query re-optimization in a procedural fashion (Chapter 5)

In the previous work, we studied how to address the incremental re-optimization

problem under the declarative frameworks. In this work, we aim to leverage the insights

we gained from the declarative abstractions of the problem, and apply them to the more

traditional query optimization frameworks: procedural cost-based query optimization

engines. Examples of such engines include bottom-up style query optimizers [47, 86]

and top-down style query optimizers [39]. These traditional cost-based procedural-based

query optimizers were originally designed for single-pass query optimization, and we

strive to understand how to incorporate ideas of incremental re-optimization into these

traditional query optimization frameworks. The motivation of this study comes from sev-

eral observations. First, the traditional query optimization frameworks are widely used

in the industry and are already extremely complex, it is usually easier to incorporate the

new features in the same framework rather than rewriting everything from scratch. Sec-

ond, by restricting ourselves to traditional frameworks, we can understand the minimal

changes needed to be able to make a procedural query optimizer incremental.

We aim at incremental query re-optimization approaches for the full-fledged cost-

based query optimization frameworks, hence our work will be different from other solu-

tions proposed in the past, such as operator-specific techniques (e.g., [12]), eddies-based

flow-heuristic techniques (e.g., [10]) or heuristics-based cost-based re-optimization tech-

niques (e.g., [56]). We make the following contributions in this work:

• We define the cost-based procedural incremental query re-optimization problem.
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• We leverage the lessons learned from the declarative perspective and present in-

cremental re-optimization algorithms for both bottom-up and top-down style ar-

chitectures, and discuss optimizations to improve recomputation and book-keeping

costs.

• We analyze the worst-case bounds for re-computations of AND and OR nodes dur-

ing incremental re-optimization.

• We empirically evaluate our procedural incremental re-optimization algorithms and

study the performance differences between top-down and bottom-up style incre-

mental re-optimization, and the difference to their non-incremental counterparts.

We study the effects of different optimizations, and understand the empirical results

of the ratio of recomputed AND and OR nodes during incremental re-optimization.

Aspen: a prototype stream query processing engine (Chapter 6).

We will describe the design and implementation of our own end-to-end stream query

processing prototype system, Aspen, and demonstrate a campus-motivated smart build-

ing application SmartCIS as a case study.

SmartCIS is motivated by the need to deploy a campus-wide smart building infras-

tructure for students and faculties. We can instrument our buildings and laboratories with

physical sensors, where the status of the room occupancy or labs machine availability can

be monitored in real-time. We can build lively in-building maps with different sensors

deployed in the hallways, and guide students to the nearest resource available with their

desired functionalities. SmartCIS is just one of the many promising applications that

could be built on top of the Aspen system. Such a physical sensor-instrumented ”smart

building” infrastructure has the potential to be applied to many other areas as well, such

as energy-efficient data centers and smart hospitals.

Our Aspen prototype system is the core stream query processing engine behind these

applications, and we design it with the goal that it should be as generic as traditional

database systems such as IBM DB2 and Oracle. It also resembles distributed data stream

management systems [8, 14, 24, 51] and sensor query pressing systems [32, 36, 71]. How-

ever, the key differentiator is how to develop a unified declarative query processing and
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integration platform over a multitude of digital and physical data sources. Computation

is expressed in a single query language and is pushed to where it is most appropriate. We

also aim to provide a single data access layer for integrating sensor, stream and database

data, regardless of origins. As an end-to-end stream query processing system, Aspen fea-

tures a declarative query language (similar to StreamSQL) with a user query interface, a

compiler (which transforms the declarative query language into internal representations),

a heuristics-based federated query optimizer (which divides a query into subqueries that

are executed on either on the physical sensor or digital stream side of the query subsys-

tem), two sub-query execution engines (one over the static data sources and one over the

stream data sources), a uniform steam acquisition framework for various data sources

such as sensors, streams and static data from the databases, and a graphical display in-

terface to demonstrate the query results. Almost all of these components are challenging

and most are active open research areas. In this thesis, we will demonstrate 1) the ar-

chitectural design of a declarative stream and sensor integrated query processing system;

2) how Aspen enables a uniform stream acquisition framework for various data sources

such as physical sensors, digital streams, web data as well as databases; and finally, 3)

how Aspen uses a federated query optimizer that is able to partition a query specified

over heterogeneous data sources into a series of subqueries defined over a specific type

of data sources.

Aspen is relevant to the key topics discussed in this dissertation in several ways. First,

at the core of its stream query processing engine, there is a recursive query processing

engine that implements the core ideas of our solutions to the problem of incremental

processing of recursive queries. Since Aspen is designed to be able to execute recursive

queries (such as computing shortest paths over physically deployed sensors), our techni-

cal contributions there are a key enabler of a general-purpose stream query processing

system. Second, our incremental query re-optimization solutions are a natural fit for a stream

query processing system like Aspen. In order to achieve the full potential of a cost-based

query optimizer over data stream sources, an adaptive and incremental query optimizer

is optimal. Third, Aspen features many other novelties, such as a heuristic-based feder-

ated query optimizer over stream and sensor subsystems, a uniform data access layer, and

graphical stream-result display. These contributions complement the rest of the thesis in a
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way that help the readers understand how to design and implement an end-to-end stream

query processing system. Aspen is also built upon stream and sensor query engines as

part of other prototypes developed from our collaborators, such as [75, 76, 92].

This dissertation is organized as follows. We first provide the background materials

and fundamental concepts behind the thesis in Chapter 2, in topics like query optimiza-

tion, query execution and Datalog. Then we address the central topic of the thesis: incre-

mental processing of update streams in the following three chapters. In Chapter 3, we discuss

our approaches to the incremental execution of recursive queries over update streams. In

Chapter 4, we introduce our approaches to address the incremental query re-optimization,

in a novel declarative fashion. We then apply our techniques into the more traditional

procedural-based query optimization framework and discuss our approaches to incre-

mental query re-optimization in a procedural fashion in Chapter 5. In Chapter 6, we de-

scribe our prototype system built as part of this thesis, Aspen, and describe SmartCIS as

a case study to demonstrate how we apply the approaches introduced in the thesis to real-

life applications. We then discuss the related work in Chapter 7. Finally, in Chapter 8, we

summarize the thesis and present several future directions.

Chapter 3 extends our previous papers [66, 67]. Chapter 4 and Chapter 5 provide

the full extended analysis and experimental results of our paper [61]. Chapter 6 is based

upon the following papers ( [62, 64]) which features the design and implementation of

our prototype system Aspen with a case study of SmartCIS.



Chapter 2

Background

In this chapter, we illustrate several background topics to this dissertation: query opti-

mization, query execution, and Datalog.

2.1 Query Optimization

In this section, we briefly review query optimization of SQL queries, as typically done in

traditional database management systems. Query optimization is the main topic in data

management systems because a query optimizer, together with a query execution engine,

are the two key components of the core of a data management system. Interesting readers

can refer to [25] for a survey on this topic.

Suppose we have an example query as follows.

select *

from A,B,C

where A.x = B.x and A.y = C.y

This query is a three-way join over relations A, B, and C. There are two different

join predicates in the “where” clause, and normally two relations are joined first as a

binary join, and the result of the first join is then joined with the third relation, also as

a binary join. An SQL query over a relational database can be implemented in various

ways. Figure 2 shows one possible physical plan to implement this query. An abstracted

representation of such an execution plan is a physical operator tree. The nodes represent

physical operators and the edges represent the data flow among the physical operators.

18
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Figure 2: A physical operator tree (plan) for the example query

Each operator takes one or more data streams as input, and outputs a data stream. Ex-

amples of physical operators shown on the graph include sort, table scan, index scan,

index nested-loop join, and sort-merge join. These physical operators do not necessarily

have an one-to-one mapping with their corresponding logical operators (typically joins,

selections, projects, aggregates, and unions). For example, “sort” has no corresponding

logical operator, hence a logical expression with a specific physical sort order associated

with it is usually called an “interesting order”. The execution engine is responsible for

implementing this physical operator tree that results in generating answers to the query,

and in the next section we will review query processing techniques in general.

For complex queries over multiple tables and indexes, there may be millions of dif-

ferent ways to implement a query: each physical operator tree may have different orders

of combining the tables (yet logically equivalent subject to rewriting rules), different join

methods such as hash joins or nested-loop joins, or different interesting orders. Choosing

the right method for processing a query over large workloads can produce a query result

in seconds, whereas choosing a wrong method can result in queries running for hours, or

even days. Query optimization aims at finding the most efficient physical operator tree

according to the cost etimations, for the execution engine to process. Query optimization

in general can be viewed as a search problem, in particular, it needs:
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• A search space of candidate plans (or physical operator trees).

• A cost estimator to assign each candidate plan a cost, which is an estimation of the

needed resources to execute a plan, e.g., CPU, I/O, memory, bandwidth, etc.

• An enumeration algorithm to search through the candidate space, and find a query

plan with the minimal cost. Optionally, the numeration algorithm can be combined

with a pruning mechanism to shrink the size of the search space.

A desirable optimizer should meet the following criteria: 1) the search space includes

plans that have the lowest cost; 2) the cost estimation is accurate, and 3) the enumeration al-

gorithm is efficient. It is an nontrivial task to meet these criteria, hence query optimization

has been a hot research area since the 80’s.

Here we briefly review two different query optimization architectures that are practi-

cally successful over the last decades. Specifically, we call them System R-style bottom-up

dynamic programming optimizers [47, 86] (System R was prototyped at IBM Research

Almaden and later used in IBM DB2 and Oracle), and Volcano-style top-down memoiza-

tion with branch-and-bound pruning optimizers [38, 39] (used in Microsoft SQL Server).

Note that we only review full-fledged cost-based query optimizers here: heuristics for

a certain subset of the search space could be applied, but in general transformations do

not necessarily reduce costs and therefore must be applied in a cost-based manner by the

enumeration algorithm to ensure consideration of low cost plans. Other randomized or

progressive query optimization techniques [72] have also been proposed but they are not

included in our discussions here.

Bottom-up style optimizers: bottom-up search with dynamic programming [47, 86].

We first review Bottom-up style optimization frameworks that feature bottom-up plan

enumeration with dynamic programming. We review the design features of these opti-

mizers with respect to the three angles outlined above: search space, cost estimation, and

enumeration/pruning algorithm.

• Search space: In a query optimizer, the original search space of a SPJ query corre-

sponds to linear sequence of join operators, e.g., ((A 1 B) 1 C) 1 D, rather than

“bushy” plans, e.g., (A 1 B) 1 (C 1 D), in sacrificing the possibility of losing
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cost-efficient plans to trade off the efficiency of query optimization itself. These op-

timizers utilize a rule-based query rewrite transformation module before carrying

out cost-based optimization. Query rewrite translates the original query graph into

a semantically equivalent query graph using expansion rules [68], and rewrite rules

include, for example, logically equivalent algebraic expressions subject to commu-

tativity or associativity of algebraic operators. Next, logical operators are extended

into physical operators to enlarge the search space in order for the system to find the

most efficient implementation in an extensible manner. For example, a join operator

can use either a nested loop or a sort-merge implementation, and a scan operator

can use either an index scan or a sequential table scan. There are also physical

operators that may not correspond to any logical operator, e.g., a sort operator is

a physical operator. These are often referred to as physical properties. Indeed, one

of the most important design feature of System R is the consideration of interesting

orders, that is, the combination of logical operator and physical properties form the

characteristics of a candidate plan in the search space.

• Cost estimation: The cost model used by a query optimizer assigns an estimated

cost to each partial or complete plan in the search space. Usually a cost model is

a linear combination of intermediate result sizes (cardinalities) weighed by factors

such as CPU cost, I/O cost, and so forth. Cost models for distributed plans also take

into account the communication costs for transferring data. The cost model usually

relies on: 1) a set of statistics maintained on relations and indexes, e.g., number of

data pages in a relation, number of distinct values in a column, possibly in data

structures like histograms; 2) formulas to estimate selectivity of predicates and to

project the size of the output data stream for every operator node, for example,

the size of the output of a join is estimated by taking the product of the sizes of

the two relations and then applying the joint selectivity of all applicable predicates;

and 3) formulas to estimate the CPU and I/O costs of query execution for every

operator. These formulas take into account the statistical properties of its input data

streams, existing access methods over the input data streams, and any available

interesting orders on the data stream (e.g., if a data stream is ordered, then the cost



22 CHAPTER 2. BACKGROUND

of a sort-merge join on that stream may be significantly reduced). The cost model

then uses these statistics and formulas to compute the following information in a

bottom-up fashion for operators in a plan: 1) the size of the data stream (cardinality)

represented by the output of the operator node; 2) any ordering of tuples created

by the output data stream of the operator node; and 3) estimated execution cost for

the operator (and the cumulative costs of the partial plan).

• Enumeration/Pruning algorithm: An enumeration algorithm in a bottom-up style

query optimizer is analogous to backward-chaining enumeration in the AI litera-

tures. Plans are enumerated bottom-up in a stratified way. This stratification starts

with enumerating leaf-level access plans, and then enumerates all intermediate

plans for combining two of these table access plans, and then three plans, and

so forth, until all the plans have been enumerated that produce the overall query

results for the original query. These optimizers use dynamic programming to prune

the search space, based on the principle of optimality. That is, in order to obtain an

optimal plan for the original query, it suffices to consider only the optimal plans for

subexpressions. As the enumeration algorithm is performed in a bottom-up order,

we can safely discard suboptimal plans for the subexpressions. The dynamic pro-

gramming approach reduces the search space from O(n!) to O(n2n−1) where n is the

number of binary joins in the plan, yet the search problem still has an exponential

upper bound.

Top-down style optimizers: top-down search with branch-and-bound pruning [38, 39].

We then review top-down style optimization frameworks (e.g., Volcano, Cascades, Ex-

odus) [39] that feature top-down goal-directed search with branch-and-bound pruning.

Note that here we only review high-level designs and their specific differences to the pre-

vious bottom-up style optimizers. We discuss them in three angles: search space, cost

estimation and enumeration/pruning algorithms.

• Search space: These top-down optimizers universally use rules to represent the

knowledge of the search space. Two kinds of rules are used [38, 39]: the trans-

formation rules map an algebraic expression into another, and the implementation
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rules map an algebraic expression into an operator tree. In comparison to rewriting

rules in bottom-up-style optimizers, 1) these systems do not use two distinct op-

timization phases because all transformations are algebraic and cost-based; 2) the

mapping from algebraic to physical operators occurs in a single step; 3) most impor-

tantly, instead of applying rules in a forward chaining fashion (e.g., in the Starburst

query rewrite phase [47]), Volcano-style optimizers perform goal-driven application

of rules. In regards to linear plans or bushy plans, Volcano-style optimizers consider

both flexibly. They consider physical properties as well.

• Cost estimation: Similar to bottom-up style optimizers, cost estimations of top-

down style optimizers have to be performed in a bottom-up fashion, because the

cumulative cost of the plan depends on the costs of sub-plans and their statistics

too.

• Enumeration/Pruning algorithm: Top-down style optimizers achieve dynamic pro-

gramming in a top-down fashion through memoization. When presented with an

optimization task, they check whether the query expression has already been ac-

complished by looking up its logical and physical properties in the table of plans

(memoization table) that have been optimized in the past. Otherwise, it applies a

logical transformation rule, an implementation rule, or uses an enforcer to modify

properties of the data stream. In addition, it uses branch-and-bounding to prune the

search space, that is, if a sub-plan exceeds the (loose) bound for its representing

subexpression (which is normally derived from parents and sibling expressions),

it can be safely pruned early and its subtrees do not have to be enumerated. The

effectiveness of pruning depends on the top-down search order, and on how fast it

reaches the best plan (and hence can use this to prune others effectively). However,

pruning is embedded in enumeration and hence has to be in a specific top-down

order as well.

Both bottom-up and top-down optimizers achieve the goal of guaranteeing the dis-

covery of the optimal plan with respect to a cost model. The quality of the plan does

not depend on which of these search methods is used, but rather on the transformation
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rules available for generating plans, as well as the correctness of cost models. Top-down

optimizers have an advantage, in that they can prune the search space early with branch-

and-bounding, but the effectiveness of pruning depends on the search order, and on how

fast it reaches the best plan for a given workload. Hence, a certain sub-plan may be visited

many times, although the cost will only be computed once. Bottom-up optimizers prune

the search space through dynamic programming (which is pioneered by System R [86]),

hence they can discard suboptimal plans, yet they lose the flexibility of branch-and-bound

pruning because of backward-chaining application of rules.

2.2 Query Execution

Query execution is the process of actually generating the results of a physical plan chosen

by the query optimizer. The goal of query processing/query execution is to compute the

plan accurately in the least amount of time. In data stream scenarios, the goal of a query

execution engine is often to reduce the total latency of delivery of query results (some-

times considering peak or average latency as well); for query execution over distributed

machines, the latency of query execution may contain network latency and so forth. In

this section, we briefly review standard query execution operators in traditional database

systems and their extensions to pipelined stream-processing scenarios and distributed query

execution scenarios.

Standard operators. A static workload processing model is usually a pull-based model,

where consumer operators pull the data from producer operators. Generally, a physical

operator tree of SQL queries may contain physical operators like scan, join, select, project,

function, aggregate, and sort. We discuss each one briefly as follows.

• Scan: A scan operator reads data from the input relation from physical storage.

There are many physical scan access methods, such as table scan, indexed scan, and

so forth. For example, one can read the entire relation from memory, or build an

index and read from a B+ tree or bitmap structure which speeds up retrieval.

• Join: A join operator finds, for each distinct value of the join attribute, the set of

tuples in each relation that display that value, and then combine the set of matched
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tuples from both relations. A binary join operator could have many physical imple-

mentations. The most widely used ones are nested-loop join, sort-merge join and

hash join.

A nested-loop join operator essentially joins two relations R and S by making two

nested loops as follows: for each tuple r in R, and for each tuple s in S, if r and s

satisfy the join condition, then output the tuple (r, s). This requires exactly |R||S|

I/O operations, and |R||S|σ (where σ is the selectivity of the join predicate) join

operations. Advanced approaches to reduce block transfers and disk seeks include

enumerating blocks, building an index on the outer relation, and so forth.

A sort-merge join operator first sorts both relations by the join attribute, and then

merges the results according to the sort order. Hence, the most expensive part is

usually the sorting stage rather than the merging stage.

A hash join operator assumes that the join predicate is an equality predicate (range,

comparison or inequality predicates could not use this scheme). There are many

hash join implementations, here we briefly present a classical hash inner-join of two

relations: first prepare a hash table for the smaller relation in the memory. The

hash table entries consist of the join attribute and its row. Because the hash table is

accessed by applying a hash function to the join attribute, it will be much quicker

to find a given join attribute’s rows by using this hash table than by scanning the

original relation. Once the hash table is built, it scans the bigger relation and finds

the relevant rows from the smaller relation by looking into its hash table. The first

phase is usually called the “build” phase, and the second is called the “probe”

phase. Finally, the matched tuples are combined.

• Select: A selection operator applies a selection predicate on its input relation.

For example, the predicate could be an equality predicate, comparison predicate,

inequality predicate and so forth.

• Project: A project operator applies a projection of the input relation on a subset of

its attributes. Essentially projection discards certain attributes and retain the rest.
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• Function: A function operator applies a function to the input relation. Gener-

ally, the functions may contain user-defined functions and built-in functions (e.g.,

multiplication or subtraction). Sometimes only scalar functions are permitted, e.g.,

arithmetic or string concatenation.

• Aggregate: An aggregate operator computes the aggregated value of an attribute

of tuples subject to the same group-by columns. The operator must know the ag-

gregate column, the group-by columns and the aggregate function. There are many

aggregate operator implementations, blocking or non-blocking, hash based or non-

hash based. A blocking aggregate operator would read the entire input before

computing an aggregate; however, for certain aggregates such as count, sum, max,

and min, a non-blocking aggregate is sufficient by allowing the update of outputs. A

hash aggregate operator essentially computes a hash value of the group-by columns

in order to facilitate grouping and merging.

Pipelined stream processing operators. There are two important aspects of extending

traditional query processing operators to work in a streaming scenario. First, as data

may arrive after the query has been partially executed, in order to produce real-time

results, the query execution engine needs to adopt a pipelined push-based architecture, i.e.,

partial results could be returned before receiving more input streams, and results are

pushed from producers (lower-level operators) to consumers (higher-level operators) in

the physical operator tree. Second, as data streams may contain insertions (or arrivals)

and deletions (or expirations), every operator needs to extend its data model to support

insertions and deletions. Here, we briefly review a popular streaming join operator, the

pipelined-hash-join operator, as an extension to its traditional counterpart, the hash-join

operator.

A pipelined-hash-join operator is one of the few viable join implementations that

is capable of delivering real-time results over stream workloads. Suppose one needs

to perform a pipelined-hash-join of relations R and S: R 1 S. The operator works as

follows. Whenever a tuple of R arrives as input, it first stores the tuple in an in-memory

hash table, then probes it against any tuples in the hash table of S that match the join

key, and then outputs the joined results of the matches. Similarly for S, it does the same
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probe. This is a hybrid-hash-join model in that both relations build their hash tables

for probing. Usually the hash table of each relation stores the tuples as a map from a

hashed value of joined keys to a set of tuples (with the same hashed key), in order to

facilitate probing from the other side. The relational algebra of binary joins under set

semantics permits pipelining and hash-based schemes, and the only blocking operation

in this process is the retrieval and update of hash tables. However, in order to extend it

to support insertion/deletion streams, one needs to consider how an insertion/deletion

tuple probes against the hash table from the other relation, how to update its own hash

table when receiving an insertion/deletion tuple, and how to generate output tuples with

the correct semantics of insertion/deletion values. Usually this requires permission of

outputting multiple revision tuples to amend an initial output result.

Similarly, there exists extensions of traditional operators like functions and aggre-

gates in the streaming scenarios. One needs to ensure that non-blocking semantics is

maintained, revisions of outputs are permitted, and insertions and deletions are handled

in correct semantics.

Partitioning and distributed operators. In principle, parallel query execution algorithms

extend traditional sequential algorithms with multiple threads/cores/machines execut-

ing different operations or executing the same operation over partitioned data. Here,

we mainly discuss the latter case as the relational algebra of set semantics has the nice

property of permitting partitioning of stored data and intermediate results. In this case,

every processing machine (or thread) executes the same operation (plan) on horizontally

partitioned data, i.e., each machine operates a portion of the input, intermediate results

and outputs.

The commonly-used partitioning methods are random, round-robin, range and hash-

based partitioning. Random and round-robin partitioning permit perfect load balancing

but do not exploit joined properties or duplication elimination and their importance in

relational algebra operations such as joins. Range partitioning assigns key ranges (of the

partitioning columns) to processing machines. Hash partitioning applies a hash function

to determine processing machines. Partitioning of stored data usually determines where

initial query operations execute, including selection and projection as well as prelimi-
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nary stages of sorting, duplication elimination, and “group by” operations. For binary

operations, “co-location” of the two data inputs permits local execution. These binary

operations include inner and outer joins, semi-joins with “exists” nested queries, and set

operations such as intersection, union and difference. If co-location and local execution

is not possible, the input data might need to be re-partitioned or rehashed. In most cases,

both inputs are partitioned based on the joined attributes in the join operator’s equality

predicate. If one input table is much smaller than the other, it may be more efficient to

broadcast the small table to all machines and join the partitioned large table on every

machine. The essence of data partitioning strategies for binary joins is to ensure that

each pair of input rows that may contribute to the join result “meets” exactly once at a

processing machine.

Generally, one can extend a traditional query execution engine to distributed operators

by enabling 1) a horizontal data partitioning scheme, 2) partitioning strategies to ensure

correct and non-duplicated results, 3) an extension of logical operators to include re-

hashing or re-partitioning operators when co-location and local execution is not possible.

2.3 Datalog

In this section, we review the basic background materials on Datalog. Interesting readers

may refer to the excellent book [3] for related materials.

An important limitation of relational calculus or relational algebra (and hence ba-

sic functionalities of SQL) is that it cannot express queries involving recursion, e.g.,

paths, transitive closures, etc, natively in the query language. Datalog extends conjunc-

tive queries with recursion. A Datalog program consists of a set of rules, each of which

is a conjunctive query. Datalog is one of the many languages in logic programming and

inherits many properties from another popular logic programming language, Prolog. One

of the most important features of Datalog is its declarative nature, compared to the more

operational flavor of other programming paradigms, like imperative, object-oriented or

functional languages.

Datalog Syntax. Traditionally, the syntax of Datalog follows that of the logic program-

ming language Prolog, with the exception that only constants and relational symbols are
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allowed, i.e., there is no function symbol. Recursion is introduced by allowing the same

relational symbol in both the heads and the bodies of the rules.

Normally, a Datalog rule has the form:

T(x) :- q(x,y)

Suppose we fix a relational schema T. A Datalog rule has two sides connected by

a symbol :-. The left-hand side is called the head of the rule, which corresponds to the

output of the query; the right-hand side is called the body of the rule; and :- conveys

the fact that each rule is closely related to a logical implication. T is a relation and q

is a conjunction of relational atoms, in this case x and y. x = x1, · · · , xn is a tuple of

distinguished variables, and y = y1, · · · , yn is a tuple of existentially quantified variables. All

distinguished variables in the head must appear in at least one atom in the body.

A Datalog program is a finite set of Datalog rules over the same schema. For example,

suppose Link is a relation representing edges of a graph, the following Datalog program

computes the transitive closure of links in the output predicate Reachable:

Reachable(x,y) :- Link(x,y)

Reachable(x,y) :- Link(x,z), Reachable(z,y)

Relation symbols (a.k.a. predicates) that appear only in the body of the program’s

rules are called edb predicates (such as Link), while those that appear in the head of some

rules in the program are called idb predicates (such as Reachable). A Datalog program

defines a Datalog query when one of the idb predicates is specified as the output.

Semantics. There are three different yet equivalent approaches to define the semantics

of a Datalog program, namely, model-theoretic, proof-theoretic and fixpoint semantics [3].

In the model-theoretic semantics of Datalog, each rule is associated with a first-order

sentence as follows. First recall that as a conjunctive query, T(x) :- q(x, y) corresponds

to the first-order query T ≡ {x|∃yq(x, y)}. To this end, one can interpret the Datalog

rule as the first-order sentence ∀x(∃y, q(x, y) → T(x)). Such sentence is a definite Horn

clause and a Datalog program P may correspond to a set of Horn clauses ΣP. Let I be

an input database instance, in this case an instance of the schema consisting only of edb

predicates. A model of P is an instance of the entire schema (both edb and idb predicates)
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which coincides with I on the edb predicates and which satisfies Σp. However, there can

be infinitely many instances that satisfy a given program and instance of the edb relations.

Thus, logic programming, and consequently Datalog, uses a minimal model, i.e., one such

that no subset of it is also a model. This is usually understood as a manifestation of the

closed world assumption: no facts are assumed other than needed. It can be shown that for

Datalog, there is exactly one minimal model, which is also the minimum model.

In the proof-theoretic approach of defining the semantics of Datalog, note that a tuple

of constants in a relation can be seen as the head of a rule with an empty body. Such

rules are called facts. As previously seen, Datalog rules can be associated with first-order

sentences. Facts correspond to variable-free relational atoms. The main idea of proof-

theoretic semantics is that: the answer of a Datalog program consists of the set of facts

that can be proven from the edb facts using the rules of the program as proof rules. As rule

instantiation and application corresponds to standard first-order inference rules, the proof

trees are actually rearrangements of the first-order proof. This connects Datalog, through

logic programming to automated theorem-proving. One technique for constructing proof

is performed in a top-down fashion (i.e., starting from the fact to be proven), called SLD

resolution. Alternatively, one can start from the base data and apply rules on them to

create proof trees for new facts in a bottom-up fashion.

The third approach is an operational semantics for Datalog programs stemming from

the fixpoint theory. The main idea is to use the rules of the Datalog program to define the

immediate consequence operator, which maps idb instances to idb instances. Interestingly,

the immediate consequence operator can be expressed in the SPCU (selection, projection,

cross-product, union, but no difference) fragment of the relational algebra, enriched with

edb predicates. For example, the immediate consequence operator F for the transitive

closure above is: F = Link 1 Reachable ∪ Link. One way to think about this operator

is that it applies rules on existing facts to get new facts according to the head of those

rules. In general, for a recursive Datalog program, the same operator can be repeatedly

applied on facts produced by previous applications to it. It is easy to see that the imme-

diate consequence operator is monotone. Also it will not introduce any constants beyond

those in the edb instances or in the heads of the rules. This means that any idb instance

constructed by iterations of the immediate consequence operator is over the active do-
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main of the program and the edb instance. This active domain is finite, so there are only

finitely many possible idb instances. They are easily seen to form a finite poset ordered

by inclusion. Here one of several technical variants of the fixpoint theory can be put to

work. The bottom line is that the immediate consequence operator has a least fixpoint

which is an idb instance and which is the semantics of the program. It can be shown that

this idb instance is the same as the one in the minimal model semantics and the one in

the proof tree semantics. It can also be shown that this least fixpoint can be reached after

finite many iterations of the immediate consequence operator.

Evaluation and Optimization of Datalog. Several techniques have been proposed for the

efficient evaluation of Datalog programs. They are usually separated into two classes:

top-down and bottom-up evaluations.

The simplest bottom-up evaluation strategy, also called naı̈ve evaluation, is based di-

rectly on the fixpoint Datalog semantics. The main idea is to repeatedly apply the imme-

diate consequence operator on results of all previous steps (starting from the base data

in the first step) until a step does not yield any new data. It is clear that naı̈ve evaluation

involves a lot of redundant computation, since every step recomputes all facts already

computed in previous steps. Seminaı̈ve evaluation tries to overcome this deficiency, by

producing at every step only facts that can be derived using at least one of the new facts

produced in the last step (as opposed to all previous steps). In some cases, bottom-up

evaluation can produce a lot of “intermediate” tuples that are not used in derivation of

any facts in the output relation of the query.

The top-down approach avoids the redundancy problem by using heuristic techniques

to focus on relevant facts, i.e., ones that appear in some proof trees of a query answer,

especially for Datalog programs with constants appearing in some atoms. The most

common approach in this direction is called the query-subquery (QSQ) framework. QSQ

generalizes the SLD resolution technique, on which the proof-theoretic semantics are

based, by applying it in sets, as opposed to individual tuples, as well as using constants

to select only relevant tuples as early as possible. In particular, if an atom of an idb

relation appears in the body of a rule with a constant for some attribute, this constant

can be pushed to rules producing this idb. Similarly, “sideways information passing”
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is used to pass constant binding information between atoms in the body of the same

rule. Such constant bindings are expressed using adornments or binding patterns on

atoms in the rules, to indicate which attributes are bound to some constant and which

are free. Magic sets techniques simulate the pushing of constants and selections that

happens in top-down evaluation to optimize bottom-up evaluation. In particular, they

rewrite the original Datalog program into a new program whose seminaı̈ve bottom-up

evaluation produces the same answers as the original one, as well as producing the same

intermediate results as the top-down approaches such as QSQ.



Chapter 3

Incremental Processing of

Connectivity over Dynamic Networks

As data management systems are handling increasingly distributed and dynamic data,

the line between a network and a query processor is blurring. In a plethora of emerging

applications, data originates at a variety of nodes and is frequently updated: routing

tables in a peer-to-peer overlay network [13] or in a declarative networking system [28, 70],

sensors embedded in an environment [32, 71], monitors within clusters at geographically

distributed hosting sites [51, 79], data producers in large-scale distributed scientific data

integration [40]. It is often natural to express distributed data acquisition, integration, and

processing for these settings using declarative queries — and in some cases to compute

and incrementally maintain the results of these queries, e.g., in the form of a routing table,

an activity log, or a status display.

The queries of interest in this domain are quite different from OLAP/OLTP queries

that exemplify centralized DBMS query processing. We consider two main settings.

Declarative networking. In declarative networking [69, 70], an extended variant of dat-

alog has been used to manage the state in routing tables — and thus to control how

messages are forwarded through the network. Perhaps the central task in this work is to

compute paths available through multi-hop connectivity, based on information in neigh-

boring routers’ tables. It has been shown that recursive path queries, used to determine

reachability and cost, can express conventional and new network protocols in a declara-

33
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tive way.

Sensor networks. Declarative, database-style query systems have also been shown to

be effective in the sensor realm [32, 71], primarily for simple aggregation queries over

base streams. Outside the database community, a variety of macro-programming lan-

guages [96, 98] have been proposed as alternatives, which include features like regions

and paths computations. Declarative languages bring a new abstraction perspective to the

problems to enable data independence, however, the query languages and runtime sys-

tems must be extended to match the functionality of macro-programming, particularly

with respect to computing regions and paths.

We will provide a number of detailed use cases and declarative queries for regions

and paths in these two domains. The use cases are heavily reliant on recursive computa-

tions, which must be performed over distributed data that is being frequently updated

in a stream fashion (e.g., sensor state and router links are dynamic properties that must

be constantly refreshed). In most of such applications, data streams are generated from

distributed devices in a streaming fashion (e.g., from geographically distributed sensor

devices instrumented in the environment), and in a lot of scenarios, centralized monitor-

ing and maintenance is prohibitively expensive in that it requires all the devices to sync

the data over the network continuously to be able to maintain the global status. Hence, in

these applications, a more realistic assumption is a decentralized model, where each node

only maintains the local information (e.g., the node’s own connectivity to other devices)

and can perform some computations on its own.

The majority of past work on recursive queries [15, 16] has focused on recursion in the

context of centralized deductive databases, and some aspects of that work have ultimately

been incorporated into the SQL-99 standard and today’s commercial databases. However,

recursion is relatively uncommon in traditional database applications, and hence little

work has been done to extend this work to a distributed streaming setting. We argue that

the advent of declarative querying over networks has made recursion of fundamental

interest: it is at the core of the main query abstractions we need in a network, namely

regions, reachability, shortest paths, and transitive associations.

To this point, only specializations of recursive queries have been studied in networks.
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In the sensor domain, algorithms have been proposed for computing regions and neigh-

borhoods [52, 96, 98], but these are limited to situations in which data comes from phys-

ically contiguous devices, and computation is relatively simple. In the declarative net-

working domain, a semantics has been defined [70] that closely matches router behavior,

but it is not formalized, and hence the solution does not generalize. Furthermore, lit-

tle consideration has been given to the problem of incremental computation of results in

response to data arrival, expiration, and deletion.

In this chapter, we show how to compute and incrementally maintain recursive views

over data streams, in support of networked applications. In contrast to previous mainte-

nance strategies for recursive views [45], our approach emphasizes minimizing the propaga-

tion of state — both across the network (which is vital to reduce communication overhead)

and inside the query plan (which reduces computational cost). We make the following

contributions:

• We develop a novel, compact absorption provenance, which enables us to directly detect

when view tuples are no longer derivable and should be removed.

• We propose a MinShip operator that reduces the number of times that tuples annotated

with provenance need to be propagated across the network and in the query.

• We develop heuristics to ensure that the absorption provenance structure, maintained in

a Binary Decision Diagram (BDD), remains compact.

• We generalize aggregate selection to handle streams of insertions and deletions, in order

to reduce the propagation of tuples that do not contribute to the answer.

• We evaluate our schemes within a distributed query processor, and experimentally vali-

date their performance in real distributed settings, with realistic Internet topologies and

simulated sensor data.

Section 3.1 presents use cases for declarative recursive views. In Section 3.2 we discuss

the distributed query processing settings we address. Sections 3.3 through 3.6 discuss

our main contributions: absorption provenance, the MinShip operator, ensuring compact
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provenance, and our extended version of aggregate selection. Finally, we present experi-

mental validation in Section 3.7, and conclude and discuss future work in Section 3.8.

3.1 Distributed Recursive View Use Cases

We motivate our work with several examples that frame network monitoring function-

alities as distributed recursive views. This is not intended to be an exhaustive coverage

of the possibilities of our techniques, but rather an illustration of the ease with which

distributed recursive queries can be used.

Throughout this chapter, we assume a model in which logical relations describe state

horizontally partitioned across many nodes, as in declarative networking [69]. In our

examples, we shall assume the existence of a relation link(src,dst), which represents all

router link state in the network. Such state is partitioned according to some key attribute;

unless otherwise specified, we adopt the convention that a relation is partitioned based on

the value of its first attribute (src), which may (depending on the setting) directly specify

an IP address at which the data is located, or a logical address like a DNS name or a key

in a content-addressable network [13].

Network reachability. The textbook example of a recursive query is graph transitive

closure, which can be used to compute network reachability. Assume the query processor

at node X has access to X’s routing table. Let a tuple link(X,Y) denote the presence of a

link between node X and its neighbor Y. Then the following query computes all pairs of

nodes that can reach each other.

with recursive reachable(src,dst) as

( select src,dst

from link

union

select link.src, reachable.dst

from link, reachable

where link.dst = reachable.src)

The techniques of this chapter are agnostic as to the query language; we could ex-

press all queries in datalog, as in [69]. However, since SQL has a more familiar syntax, we

present our examples using SQL-99’s recursive query syntax. (We assume SQL UNIONs
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with set semantics, and that a query executes until it reaches fixpoint. Not all SQL im-

plementations support these features.) The SQL query (view) above takes base data from

the link table, then recursively joins link with its current contents to generate a transitive

closure of links. Note that since all tables are originally partitioned based on the src, com-

puting the view requires a distributed join that sends link tuples to nodes based on their

dest attributes, who join with reachable.src.

There are many potential enhancements to this query, e.g., to compute reachable pairs

within a radius, or to find cycles.

Network shortest path. We next consider how to compute the shortest path between each

pair of nodes, in terms of the hop count (number of links) between the nodes:

with recursive path(src,dst,vec,length) as

( select src,dst,src ||’.’|| dst,1 from link

union

select link.src,path.dst,link.src ||’.’|| vec,

length+1

from link, path where link.dst = path.src)

create view minHops(src,dst,length) as

(select src,dst,min(length) from path

group by src,dst)

create view shortestPath(src,dst,vec,length) as

(select P.src,P.dst,vec,P.length

from path P, minHops H where P.src = H.src

and P.dst = H.dst and P.length = H.length)

This represents the composition of three views. The path recursive view is similar to

the previous reachable query, with additional computation of the path length, as well as

the path itself. The other (non-recursive) views minHops and shortestPath determine the

length of the shortest path, and the set of paths with that length, respectively.

Network highest-bandwidth path. We can similarly define the highest bandwidth path:

instead of counting the number of links, we instead set a path’s bandwidth to be the

minimum bandwidth along any link; and then find, for any pair of endpoints, the path

with maximum bandwidth.
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Distributed query
computation nodes

VIEWS:

Reachability

Shortest path

Contiguous 
region

Figure 3: Basic architecture: query processing nodes are placed in a number of sub-
networks. Each collects state information about its sub-network, and the nodes share
state to compute distributed recursive views such as shortest paths across the network.

Sensing contiguous regions. In addition to querying the graph topology itself, dis-

tributed recursive queries can be used to detect regions of neighboring nodes that have

correlated activity. One example is a horizon query, where a node computes a property

of nodes within a bounded number of hops of itself. A second example (which we show

and experimentally evaluate in Section 3.7) starts with a series of reference nodes, and

computes contiguous regions of triggered sensors near these nodes. This is useful in

sensor networks, e.g., in order to determine the average temperature of a fire.

Other example queries. The routing resilience query counts the number of paths (alternate

routes) between any two nodes. Another class of queries examines multicast or aggre-

gation trees constructed within the network. A query could compute the height of each

subtree and store this height at the subtree root. Alternatively, we might query for the

imbalance in the tree – the difference in height between the lowest and highest leaf node.

Finally, a query could identify all the nodes at each level of the tree (referred to as the

“same generation” query in the datalog literature).

3.2 Execution Model and Motivations for New Distributed

Recursive Techniques

We consider techniques applicable to a variety of networked environments, and we make

few assumptions about our execution environment. We assume that our networked query

processor executes across a number of distributed nodes in a network; in addition, we

allow for the possibility that there exist other legacy nodes that may not run the query
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processor (as indicated in Figure 3). In this flexible architecture, the query processing

nodes will serve as proxy nodes storing state information (connectivity, sensor status, etc)

about devices on their sub-networks: IP routers, overlay nodes, sensors, devices, etc.

Individual sub-networks may have a variety of types of link-layers (wired IP, wire-

less IP with a single base station, multi-hop wireless/mesh, or tree-structured sensor net-

works). They may even represent different autonomous systems on the Internet backbone,

or different locations within a multi-site organization. Through polling, notifications, or

snooping, our distributed query processing nodes can acquire detailed information about

these sub-networks. The query processing nodes each maintain a horizontal partition of

one or more views about the overall network state: cross-sub-network shortest paths,

regions that may span physically neighboring sub-networks (e.g., a fire in a multi-story

building), etc. During operation, the nodes may exchange state with one another, either

1) to partition state across the nodes according to keys or ranges, or 2) to compute joins

or recursive queries.

Importantly, in a volatile environment such as a network, both sensed state and con-

nectivity will frequently change. Hence a major task will be to maintain the state of

the views, as base data (sensor readings, individual links) are added or deleted, as dis-

tributed state ages beyond a time-to-live and gets expired, and as the effects of deletions

or expirations get propagated to derived data.

3.2.1 Query Execution Model

Our query execution model is a distributed, continuous stream computation, over a set

of horizontally partitioned base relations that are updated constantly. We assume that all

communication among nodes is carried out using a reliable in-order delivery mechanism.

We also assume that our goal is to compute and update set relations, not bag relations:

we stop computing recursive results when we reach a fixpoint.

In our model, inputs to a query are streams of insertions or deletions over the base

data. Hence, we process more general update streams rather than tuple streams (with

annotation of INS/DEL). Sliding windows, commonly used in stream processing, can be

used to process soft-state [82] data, where the time-based window size essentially specifies
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the useful lifetime of base tuples. Thus, a base tuple that results from an insertion may

receive an associated timeout, after which the tuple gets deleted. When this happens,

the derived tuples that depend on the base tuples have to be deleted as well. Due to the

needs of network state management, we consider timeouts or windows to be specified

over base data only, not derived tuples.

The problem we are trying to solve is incremental view maintenance of recursive

queries over update streams. We aim to compute the results efficiently, and optimize the

propagation of state — both across the network (which is vital to reduce communication

overhead) and inside the query plan (which reduces computational cost). The types of

recursive queries we consider in this work are 1) linear-recursive queries with at most one

idb subgoal in the body of any rule, where no mutual recursion exists; and 2) aggregate

queries over linear-recursive views, where the aggregates are the last operators applied.

In this regard, the expressive power of the query languages we support in this work is

linear-recursive Datalog program, or equivalently, SPJU (Selection-Projection-Join-Union)

queries with linear recursion, and with or without aggregates on the top. Most of the

recursive queries in our motivating applications fall into these categories (e.g., transitive-

closure, reachability, shortest-path queries), and [55] shows how to convert any linear

Datalog program into a transitive closure plus small pieces for initialization and for ex-

tracting the result. Our goal in this work is thus to address the problem of incrementally

maintaining the views over update streams, where the views are defined as linear-recursive

queries or aggregate queries over them.

3.2.2 Motivation for New Distributed Recursive Techniques

To illustrate the need for our approach, we consider an example. Assume our goal is to

maintain, at every node, the set of all nodes reachable from this node. Refer to Figure 4,

which shows a network consisting of three nodes and four links (visualized in Figure 5).

Each node “knows” its direct neighbors: we represent these in the link table, consisting of

four entries link (A,B), link (B,C), link (C,A), and link (C,B). As in our previous examples,

the link table is partitioned such that all values with source src are stored on node src.

In our simple example, there is a direct correspondence between src value and location,
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reachable(src,dst)
(derivation step 1)

tuple at→ to pv
(A, B) A p1
(B, C) B p2
(C, A) C p3
(C, B) C p4
(A, C) B→ A p1 ∧ p2
(B, A) C→ B p2 ∧ p3
(B, B) C→ B p2 ∧ p4
(C, B) A→ C p1 ∧ p3
(C, C) B→ C p2 ∧ p4

reachable(src,dst)
(derivation step 3)

tuple at→ to pv
(A, A) A p1 ∧ p2 ∧ p3
(A, B) A p1
(A, C) A p1 ∧ p2
(B, A) B p2 ∧ p3
(B, B) B (p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p3)
(B, C) B p2
(C, A) C p3
(C, B) C p4 ∨ (p1 ∧ p3)
(C, C) C (p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p3)
∗(A, B) B→ A p1 ∧ p2 ∧ p3
∗(B, C) C→ B p1 ∧ p2 ∧ p3
(C, A) A→ C p1 ∧ p2 ∧ p3
∗(C, B) A→ C p1 ∧ p2 ∧ p4

reachable(src,dst)
(derivation step 2)

tuple at→ to pv
(A, B) A p1
(A, C) A p1 ∧ p2
(B, A) B p2 ∧ p3
(B, B) B p2 ∧ p4
(B, C) B p2
(C, A) C p3
(C, B) C p4 ∨ (p1 ∧ p3)
(C, C) C p2 ∧ p4
(A, A) B→ A p1 ∧ p2 ∧ p3
(A, B) B→ A p1 ∧ p2 ∧ p4
∗(B, B) C→ B p1 ∧ p2 ∧ p3
(B, C) C→ B p2 ∧ p4
(C, A) B→ C p2 ∧ p3 ∧ p4
(C, B) B→ C p2 ∧ p4
(C, C) A→ C p1 ∧ p2 ∧ p3

reachable(src,dst)
(derivation step 4)

tuple at→ to pv
(A, A) A p1 ∧ p2 ∧ p3
(A, B) A p1
(A, C) A p1 ∧ p2
(B, A) B p2 ∧ p3
(B, B) B (p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p3)
(B, C) B p2
(C, A) C p3
(C, B) C p4 ∨ (p1 ∧ p3)
(C, C) C (p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p3)

Figure 4: Recursive derivation of reachable in recursive steps (bold indicates new deriva-
tions). The at column shows where the data is produced. The to column shows where it
is shipped after production (if omitted, the derivation remains at the same node. The pv
column contains the absorption provenance of each tuple (Section 3.3). A tuple marked “*”
is an extra derivation only shipped in the absorption provenance model.

although one could decouple each location from its physical encoding by using logical

addresses (e.g., doing hash-based partitioning).

Now we define a materialized view reachable (src,dst), which is also partitioned so tu-

ples with source src are stored on node src. This query computes the transitive closure

over the link table, and was shown in the Network Reachability example of Section 3.1. Un-

like in traditional recursive query execution (e.g., for datalog), here computing the transi-

tive closure requires a good deal of communications traffic: link data must be shipped to

the node corresponding to its dst attribute in order to join with reachable tuples (or vice-

versa, depending on the query plan); and the output of this join may need to be shipped
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A B

C

Figure 5: Network repre-
sented in link relation

to dst

on link.dst=reachable.src

reachable(src,dst)

reachable(src,dst)

link(src,dst)

reachable(src,dst)

reachable(link.src,reachable.dst) @link.dst 

reachable(src,dst)

to link.src

Figure 6: Plan for reachable query. Underlined attributes are
the ones upon which data is partitioned.

to a new location depending on what its src is. Consider the execution plan shown in

Figure 6. This plan is disseminated to all nodes, from which it continuously generates

and updates partitions of the reachability relation. The left DistributedScan represents the

table scan required for the base case, which fetches the contents of link and sends them

to the Fixpoint operator. In the recursive case, the Fixpoint invokes the right subtree of

the query plan: it sends its current contents to a FixpointReceiver, where they are joined

via a PipelinedHashJoin with a copy of link — whose contents have been re-partitioned

and shipped to the nodes corresponding to the dst attribute. The output is shipped to

the Fixpoint via the MinShip (tuple shipping) operator, which in the simplest case simply

sends data to a receiving node.

Computing the view instance. Figure 4 steps through the execution of reachable, showing

state after each computation step in semi-naı̈ve evaluation (equivalent to steps in stratified

execution), as well as communication (the “at→ to” columns). We defer discussion of the

column marked pv.

The base-case contents of reachable are computed directly from link, as specified in the

first “branch” of the view definition (see Network Reachability query in Section 3.1). The

recursive query block joins all link tuples with those currently in reachable. Since the tables
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are distributed by their first attribute, all link tuples must first be shipped to nodes corre-

sponding to their dst attribute, where they are joined with reachable tuples with matching

srcs. Finally, the resulting reachable tuples must be shipped to the nodes corresponding to

their src attributes. For instance, in step 1, reachable(C,B) is computed by joining link(C,A)

and reachable(A,B) as computed from step 0. That requires first shipping link(C,A) to node

A, performing the join to generate reachable(C,B), and sending the resulting tuple to node

C. In our figure, we indicate the communication for the resulting reachable table in the

third column as A→ C.

Since we are following set-semantics execution, duplicate removal will eliminate tu-

ples with identical values; but this only occurs after they are created and sent to the

appropriate node. For instance, consider reachable(C,C), which is first computed in step 1

and sent to node C. During step 2, node A re-derives this same tuple; however, it must

send this result to node C before the duplication can be detected, and the tuple elimi-

nated. In total, 16 tuples (4 initial link tuples, and 12 reachable tuples) are shipped during

the recursive computation. In the final step, a fixpoint is reached when no new tuples

are derived. Observe that since we have a fully-connected network, the final resulting

reachable table at every node contains the set of all node pairs in the network with the first

attribute matching the node’s address.

Incremental deletion (standard approach). Now consider the case when link(C,B) expires

(hence is deleted). Commonly used schemes for maintaining non-recursive views, such as

counting tuple derivations, do not apply to this recursive view. Instead, one might employ

the standard algorithm for recursive view maintenance, DRed [45]. DRed works by first

over-deleting tuples conservatively and then re-deriving tuples that may have alternative

derivations. Figure 7 shows the DRed over-deletion phase (steps 0-4), followed by the

rederivation phase (steps 5-8). In the over-deletion phase, it first deletes reachable(C,B)

based on the initial deletion of link(C,B). This in turns leads to the deletion of all reachable

tuples with src=C (step 1), then those with src=B (step 2) and src=A (step 3). The reachable

table is empty in step 4. DRed will ultimately re-derive every reachable tuple, as shown in

steps 5-8. Overall, DRed requires shipping a total of 16 tuples, equivalent to computing

the entire reachable view from scratch, despite having just a single deletion.
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reachable(src,dst)
(step 0)

tuple at
(A, A) A
(A, B) A
(A, C) A
(B, A) B
(B, B) B
(B, C) B
(C, A) C
(C, B) C
(C, C) C
−(C, B) C

reachable(src,dst)
(step 1)

tuple at→ to
(A, A) A
(A, B) A
(A, C) A
(B, A) B
(B, B) B
(B, C) B
(C, A) C
(C, C) C
−(C, A) B→ C
−(C, B) B→ C
−(C, C) B→ C

reachable(src,dst)
(step 5)

tuple at→ to
(A, B) A
(B, C) B
(C, A) C

reachable(src,dst)
(step 2)

tuple at→ to
(A, A) A
(A, B) A
(A, C) A
(B, A) B
(B, B) B
(B, C) B
−(B, A) C→ B
−(B, B) C→ B
−(B, C) C→ B

reachable(src,dst)
(step 6)

tuple at→ to
(A, B) A
(B, C) B
(C, A) C
(A, C) B→ A
(B, A) C→ B
(C, B) A→ C

reachable(src,dst)
(step 3)

tuple at→ to
(A, A) A
(A, B) A
(A, C) A
−(A, A) B→ A
−(A, B) B→ A
−(A, C) B→ A

reachable(src,dst)
(step 7)

tuple at→ to
(A, B) A
(A, C) A
(B, A) B
(B, C) B
(C, A) C
(C, B) C
(A, A) B→ A
(B, B) C→ B
(C, C) A→ C

reachable(src,dst)
(step 4)

tuple at→ to

reachable(src,dst)
(step 8)

tuple at→ to
(A, A) A
(A, B) A
(A, C) A
(B, A) B
(B, B) B
(B, C) B
(C, A) C
(C, B) C
(C, C) C
(A, B) B→ A
(B, C) C→ B
(C, A) A→ C

Figure 7: DRed algorithm: over-delete and re-derive steps after deletion of link(C,B).

In the above example, DRed is prohibitively expensive: deleting a single link resulted

in the deletions of all reachable tuples; yet, it is clear that nodes A, B, and C are still

connected after link(C,B) is deleted. One source of deletions in network settings is tuple

expirations; a large-scale network tends to be highly dynamic, so tuples will need to

expire frequently, thus triggering frequent re-computation and exacerbating the overhead.

Perhaps surprisingly, our example illustrates the common case behavior for network state

queries: most networks are well-connected with bi-directional connectivity along several

redundant paths. DRed will over-delete such paths, and then re-derive data.

We have ignored a further issue that DRed must wait until all deletions have been

processed before it can start re-deriving. This requires distributed synchronization, which

may be expensive.

We now propose a solution that eliminates the need for re-computation, and that also

avoids global synchronization. The major challenge with distributed incremental view

maintenance lies in handling deletions of tuples. In general, we must either buffer base

tuples, then recompute the majority of the query (as in our example); or we must maintain

state at intermediate nodes, which enables them to propagate the appropriate updates

when a base tuple is removed. We adopt the latter approach, developing a scheme that:
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• Maintains a concise form of data provenance — bookkeeping about the derivations

and derivability of tuples — such that it is easy to determine whether a view tuple

should be removed when a base tuple is removed. (Section 3.3.)

• Propagates provenance information from one node to another only when necessary to

ensure correctness — thus reducing network and computation costs. (Section 3.4.)

• Seeks to optimize the encoding of provenance through reordering. (Section 3.5.)

• Propagates tuples through distributed aggregate computations only when necessary

for correctness — also reducing network and computation costs. (Section 3.6.)

We describe these approaches in the next four sections, with the query plan of Figure 6

as the central example. We then evaluate our methods in Section 3.7.

3.3 Our Approach: Provenance for Efficient Deletions

In order to support view maintenance when a base tuple is deleted, we must be able

to test whether a derived tuple is still derivable. Rather than over-delete and re-derive

(as with DRed), we instead propose to keep around metadata about derivations, i.e.,

provenance [22, 27], also called lineage [30].

Provenance alternatives. Different proposed forms of provenance capture different amounts

of information. Lineage in [30] encodes the set of tuples from which a view tuple was

derived — but this is not sufficiently expressive to distinguish what happens if a base

tuple is removed. Alternatives include why-provenance [22], which encodes sets of source

tuples that produced the answer; and the semiring polynomial provenance representation

of [40, 41], whose implementation we term relative provenance here. In physical form, the

latter encodes a derivation graph capturing which tuples are created as immediate conse-

quents of others. The graph can be traversed after a deletion to determine whether a tuple

is still derivable from base data [40]. Either of these latter two forms of provenance will

allow us to detect whether a view tuple remains derivable after a deletion of a base tuple.

However, to our knowledge, why-provenance is always created “on demand” and has no

stored representation; and relative provenance relies on the system of equations (encoded
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σθ(R): If tuple t in R satisfies θ, annotate t with P(t)
R1 1 R2: For each tuple t1 in R1 and tuple t2 in R2, annotate the

output tuple t1 1 t2 with P(t1) ∧ P(t2).
R1 ∪ R2: For each tuple t output by R1 ∪ R2, annotate t

with P(t1) ∨ P(t2), where P(t1) is false iff
t does not exist in R1; similarly for P(t2), R2

ΠA(R): Given tuples t1, t2, . . . , tn that project to the same
tuple t′, annotate t′ with P(t1) ∨ P(t2) ∨ · · · ∨ P(tn)

Figure 8: Relational algebra rules for composition of provenance expressions. Note that
recursive fixpoint incorporates union.

as edges in a graph) to resolve the problem of infinite derivations, which can be expensive

in a distributed setting.

Moreover, we note that the tuple derivability problem has several properties for which

we can optimize. In particular, base (EDB) tuples may each participate in many different

derivations — yet the deletion of that base tuple “invalidates” all of these derivations.

View maintenance requires testing each view tuple for derivability once base tuples have

been removed — which can be determined by testing all of the view tuples’ derivations

for dependencies on the deleted base tuples.

Our approach: absorption provenance. We define a simplified provenance model, ab-

sorption provenance, which starts with the following intuition. We annotate every tuple in

a view with a Boolean expression: the tuple is in the view iff the expression evaluates

to true. Let the provenance annotation of a tuple t be denoted P(t). For base relations,

we set P(t) to a variable whose value is true when the tuple is inserted, and reset to

false when the tuple gets deleted. The relational algebra operators return provenance

annotations on their results according to the laws of Figure 8 (this matches the Boolean

specialization of provenance described in the theoretical paper [41]).

Our key innovation with respect to provenance is to develop a physical represen-

tation in which we can exploit Boolean absorption to minimize the provenance expressions:

absorption is based on the law a ∧ (a ∨ b) ≡ a ∨ (a ∧ b) ≡ a, and it eliminates terms and

variables from a Boolean expression that are not necessary to preserve equivalence. We

term this model absorption provenance. It describes in a minimal way exactly which tuples,

in which combinations of join and union, are essential to the existence of a tuple in the
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view. The benefit of a compact provenance annotation is reduced network traffic. Even

better, we can use absorption provenance to help maintain a view after a base tuple has

been deleted: we assign the value false to the provenance variable for each deleted base

tuple, then substitute this value into all provenance annotations of tuples in the view. If

applying absorption to the tuple’s provenance results in the value false, we remove the

tuple. Otherwise, it remains derivable.

Absorption provenance in the example of Figure 4. Absorption provenance adds a bit

of overhead to normal query computation: the Fixpoint operator must propagate a tuple

through to the recursive step whenever it receives a new derivation (even of an existing

tuple), not simply when it receives a new tuple. Refer back to the reachable query example

of Figure 4. The pv column shows the absorption provenance for every tuple during the

initial view computation, with respect to the input link tuples annotated p1, p2, p3, and p4;

we see that an additional 4 tuples (beyond the previous set-oriented execution model) are

shipped during query evaluation, as a result of computing absorption provenance. For

instance, reachable(B,B) is derived in both strata 1 and 2. They have different provenance

that cannot be absorbed, hence we must track both derivations.

Absorption provenance shows its value in handling deletions. When link(C,B) is

deleted, the only step required with absorption provenance is to zero out p4 in the prove-

nance expressions of all reachable tuples. In this example, zeroing out this derivation

only requires two message transmissions, and it does not result in the removal of any

tuples from the view. (In the worst case it is still possible that deletions may need to be

propagated to all nodes in the network.)

3.3.1 Implementing Absorption Provenance

There are multiple alternatives when attempting to encode an absorption provenance ex-

pression. Each expression can, of course, be normalized to a sum-of-products expression,

since in the end there are possibly multiple derivations of the same tuple, and each deriva-

tion is formed by a conjunctive rule (or a conjunction of tuples that resulted from conjunc-

tive rules). From there we could implement absorption logic that is invoked every time

the provenance expression changes. We choose an alternative — and often more compact
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in practice — encoding for absorption provenance: the binary decision diagram [21] (BDD),

a compact encoding of a Boolean expression in a DAG. A BDD (specifically, a reduced

ordered BDD) represents each Boolean expression in a canonical way, which automatically

eliminates redundancy by merging isomorphic subgraphs and removing isomorphic chil-

dren: this process automatically applies absorption. Since BDDs are frequently used in

circuit synthesis applications and formal verification, many highly optimized libraries

are available [97]. Such libraries provide abstract BDD types as well as Boolean operators

to perform on them: pairs of BDDs can be ANDed or ORed; individual BDDs can be

negated; and variables within BDDs can be set or cleared. We exploit such capabilities in

our provenance-aware stateful query operators.

Now we describe in detail how to extend traditional database query operators to

support absorption provenance of tuples over data streams. Since Fixpoint and Join are

the two main stateful operators in recursive query processing, we discuss how to design

provenance-aware Fixpoint and Join operators.

3.3.2 Fixpoint Operator

The key operator for supporting recursion in database query processing is the Fixpoint

operator, which combines a base case query to produce results, then repeatedly invokes a

recursive case query. It repeatedly unions together the results of the base case and each

recursive step, and terminates when no new results have been derived. The semantics

of a provenance-aware Fixpoint operator should be: we reach a fixpoint when we can no

longer derive any new results that alter the provenance of any tuple in the result.

Unlike traditional semi-naı̈ve evaluation, a distributed Fixpoint operator should not

block or require computations in synchronous rounds (or iterations), a prohibitively ex-

pensive operation in distributed settings. Instead one can use pipelined semi-naı̈ve eval-

uation [69], where tuples are handled in the order in which they arrive via the network

(assuming a FIFO channel), and are only combined with tuples that arrived previously.

In Algorithm 1, we illustrate the pseudocode for a typical provenance-aware Fixpoint

operator. The Fixpoint operator receives insertions from either the base (B∆) or recursive

(R∆) streams. It maintains a hash table P containing the absorption provenance of each
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Algorithm 1 Fixpoint operator
Fixpoint(B∆, R∆)
Inputs: Input base stream B∆, recursive stream R∆

Output: Output stream U′∆

1: Init hash map P: U(x̄)→ provenance expressions over U(x̄)
2: if there is a aggregate selection option then
3: Get the grouping key uk, number of aggregate functions n and aggregate functions agg1, · · · , aggn
4: B′∆ := AggSel(B∆, uk, n, agg1, · · · , aggn)
5: B∆ := B′∆

6: R′∆ := AggSel(R∆, uk, n, agg1, · · · , aggn)
7: R∆ := R′∆

8: end if
9: while not EndO f Stream(B∆) and not EndO f Stream(R∆) do

10: Read an update u from B∆ or R∆

11: if u.type = INS then
12: if P does not contain u.tuple then
13: P[u.tuple] := u.pv
14: Add u.tuple to the view
15: Output u to the next operator
16: else
17: oldPv := P[u.tuple]
18: P[u.tuple] = P[u.tuple] ∨ u.pv
19: deltaPv := P[u.tuple] ∧ ¬oldPv
20: if oldPv 6= P[u.tuple] then
21: u′.tuple := u.tuple
22: u′.type := INS
23: u′.pv := deltaPv
24: Output u′ to the next operator
25: end if
26: end if
27: else if u is from B∆ then
28: for each t in P do
29: oldPv := P[t]
30: P[t] = restrict(P[t],¬u.pv)
31: if P[t] indicates no derivability then
32: Remove t from P
33: Remove t from the view
34: end if
35: end for
36: end if
37: end while

tuple that it has received, which remains derivable. Note that under our stream data

model with provenance annotations, each tuple should include at least three fields: type,

which indicates whether it is an INS or DEL tuple; tuple, which records its raw tuple

values; and pv, which stores its annotated provenance.

First, if there are aggregate operations on top of the Fixpoint operator, we should ap-

ply an aggregation operation that might have been “pushed into” the Fixpoint — this

uses a technique called aggregate selection discussed in Section 3.6. Next, upon receipt of
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an insertion operation u (Lines 11–26), the Fixpoint operator first determines whether the

tuple has already been encountered (perhaps with a different provenance). If u is new,

it is simply stored in the hash table P[u.tuple] as the first possible derivation; otherwise

we merge it with the existing absorption provenance in P[u.tuple]. We save the resulting

difference of provenance in deltaPv. If the provenance has indeed changed despite absorp-

tion, u gets propagated to the next operator, annotated with the difference provenance

deltaPv.

Deletions are handled in a straightforward fashion (Lines 27–35), with absorption

provenance. Since deletions on the recursive stream are only possibly caused by deletions

on the base stream (in our problem setting we only allow delta change originated from

base streams), we only need to focus on deletion tuples generated from the base (B∆)

stream. When we receive a deletion operation u, for each tuple t in the table P, we zero

out the associated provenance of tuple u (u.pv) from the provenance expression of each

t (P(t)), computed by BDD operation “restrict” [97] shown in Line 30. If the result is a

provenance expression returning false (zero), a deletion operation on t is propagated to

the next operator after removing its entry from P.

3.3.3 Join Operator

A PipelinedHashJoin operator with support for absorption provenance over data streams

must modify a conventional pipelined hash join operator in two aspects: 1) provenance-

aware state management, and 2) handling insertion and deletion tuples upon arrival.

We show a typical pseudocode of provenance-aware PipelinedHashJoin operator in Al-

gorithm 2. This operator needs to maintain in its state similar forms of two pairs of

hashtables: suppose when joining relations R and S, the hR and hS maintains the tuples

indexed on the join keys Rk and Sk of each R and S tuple respectively, and pR and pS

maintains the provenance indexed on all attributes of each R and S tuple. The hashtables

are similar to those used in the earlier Fixpoint operator, except we need to maintain two

hashtables, one for each input table.

We will describe in terms of processing a new update tuple u from R∆. Processing

of updates from S∆ is symmetrical. We consider two cases, when u is a deletion or an



3.3. OUR APPROACH: PROVENANCE FOR EFFICIENT DELETIONS 51

insertion. Replacements are treated as a deletion followed by an insertion.

3.3.3.1 Deletions

We first consider the case where u is a delete tuple. We focus on describing the HalfPipeDel

function in Algorithm 2 invoked by the main PipeHashJoin function for each delete tuple u.

Two sets of updates need to be performed. First, the internal state (i.e. hashtables of join

tuples and respective provenance) maintained by the join operator is updated. Second,

new tuples are output from the join, and propagated as deletions up to the next operator

according to the query plan.

Operator state update (Lines 1– 8 in HalfPipeDel): The provenance state pu[u.tuple]

for tuple u is retrieved, and u’s provenance u.pv, is deleted from pu[u.tuple] (In BDD

operations, x − y ≡ x ∧ ¬y). This essentially clears the absorption provenance of the

derivation of u. If pu[u.tuple] is false (zero), which means that all possible derivations

of u have been deleted, then we need to remove u from subsequent joins by purging its

entry from both pu and hu hashtable.

Delete propagation (Lines 9– 16 in HalfPipeDel): The deletion of u may cascade the

deletion of other tuples when pu[u.tuple] has been changed. New tuples u′ are formed

by joining u with matching tuples t in hj[u.tuple[uk]] retrieved using the join key uk of

u. The absorption provenance of u′ is set to the join of u.pv and pj[t](computed by the

BDD as u.pv ∧ pj[t]).The resulting u′ tuple with the new absorption provenance is then

propagated up the query plan.

3.3.3.2 Insertions

If u is an insert tuple, a similar set of updates are performed. We focus on the HalfPipeIns

function in Algorithm 2, which is similarly invoked from PipeHashJoin for each insert

tuple u.

Operator state update (Lines 1– 7 in HalfPipeIns): First, the provenance pu[u.tuple] is

retrieved and updated based on the u.pv of the new tuple u. This is required since the

new u tuple may have a different derivation from any u that have been derived previously.

In addition, if we haven’t met u before, we add u to the hashtable hu indexed by the join
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key uk of u. Since there may be multiple tuples with a common join key, we maintain a

set of them.

Insert propagation (Lines 8– 15 in HalfPipeIns): Similar to deletions, the join operator

may output new tuples when pu[u.tuple] has been changed. The hj hashtable is probed

using the join key of u, and each resulting u′ tuple from the join is propagated up the

query plan. For each matching t in hj[u.tuple[uk]] used in the join, the absorption prove-

nance of u′ is set to the join of u.pv and pj[t] (computed by the BDD as u.pv ∧ pj[t]).

3.3.3.3 Tuple Expirations

To this point, we have discussed the stream join in terms of processing updates without

considering window semantics. In our algorithm, we encapsulate the window-checking

logic in functions WR and WS. Each takes a new update, plus the provenance hash table

describing the current contents of the relation. As we have previously mentioned, we

only support windowing on base relations — for non-base relations, WR or WS simply

perform no operations and return the empty set. For base relations, the window function

1) updates any relevant internal windowing relations based on the provenance from the

new tuple (e.g., advancing the timestamp, or, if the update was an insertion, adding

the new tuple’s identity as the last-received), and 2) returns the set of tuples that have

expired, with the specific provenance terms that have expired.

Calling the window functions (Lines 8–12 in PipeHashJoin): . After processing the

update, we now pass it along to the window function, so that it may update its internal

state. The window function may then return a set of tuples that have expired, with

provenance. We delete each tuple from the join.

3.4 Optimizing Propagation of Tuple Provenance

With provenance, each time a given operator receives a new derivation of a tuple, it must

typically propagate that tuple and derivation, in much the same fashion as it would a

completely new tuple. If a tuple is derivable in many ways, it will be processed many

times, just as a tuple might be propagated multiple times in a bag relation (versus a
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set). This results in undesirable amount of work done in query processing, as well as the

amount of state shipped across the network. Even worse, in the general case, a recursive

query may produce an infinite number of possible derivations.

Fortunately, absorption helps in the last case. If a new tuple derivation is received

whose provenance is not changed, we do not need to propagate any information forward.

We will reach a fixpoint when we can no longer derive any new tuples that alter the

absorption provenance of any tuple in the result. In principle, as networks have finite

number of edges, we will reach a fixpoint in finite number of rounds as absorption prove-

nance is a Boolean expression over edge variables.

However, one can take additional steps to reduce the amount of state shipped by

distributed query processor nodes. The challenge is to reduce the number of derivations

(provenance annotations) being propagated through the query plan and the network,

while still maintaining the correct semantics to handle deletions. Here one can extend a

conventional database Ship operator (with no support for provenance) to a stateful Min-

Ship operator, in order to maintain provenance annotations about the tuples produced by

incoming updates efficiently. This stateful operator can simply propagate the first deriva-

tion of every tuple it receives, but simply buffers all subsequent derivations of the same

tuple by absorbing them into a single Boolean expression. Since we can not control the or-

der of arrival of tuples, this approach is the best effort towards keeping record of the tuple

with partial provenance. The buffered provenance expression absorbs multiple deriva-

tions into a simpler expression, which is more efficient to ship than propagating each one

eagerly. This method ensures the eager propagation of tuples but not provenance.

Now if the original tuple derivation is deleted, MinShip should propagate forward any

alternate derivations it has buffered so far — then it propagates that deletion operation.

Additionally, depending on the preferences about state propagation, we can require the

MinShip operator to propagate all of its buffered state periodically, e.g., when the buffer

exceeds a capacity or a time threshold. By changing the batching interval or conditions,

we can adjust how many alternate derivations are propagated through the query plan

— a smaller interval will propagate more state, and a larger interval will propagate less

state. In the extreme case, we can set the interval to infinity, resulting in what we term

lazy provenance propagation. In the lazy case, alternate derivations of a tuple will only be
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propagated when they affect downstream results; this significantly reduces the cost of

insertions. (However, in some cases it may slightly increase the cost of deletion propaga-

tion.) A typical design of the MinShip’s internal state management resembles that of the

Fixopint operator, and we provide the pseudocode in [65].

3.5 Producing Compact Provenance BDDs

As described previously, encoding and maintaining absorption provenance relies on their

compact representation in ordered BDDs. In fact, the compactness of a BDD depends

heavily on the order of its variables. Each BDD is a DAG with two terminals, representing

0 and 1. Every internal node in the BDD represents a variable, and every variable appears

at a certain level in the DAG, according to a pre-defined ordering of variables. Every

internal node has two outgoing edges: one representing the associated variable being

assigned true, and the other representing false. Isomorphic subgraphs in the DAG are

merged. All paths leading to the “1” terminal node represent possible truth assignments

for the Boolean expression. Some variable orderings lead to different shared subgraphs

or to elimination of certain nodes.

Recall that our provenance tokens associated with tuples are converted into BDD

variables. We begin by reviewing the BDD variable ordering problem. Then we consider

heuristics for ordering the variables as tuple updates arrive during stream processing.

3.5.1 BDD Variable Ordering Problem

Variable ordering has been heavily studied in the BDD literature. Unfortunately, even

determining the optimal order of a single BDD is an NP-hard problem [73]. Thus, one

must rely on heuristics. Two common heuristics used in practice are variable-swap and

sifting [73]. Variable-swap, as its name implies, seeks to minimize BDD size by trying

different swaps of adjacent variables. It is inexpensive but gets trapped in local minima.

An extension called sifting searches for a good position for each variable in the order.

This is significantly more expensive, but finds better solutions.

Many other techniques have been proposed, including using simulated annealing [19],

genetic algorithms [37], or machine learning [23, 42] to guide the search. However, all of
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Figure 10: Different variable orders representing the provenance for reachable(A,F) in Fig-
ure 9

these approaches assume a setting in which the set of variables and the set of Boolean

expressions is known a priori. In probabilistic databases, Olteanu and Huang considered

the BDD ordering problem for a certain subclass of queries in [80], but their class is very

different from our transitive closure queries.

Our problem does not fall under the standard setting: we are given the task of in-

crementally computing and maintaining a set of BDD annotations to a set of tuples in a

streaming transitive closure computation. We are limited in our knowledge of the Boolean

expressions to be merged, as the expressions are formed through evaluating transitive clo-

sure queries. Our problem is to incrementally re-order BDD variables (corresponding to

provenance tokens) every time we receive and process changes to network link data.

3.5.2 Motivation for Depth-first Traversal Heuristic

Our approach will be to order BDD variables according to depth-first traversal order of

the network. To explain the intuition for why, Figure 9 shows an example network with

six nodes and eight links (which are unidirectional for simplicity). If we form the BDD
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for the connections between start and end, reachable(A,F), following the rules of Figure 8,

then we get a provenance expression: p0(p1 + p2 p3) + (p4 + p6 p7)p5, where for every

0 ≤ i ≤ 7, pi is the provenance token for ei.

A depth-first traversal of the graph might visit the nodes in the order e0, e1, e2, e3, e4,

e5, e6, e7. Figure 10(a) shows that this BDD is quite compact, with 9 nodes. A breadth-first

traversal might be e0, e4, e6, e1, e2, e5, e7, e3. Here, we get an 18-node BDD, shown in

Figure 10(b). Note this has twice as many nodes as the previous example.

Intuitively, the BDD is most effective at merging Boolean terms that share initial vari-

ables (i.e., segments close to the start node), and a depth-first traversal computes paths in

a way that maximizes sharing of these initial variables (segments).

3.5.3 Incremental Depth-first Labeling Algorithm

The previous section gave a rationale for our basic heuristic of extending a BDD in depth-

first traversal order. We now describe how to incrementally maintain, as the network

graph is being traversed, a global ordering on all variables, such that each BDD will be

generated in a fashion that follows a depth-first ordering on the variables. In a distribute

setting, this variable ordering process requires global coordination, either through a single

central server or through state replication on all nodes. We assume that as new base

tuples (link for the reachable query) are incrementally received by the system, they are

fed into a variable reordering algorithm (Algorithm 3 shows the insertion portion; we

omit the deletion processing steps but sketch them below). This algorithm incrementally

maintains an edges vector that establishes an ordering on the network edges (link tuples)

that conforms to a depth-first traversal.

Given the current state of this vector, we can assign each edge edges[i] in the vector

to the variable vi in the BDD, located at depth i. Now, when a union sub-operation

(within a Fixpoint or Aggregate) or join operation occurs, the BDDs associated with the

input tuples will conform to the same variable ordering and will combine in (ideally) a

compact fashion. As the edges vector gets updated, we may need to do fairly inexpensive

variable swapping within each BDD (a functionality already supported).

The intuition of the algorithm is that we maintain the edges vector in a way that exactly
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Figure 11: Four different cases when edge(x,y) is added. A solid arc represents at least
one edge and a dashed arc represents zero or more edges

describes a depth-first traversal of the graph (this includes all cyclic edges). Suppose we

have two nodes n and n′, which are siblings in terms of the DFS traversal. By definition,

we will traverse all edges reachable from node n before those reachable from n′. Hence,

if the first edge originating from n is recorded at position startInx[n] in the edges vector,

then all of the edges reachable from n will appear in edges before the index position

startInx[n′]. We record the vector position of the last edge reachable from n as endInx[n].

At initialization, we set all elements of startInx and endInx to the null indicator -1.

Now, to incrementally maintain edges and the index positions, we must consider the

different scenarios for how some new edge (x,y) may relate to existing paths in the graph.

Figure 11 illustrates these cases. Refer to Algorithm 3 for the code describing these sce-

narios. In case (a) (lines 5-6), x is a new node and y has no outgoing edges. We append

(x,y) to vector edges. For case (b) (lines 8-14), x is a new node and y has outgoing edge(s).

If there exists an incoming edge to y, we append (x,y) to the end of edges; otherwise, we

insert (x,y) into edges before position startInx[y]. Case (c) (Lines 17-22) is where x has

incoming edges and y is now traversed earlier. We insert (x,y) into edges after position

endInx[x] and set this index to startInx[x]. If endInx[x] < startInx[y], then we move edges

in the range [startInx[y], endInx[y]] directly after endInx[x]. Finally, case (d) (line 25) is

when x already has outgoing edge(s). This is similar to case (c), except we do not modify

startInx[x]. Note that we choose to insert the new edge to the end of vector edges in case

(a) and (b), since it does not affect the previous ordering and is the most cost-efficient

way to maintain the vector. Incremental insertion requires O(|edges|) operations.

Deletion follows similar principles, but is somewhat more complex. If an edge is

removed, this may “orphan” a portion of the original DFS traversal subgraph. We must

now scan forward in the edges vector to find the first edge that references any node n in

this orphaned subgraph. Immediately after this edge connecting to n, we insert the edges
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(in DFS order) reachable from n. We repeat the process for any remaining nodes from the

orphan subgraph, and drop any edges that are no longer connected. If we use hash sets

to match nodes in the orphaned subgraph, deletion can be done in O(|edges|) operations.

3.6 Optimizing Propagation of State

Our next challenge is to optimize the amount of state (in terms of unique tuples, not

just alternate derivations of the same tuple) that gets propagated from one node to an-

other, while still maintaining the correct semantics of query results over both insertions

and deletions. Given that aggregation is commonplace in network-based queries, we

need a way to also suppress tuples that have no bearing on the output aggregate values.

One can have many alternative ways of reducing the network traffic of aggregate queries,

e.g., compression. However, some are orthogonal to what we propose here (e.g., one can

apply compression on top of our scheme). We consider a general aggregate optimization

technique, aggregate selection [89], that pushes the comparison down to the operators be-

fore the aggregation (e.g., in order to compute MIN, any result bigger than the cached

optimal min should not be propagated), yet still maintaining absorption provenance for

the correct semantics of tuple provenance.

Specifically, we adapt aggregate selection [89] to a streaming model, with a windowed

aggregation (group-by) operation [77]. We consider MIN, MAX, COUNT, and SUM

aggregate functions (AVERAGE can be derived from SUM and COUNT, as in [26].). In

essence, the aggregate computation is split between a partial-aggregate operation that is

used internally by stateful operators like the Fixpoint and MinShip to prune irrelevant

state, and a final aggregation computation is done at the end over the partial aggregates’

outputs. Our main contributions are to support revision (particularly deletion) of results

within a windowed aggregation model, and to combine aggregate selection with minimal

provenance shipping.

One can achieve the above design principles with an implementation as follows. Our

aggregate selection (AggSel for short) module, shown in Algorithm 4, can be embedded

within any operator that creates and ships state. (Both Fixpoint and MinShip are able

to use this module.) The module takes as input a stream U∆, a grouping key uk, the
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number of aggregate functions n, and a set of aggregate functions agg1, · · · , aggn. The

module maintains a hash table H indexed on the grouping key uk, which records all the

buffered tuples met so far based on its grouping key values — this is necessary to support

tuple deletion. A corresponding hash table P maps from each tuple to their absorption

provenance. Another hash table B is maintained to record the value associated with each

aggregate attribute aggi, for the grouping key uk. AggSel finally outputs a stream U′∆ of

the update tuples.

Each time AggSel receives a stream insertion (Lines 6–25), it inserts this tuple into the

internal map H from group-by key uk to source tuple set. (If a tuple with the same value

already exists in the set, then it simply updates the provenance P for the tuple.) Next, if

the insertion affects the result of any aggregate attribute associated with uk — it changes

the MIN or MAX value, or it revises the AVERAGE or SUM — the aggregation selec-

tion module will then propagate a deletion operation on the old aggregate value. After

checking all the aggregate functions, if at least one of the aggregate values is affected,

then it propagates this input insertion tuple as an insertion; if none of them is affected, it

propagates nothing (see the loop starting at Line 12). Meanwhile, the module applies the

change to its internal state.

Upon encountering a stream deletion or an expiration (Lines 25–49), AggSel checks

whether the deletion has any effect on the derivability of the deleted tuple (Lines 26–28),

and then whether any aggregate value associated with the group-by key uk is affected.

If an aggregate value is modified (i.e., this deletion tuple at least partly determines the

aggregate value), then AggSel traverses through the current version of buffered tuple table,

computes the updated aggregate value, and propagates an insertion of the tuple with the

new aggregate value. If any of the aggregate values is affected, then it propagates a

deletion. Meanwhile, the module applies the change to its internal state.

3.7 Experimental Results

We have developed a Java-based distributed query processor over the Aspen prototype

system ([64, 92]) that implements all operators as described in Sections 3.3-3.6. Our im-

plementation utilizes the FreePastry 2.0 03 [84] DHT for data distribution, and JavaBDD
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v1.0b2 [97] as the BDD library for absorption provenance maintenance. Experiments are

carried out on two clusters: a 16-node cluster consisting of quad-core Intel Xeon 2.4GHz

PCs with 4GB RAM running Linux 2.6.23, and an 8-node cluster consisting of dual-core

Pentium D 2.8GHz PCs with 2GB RAM running Linux 2.6.20. The machines are inter-

nally connected within each cluster via a high-speed Gigabit network, and the clusters

are interconnected via a 100Mbps network shared with the rest of campus traffic. Our

default setting involves 12 nodes from the first cluster; when we scale up, we first use all

16 nodes from this cluster, then add 8 more nodes from the second cluster to reach 24

nodes. All experimental results are averaged across 10 runs with 95% confidence intervals

included.

3.7.1 Experimental Setup

We studied two query workloads taken from our use cases:

Workload 1: declarative networks. Our query workloads consist of the reachable query

and the shortest-path query (Section 3.1). As the input to these queries, we use simulated

Internet topologies generated by GT-ITM [43], a package that is widely used for this

purpose. By default we use GT-ITM to create “transit-stub” topologies consisting of eight

nodes per stub, three stubs per transit node, and four nodes per transit domain. In

this setup, there are 100 nodes in the network, and approximately 200 bidirectional links

(hence 400 link tuples in our case). Each input link tuple contains src and dst attributes, as

well as an additional latency cost attribute. Latencies between transit nodes are set to 50

ms, the latency between a transit and a stub node is 10 ms, and the latency between any

two nodes in the same stub is 2 ms. To emulate network connectivity changes, we add

and delete link tuples during query execution.

Workload 2: sensor networks. Our second workload consists of region-based sensor

queries executed over a simulated 100m by 100m grid of sensors, where the sensors report

data to their local query processing node. We include 5 “seed” groups, each initialized to

contain a single device. Our recursive view activeRegion finds contiguous (within k meters,

where by default k=20) triggered nodes and adds them to the group — or removes them
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if they are no longer triggered. Based on that, we can compute the the largest such active

region.

with recursive activeRegion(regionid,sensorid) as

( select M.regionid, S.sensorid

from sensor S, coordSensor M, isTriggered T

where M.sensorid = S.sensorid

and S.sensorid = T.sensorid

union

select A.regionid, S2.sensorid

from sensor S1, sensor S2, activeRegion A,

isTriggered T

where distance(S1.coord, S2.coord) < k

and S1.sensorid = A.sensorid and

S1.sensorid = T.sensorid )

create view regionSizes(regionid,size) as

(select regionid, count(sensorid)

from activeRegion

group by regionid)

create view largestRegion(size) as

(select max(size) from regionSizes)

create view largestRegions(regionid) as

(select R.regionid

from regionSizes R, largestRegion L

where R.size = L.size)

Initially all the seed sensors are triggered. Also we trigger half of the sensors in the

network to study the effects of insertions, and then randomly remove them to study the

effects of deletions. Note that while the input topology simulates a grid-based sensor

topology, the queries are executed over our real distributed query processor implementa-

tion.

Our evaluation metrics are as follows:

• Per-tuple provenance overhead (B): the space taken by the provenance annotations

per-tuple.

• Communication overhead (MB): the total size of communication messages pro-

cessed by each distributed node for executing a distributed query to completion.
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• Per-node state within operators (MB): the total state overhead maintained inside

operators on each distributed node.

• Convergence time (s): the time taken for a distributed query to finish execution on

all distributed nodes.

3.7.2 Incremental View Maintenance with Provenance

Our first set of experiments focuses on measuring the overhead of incremental view main-

tenance. Using the reachable query as a starting point, we compare three different schemes:

the traditional DRed recursive view maintenance strategy, relative provenance [40] where

each tuple is annotated with information describing derivation “edges” from other tuples,

and our proposed absorption provenance. We also consider two schemes for propagating

provenance: an eager strategy (propagate state from MinShip once a second) and a lazy

one (propagate state only when necessary).

Insertions-only workload. We first measure the overhead of maintaining provenance,

versus normal set-oriented execution. Figure 12 shows the performance of the reachable

query, where the Y-axis shows our four evaluation metrics, and the X-axis shows the

fraction of links inserted, in an incremental fashion, up to the maximum of 400 link tu-

ples required to create the 100-node GT-ITM topology. Given an insertion-only workload,

DRed has the best overall performance, since no provenance needs to be computed or

maintained. Relative provenance encodes more information than absorption provenance,

resulting in larger tuple annotations, more communication, and more operator state. Rel-

ative provenance with eager propagation (Relative Eager) did not converge within 5 min-

utes for insertion ratios of 0.75 or higher; hence, we only show lazy propagation (Relative

Lazy) for the remaining graphs. Eager propagation with absorption provenance (Absorp-

tion Eager) also is costly due to the overhead of sending every new derivation of a tuple.

Lazy propagation of absorption provenance (Absorption Lazy) is clearly the most efficient

of the provenance schemes.

Insertions-followed-by-deletions workload. Our next set of experiments separately mea-

sures the overhead of deletions: here provenance becomes useful, whereas in the insertion
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Figure 12: reachable query computation as insertions are performed

case it was merely an overhead. (One can estimate the performance over a mixed work-

load by considering the relative distribution of insertions versus deletions and looking at

the overheads on each component.) Given the same 100-node topology, after inserting all

the link tuples as above, we then delete link tuples in sequence. Each deletion occurs in

isolation and we measure the time the query results take to converge after every dele-

tion is injected. Figure 13 shows that DRed is prohibitively expensive for deletions when

compared to our absorption provenance schemes: it is an order of magnitude more ex-

pensive in both communication overhead and execution time. Relative provenance wins

versus DRed in communication cost and convergence time because it does not over-delete

and re-derive. However, its performance is worse than absorption provenance, and it
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Figure 13: reachable query computation as deletions are performed

also incurs more per-tuple overhead and operator state. Relative provenance relies on

graph traversal operations to determine derivability from base tuples (see [40]), and thus

is expensive in a distributed setting. In contrast, absorption provenance directly encodes

whether a derived tuple is dependent on a base tuple. Overall, absorption provenance is

the most efficient method in deletion handling, and consequently ships fewer tuples than

the other methods. Taking both insertions and deletions into account, Absorption Lazy has

the best mix of performance.

Region-based sensor query. The region query is computed over a different topology from

the reachable case, and it exhibits slightly different update characteristics. Still, as we see

in Figure 14, which measures performance with the insertion workload described earlier
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Figure 14: region query computation as insertions are performed

in the experimental setup, performance follows similar patterns. (The overhead is lower

across each of the four metrics, since the network is smaller here and neighbors are within

closer proximity.) Under deletion workloads, the trends shown by the region query also

closely mirror that of the reachable query and those graphs are shown in [65]. Since the

queries exhibit similar performance, we focus on the reachable query for our remaining

experiments.

3.7.3 Scalability

Next we consider how our absorption provenance schemes scale, with respect to inputs

and to the query processing nodes.
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Figure 15: Increasing the number of links (and nodes) for the reachable query over inserts

Scaling data. We increase the number of input link tuples, by increasing the average

number of transit nodes in the GT-ITM generated topology. We considered two network

topologies: each node in the dense topology has four links (as in our default setting) on

average, whereas the sparse setting has two. Figure 15 shows the insertion-only workload.

(We further experimented with deleting an additional 20% of the links. Observations

were similar and we omit graphs due to space constraints.) The dense network has more

derivations than the sparse network: here, Eager Dense did not complete after 5 minutes

on a 800-link network, whereas Lazy Dense finished in under 5 seconds.

Increasing query processing nodes. Next, we increase the number of query processing

nodes, while keeping the input dataset constant. Figure 16 shows the results. Per-tuple
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Figure 16: Varying the number of physical query processing nodes in computing reachable
query

provenance overhead increases, then eventually levels off, as the number of nodes in-

creases: each node now processes fewer tuples, and the opportunities to absorb or buffer

are reduced. More query processors leads to a reduction in query execution latency,

per-node communication overhead, and per-node operator state. The increase of latency

between 16 and 24 nodes is due to the lower-bandwidth connection between our two

subnets. In all cases, DRed incurs higher communication overhead and takes longer to

complete than our approach.
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Figure 17: Depth-first search order versus naı̈ve random order on reachable query

3.7.4 Provenance BDD Ordering Heuristic

In Figure 17, we compare the performance using our depth-first traversal heuristic, versus

naı̈ve merging and ordering of BDDs based on the order of tuple arrival. To better study

the performance, we randomize edge arrivals for this experiment. From the figure, the

depth-first traversal heuristic saves up to 50% of the provenance overhead. This also

results in lower communication overhead and memory footprint. Additionally, execution

time remains essentially the same, because the variable reordering process is relatively

lightweight and does not affect query processing dataflow. The results show that the

execution overhead of applying this heuristics can be offset by the performance gain in

memory and communication.
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Figure 18: Aggregate selections performance on shortestPath and cheapestCostPath query

3.7.5 Multi-aggregate Selection

Figure 18 shows the effectiveness of aggregate selections over the dense and sparse topol-

ogy of 100 nodes. We experiment with two extensions of the Shortest Path query presented

in Section 3.1: Multi AggSel computes two aggregates (one for shortest path and the other

for cheapest cost path); Single AggSel minimizes only based on the cheapest cost path. We

observe that aggregate selections are most effective in dense topologies, and Multi AggSel

costs only half as much as Single AggSel due to aggressive pruning of the two aggregates

simultaneously. Without the use of aggregate selections, all queries are prohibitively ex-

pensive, and do not complete within 5 minutes for dense topologies.
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3.7.6 Summary of Results

We summarize our experimental results with reference to the contributions of previous

sections.

• Absorption provenance (Section 3.3) incurs some overhead during insertions and consumes

increased memory, versus traditional schemes such as DRed. That increase is offset

by improvements in communication overhead and execution times when deletions are

part of the workload. Moreover, our concise representation of data provenance is more

efficient than an encoding of relative provenance. Most network applications include

time-based expiration for state, and hence require frequent deletion processing.

• Lazy propagation of derivations (Section 3.4) reduces traffic when there are multiple pos-

sible derivations. Lazy propagation results in significant communication cost savings.

Given a dense network topology, lazy propagation sped computation by more than an

order of magnitude.

• Our heuristic of reordering variables according to a depth-first traversal (Section 3.5)

results in up to 50% space and communications savings, with minimal impact on query

performance.

• Multiple aggregate selections significantly reduce the propagation of tuples during query

evaluation (Section 3.6). This is especially true in a dense network with alternative

routes, resulting in at least an order of magnitude reduction in communication cost

and execution times. While the benefits of aggregate selections have been explored

previously in centralized settings, our main contribution here was the extension to a

stream model, including support for deletions, and validating that similar benefits are

observed in a distributed recursive stream query processor.

3.8 Conclusion

In this chapter, we have proposed novel techniques for distributed recursive stream view

maintenance. Our work is driven by emerging applications in declarative networking and
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sensor monitoring, where distributed recursive queries are increasingly important. We

demonstrated that existing recursive query processing techniques such as DRed [45] are

not well-suited for the distributed environment. We then showed how absorption prove-

nance could be used to encode tuple derivability in a compact fashion, then incorporated

into provenance-aware operators that are bandwidth efficient and avoid propagating un-

necessary information, while maintaining correct answers.
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Algorithm 2 Pipelined hash join operator
Hal f PipeIns(u, hu, pu, hj, pj, uk)
Inputs: Update u, build hash table hu, build provenance table pu, probe hash table hj, probe tuple provenance
table pj, join keys uk.
Output: Update stream u′.
1: oldPv := pu[u.tuple]
2: if hu does not contain u.tuple then
3: hu[u.tuple[uk]] := u.tuple
4: pu[u.tuple] := u.pv
5: else
6: pu[u.tuple] := pu[u.tuple] ∨ u.pv
7: end if
8: if oldPv 6= pu[u.tuple] then
9: for each t in hj[u.tuple[uk]] do

10: u′.tuple := u.tuple 1 t
11: u′.type := INS
12: u′.pv := u.pv ∧ pj[t]
13: Output u′

14: end for
15: end if

Hal f PipeDel(u, hu, pu, hj, pj, uk)
Inputs: Update u, build hash table hu, build provenance table pu, probe hash table hj, probe tuple provenance
table pj, join keys uk.
Output: Update stream u′.
1: oldPv := pu[u.tuple]
2: if hu contains u.tuple then
3: pu[u.tuple] := pu[u.tuple] ∧ ¬u.pv
4: if pu[u.tuple] = 0 then
5: Remove u.tuple from pu
6: Remove u.tuple[uk] from hu
7: end if
8: end if
9: if oldPv 6= pu[u.tuple] then

10: for each t in hj[u.tuple[uk]] do
11: u′.tuple := u.tuple 1 t
12: u′.type := DEL
13: u′.pv := u.pv ∧ pj[t];
14: Output u′

15: end for
16: end if

Process(u)
Inputs: Update u.
1: if u.type = DEL then
2: if u is from R∆ then
3: Hal f PipeDel(u, hR, pR, hS, pS, Rk)
4: else
5: Hal f PipeDel(u, hS, pS, hR, pR, Sk)
6: end if
7: else
8: if u is from R∆ then
9: Hal f PipeIns(u, hR, pR, hS, pS, Rk)

10: else
11: Hal f PipeIns(u, hS, pS, hR, pR, Sk)
12: end if
13: end if
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PipeHashJoin(R∆, S∆, Rk, Sk, WR, WS)
Inputs: Update streams R∆, S∆, join keys Rk, Sk, window evaluation functions WR, WS.
Output: Update stream RS∆.

1: Init hash map hR : R(x̄)[Rk]→ {R(x̄)}
2: Init hash map hS : S(ȳ)[Sk]→ {S(ȳ)}
3: Init hash map pR : R(x̄)→ P(R(x̄))
4: Init hash map pS : S(ȳ)→ P(S(ȳ))
5: while not EndO f Stream(R∆) and not EndO f Stream(S∆) do
6: Read an update u from R∆ or S∆

7: Process(u)
8: Let expiredR := the results of calling WR(u, pR)
9: for t in expiredR do

10: t.type := DEL
11: Process(t)
12: end for
13: end while

Algorithm 3 Incremental depth-first search algorithm with interval labeling
IncrementalDepthFirst(e, startInx, endInx, edges)
Input: Incoming edge e, map from variable to start edge position startInx, map from variable to end edge
position endInx, edge vector edges.
Output: Updated startInx, endInx, and edges.
1: x := e.start; y := e.end;
2: if startInx[x] < 0 then {no outgoing edge from x}
3: if endInx[x] < 0 then {no incoming edge to x}
4: if startInx[y] < 0 then {no outgoing edge from y}
5: Insert e to the end of edges;
6: Update startInx[x], endInx[x], endInx[y];
7: else {there exists an outgoing edge from y}
8: if the startInx[y]− 1 edge of edges ends in y then {there exists an incoming edge to y}
9: Insert e to the end of edges;

10: Update startInx[x], endInx[x];
11: else {no incoming edge to y}
12: Insert e before position startInx[y] of edges;
13: Update labels for x, y and all labels with value larger than startInx[y];
14: end if
15: end if
16: else {there exists an incoming edge to x}
17: Insert e after position endInx[x] of edges;
18: Update labels for x, y and all labels with value larger than endInx[x]
19: if endInx[x] < startInx[y] then {x’s interval appears before y’s interval and do not overlap}
20: Move sub-vector edges[startInx[y]..endInx[y]] forward to position endInx[x] + 1 of edges and shift

other elements;
21: Update all labels according to the new positions in edges;
22: end if
23: end if
24: else {there exists an outgoing edge from x}
25: Same procedure as lines 17-22 but do not modify startInx[x];
26: end if
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Algorithm 4 Aggregate selection sub-module
AggSel(U∆, uk, n, agg1, agg2, · · · , aggn)
Inputs: Input stream U∆, grouping keys uk, number of aggregate functions n, aggregate function
agg1, agg2, · · · , aggn.
Output: Stream U′∆.
1: Init hash map H: U(x̄)[uk]→ {U(x̄)}
2: Init hash map P: U(x̄)→ provenance expressions over U(x̄)
3: Init hash map B: U(x̄)[uk]→ [1..n] ∗ {U(x̄)}
4: while not EndO f Stream(U∆) do
5: Read an update u from U∆

6: if u.type = INS then
7: if H does not contain u.tuple then
8: H[u.tuple[uk]] := u.tuple
9: end if

10: P[u.tuple] := u.pv
11: if oldPv 6= P[u.tuple] then
12: for i = 1 to n do
13: if B does not contain u.tuple[uk] then
14: B[u.tuple[uk]].i := u.tuple
15: else if u.tuple is better than B[u.tuple[uk]].i for aggi then
16: u′.tuple := B[u.tuple[uk]].i
17: u′.type := DEL
18: u′.pv = P[B[u.tuple[uk]].i]
19: Output u′

20: B[u.tuple[uk]].i := u.tuple
21: end if
22: end for
23: if B[u.tuple[uk]] is updated then Output u
24: end if
25: else if H contains u.tuple then
26: oldPv := P[u.tuple]
27: Remove u.pv from P[u.tuple]
28: if P[u.tuple] indicates no derivability then
29: Remove u.tuple from P
30: Remove u.tuple[uk] from H
31: end if
32: if oldPv 6= P[u.tuple] then
33: for i = 1 to n do
34: if B[u.tuple[uk]].i = u.tuple then
35: Remove u.tuple from B[u.tuple[uk]].i
36: for each tuple t in H[u.tuple[uk]] do
37: if B[u.tuple[uk]].i = null or t is better than B[u.tuple[uk]].i for aggi then
38: B[u.tuple[uk]].i := t
39: end if
40: end for
41: u′.tuple := B[u.tuple[uk]].i
42: u′.type = INS
43: u′.pv = P[B[u.tuple[uk]].i]
44: Output u′

45: end if
46: end for
47: if B[u.tuple[uk]] is updated then Output u
48: end if
49: end if
50: end while



Chapter 4

Incremental Re-optimization of

Queries: The Declarative Approach

The problem of supporting rapid adaptation to runtime conditions during query pro-

cessing — adaptive query processing [35] — is of increasing importance in today’s data

processing environments. Consider declarative cloud data processing systems [5, 17, 74]

and data stream processing [1, 24, 77] platforms, where data properties and the status of

cluster compute nodes may be constantly changing. Here it is very difficult to effectively

choose a good plan for query execution: data statistics may be unavailable or highly vari-

able; cost parameters may change due to resource contention or machine failures; and in

fact a combination of query plans might perform better than any single plan. Similarly, in

conventional DBMSs there may be a need to perform self-tuning so the performance of a

query or set of queries can be improved [72].

To this point, query optimization techniques in adaptive query processing systems

fall into three general classes: 1) operator-specific techniques that can adapt the order of

evaluation for specific combinations of operators rather than the full-fledged space [12,

58]; 2) eddies [10, 33] and related flow heuristics, which are highly adaptive but also

continuously devote resources to exploring all plans and require fully pipelined execution;

3) approaches that use a cost-based query re-optimizer to re-estimate plan costs and

determine whether the system should change plans [54, 56, 72, 85]. Of these, the last

is the most flexible, e.g., in that it supports complex query operators like aggregation,

75
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as well as expensive adaptations like data repartitioning across a cluster. Perhaps most

importantly, a cost-based engine allows the system to spend the majority of its resources

on query execution once the various cost parameters have been properly calibrated. Put

another way, it can be applied to highly complex plans and has the potential to provide

significant benefit if a cost estimation error was made, but it should incur little overhead

if a good plan was chosen. Unfortunately, as today’s environments permit more and

more data sources to be integrated (as in data integration and environmental monitoring

applications), the queries become more and more complex (up to tens of relations not able

to complete in seconds), and the stream sources could become bursty, standard cost-based

query optimizations could be too expensive to perform frequently (say every 1s where

the optimization time exceeds 1s). Unfortunately, to this point cost-based techniques

have not been able to live up to their potential, because there lacks a general solution for

incremental re-optimization. Here, generality is in the sense that guaranteeing optimality

of the plans based on the cost model, just as full-fledged cost optimizers like System-

R and Volcano, in handling all types of queries unlimited to specific combinations of

operators. Indeed, some previous work has studied the problems before, but they focused

on either heuristics or a specific class of queries, rather than exploring the entire search

space as in a full-fledged cost optimizer. On the other hand, in order to reduce the

overhead of optimizing increasingly complex queries over data streams, we hope to only

modify the parts of computations when necessary, i.e., incrementally, across multiple

query re-optimizations. By intuition, a small variation of the stream characteristics would

only bring small changes to the costs of candidate plans, which may not change the

best plan picked; but we still need to maintain the up-to-date status because over time

the best plan for data streams could change drastically. It would be great if we always

guarantee the best plan returned by a query re-optimizer, during cost-based adaptivity

query processing, but incur little overhead when most of the computations could be

shared with previous rounds of query re-optimizations.

Our goal in this chapter is to explore whether full-fledged cost-based incremental tech-

niques for query re-optimization can be developed, where an optimizer only re-explores

query plans whose costs were affected by an updated cardinality or cost value; and

whether such incremental techniques could be used to facilitate more efficient adaptivity.
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Target Domains. In this chapter we focus on developing incremental re-optimization

techniques that we evaluate within a single-node (local) query engine, in two main con-

texts. 1) We address the problem of adaptive query processing in data stream management

systems where data may be bursty, and its distributions may vary over time — meaning

that different query plans may be preferred over different segments. Here it is vital to

optimize frequently based on recent data distribution and cost information, ideally as

rapidly as possible. 2) We address query re-optimization in traditional OLAP settings

when the same query (or highly similar queries) gets executed frequently, as in a pre-

pared statement. Here we may wish to re-optimize the plan after each iteration, given

increasingly accurate information about costs, and we would like this optimization to

have minimal overhead.

Approach and Contributions. The main contribution of this chapter is to show how a

cost-based full-fledged incremental re-optimizer can be developed, and how it can be use-

ful in adaptive query processing scenarios matching the two application domains cited

above. Our incremental re-optimizer realizes the basic capabilities of a modern database

query optimizer, and could easily be extended to support more advanced features; our

main goal is to show that an incremental optimizer following our model can be com-

petitive with a standard optimizer for initial query optimization, and significantly faster

for repeated optimizations. Moreover, in contrast to randomized or heuristics-based [10]

optimization methods, we still guarantee the discovery of the best plan according to the

cost model. Since our work is oriented towards adaptive query processing, we evaluate

the system in a variety of settings in conjunction with a basic pipelined query engine for

stream and stored data.

We address the problem using a novel approach, which is based on the observation

that query optimization is essentially a recursive process involving the derivation and

subsequent pruning of state (namely, alternative plans and their costs). If one is to build

an incremental re-optimizer, this requires preservation of state (i.e., the optimizer memo-

ization table) across optimization runs (as we shall see in the evaluations, this could be

under 100M for a reasonably complex query, hence could be loaded in memory in most

cases)— but moreover, it must be possible to determine what plans have been pruned from
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this state, and to re-derive such alternatives and test whether they are still viable.

One way to achieve such “re-pruning” capabilities is to carefully define a semantics

for how state needs to be tracked and recomputed in an optimizer. However, we observe

that this task of “re-pruning” in response to updated information looks remarkably simi-

lar to the database problem of view maintenance through aggregation [44] and recursion as

studied in the database literature [45]. In fact, recent work [29] has shown that query opti-

mization can itself be captured in recursive datalog. Thus, rather than inventing a custom

semantics for incrementally maintaining state within a query optimizer, we instead adopt

the approach of developing an incremental re-optimizer expressed declaratively.

More precisely, we express the optimizer as a recursive datalog program consisting

of a set of rules, and leverage the existing database query processor to actually execute

the declarative program. In essence, this is optimizing a query optimizer using a query

processor. Our declarative optimizer approaches the performance of conventional pro-

cedural optimizers for reasonably-sized queries. It recovers the initial overhead during

subsequent re-optimizations by leveraging incremental view maintenance [45, 66] ideas. It

only recomputes portions of the search space and cost estimates that might be affected by

the cost updates. Frequently, this is only a small portion of the overall search space, and

hence we often see order-of-magnitude performance benefits.

Our approach achieves pruning levels that rival or best bottom-up (System-R [86]-like)

and top-down ( Volcano [38, 39]-like) plan enumerations with branch-and-bound prun-

ing. We develop a variety of novel incremental and recursive optimization techniques to

capture the kinds of pruning used in a conventional optimizer, and more importantly,

to generalize them to the incremental case. Our techniques are of broader interest to

incremental evaluation of recursive queries as well. Empirically, we see updates on only

a small portion of the overall search space, and hence we often see order-of-magnitude

performance benefits of incremental re-optimization. We also show that our re-optimizer

fits nicely into a complete adaptive query processing system, and measure both the per-

formance and quality, the latter demonstrated well in the yielded query plans, of our

incremental re-optimization techniques on the Linear Road stream benchmark. We make

the following contributions:
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• The first cost-based full-fledged query optimizer that prunes yet supports incremental

re-optimization.

• A rule-based, declarative approach to query (re)optimization. (As we shall see later, here

rule-based means specifying the entire query optimizer declaratively, rather than speci-

fying transformations in rules as in conventional query optimizers [86].). Our approach

decouples plan enumerations and cost estimations, relaxing traditional restrictions on

search order and pruning.

• Novel strategies to prune the state of an executing recursive query, such as a declarative

optimizer: aggregate selection with tuple source suppression, reference counting, and recursive

bounding.

• A formulation of query re-optimization as an incremental view maintenance problem, for

which we develop novel incremental algorithms.

• An implementation over a query engine Aspen developed for recursive stream pro-

cessing [64, 66], with a comprehensive evaluation of performance against alternative

approaches, over a diverse workload.

• Demonstration that incremental re-optimization can be incorporated to good benefit in

existing cost-based adaptive query processing techniques [54, 85].

4.1 Declarative Query Optimization

Our goal is to develop infrastructure to adapt an optimizer to support efficient, incremen-

tally maintainable state, and incremental pruning. Our focus is on developing techniques

for incremental state management for the recursively computed plan costs in the query

optimizer, in response to updates to query plan cost information. Incremental update

propagation is a very well-studied problem for recursive datalog queries, with a clean

semantics and many efficient techniques. Prior work has also demonstrated the feasi-

bility of a declarative query optimizer [29]. Hence, rather than re-inventing procedural

solutions we have built our optimizer as a series of recursive rules in datalog, executed
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in the query engine that already exists in the DBMS. (We could have further extended to

Prolog, but our goal was clean state management rather than a purely declarative imple-

mentation. Other alternatives like constraint programming or planning languages do not

support incremental maintenance.)

We specify an entire optimizer in three stages and 10 rules (dataflow is illustrated in

Figure 20, and full rules are shown in Figure 19). In contrast to work such as [29], our

focus is not on formulating every aspect of query optimization in datalog, but rather on

formulating those aspects relating to state management and pruning as datalog rules — so

we can use incremental view maintenance (delta rules) and sideways information passing

techniques, respectively. Other optimizer features that are not reliant on state that changes

at runtime, such as cardinality estimation, breaking expressions into subexpressions, etc.,

are specified as built-in auxiliary functions ( f n functions). Our abstraction level of the

specification helps us to focus on the state management of incremental re-optimization

rather than the rewriting of specific functions, which enables advanced features imple-

mented on traditional database systems being reused here as well. In other words, this

abstraction level helps us to focus on the difference between a re-optimizer and a normal

optimizer, and aims to provide an angle through which one can understand how to build

a re-optimizer on top of existing procedural ones.

Plan enumeration (SearchSpace). Searching the space of possible plans has two aspects.

In the logical phase, the original query is recursively broken down into a full set of alterna-

tive relational algebra subexpressions. (Alternatively, only left-linear expressions may be

considered [86].) The decomposition is naturally a “top-down” type of recursion: it starts

from the original query expression, and then breaks down into subexpressions. The phys-

ical phase takes as input a query expression from the logical phase, and creates physical

plans by enumerating the set of possible physical operators that satisfy any constraints

on the output properties [39] or “interesting orders” [86] (e.g., the data must be sorted by

a particular attribute). Without physical properties, the extension from logical plans to

physical plans can be computed either top-down or bottom-up; however, the properties

are more efficiently computed in goal-directed (top-down) manner.

Cost estimation (PlanCost). This phase determines the cost for each physical plan in the
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R1:SearchSpace(expr, prop, index, logOp, phyOp, lExpr, lProp, rExpr, rProp) :- Expr(expr, prop),
Fn isleaf(expr, false), Fn split(expr, prop, index, logOp, phyOp, lExpr, lProp, rExpr, rProp);

R2:SearchSpace(expr, prop, index, logOp, phyOp, lExpr, lProp, rExpr, rProp) :-
SearchSpace(−,−,−,−,−, expr, prop,−,−), Fn isleaf(expr, false),
Fn split(expr, prop, index, logOp, phyOp, lExpr, lProp, rExpr, rProp);

R3:SearchSpace(expr, prop, index, logOp, phyOp, lExpr, lProp, rExpr, rProp) :-
SearchSpace(−,−,−,−,−,−,−, expr, prop), Fn isleaf(expr, false)),
Fn split(expr, prop, index, logOp, phyOp, lExpr, lProp, rExpr, rProp);

R4:SearchSpace(expr, prop,−,′ scan′, phyOp,−,−,−,−)) :-
SearchSpace(−,−,−,−,−, expr, prop,−,−), Fn isleaf(expr, true), Fn phyOp(prop, phyOp);

R5:SearchSpace(expr, prop,−,′ scan′, phyOp,−,−,−,−) :-
SearchSpace(−,−,−,−,−,−,−, expr, prop), Fn isleaf(expr, true), Fn phyOp(prop, phyOp);

R6:PlanCost(expr, prop, index, logOp, phyOp,−,−,−,−, md, cost) :-
SearchSpace(expr, prop, index, logOp, phyOp,−,−,−,−), Fn scansummary(expr, prop, md),
Fn scancost(expr, prop, md, cost);

R7:PlanCost(expr, prop, index, logOp, phyOp, lExpr, lProp,−,−, md, cost) :-
SearchSpace(expr, prop, index, logOp, phyOp, lExpr, lProp,−,−), Fn isleaf(lExpr, false),
PlanCost(lExpr, lProp,−,−,−,−,−,−,−, lMd, lCost),
Fn nonscansummary(expr, prop, index, logOp, lMd,−, md),
Fn nonscancost(expr, prop, index, logOp, phyOp, lExpr, lProp,−,−, md, localCost),
Fn sum(lCost, null, localCost, cost);

R8:PlanCost(expr, prop, index, logOp, phyOp, lExpr, lProp, rExpr, rProp, md, cost) :-
SearchSpace(expr, prop, index, logOp, phyOp, lExpr, lProp, rExpr, rProp),
Fn isleaf(lExpr, false), Fn isleaf (rExpr, false),
PlanCost(lExpr, lProp,−,−,−,−,−,−,−, lMd, lCost),
PlanCost(rExpr, rProp,−,−,−,−,−,−,−, rMd, rCost),
Fn nonscansummary(expr, prop, index, logOp, lMd, rMd, md),
Fn nonscancost(expr, prop, index, logOp, phyOp, lExpr, lProp, rExpr, rProp, md, localCost),
Fn sum(lCost, rCost, localCost, cost);

R9:BestCost(expr, prop, min < cost >) :-
PlanCost(expr, prop, index, logOp, phyOp, lExpr, lProp, rExpr, rProp, md, cost);

R10:BestPlan(expr, prop, index, logOp, phyOp, lExpr, lProp, rExpr, rProp, md, cost) :-
BestCost(expr, prop, cost),
PlanCost(expr, prop, index, logOp, phyOp, lExpr, lProp, rExpr, rProp, md, cost);

Figure 19: Datalog Rules for the Query Optimizer
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search space, by recursively merging the statistics and cost estimates of a plan’s subplans.

It is naturally a bottom-up type of recursion, as the plan subexpressions must already

have been cost-estimated before the plan itself. Here we can encode in a table the mapping

from a plan to its cost.

Plan selection (BestPlan). As costs are estimated, the program produces the plan that

incurs the lowest estimated cost.

In our declarative approach to query optimization, we treat optimizer state as data to

be queried, use rules to specify what a query optimizer is, and leverage a database query

processor to actually perform the computation for the query optimizer. Figure 20 shows a

(simplified) execution plan for the datalog rules. As we can see, the declarative program

is by nature recursive, and is broken into three stages mentioned above (with Fixpoint

operators between stages). Starting from the bottom of the figure, plan enumeration

recursively generates a SearchSpace table containing plan specifications, by decomposing

the query and enumerating possible output properties; enumerated plans are then fed

into the plan estimation component, PlanCost, which computes a cost for each plan,

by building from leaf to complex expressions; plan selection computes a BestCost and

BestPlan entry for each query expression and output property, by aggregating across the

PlanCost entries.

Example 4. As our driving example, consider a simplified TPC-H Query Q3 with its ag-

gregates and functions removed, called Q3S.

SELECT L_orderkey, O_orderdate, O_shippriority

FROM Customer C, Orders O, Lineitem L

WHERE C_mktsegment = ’MACHINERY’ and C_custkey = O_custkey and O_orderkey = L_orderkey and

O_orderdate < ’1995-03-15’ and L_shipdate > ’1995-03-15’

4.1.1 Plan Enumeration

Plan enumeration takes as input the original query expression as Expr, and then generates

as output the set of alternative plans. As with many optimizers, it is divided into two

levels:
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Figure 20: Query plan of our declarative query optimizer. Operators are in ellipses; views
are in rectangles. Plan enumeration (SearchSpace) consists of 5 rules, cost estimation
(PlanCost) 3 rules, and plan selection (BestPlan) 2 rules. See Figure 19.

Logical search space. The logical plan search space contains all the logical plans that

correspond to subexpressions of the original query expression up to any logically equiv-

alent transformations (e.g., commutativity and associativity of join operators). In tradi-

tional query optimizers such as Volcano [39], a data structure called an and-or-graph is

maintained to represent the logical plan search space. Bottom-up dynamic programming

optimizers do not need to physically store this graph but it is still conceptually relevant.

Example 5. Figure 21 shows an example and-or-graph for Q3S, which describes a set of al-

ternative subplans and subplan choices using interleaved levels. “AND” nodes represent
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(C) (O) (L)

OR Node: 

(Level 3)

OR Node: 

(Level 2)

AND Node:

(Level 2) 

OR Node: 

(Level 1)

(C,O) (O,L)

(CO) (OL)

(COL)

(L,CO)(C,OL)
AND Node: 

(Level 3)

BestCost = 0.04 BestCost = 0.19

LocalCost = 0.07

PlanCost = 0.07 + 0.04 + 0.19 = 0.30

BestCost = 0.30

LocalCost = 0.06

PlanCost = 0.06 + 0.19 + 0.68 = 0.93

BestCost = 0.68

BestCost = 0.93

LocalCost = 0.03

PlanCost = 0.03 + 0.30 + 0.68 = 1.01

BestCost = Min (1.00, 1.01) = 1.00

LocalCost = 0.03

PlanCost = 0.03 + 0.04 + 0.93 = 1.00

Figure 21: The and-or-graph for Q3S. Red edges denote the best plan. Rectangles and
ovals denote “OR” and “AND” nodes respectively. Each “OR” node is labeled with its
BestCost and each “AND” node is labeled with its LocalCost and PlanCost.

alternative subplans (typically with join operator roots) and the “OR” nodes represent

decision points where the cheapest AND-node was chosen.

We capture each of the nodes in a table called SearchSpace. In fact, as we discuss next,

we supplement this information with further information about the output properties and

physical plan. (We explain why we combine the results from both stages in Section 4.1.3.)

Physical search space. The physical search space extends the logical one in that it enu-

merates all the physical operators for each algebraic logical operator. For example, in our

figure above, each “AND” node denotes a logical join operator, but it may have multiple

physical implementations such as pipelined-hash, indexed nested-loops, or sort-merge

join. If the physical implementation is not symmetric, exchanging the left and right child

would become a different physical plan. A physical plan not only has a root physical

operator, but also a set of physical properties over the data that it maintains or produces;

if we desire a set of output properties, this may constrain the physical properties of the

plan’s inputs.

Example 6. Table 1 shows the SearchSpace content for a subset of Figure 21. The AND

logical operators are either joins (with 2 child expressions), or tablescans (with selection

predicates applied). Each expression Expr may have multiple Indexed alternatives. Prop
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*Expr *Prop *Index LogOp *PhyOp lExpr lProp rExpr rProp
(COL) – 1 join sort-merge (C) C custkey order (OL) O custkey order
(COL) – 2 join nested-loop (L) L orderkey index (CO) –
(OL) O custkey order 1 join pipe-hash (O) – (L) –
(CO) – 1 join pipe-hash (C) – (O) –
(CO) – 1 join sort-merge (C) C custkey order (O) O custkey order
(O) O custkey order – scan local scan – – – –
(O) – – scan local scan – – – –
(L) L orderkey index – scan index scan – – – –
(L) – – scan local scan – – – –
(C) C custkey order – scan local scan – – – –
(C) – – scan local scan – – – –

Table 1: A simplified SearchSpace relation encoding the and-or-graph for Q3S’s search
space. Primary keys are denoted by *.

and PhyOp represent the physical properties of a plan and its root physical operator,

respectively.

For instance, expression SearchSpace(COL) encodes an “OR” node with two alterna-

tives, the first “AND” (join) child is SearchSpace(C, OL) and the second is SearchSpace(L, CO).

For the first SearchSpace tuple, the left expression is C and the right expression is OL. The

tuple indicates a Sort-Merge join, whose left and right inputs’ physical properties require

a sort order based on C custkey and O custkey, respectively. The second alternative uses

an Indexed Nested-Loop Join as its physical operator. The left expression refers to the

inner join relation indexed on L orderkey, while there are no ordering restrictions on the

right expression.

Our declarative optimizer enumerates both spaces in the same recursive query (see

bottom of Figure 20). Given an expression, the Fnsplit function enumerates all the alge-

braically equivalent rewritings for the given expression, as well as the possible physical

operators and their interesting orders (e.g., partitioning, physical location, order, etc). Fix-

point is reached when Expr has been decomposed down to leaf-level scan operations over

a base relation (checked using the Fnisleaf function).
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4.1.2 Cost Estimation and Plan Selection

The cost estimation component computes an estimated cost for a physical plan. Given the

SearchSpace tuples generated in the plan enumeration phase, three datalog rules (R6 - R8)

are used to compute PlanCost (corresponding to a more detailed version of the “AND”

nodes in Figure 21, with physical operators considered and all costs enumerated), and

two additional rules (R9 - R10) select the BestPlan (corresponding to an “OR” node). Cost

estimates are recursively computed by summing up the children costs and operation

costs. The computed sum for each physical plan is stored in PlanCost.

In addition to the search space, cost estimation requires a set of summaries (statistics)

on the input relations and indexes, e.g., cardinality of an (indexed) relation, selectiv-

ity of operators, data distribution, etc. These summaries are computed using functions

Fnscansummary and Fnnonscansummary. The former computes the leaf level summaries over

base tables, and the latter computes the output summaries of an operator based on input

summaries. Given the statistics, the cost of a plan can be computed by combining factors

such as CPU, I/O, bandwidth and energy into a single cost metric. We compute the cost

of each physical operator using functions Fnscancost and Fnnonscancost respectively.

Given the above functions, cost estimation becomes a recursive computation that sums

up the cost of children expressions and the root cost, to finally compute a cost for the

entire query plan. At each step, Fnsum is used to sum up the PlanCost of its child plans

with LocalCost. The particular form of the operation depends on whether the plan root is

a leaf node, a unary or a binary operator.

Example 7. To illustrate the process of cost estimation, we revisit Figure 21, which shows

a simplified logical search space (omitting physical operators and properties) for our

simplified TPC-H Q3S. For every “AND” node, we compute the plan cost by summing

up the cost of the join operator, with the best costs of computing its two inputs (e.g.,

the level 2 “AND” node (C, O) sums up its local cost 0.07, its left best cost 0.04, and its

right best cost 0.19, and gets its plan cost 0.30). For every “OR” node, we determine the

alternative with minimum cost among its “AND” node children (e.g., the level 3 “OR”

node (COL) computes a minimum over its two input plan costs 1.00 and 1.01, and gets

its best cost 1.00). After the best cost is computed for the root “OR” node in the graph,
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the optimization process is done, and an optimal plan tree is chosen.

Once the PlanCost for every “AND” node are generated, the final two rules compute

the BestCost for every “OR” node by computing a min aggregate over PlanCost of its

alternative “AND” node derivations, and output the BestPlan for each “AND” node by

computing a join between BestCost and PlanCost.

Note that our approach does not require that complete plans always be generated in

order to compute the cost. It allows for sharing sub-plans even across multiple queries

as well, because the same logical plans could be cached when generating the tuples in

PlanCost. Indeed, this data-centric query optimization approach can be extended to han-

dle multi-queries, and on top of that, multi-query sharing opportunities could be further

explored (e.g., by specifying nonequivalent sharable opportunities into rules as well).

4.1.3 Execution Strategy

Given a query optimizer specified in datalog, the natural question is how to actually

execute it. We seek to be general enough to incorporate typical features of existing query

optimizers, to rival their performance and flexibility, and to only develop implementation

techniques that generalize. We adopt two strategies:

Merging of logical and physical plan enumeration. The logical and physical plan enu-

meration phases are closely related, and in general one can think of the physical plan as

an elaboration of the logical one. As both logical and physical enumeration are top-down

types of recursion, and as a logical plan could be regarded as a group representative of

various correspondingly physical plans, we can merge the logical and physical enumera-

tion stages into a single recursive query.

As we enumerate each logical subexpression, we simultaneously join with the table

representing the possible physical operators that can implement it. This generates the

entire set of possible physical query plans. To make it more efficient to generate multiple

physical plans from a single logical expression, we use caching to memoize the results of

Fnnonscansummary and Fnsplit.

Decoupling of cost estimation and plan enumeration. Cost estimation requires bottom-

up evaluation: a cost estimate can only be obtained once cost estimates and statistics are
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obtained from child expressions. The enumeration stage naturally produces expressions

in the order from parent to child, yet estimation must be done from child to parent. We

decouple the execution order among plan enumeration and cost estimation, making the

connections between these two components flexible. For example, some cost estimates

may happen before all related plans have been enumerated. Cost estimates may even be

used to prune portions of the plan enumeration space (and hence also further prune cost

estimation itself) in an opportunistic way.

In subsequent sections, we develop techniques to prune and maintain the optimizer

state that has no constraints on enumeration order, search order or pruning frequency.

Our approach relaxes the traditional restrictions on the search order and pruning tech-

niques in either Volcano-style [39] top-down traversal or System R-style [86] bottom-up

dynamic programming approaches. For example, a top-down search may have a depth-

first, breadth-first or another order.

We leverage a pipelined push-based query processor to execute the rules in an incre-

mental fashion, which simultaneously explores many expressions. We pipeline the results

of plan enumeration to the cost estimation stage without synchronization or blocking.

4.2 Achieving Pruning

In this section, we describe how we can incorporate pruning of the search space into

pipelined execution of our query optimizer. To achieve this, we use techniques based

on the idea of sideways information passing, in which the computation of one portion of

the query plan may be made more efficient by filtering against information computed

elsewhere, but not connected directly by pipelined dataflow. Specifically, we incorporate

the technique of aggregate selection [89] from the deductive database literature, which

we briefly review; we extend it to perform further pruning; and we develop two new

techniques for recursive queries that enable tracking of dependencies and computation of

bounds. Beyond query optimization, our techniques are broadly useful in the evaluation

of recursive datalog queries. In the next section we develop novel techniques to make

these strategies incrementally maintainable.

Aggregate selection removes non-viable plans from the optimizer state if they are not
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cost-effective, and we show how we can use it to achieve the similar effects to dynamic

programming in System R-style optimizers. There we also introduce a novel technique

called tuple source suppression. Then in the remainder of the section we show how to

introduce two familiar notions into datalog execution: namely, reference counting that en-

ables us to removes plan subexpressions once all of their parent expressions have been

pruned, and recursive bounding, which lets the datalog engine incorporate branch-and-

bound pruning as in a typical Volcano-style top-down query optimizer. Our solutions are

valid for any execution order, take full advantage of the parallel exploration provided by

pipelining, and are extensible to parallel or distributed architectures.

4.2.1 Pruning Suboptimal Plan Expressions

Dating back to System-R [86], every modern query optimizer uses dynamic programming

techniques (although some via memoization [39]). Dynamic programming is based on the

principle of optimality, i.e. an optimal plan can be decomposed into sub-plans that must

themselves be optimal solutions. This property is vital to optimizer performance, because

the same subexpression may appear repeatedly in many parent expressions. Formally:

Proposition 8. Given a query expression E and property p, consider a plan tree T〈E, p〉 that

evaluates E with output property p. For this and other propositions, we assume that plans have

distinct costs. For cases where plan costs have ties, refer to our extended technical report [60].

Here one such T will have the minimum cost: call that TOPT. Suppose Es is a subexpression of E,

and consider a plan tree Ts〈Es, ps〉 that evaluates Es with output property ps. Again one such Ts

will have the minimum cost: call that Ts
OPT. Ts is Ts

OPT iff Ts is the subtree of TOPT.

Proof. ⇒: Prove by contradiction. If Ts is Ts
OPT, then suppose Ts is not the subtree of TOPT.

Let T′s be the subtree of TOPT. Since Ts = Ts
OPT, then we must have PlanCost(Ts〈Es, ps〉) <

PlanCost(T′s〈Es, ps〉). If we substitute T′s with Ts in the tree TOPT, we get a new tree T′′,

with PlanCost(T′′〈E, p〉) < PlanCost(TOPT〈E, p〉). Contradiction to the definition of TOPT.

⇐: Prove by contradiction. If Ts is the subtree of TOPT, then suppose Ts is not Ts
OPT,

since plans have distinct costs, we have PlanCost(Ts〈Es, ps〉) > PlanCost(Ts
OPT〈Es, ps〉). If

we substitute subtree Ts with subtree Ts
OPT in the tree TOPT, we get a new plan tree T′,
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which has PlanCost(T′〈E, p〉) < PlanCost(TOPT〈E, p〉). Contradiction to the definition of

TOPT.

This proposition ensures that we can safely discard suboptimal subplans without af-

fecting the final optimal plan, and the final optimal plan contains exactly the subplans

we retain. Consider the and-or-graph of the example query Q3S (Figure 21). The red

(bolded) subtree is the optimal plan for the root expression (COL). The subplan of the

level 3 “AND” node (L, CO) has suboptimal cost 1.01. If there exists a super-expression

containing (COL), then the only viable subplan is the one marked in the figure. State

for any alternative subplan for (COL) may be pruned from SearchSpace and PlanCost. We

achieve pruning over both relations as follows.

Pruning PlanCost via aggregate selection. Refer back to Figure 20: each BestCost tuple

encodes the minimum cost for a given query expression-property pair, over all the plans

associated with this pair in PlanCost. To avoid enumerating unnecessary PlanCost tuples,

one can wait until the BestCost of subplans are obtained before computing a PlanCost for

a root plan. This is how System R-style dynamic programming works. However, this

approach constrains the order of evaluation.

We instead extend a logic programming optimization technique called aggregate selec-

tion [89], to achieve dynamic programming-like benefits for any arbitrary order of imple-

mentation. In aggregate selection, one “pushes down” a selection predicate into the input

of an aggregate, such that we can prune results that exceed the current minimum value

or are below the current maximum value. In our case (as shown in the middle box of Fig-

ure 20), the current best-known cost for any equivalent query expression-property pair

is maintained within our Fixpoint operator (which also performs the non-blocked min

aggregation). We only propagate a newly generated PlanCost tuple if its cost is smaller

than the current minimum. This does not affect the computation of BestCost, which still

outputs the minimum cost for each expression-property pair. Since pruning bounds are

updated upon every newly generated tuple, there is no restriction on evaluation order.

As with pruning strategies used in Volcano-style optimizers, the amount of state pruned

varies depending on the order of exploration: the sooner a min-cost plan is encountered,

the more effective the pruning is.
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Pruning SearchSpace via tuple source suppression. Enumeration of the search space

will generally happen in parallel with the enumeration of plans. Thus, as we prune tuples

from PlanCost, we may be able to remove related tuples (e.g., representing subexpressions)

from SearchSpace, possibly preventing enumeration of their subexpressions and/or costs.

We achieve such pruning through tuple source suppression, along the arcs indicated in Fig-

ure 20. Any PlanCost tuples pruned by aggregate selection should also trigger cascading

deletions to the source tuples by which they were derived from the SearchSpace relation. To

achieve this, since PlanCost contains a superset of the attributes in SearchSpace, we simply

project out the cost field and propagate a deletion to the corresponding SearchSpace tuple.

4.2.2 Pruning Unused Plan Subexpressions

The techniques described in the previous section remove suboptimal plans for specific

expression-property pairs. However, ultimately some optimal plans for certain expres-

sions may be unused in the final query execution plan. Consider in Figure 21 the level

2 “AND” node (C, O): this node is not in the final plan because its “OR” node parent

expression (CO) does not appear in the final result. In turn, this is because (CO)’s parent

“AND” nodes (in this example, just a single plan (L, CO)) does not contribute to the final

plan. Intuitively, we may prune an “OR” node if all of its parent “AND” nodes have been

pruned, and prune an “AND” node if its direct parent “OR” node has been pruned.

We would like to remove such nodes once they are discovered to not appear in the

final optimal plan, which requires a form of reference counting within the datalog engine

executing the optimizer. To achieve this, every “OR” node, represented by a subexpres-

sion and property pair, 〈Es, ps〉, is annotated with a reference count.

The reference count of an “OR” node is defined as the number of its parent “AND”

nodes that are not pruned in the final result (i.e., in SearchSpace or PlanCost). An “AND”

node Ts is pruned either because of suboptimal plans, i.e., Ts 6= Ts
OPT, or as discussed

later in the next section, because it is above a bound, PlanCost(Ts) > Bound〈Es, ps〉, or

as we shall discuss later in this section, because its corresponding expression 〈Es, ps〉

has a reference count of zero. For example, in Table 1, the expression property pair of

〈(OL), Ocustkey order〉 has reference count of 1, because it only has one parent plan, which
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is the first entry C 1 OL; on the other hand, the expression property pair of 〈(C), Ccustkey

order 〉 has reference count of 2, because it has two parent plans, which are the first entry,

C 1 (OL) and the fifth enty, C 1 O. Below is a proposition about reference counting:

Proposition 9. Given a query expression E with output property p: let Ts be a plan tree for

E’s subexpression Es with property ps. Es with property ps has reference count of zero, i.e.,

RefCount〈Es, ps〉 = 0 iff Ts is not a subtree of the optimal plan tree for the query E with property

p, TOPT〈E, p〉.

Proof. ⇒: Prove by contradiction. If RefCount〈Es, ps〉 = 0, then any plan tree whose

root is the AND node representing the parent of 〈Es, ps〉 is pruned. Suppose Ts is a

subtree of TOPT〈E, p〉, then consider the immediate parent node of Ts in TOPT, let it be

Ts′ . According to Proposition 8, Ts′ = Ts′
OPT. This means it has the minimal cost to

subexpression 〈Es′ , ps′〉, is on the optimal tree of the final optimal plan, but has been

pruned. Contradiction.

⇐: Prove by contradiction. If Ts is not a subtree of TOPT, according to Proposition 8,

Ts is not Ts
OPT. Hence, PlanCost(Ts

OPT) < PlanCost(Ts). Suppose Ts has the reference

count other than zero, then it must have at least a parent plan that has not been pruned.

Suppose that parent plan is T′s
′
. If we substitute Ts with Ts

OPT in T′s
′
, we get a plan tree

T′′s
′

that has a smaller cost than T′s
′
. Hence T′s

′
can be pruned in the final result because

it is suboptimal to T′′s
′
. Contradiction.

The proposition ensures that a plan with a reference count of zero can be safely

deleted, and a plan with a positive reference count must be the subtree of the optimal

plan tree. Note that a deleted plan may make more reference counts to drop to zero,

hence the deletion process may be recursive. Our reference counting scheme is more

efficient than the counting algorithm of [45], which uses a count representing the total

number of derivations of each tuple in bag semantics. Our count represents the number of

unique parent plans from which a subplan may be derived, and can typically be incrementally

updated in a single recursive step (whereas counting often requires multiple recursive

steps to compute the whole derivation count).

Our reference counting mechanism complements the pruning techniques of aggregate

selection. Following an insertion (exploration) or deletion (pruning) of a SearchSpace tu-
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r1: ParentBound(lExpr, lProp, bound− rCost− localCost) :-
Bound(expr, prop, bound), BestCost(rExpr, rProp, rCost),
LocalCost(expr, prop, index, lExpr, lProp, rExpr, rProp,−, localCost);

r2: ParentBound(rExpr, rProp, bound− lCost− localCost) :-
Bound(expr, prop, bound), BestCost(lExpr, lProp, lCost),
LocalCost(expr, prop, index, lExpr, lProp, rExpr, rProp,−, localCost);

r3: MaxBound(expr, prop, max < bound >) :- ParentBound(expr, prop, bound);
r4: Bound(expr, prop, min < minCost, maxBound >) :- BestCost(expr, prop, minCost),

MaxBound(expr, prop, maxBound);

Figure 22: Datalog rules to express bounds computation

ple, we update the reference counts of relevant tuples accordingly; cascading insertions

or deletions of SearchSpace (and further PlanCost) tuples may be triggered because their

reference counts may be raised above zero (or dropped to zero). Finally, the optimal plan

computed by the query optimizer is unchanged, but more tuples in SearchSpace and Plan-

Cost are pruned. Indeed, by the end of the process, the combination of aggregate selection

and reference counts ensure SearchSpace and PlanCost only contain those plans that are on

the final optimal plan tree. Such “garbage collection” greatly reduces the optimizer’s

state and the number of data items that must be updated incrementally, as described in

Section 4.3.

4.2.3 Full Branch-and-Bound Pruning

Our third innovation is to implement the full effect of branch-and-bound pruning, as in

top-down optimizers like Volcano, during cost estimation of physical plans. Branch-and-

bound pruning uses prior exploration of related plans to prune the exploration of new

plans: a physical plan for a subexpression is pruned if its cost already exceeds the cost of

a plan for the equivalent subexpression, or the cost of a plan to any parent, grandparent,

or other ancestor expression of this subexpression. Unfortunately, branch-and-bound

pruning assumes a single-recursive descent execution thread in its enumeration. Our

ultimate goal is to find a branch-and-bounding solution independent of the search order,

and able to support parallel enumeration (e.g., a different thread to the plan enumeration

or cost estimation process).

Previous work [29] has shown that it is possible to do a limited form of branch-and-



94

CHAPTER 4. INCREMENTAL RE-OPTIMIZATION OF QUERIES: THE DECLARATIVE
APPROACH

bound pruning in a declarative optimizer, by initializing a bound based on the cost of

the parent expression, and then pruning subplan exploration whenever the cost has ex-

ceeded an equivalent expression. This can actually be achieved by our aggregate selection

approach.

We seek to generalize this to prune against the best known bound for an expression-

property pair — which may be from a plan for an equivalent expression, or from any

ancestor plan that contains the subplan corresponding to this expression-property pair.

(Recall that there may be several parent plans for a subplan: this introduces some com-

plexity as each parent plan may have different cost bounds, and at certain point in time we

may not know the costs for some of the parent plans.) The bound should be continuously

updated as different parts of the search space are explored via pipelined execution. In this

section, we assume that bounds are initialized to infinity and monotonically decreasing. In

Section 4.3.3 we will relax this requirement.

Our solution, recursive bounding, creates and updates a single recursive relation Bound,

whose values form the best-known bound on each expression-property pair (each “OR”

node). This bound is the minimum of 1) known costs of any equivalent plans; 2) the

highest bound of any parent plan’s expression-property pair, which in turn is defined

recursively in terms of parents of this parent plan. Figure 22 shows how we can express

the bounds table using recursive datalog rules. ParentBound propagates cost bounds from

a parent expression-property pair to child expression-property pairs, through LocalCost,

while the child bound also takes into account the cost of the local operator, and the best

cost from the sibling side. MaxBound finds the highest of bounds from parent plans, and

Bound maintains the minimum bounding information derived from BestCost or MaxBound,

allowing for more strict pruning.

Given the definition of Bound, we can reason about the viability of certain physical

plans below:

Proposition 10. Given a query expression E with desired output property p: let Ts be a plan

subtree that produces E’s subexpression Es and yields property ps. Ts has a cumulative cost Plan-

Cost that is larger than the Bound of subexpression Es and yields property ps, i.e., PlanCost(Ts)

> Bound〈E, p〉 iff Ts is not a subtree of the optimal plan tree for the expression E and property p,



4.2. ACHIEVING PRUNING 95

TOPT〈E, p〉.

Proof. ⇒: Prove by contradiction. Suppose PlanCost(Ts) > Bound〈E, p〉. And suppose Ts

is a subtree of the optimal plan tree TOPT, according to Proposition 8, Ts is Ts
OPT. Hence,

PlanCost(Ts
OPT) > Bound〈E, p〉. Now we prove by induction that if Ts is a subtree of T′ of

subexpression Es′ and property ps′ , then PlanCost(T′OPT) > Bound〈Es′ , ps′〉.

First, the base case PlanCost(Ts
OPT) > Bound〈Es, ps〉 holds. Now, if PlanCost(Ts

OPT) >

Bound〈Es, ps〉, according to the definition of Bound where Bound〈Es, ps〉 = min(BestCost(Ts),

maxBound〈Es, ps〉), we have Bound〈Es, ps〉 = MaxBound〈Es, ps〉 < PlanCost(Ts
OPT). Ac-

cording to the definition of MaxBound, MaxBound〈Es, ps〉 = max(ParentBound〈Es, ps〉),

therefore, for any arbitrary sibling OR node of Ts, Sib(Ts), and corresponding parent

AND node of Ts, Par(Ts) of expression Es′ and property Ps′ , we have Bound〈Es′ , ps′〉

- BestCost(Sib(Ts)) - LocalCost(Par(Ts)) ≤ MaxBound〈Es, ps〉 < PlanCost(Ts
OPT). Hence,

Bound〈Es′ , ps′〉 < BestCost(Sib(Ts)) + BestCost(Ts) + LocalCost(Par(Ts)). Because this

holds for any sibling and parent, we have Bound〈Es′ , ps′〉 < min(BestCost(Sib(Ts)) + Best-

Cost(Ts) + LocalCost(Par(Ts))) = BestCost(Par(Ts)) = PlanCost(Par(Ts)OPT).

By applying this induction we prove that if Ts is a subtree of T′ of subexpression

Es′ and property ps′ , then PlanCost(T′OPT) > Bound〈Es′ , ps′〉. Since Ts is a subtree of the

optimal plan tree TOPT, hence PlanCost(TOPT) > Bound〈E, p〉. However, as TOPT is the

root, it has no parent, according to the definition of Bound, it should have Bound(TOPT) =

PlanCost(TOPT). Contradiction.

⇐: Prove by contradiction. Suppose Ts is not a subtree of TOPT, according to Propo-

sition 8, Ts is not Ts
OPT, hence, PlanCost(Ts) > PlanCost(Ts

OPT). Suppose PlanCost(Ts) ≤

Bound〈Es, ps〉, then we have PlanCost(Ts
OPT) < PlanCost(Ts) ≤ Bound〈Es, ps〉. According

to the definition of Bound, Bound〈Es, ps〉 = min(BestCost(Ts), maxBound〈Es, ps〉), we have

PlanCost(Ts
OPT) < BestCost(Ts), contradiction to the definition of Ts

OPT.

Based on Proposition 10, recursive bounding may safely remove any plan that exceeds

the bound for its expression-property pair, and after the process, the plans retained are

exactly the ones on the optimal plan tree. Indeed, with our definition of the bounds,

this strategy is a generalization of the aggregate selection strategy. However, bounds are
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recursively defined here and a single plan cost update may result in a number of changes

to bounds for others.

Overall the execution flow of pruning PlanCost and SearchSpace via recursive bounding

is similar to that described in the aggregate selection strategy. Specifically, PlanCost is

pruned inside the Fixpoint operator, where an additional comparison check PlanCost <

Bound is performed before propagating a newly generated PlanCost. Updates over other

Bound tuples derived from a given PlanCost tuple are computed separately. SearchSpace

is again pruned via sideways information passing where the pruned PlanCost tuples are

directly mapped to deletions over SearchSpace.

4.3 Incremental Re-Optimization

The previous section described how we achieve pruning at a level comparable to a con-

ventional query optimizer, without being constrained to the standard data and control

flow of a top-down or bottom-up procedural implementation. In this section, we discuss

incremental maintenance during both query optimization and re-optimization. In particu-

lar, we seek to incrementally update not only the state of the optimizer, but also the state

that affects pruning decisions, e.g., reference counts and bounds.

Initial query optimization takes a query expression and data summaries, and produces

a set of tables encoding the plan search space and cost estimates. During execution,

pruning bounds will always be monotonically decreasing. Now consider incremental re-

optimization, where the optimizer is given updated cost (or cardinality) estimates based

on the information collected at runtime after partial execution. This scenario commonly

occurs in adaptive query processing, where we monitor execution and periodically re-

optimize based on the updated status. For simplicity, our discussion of the approaches

assumes that a single cost parameter (operator estimated cost, output cardinality) changes.

Our approach is able to handle multiple such changes simultaneously.

Given a change to a cost parameter, our goal is in principle to re-evaluate the costs

for all affected query plans. Some of these plans might have previously been pruned

from the search space, meaning they will need to be re-enumerated. Some of the pruning

bounds might need to be adjusted (possibly even raised), as some plans become more
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expensive and others become cheaper. As the bounds are changed, we may in turn need

to re-introduce further plans that had been previously pruned, or to remove plans that

had previously been viable. This is where our declarative query optimizer formulation is

extremely helpful: we use incremental view maintenance techniques to only recompute the

necessary results, while guaranteeing correctness.

Incremental maintenance enabled via datalog. From the declarative point of view, initial

query optimization and query re-optimization can be considered roughly the same task,

if the data model of the datalog program is extended to include updates (insertions,

deletions and replacements). Indeed, incremental query re-optimization can be specified

using a delta rules formulation like [45]. This requires several extensions to the database

query processor to support direct processing of deltas: instead of processing standard

tuples, each operator in the query processor must be extended to process delta tuples

encoding changes. A delta tuple of a relation R may be an insertion (R[+x]), deletion (R[-

x]), or update (R[x→x’]). For example, a new plan generated in SearchSpace is an insertion;

a pruned plan in PlanCost is a deletion; an updated cost of BestCost is an update.

We extend the query processor following standard conventions from continuous query

systems [59] and stream management systems [77]. The extended query operators con-

sume and emit deltas largely as if they were standard tuples. For stateful operators,

we maintain for each encountered tuple value a (possibly temporarily negative) count,

representing the cumulative total of how many times the tuple has been inserted and

deleted. Insertions increment the count and deletions decrement it; counts may tem-

porarily become negative if a deletion is processed out of order with its corresponding

insertion, though ultimately the counts converge to nonnegative values, since every dele-

tion is linked to an insertion. We would prune a plan when it goes to zero, and re-insert

it when it is not zero any more. As in a stream system, one has no idea whether the count

will change in the future, hence the count scheme ensures consistency in the end. Finally,

a tuple only affects the output of a stateful operator if its count is positive.

Upon receiving a series of delta tuples, every query operator 1) updates its corre-

sponding state, if necessary; 2) performs internal computations such as predicate evalu-

ation over the tuple or against the state; 3) constructs a set of output delta tuples. Joins
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follow the rules established in [45]. For aggregation operators that compute minimum (or

maximum) values, we must further extend the internal state management to keep track

of all values encountered — such that, e.g., we can recover the “second-from-minimum”

value. If the minimum is deleted, the operator should propagate an update delta, re-

placing its previous output with the next-best-minimum for the associated group (and

conversely for maximum).

Challenge: recomputation of pruned state. While datalog allows us to propagate up-

dates through rules, a major challenge is that the pruning strategies of Section 4.2 are

achieved indirectly. In this section we detail how we incrementally re-create pruned state

as necessary. We first show how we incrementally maintain the output of aggregate se-

lection and “undo” tuple source suppression. Then we describe how to incrementally

adjust the reference counts and maintain the pruned plans. Finally, we show how we can

incrementally modify the pruning bounds and the affected plans.

4.3.1 Incremental Aggregate Selection

Aggregate selection [89], as briefly reviewed in Section 4.2.1, prunes state against bounds

and does not consider how incremental maintenance might change the bound itself. In

order to tackle the incremental case, one can extend the non-incremental aggregate se-

lection approach. Recall that in exploiting aggregate selection to our non-incremental

problem, we push down a selection predicate, PlanCost < BestCost, within the Fixpoint

operator that generates PlanCost. To illustrate how this works, consider how we may re-

vise BestCost and BestPlan after encountering an insertion, deletion or update to PlanCost.

There are four possible cases:

1. Upon an insertion PlanCost[+c], set BestCost to min (c, current BestCost).

2. Upon a deletion PlanCost[-c], set BestCost to the next-best PlanCost iff the current

BestCost is equal to c.

3. Upon a cost update PlanCost[c→c’], if c < c′, set BestCost to min (c′, next-best PlanCost

) iff the current BestCost is equal to c.
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4. Upon a cost update PlanCost[c→c’], if c > c′, if the current BestCost is equal to c, then

set BestCost to c′; else set BestCost to min (c′, current BestCost).

Recall that each PlanCost tuple denotes a newly computed cost associated with a phys-

ical plan, and a BestCost tuple denotes the best cost that has been computed so far for this

physical plan’s expression-property pair. We update BestCost based on the current state

of PlanCost. In Cases 1 and 4, we can directly compute updates to BestCost. In Cases 2

and 3, we rely on the fact that the aggregate operator preserves all the computed, even

pruned PlanCost tuples (as described previously), so it can find the “next best” value even

if the minimum is removed. In our implementation we use a priority queue to store the

sorted tuples.

We may also need to re-introduce tuples in SearchSpace that were suppressed when

they led to PlanCost tuples that were pruned, we achieve this by propagating an insertion

(rather than deletion as in Section 4.2.1) to the previous stage.

4.3.2 Incremental Reference Checking

Once we have updated the set of viable plans for given expressions in the search space,

we must consider how this impacts the viability of their subplans: we must incrementally

update the reference counts on the child expressions to determine if they should be left

the same, re-introduced, or pruned. As before, we simplify this process and make it

order-independent through the use of incremental maintenance techniques.

We incrementally and recursively maintain the reference counts for each expression-

property pair whenever an associated plan in the PlanCost relation is inserted, deleted or

updated. When a new entry is inserted into PlanCost, we increment the count of each

of its child expression-property pairs; similarly, whenever an existing entry is deleted

from PlanCost, we decrement each child reference count. Replacement values for PlanCost

entries do not change the reference counts, but may recursively affect the PlanCost entries

for super-expressions. Whenever a count goes from 0 to 1 (or drops from 1 to 0) we

recompute (prune, respectively) all of the physical plans associated with this expression-

property pair.
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If we combine this strategy with aggregate selection, only the best-cost plan needs to

be pruned or re-introduced (all others are pruned via aggregate selection). The aggregate

operators internally maintain a record of all PlanCost tuples they have received as input,

so “next-best” plans can be retrieved if the best-cost entry gets deleted or updated to a

higher cost value. During incremental updates, we only propagate changes affecting the

old and new best-cost plan and all recursively dependent plans.

4.3.3 Incremental Branch-and-bounding

Perhaps the most complex pruning technique to adapt to incremental maintenance is

the branch-and-bound pruning structure of Section 4.2.3: as new costs for any operation

are discovered, we must recursively recompute the bounds for all super-expressions. As

necessary we then update PlanCost and SearchSpace tuples based on the updated bounds.

Recall from Figure 22 that the Bound relation’s contents are computed recursively based

on the max bounds derived from parent plans; and also based on the min values for

equivalent plan costs. Hence, an update to LocalCost or BestCost may affect the entries in

Bound. Here we again rely in part on the fact that Bound is a recursive query and we can

incrementally maintain it, then use its new content to adjust the pruning. We illustrate

the handling of cost updates by looking at what happens when a cost increases.

Suppose a plan’s LocalCost increases. As a consequence of the rules in Figure 22, the

ParentBound of this plan’s children may increase due to rules r1 and r2. MaxBound is then

updated by r3 to be the maximum of the ParentBound entries: hence it may also increase.

As in the previous cases, the internal aggregate operator for ParentBound maintains all

input values; thus, it can recompute the new minimum bound and output a correspond-

ing update from old to new value. Finally, as a result of the updated ParentBound, Bound

in r4 may also increase. The process may continue recursively to this plan’s descen-

dant expression-property pairs, until Bound has converged to the correct bounds for all

expression-property pairs. In practice, the increase of a suboptimal’s LocalCost could be

cached and only be propagated when it really becomes relevant.

Alternatively, suppose an expression-property pair’s BestCost estimate increases (e.g.,

due to discovering the machine is heavily loaded). This may trigger an update to the
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corresponding entry in Bound (via rule r4). Moreover, via rules r1 and r2, an update to

this bound may affect the bounds on the parent expression, i.e., ParentBound, and thus

affecting any expression whose costs were pruned via ParentBound.

The cases for handling cost decreases are similar (and generally simpler). Sometimes,

in fact, we get simultaneous changes in different directions. Consider, for instance, that

an expression’s cost bound may increase, as in the previous paragraph. At the same

time, perhaps the expression-property pair’s ParentBound may decrease. Any equivalent

plan (sibling expression) for our original expression-property pair is bounded both by

the bounds of sibling expressions and parents. As ParentBound decreases, MaxBound and

Bound may also potentially decrease through r3 and r4. The results are guaranteed to

converge to the best of the sibling and parent bounds.

So far we focused only on how to update bounds given updated cost information; of

course, there is the added issue of updating the pruning results. Recall in Section 4.2.3

that we evaluate the following predicate φ before propagating a newly generated PlanCost

value: if PlanCost < Bound then set Bound to PlanCost. When PlanCost or Bound is updated,

we can end up in any of 3 cases:

1. Upon an update to a plan cost entry, i.e., PlanCost[+c],

PlanCost[-c] or PlanCost[c→c’]: if predicate φ’s result changes from false to true,

then emit an insertion of the PlanCost tuple; otherwise if φ’s result changes from

true to false, then emit a deletion. Incrementally update the corresponding Bound

entry, including its aggregated cost value, as a result.

2. Upon an update on Bound[b→b’] where b < b′: for those tuples t in PlanCost where

b < t.cost < b′, re-insert t into PlanCost and re-insert t’s counterpart in SearchSpace

to undo tuple source suppression.

3. Upon an update on Bound[b→b’] where b > b′: for those tuples t in PlanCost

where b > t.cost > b′, prune tuple t from PlanCost and delete t’s counterpart from

SearchSpace via tuple source suppression.

Indeed, the first step is similar to incremental aggregate selection. The main difference

is that here the condition check is not on BestCost but rather on Bound. Essentially we want
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to incrementally update Bound based on the current bounding status, hence a sorted list

of PlanCost tuples needs to be maintained.

An interesting observation of Cases 2 and 3 is that an update on Bound may affect the

pruned or propagated plans as well. If a bound is raised, it may re-introduce previously

pruned plans; if a bound is lowered, it may incrementally prune previously viable plans.

If incremental aggregate selection is used, then only the optimal plan among the pruned

plans needs to be revisited. SearchSpace is again updated via sideways information pass-

ing.

4.4 Experimental Results

In this section, we discuss the implementation and evaluate the performance of our

declarative optimizer: both versus other strategies, and as a primitive for adaptive query

processing. (Note that we reuse existing adaptive techniques from [54, 85]; our focus is

on showing that incremental re-optimization improves these.)

We implemented the optimizer as 10 datalog rules (see Figure 19) plus 8 external

functions (involving histograms, cost estimation, and expression decomposition). Our

goal was to implement as a proof of concept the common core of optimizer techniques

— not an exhaustive set. We executed the optimizer on top of the Aspen system’s query

engine [66]. To support the pruning and incremental update propagation features in this

chapter, we added approximately 20K lines of code to the query engine. In addition, we

developed a plan generator to translate the declarative optimizer into a dataflow graph

as in Figure 20. Our experiments were performed on a single local node.

For comparison, we implemented in Java a Volcano-style top-down query optimizer

and a System-R-style dynamic programming optimizer, which reuse the histogram, cost

estimation, and other procedural user-defined-functions as our declarative optimizer.

This enables apple-to-apple comparison because all the differences between our declar-

ative optimizer and these procedural counterparts are in dataflow, enumeration order,

execution strategy rather than performance differences on specific computations like cost

estimations, or histogram generations, etc. Indeed, all the advanced features developed

on top of the traditional query optimizers could be applied to our optimizer with no spe-
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cial treatment, hence we focus on the difference of dataflow of execution and incremental

capabilities here.

We also built a variant of our declarative optimizer that only uses the pruning strate-

gies of the Evita Raced declarative optimizer [29]. Wherever possible we used common

code across the implementations to ensure fair comparison.

Experimental Workload. For repeated optimization scenarios we use TPC-H queries,

with data from the TPC-H and skewed TPC-D data generators [78] (Scale Factor 1). Here,

the scale factor is completely unimportant here as we measure the optimization time

rather than execution time, when the data is big it just takes more time to do cost estima-

tions, whose costs are common for all approaches, and hence uninteresting for compar-

isons), with Zipfian skew factor 0 for the latter. Note that here we evaluate single-round

optimization, hence even a tiny improvement (e.g., from 1.2s to 0.8s) could save cumu-

lative overhead in adaptive query processing for data streams (e.g., re-optimize every

1s).

We focused on the single-block SQL queries: Q1, Q3, Q5, Q6 and Q10. (Q1 and Q6

are aggregation-only queries; Q3 joins 3 relations; Q10 joins 4; and Q5 joins 6 relations).

Our experiments showed that Q1, Q3, and Q6 are all simple enough to optimize that

they are simple enough that they completed in under 80msec on all implementations.

(The declarative approach tended to add 10-50msec to these settings, as it has higher

initialization costs.)

Thus we focus our presentation on reasonably complex queries, e.g., with more than 3-

way joins. To create greater query diversity, we modified the 6-way and larger join queries

by removing aggregation — we constructed a simplified query Q5S. Finally, to test scale-

up to larger queries, we manually constructed an eight-way join query, Q8Join, as the

largest possible query to join relations in TPC-H, Q8JoinS. For adaptive stream processing

we used the Linear Road benchmark [9]: We modified its biggest query, SegToll, by

unfolding nested relations, into its simplified version SegTollS. We show our queries Q5,

Q5S, Q8Join and SegTollS in Table 2.

Experimental Methodology. We aim to answer four questions:

• Can a declarative query optimizer perform at a rate competitive with procedural opti-
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Q5: SELECT n name, sum(l extendedprice * (1 - l discount)) as revenue FROM
customer, orders, lineitem, supplier, nation, region WHERE c custkey = o custkey
and l orderkey = o orderkey and l suppkey = s suppkey and c nationkey =
s nationkey and s nationkey = n nationkey and n regionkey = r regionkey and
r name = ’AMERICA’ and o orderdate ≥ ’1993-01-01’ and o orderdate < ’1994-01-
01’ GROUPBY n name;
Q5S: SELECT n name, l extendedprice * (1 - l discount) FROM customer, orders,
lineitem, supplier, nation, region WHERE c custkey = o custkey and l orderkey
= o orderkey and l suppkey = s suppkey and c nationkey = s nationkey and
s nationkey = n nationkey and n regionkey = r regionkey and r name = ’AMER-
ICA’ ” and o orderdate ≥ ’1993-01-01’ and o orderdate < ’1994-01-01’;
Q8Join: SELECT c name, p name, ps availqty, s name, o custkey, r name, n name,
sum(l extendedprice * (1 -l discount)) FROM orders, lineitem, customer, part, part-
supp, supplier, nation, region WHERE o orderkey = l orderkey and c custkey =
o custkey and p partkey = l partkey and ps partkey = p partkey and s suppkey
= ps suppkey and r regionkey = n regionkey and s nationkey = n nationkey
GROUPBY c name, p name, ps availqty, s name, o custkey, r name, n name;
SegTollS: SELECT r1 expway, r1 dir, r1 seg, COUNT(distinct r5 xpos) FROM Car-
LocStr [size 300 time] as r1, CarLocStr [size 1 tuple partition by expway, dir, seg]
as r2, CarLocStr [size 1 tuple partition by caid] as r3, CarLocStr [size 30 time] as r4,
CarLocStr [size 4 tuple partition by carid] as r5 WHERE r2 expway = r3 expway
and r2 dir = 0 and r3 dir = 0 and r2 seg < r3 seg and r2 seg > r3 seg - 10 and
r3 carid = r4 carid and r3 carid = r5 carid and r1 expway = r2 expway and r1 dir
= r2 dir and r1 seg = r2 seg GROUPBY r5 carid, r2 expway, r2 dir, r2 seg;

Table 2: Queries modified based on TPC-H and LinearRoad benchmark queries used in
our experiments

mizers, for 4-way-join queries and larger?

• Does incremental query re-optimization show running time and search space benefits

versus non-incremental re-optimization, for repeated query execution-over-static-data

scenarios?

• How does each of our three pruning strategies (aggregate selection, reference counting,

and recursive bounding) contribute to the performance?

• Does incremental re-optimization improve the overall performance of cost-based adap-

tive query processing techniques for streaming?

The TPC-H benchmark experiments are conducted on a single local desktop machine:

a dual-core Intel Core 2 2.40GHz with 2GB memory running 32-bit Windows XP Profes-
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Figure 23: Performance comparison for initial query optimization, across different optimizer
architectures

sional, and Java JDK 1.6. The Linear Road benchmark experiments are conducted on a

single server machine: a dual-core Intel Xeon 2.83GHz with 8 GB memory running 64-bit

Windows Server Standard. Performance results are averaged across 10 runs, and 95%

confidence intervals are shown. We mark as 0 any results that are exactly zero.

4.4.1 Declarative Optimization Performance

Our initial experiments focus on the question of whether our declarative query optimizer

can be competitive with procedural optimizers based on the System R-style (bottom-up

enumeration through dynamic programming) and Volcano-style (top-down enumeration

with memoization and branch-and-bound pruning) models. To show the value of the

pruning techniques developed in this chapter, we also measure the performance when
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our engine is limited to the pruning techniques developed in Evita Raced [29] (where

pruning is only done against logically equivalent plans for the same output properties).

Recall that all of our implementations share the same procedural logic (e.g., histogram

derivation, cost estimation); their differences are in search strategy, dataflow, and pruning

techniques.

We begin with a running time comparison among Volcano-style, System R-style, and

declarative implementations (one using our sideways information passing strategies, and

one based on the Evita Raced pruning heuristics) — shown in Figure 23 (a). This graph

is normalized against the running times for our Volcano-style implementation (which is

also included as a bar for visual comparison of the running times). Actual Volcano-style

running times are shown directly above the bar. Observe from the graph that the Volcano-

style strategy is always the fastest, though System R-style enumeration often approaches

its performance due to simpler (thus, slightly faster) exploration logic. Our declarative

implementation is not quite as fast as the dedicated procedural optimizers, with an over-

head of 10-50%, but this is natural given the extra overhead of using a general-purpose

engine and supporting incremental update processing. The Evita Raced-style declarative

implementation is marginally faster in this setting, as it does less pruning. We shall see

in later experiments that there are significant benefits to our more aggressive strategies

during re-optimization — which is our focus in this work.

To better understand the performance of the different options, we next study their

effectiveness in pruning the search space. We divide this into two parts: 1) pruning of

expression-property entries in the plan table, such that we do not need to compute and

maintain any plans for a particular expression yielding a particular property; 2) pruning

of plan alternatives for a particular expression-property pair. In terms of the and-or graph

formulation of Figure 21, the first case prunes or-nodes and the second prunes and-

nodes. We show these two cases in Figure 23 parts (b) and (c). We omit the System

R-style optimizer from this discussion, as it uses a dynamic programming-based pruning

model that is difficult to directly compare.

Part (b) shows that our declarative implementation achieves pruning of approximately

35-80% of the plan table entries, resulting in large reductions in state (and, in many cases,

reduced computation). We compare with the strategies used by Evita Raced, which we
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can see never prunes plan table entries, and with our Volcano-style implementation. Ob-

serve that our pruning strategies — which are quite flexible with respect to order of

processing — are often more effective than the Volcano-style strategy, which is limited

to top-down enumeration with branch-and-bound pruning. (All pruning strategies’ ef-

fectiveness depends on the specific order in which nodes are explored: better pruning is

achieved when inexpensive options are considered early. However, in the common case,

high levels of pruning are observed.)

Part (c) looks in more detail at the number of alternative query plans that are pruned:

here our declarative implementation prunes approximately 55-75% of the space of plans.

It exceeds the pruning ratios obtained by the Evita Raced strategies by around 4-8%, and

often results in significantly greater pruning than Volcano-style.

Our conclusions from these experiments are that, even for initial query optimization

“from scratch,” a declarative optimizer can be performance-competitive with a procedural

one — both in terms of running time and pruning performance. Moreover, given that our

plan enumeration and pruning strategies are completely decoupled, we plan to further

study whether there are effective heuristics for exploring the search space in our model.

4.4.2 Incremental Re-optimization

Now that we understand the relative performance of our declarative optimizer in a con-

ventional setting, we move on to study how it handles incremental changes to costs. A

typical setting in a non-streaming context would be to improve performance during the

repeated execution of a query, such as for a prepared statement where only a binding

changes. The question we ask is how expensive — given a typical update — it is to

re-optimize the query and produce the new, predicted-optimal plan.

Note that there exists no comparable techniques for incremental cost-based re-optimization,

so we compare the gains versus those of re-running a complete optimization (as is done

in [54, 85]). In these experiments, we consider running time — versus the running times

for the best-performing initial optimization strategy, namely that of our Volcano-style im-

plementation — as well as how much of the total search space gets re-enumerated. We

consider re-optimization under “microbenchmark”-style simulated changes to costs, for
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Figure 24: Performance during incremental re-optimization of TPC-H Q5 — change to join selec-
tivity estimate

synthetic updates as well as observed execution conditions over skewed data. We mea-

sured performance across the full suite of queries in our workload. However, due to

space constraints, and since the results are representative, we focus our presentation on

query Q5.

4.4.2.1 Synthetic Changes to Subplan Costs

We first simulate what happens if we discover that an operator’s output is not in ac-

cordance with our original selectivity estimates. Figures 24 (a)-(c) show the impact of

synthetically injecting changes for each join expression’s selectivity, and therefore the

PlanCost of the related plans and their super-plans. For conciseness in the graph captions,

we assign a symbol with each expression, e.g., the first join Region 1 Nation is expression
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A, and the second join expression combines the output of A with data from the Customer

table, yielding B = Customer 1 A. We expect that changes to smaller subplans will take

longer to re-optimize, and changes to larger subplans will take less time (due to the num-

ber of recursive propagation steps involved). We separately plot the results of changing

each expression’s selectivity value, as we change it along a range from 1/8 the predicted

size through 8 times larger than the predicted size. Running times in part (a) are plotted

relative to the Volcano-style implementation’s performance: we see that the speedups are

at least a factor of 12, when the lowest-level join cost is updated; going up to over 300,

when the topmost join operator’s selectivity is changed. In general the speedups confirm

that larger expressions are cheaper to update. We can observe from these last two figures

that we recompute only a small portion of the search space.

4.4.2.2 Changes based on Real Execution

We now look at what happens when costs are updated according to an actual query

execution. We took TPC-H Q5 and to gain better generality, we divided its input into

10 partitions (each having uniform distribution and independent variables) that would

result in equal-sized output. We optimized the query over one such partition, using

histograms from the TPC-H dataset. Then we ran the resulting query over different

partitions of skewed data (Zipf skew factor 0.5, from the Microsoft Research skewed

TPC-D generator [78]); each of which exhibits different properties. At the end we re-

optimized given the cumulatively observed statistics from the partition. We performed

re-optimization of each of such interval, given the current plan and the revised statistics.

Figure 25 (a) shows the execution times for each round of incremental re-optimization,

normalized against the running time of Volcano-style. We see that, as with the join re-

estimation experiments of Figure 24, there are speedups of a factor of 10 or greater. In

terms of throughput, the Volcano-style model takes 500msec to perform one optimiza-

tion, meaning it can perform 2 re-optimizations per second; whereas our declarative

incremental re-optimizer can achieve 20-60 optimizations per second, and it can respond

to changing conditions in 10-100msec. Again, Figure 25 (b) and (c) show that the speedup

is due to significant reductions in the amount of state that must be recomputed.
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Figure 25: Performance during incremental re-optimization of TPC-H Q5 — updates to costs
based on real execution over skewed data

4.4.3 Contributions of Pruning Strategies

Here we investigate how each of our pruning and incremental strategies from Sections 4.2

and 4.3 contribute to the overall performance of our declarative optimizer. We systemati-

cally considered all techniques individually and in combination, unless they did not make

sense (e.g., reference counting must be combined with one of the other techniques, and

branch-and-bound requires aggregate selection to perform pruning of the search space).

See Figure 26, where AggSel refers to aggregate selection with source tuple suppression;

RefCount refers to reference counting; and Branch-and-Bounding refers to recursive bound-

ing. We consider aggregate selection in isolation and in combination with the other tech-

niques individually and together. (We also considered the case where none of the pruning

techniques are enabled: here running times were over 2 minutes, due to a complete lack
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Figure 26: Performance breakdown of pruning techniques for initial optimization, across full
query workload

of pruning. We omit this from the graphs.)

Figures 26 (a)-(c) compare the three pruning strategies when performing initial op-

timization on various TPC-H queries. It can be observed that each of the pruning tech-

niques adds a small bit of runtime overhead (never more than 10%) in this setting, as

each requires greater computation and data propagation. Parts (b) and (c) show that each

technique adds greater pruning capability, however.

Once we move to the incremental setting — shown in Figures 27 (a)-(c) for query Q5

and changes to the orders table, over different cost estimate changes — we see significant

benefits in running time as well as pruned search space. Note that in contrast to our other

graphs for incremental re-optimization, plots (b) and (c) isolate the amount of pruning

performed, rather than showing the total state updated. We see here that our different
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Figure 27: Performance breakdown of pruning techniques during incremental re-optimization of
Q5 when Orders has updated scan cost

techniques work best in combination, and that each increases the amount of pruning.

Bookkeeping overhead. Our pruning strategies enable incremental updates to be sup-

ported with relatively minor space overhead: even for the largest query (Q8Join), the

total optimizer state was under 100MB. This includes all the book-keeping overhead in-

troduced in our approaches.

4.4.4 Incremental Re-optimization for Adaptive Stream Processing

A major motivation for our work was to facilitate better cost-based adaptive query process-

ing, especially for continuous optimization of stream queries. Here we show the benefits

of incremental re-optimization on a streaming LinarRoad Benchmark workload, by mea-

suring both the optimization times and the execution times during multi-round adaptive
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query processing. This final set of experiments shows how our techniques can be used

within a full cost-based adaptive query processing framework, one based on the model

of [54] where the optimizer periodically pauses plan execution, forming a “split” point

from which it may choose a new plan and continue execution. In general, if we change

plans at a split point, there is a challenge of determining how to combine state across the

splits. In contrast to [54] we chose not to defer the cross-split join execution until the end;

rather, we used CAPE’s state migration strategy [85] to perform the delta computations

(e.g., joining tuples across different splits) by migrating the state from the prior plan into

the current one, recomputing intermediate state, and computing delta tuples at the new

plan. Note that this data-partitioned model could be combined with other cost-based

adaptive schemes such as [56, 72] as well.

We use the standard LinearRoad Benchmark [9] data generator to synthesize data

streams whose characteristics frequently change over time, resulting in opportunities for

plan adaptations. A stream of car location reports, called CarLocStr, is generated by the

simulator and we use the default setting of two expressways (L=2). In [7], it maintains

a list of continuous queries specified in Continuous Query Language (CQL) with the

same window semantics as in our system, and we adapt one of its query, SegToll, which

computes the toll for each segment not in accidents. We unfold the nested views in

SegToll, and generate a simplified query, SegTollS, displayed in Table 2, which contains

5-way joins with multiple windowed aggregates.
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Per Slice Re-Opt Time N.C. Exec Time Total Time
1s 5.75s 2.20s 7.95s
5s 1.23s 6.82s 8.05s
10s 0.63s 13.35s 13.98s

Table 3: Frequency of Adaptation (20 sec stream)

We show the performance of our re-optimizer over the SegTollS query over streaming

LinearRoad data workloads. The query re-optimization time and query execution time

are shown in Figure 28 and Figure 29 respectively.

In Figure 28, we measure the performance of query re-optimization when adapting ev-

ery 1 second over the input stream. We focus on the optimization times of non-cumulative

data computation within each slice to emphasize the impact of the plan picked by an

optimizer on the performance of new data computation. We measure our incremental

re-optimization overhead versus a non-incremental Tukwila-style optimizer [54]. Our re-

optimization time starts off from around 0.4s and drops towards 0 till 150 slices, whereas a

non-incremental Tukwila-style optimizer holds onto 0.2s of re-optimization time through-

out the stream processing. Indeed, we just showed 150 slices, which are the worst sce-

narios because the initial stream characteristics fluctuate wildly before they have been

stabilized inside fixed-size windows). When we take a longer horizon (e.g., 300 slices),

we have observed that the re-optimization time remains nearly zero (hence we did not

show them on the figure). This is because the stream rarely adapts a plan after it stabilizes

(only when stream statistics are off wildly) and the stream usually converges to a single

plan where our re-optimization is near zero (a non-incremental approach would be too

expensive to compute frequently).

We also measure the execution times of the adapted plans picked by our re-optimizer

in Figure 29. Here our goal is to have the optimizer start with zero statistical information

on the stream data, and find a sequence of plans whose running time equals or betters the

single best static plan that it would pick given complete information of the stream statis-

tics (e.g., histograms). We also obtain a “bad” plan computed by a standard optimizer

assuming it only has partial knowledge about the stream, e.g., the first several seconds of

the stream information. Figure 29 shows that our incremental AQP scheme provides su-

perior performance to the single best plan (“good single plan”), if we re-optimize every
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1 second. This is because the adaptive scheme has a chance to “fit” its plan to the local

characteristics of whatever data is currently in the window, rather than having to choose

one plan for all data.

A natural question then is where the “sweet spot” is between query execution over-

head and query optimizer overhead, such that we can achieve best performance. We

measured, for a variety of slice sizes, the total running time of query re-optimization

and execution time over each new slice of data (not considering the additional overhead of

state migration, which depends on how similar the plans are). We can see the results in

Table 3: there are significant gains in shrinking the interval from 10sec to 5sec, but little

more gain to be had in going down to 1sec. Figure 29 helps explain this: as we execute

and re-optimize, the overhead of a non-incremental re-optimizer remains constant (about

200 msec each time), whereas the incremental re-optimization time drops off rapidly, go-

ing to nearly zero. This means that the system has essentially converged on a plan and that

new executions do not affect the final plan.

4.4.5 Experimental Conclusions

We summarize our evaluation results by providing the answers to the questions raised

earlier in this section. First, our declarative query optimizer performs respectably when

compared to a procedural query optimizer, for initial optimization: despite the over-

head of starting up a full query processor, it gets within 10-50% of the running times

of a dedicated optimizer. It more than recovers this overhead during incremental re-

optimization, where — across a variety of queries and changes — it typically shows

an order-of-magnitude speedup, or better. These gains are largely due to having to re-

enumerate a much smaller space of plans than a full re-optimization. In addition, we find

that our pruning techniques developed in Section 4.2 and Section 4.3 each contribute in

a meaningful way to the overall performance of incremental re-optimization. Finally, we

show that our incremental re-optimization techniques help cost-based adaptation tech-

niques provide finer-grained adaptivity and hence better overall performance. Overhead

decreases as the system converges on a single plan.
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4.5 Conclusion

To build large-scale, pipelined query processors that are reactive to conditions across a

cluster, we must develop new adaptive query processing techniques. This chapter rep-

resents the first step towards that goal: namely, a fully cost-based architecture for incre-

mentally re-optimizing queries. We have made the following contributions:

• A rule-based, declarative approach to query (re)optimization in adaptive query process-

ing systems.

• Novel optimization techniques to prune the optimizer state: aggregate selection, reference

counting, and recursive bounding.

• A formulation of query re-optimization as an incremental view maintenance problem,

for which we develop novel incremental algorithms to deal with insertions, deletions

and updates over runtime cost parameters.

• An implementation over the Aspen query engine [66], with a comprehensive evaluation

of performance against alternative approaches, over a diverse workload, showing order-

of-magnitude speedups for incremental re-optimization.



Chapter 5

Incremental Re-optimization of

Queries: The Procedural Approach

In the previous chapter, we studied how to address incremental re-optimization under

declarative frameworks. In this chapter, we aim to leverage the insights we gained from

the declarative perspective solving the problem, and apply them to traditional procedu-

ral cost-based query optimization engines. Examples of such engines include bottom-up

style query optimizers [47, 86] and top-down style query optimizers [39]. These tradi-

tional cost-based procedural query optimizers were originally designed for single-pass

query optimization, and we strive to understand how to adapt them to be able to in-

crementally re-optimize. The motivation of this study comes from several observations.

First, traditional procedural query optimization frameworks are widely used in the in-

dustry and academia and are already extremely complex, hence, it is usually easier to

incorporate the new features into the existing codebase than rewriting everything from

scratch. Second, by restricting ourselves to traditional procedural frameworks, we can

understand the minimal changes needed to make an existing query optimizer incremen-

tal.

We aim at understanding incremental query re-optimization approaches for full-fledged

cost-based query optimization frameworks, hence our work is different from other solu-

tions proposed in the past, such as operator-specific techniques (e.g., [12]), eddies-based

flow-heuristic techniques (e.g., [10]) or heuristics-based re-optimization techniques (e.g.,

117
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[56]). We make the following contributions in this work:

• We define the cost-based procedural incremental query re-optimization problem (in

Section 5.1).

• We leverage the lessons learned from the declarative perspective and present incre-

mental re-optimization algorithms for both bottom-up and top-down style architec-

tures, and discuss optimizations to improve recomputation and book-keeping costs

(in Section 5.2).

• We analyze the worst-case bounds for re-computations of AND and OR nodes dur-

ing incremental query re-optimization (in Section 5.3).

• We empirically evaluate our procedural incremental re-optimization algorithms and

study the performance differences between top-down and bottom-up style incre-

mental re-optimization, and the difference to their non-incremental counterparts.

We study the effects of different optimizations, and understand the empirical results

of the ratio of recomputed AND and OR nodes during incremental re-optimization

(in Section 5.4).

5.1 Problem Statement of Cost-based Incremental Query

Re-optimization

In this section, we illustrate the notion of query optimization, query re-optimization and

incremental query re-optimization, all in a full-fledged cost-based fashion. We first review

the task of query optimization.

Definition 11. The task of a full-fledged cost-based query optimizer is to take a query

expression E as input, and output the optimal physical plan tree T that can implement

the execution of this query expression with the least estimated cost. In order to generate

this optimal physical plan tree T, a cost-based query optimizer needs to compute an and-

or-graph G, where each OR node represents alternative ways of splitting a subexpression

(subexpression-physical property pair if we consider a physical and-or-graph), and each

AND node represents one way of splitting this subexpression, using an operator that
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concatenates one or more smaller subexpressions, which can in turn be represented by

OR nodes. Hence, AND nodes and OR nodes are interleaved in the and-or-graph. This

graph must have a single OR node representing the original expression E, and several

OR nodes as leaf terminals representing the smallest subexpressions that the original

expression can be split into.

The process of computing the optimal plan tree T for the original expression E is

the process of enumerating and computing the estimated costs on the physical and-or-

graph. Specifically, each AND node is associated with an estimated cost indicating the

operational cost of performing the computation over its subexpressions (e.g., the cost

of performing a join over two subexpressions), we call this cost LocalCost〈Es, ps, i〉 if

this AND node represents the i-th way of splitting the expression Es with the output

physical property ps (physical property needs to be used when considering physical

plans). Once each enumerated AND node has computed its LocalCost, it could com-

pute the cumulative cost of its subtrees with its own LocalCost. We call this cumulative

cost PlanCost. For every expression Es and physical property ps and i-th way of split-

ting, we have PlanCost〈E, p, i〉 = LocalCost〈E, p, i〉 + BestCost〈El , pl〉 + BestCost〈Er, pr〉,

where we have BestCost〈E, p〉 = miniPlanCost〈E, p, i〉 associated with each OR node.

The output of a query optimizer is thus the plan tree T with the minimum estimated cost,

minpBestCost〈E, p〉 where E is the original query expression.

Now we define query re-optimization. The goal of a query re-optimizer is to com-

pute the optimal plan tree T′ with the minimum estimated cost, minpBestCost′〈E, p〉 of

the original query expression E, where BestCost′ is the new plan cost of the root level

OR node: BestCost′〈E, p〉 = BestCost〈E, p〉 + ∆BestCost〈E, p〉. The inputs to a query

re-optimization algorithm is a series of changes to the and-or-graph (caused by car-

dinality changes of subexpressions, selectivity changes of intermediate operators, etc).

In theory, these changes can be modeled as a set of delta changes to the local plan

costs of intermediate AND nodes, {∆LocalCost〈E, p, i〉}, and/or a set of delta changes

to the scan costs of leaf OR nodes, {∆ScanCost〈E, p〉}. Hence, we can regard the set of

∆LocalCost and ∆ScanCost are inputs and the plan tree T′ with the minimum estimated

cost, minpBestCost′〈E, p〉, as the output of the re-optimizer.
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Suppose we also define PlanCost′ as the new plan costs of AND nodes: PlanCost′〈E, p, i〉 =

PlanCost〈E, p, i〉 + ∆PlanCost〈E, p, i〉. Now the delta plan cost of an AND node of the

triple (expression E, property p, index i) is:

∆PlanCost〈E, p, i〉 = ∆LocalCost〈E, p, i〉+ ∆BestCost〈El , pl〉+ ∆BestCost〈Er, pr〉

= ∆LocalCost〈E, p, i〉+ minjPlanCost′〈El , pl , i〉 −minjPlanCost〈El , pl , j〉

+ minkPlanCost′〈Er, pr, k〉 −minkPlanCost〈Er, pr, k〉

= ∆LocalCost〈E, p, i〉+ minj(PlanCost〈El , pl , i〉+ ∆PlanCost〈El , pl , i〉)

− minjPlanCost〈El , pl , j〉+ mink(PlanCost〈Er, pr, k〉+ ∆PlanCost〈Er, pr, k〉)

− minkPlanCost〈Er, pr, k〉

The delta best cost of an OR node of the pair (expression E, property p) when E is a

non-leaf level expression is:

∆BestCost〈E, p〉 = BestCost′〈E, p〉 − BestCost〈E, p〉

= miniPlanCost′〈E, p, i〉 − BestCost〈E, p〉

= mini(PlanCost〈E, p, i〉+ ∆PlanCost〈E, p, i〉)− BestCost〈E, p〉

= mini(LocalCost〈E, p, i〉+ BestCost〈El , pl〉+ BestCost〈Er, pr〉

+ ∆LocalCost〈E, p, i〉+ ∆BestCost〈El , pl〉+ ∆BestCost〈Er, pr〉)

− BestCost〈E, p〉

And when E is a leaf level expression: ∆BestCost〈E, p〉 = ∆ScanCost〈E, p〉.

These definitions show that we can recursively define ∆PlanCost〈E, p, i〉 and ∆BestCost〈E, p〉

based on original values of LocalCost, BestCost and updates to the AND nodes ∆LocalCost

or the leaf OR nodes ∆ScanCost, and ultimately compute the output optimal tree T′ of

the re-optimizer with the least estimated cost, minpBestCost′〈E, p〉.

Definition 12. Given an expression E, a query pre-optimizer computes an optimal plan

tree for the expression, T. Given the state S within the pre-optimizer that we aim to keep

for query re-optimization, and the updated costs or statistics U as the input to the re-

optimizer program, an incremental query re-optimizer computes an updated optimal plan



5.2. PROCEDURAL INCREMENTAL RE-OPTIMIZATION ALGORITHMS AND
OPTIMIZATIONS: BOTTOM-UP STYLE AND TOP-DOWN STYLE 121

T′ for the original expression, as well as the new state S′. We call the policy of determining

what intermediate state to be shared across re-optimizations to be the memoization scheme.

5.2 Procedural Incremental Re-optimization Algorithms and

Optimizations: Bottom-up Style and Top-down Style

The declarative perspective on query optimization enabled us to define pruning strategies

independently from execution flow, and with a clear definition of correctness. In fact,

now that it is clear how the pruning strategies should work, we can “retrofit” them into

both bottom-up and top-down-style query optimizers. More specifically, we can adapt the

procedural query optimizer to incrementally recompute portions of a query plan (and the

contents of the memoization table), and propagate control flow upwards or downwards

as appropriate to propagate the effects of a change. Then a variety of our techniques from

the prior sections can similarly be adapted:

• Incremental aggregate selection can be used to memoize suboptimal plans as well

as optimal ones, and only propagate changes that affect the choice of a “best” alter-

native plan for a given expression.

• Incremental branch-and-bound can maintain a table of bounds for subplans, and

this can be used as part of the pruning process.

• Separating the bounds computation enables it to be updated during enumeration

both of alternative plans and superplans, as well as smaller subplans.

Now we present the procedural bottom-up and top-down style incremental re-optimization

algorithms and their optimizations.

Bottom-up Style Re-optimizer In the bottom-up style query optimizer, one generally

computes costs on the and-or-graph in the bottom-to-top level-by-level order with the

use of dynamic programming. To adapt it to an incremental re-optimizer, we can start

from computing ∆BestCost〈E, p〉 of OR nodes from the leaf-level, and recursively com-

pute ∆PlanCost〈E, p, i〉 of AND nodes and ∆BestCost〈E, p〉 of OR nodes interleavingly.
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The task of re-optimization finishes when we have computed minpBestCost′〈E, p〉 to the

original query execution E, the root level OR node.

We can trade-off memoization versus recomputation to reduce the cost of bookkeeping

for suboptimal plans. On one extreme, if we memoize nothing during pre-optimization,

then re-optimization will always need to do a full recomputation. On the other extreme,

if we memoize everything, we might use up too much memory for bookkeeping. Hence

in some cases, we can choose to only memoize the suboptimal plans most likely to be-

come viable if small changes are made; and choose to discard the other alternatives,

later recomputing them as necessary. This is a time and space complexity trade-off,

but often a small amount of memoization can limit the recomputation to a few nodes

in the and-or-graph. We can also cache the output when a re-computation occurs, to

avoid multiple revisits of the same node during re-optimization. Here if we memoize

all the old BestCost of OR nodes, as well as the old PlanCost of AND nodes, then we

only need to compute ∆PlanCost〈E, p, i〉 of AND nodes and ∆BestCost〈E, p〉 of OR nodes

based on the input delta costs and memoized costs. However, if we only memoize the

old BestCost of OR nodes, but do not memoize the old PlanCost of AND nodes, then

essentially we need to recompute them via their OR node children, PlanCost〈E, p, i〉 =

LocalCost〈E, p, i〉+ BestCost〈El , pl〉+ BestCost〈Er, pr〉.

If we know in advance that the AND node who maintains the minimum cost value

to its parent OR node has not changed or simply decreased its cost, then we only need to

recompute those suboptimal sibling AND node costs that have been decreased because

only those AND nodes might be the candidates for the new minimum cost. We call

this heuristics to prune the recomputations as “Conditional Testing”. Indeed, this idea

leverages incremental aggregate selection from the declarative perspective, and later we

will show in the experimental section that this strategy saves a lot of recomputations in

practice.

Top-down Style Re-optimizer In the top-down style query optimizer, one generally com-

putes costs on the and-or-graph in the top-down search order with the use of memoiza-

tion and branch-and-bounding. To adapt it to an incremental re-optimizer, we need to

consider how to compute minpBestCost′〈E, p〉 to the original query execution E in a top-
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down fashion, with special care to the delta changes to both the plan costs and bounds

along the way. Since we know that an OR node of the pair (expression E, property p)

and its entire subtree is pruned if and only if BestCost〈E, p〉 > Bound〈E, p〉. Hence, both

a change to the BestCost and the Bound could possibly change the result of this con-

dition. Consequently, when this condition flaps, either a pruned subtree needs to be

re-introduced, or an active subtree needs to be pruned.

Here we can leverage the idea from incremental branch-and-bounding from the declar-

ative perspective, to understand how to incrementally maintain Bound as recursively de-

fined by LocalCost, BestCost, ∆LocalCost and ∆ScanCost as well. Note that this compu-

tation can be performed in a different search order than the top-down search order, and

different orders would result in different effectiveness of branch-and-bounding. Here we

omit the discussions of the search order for computing Bound in a top-down procedural

optimizer.

We can also apply the “Conditional Testing” optimization here in top-down style

incremental re-optimization. Since now we not only have an aggregate on the cost of

the OR node BestCost〈E, p〉 = miniPlanCost〈E, p, i〉, but also have an aggregate on the

maximum Bound on an OR node: MaxBound〈E, p〉 = maxi(ParentBound〈E, p, i〉). Hence,

we can leverage incremental aggregate selection from the declarative perspective, that if

we know in advance that the AND node who maintains the maximum bound value to

its parent OR node has not changed or simply increased its cost, then we only need to

recompute those suboptimal sibling AND node costs that have been increased. Similar

ideas to trade-off time and complexity with the memoizing best plans only scheme also

apply here in the top-down search order.

Since both bottom-up and top-down style optimizations discussed here are procedu-

ral, they are subject to the original search order and data flow of their implementations.

Hence, compared to a full declarative implementation, they lack the ability to be truly

flexible in terms of search order and data flow, and hence is not easily extensible to par-

allel or distributed architectures.
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Figure 30: The and-or-graph for a simplified three way join query R1 1 R2 1 R3. Red
edges denote the best plan. Rectangles and ovals denote “OR” and “AND” nodes respec-
tively.

5.3 Bounds of Recomputations for Incremental Re-optimization

In this section, we analyze the number of total AND and OR graphs for a simplified

typical n way join query, and aim to understand the theoretical bounds for the necessary

recomputations for incremental re-optimization should a cardinality of an OR node or a

selectivity of an AND node changes.

Example 13. For a simplified query joining n relations, R1 1 R2 1 · · · Rn. Suppose we only

consider commutativity and associativity of joins as different ways of splitting a query,

and we only consider one physical implementation of the join operator so that the logical

and the physical operator tree is the same. And we do not consider the effects of pruning.

See Figure 30 for the and-or-graph of a three way join query, where n=3. The leaf level

OR nodes are called “level 1” OR nodes and they do not have any AND node children.

The AND nodes and the OR nodes are interleaved: the children of a level k OR node are

the level k AND nodes, and the children of a level k AND node are the level k − 1 OR

nodes. In this example, since n=3, the root node is a level 3 OR node.

At each level k, 1 ≤ k ≤ n, there are exactly Ck
n OR nodes since we only consider

commutativity and associativity of joins as different ways of splitting a query. Each of

these OR nodes at level k has exactly 2k − 2 AND node children, also of level k. Now the
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total number of AND nodes in this n-way join and-or-graph can be calculated as follows:

at each level i, 2 ≤ i ≤ n, since there are Ck
n OR nodes, and each has exactly 2k − 2 AND

node children of level k. To sum them up, there are in total

n

∑
i=2

Ci
n(2

i − 2) =
n

∑
i=2

Ci
n2i − 2

n

∑
i=2

Ci
n

=
n

∑
i=0

Ci
n2i − C0

n20 − C1
n21 − 2(2n − C0

n − C1
n)

= (1 + 2)n − 1− 2n− 2n+1 + 2 + 2n

= 3n + 1− 2n+1

AND nodes in this typical simplified n-way join query. We also know that the total

number of OR nodes can be calculated as follows: at each level i, 1 ≤ i ≤ n, there are

Ck
n OR nodes, hence to sum them up, there are in total ∑n

i=1 Ci
n = 2n − 1 OR nodes in the

and-or-graph of a typical simplified n-way join query.

Hence, if we choose to memoize only the BestCost of OR nodes, we need to memoize

2n − 1 OR nodes; otherwise if we choose to memoize both the BestCost of OR nodes,

and also the PlanCost of AND nodes, we need to memoize 2n − 1 OR nodes as well as

3n + 1− 2n+1 AND nodes. Suppose each signature occupies similar amount of memory,

the ratio of memory consumption of memoizing all plans versus best plans only is: (3n −

2n)/(2n − 1). When n=5, this is around 7; when n=10, this is around 472.

Next, we discuss the theoretical bounds for the number of AND and OR nodes that

need to be updated when there is a cardinality change of an OR node or a selectivity change

of an AND node.

First, suppose there is a cardinality change on an OR node of level k (1 ≤ k ≤ n). We

first analyze the number of OR nodes whose costs might be affected by this cardinality

change. Since we know that only the super expressions, which contain the expression

of this OR node might be affected by the cardinality change, and whose cost needs to

be adjusted. We can easily compute that there are 2n−k OR nodes whose corresponding

super expressions contain the expression of the OR node of size k. Since we previously

calculated that the total number of OR nodes for this n-way join query is 2n − 1. The

ratio of updated OR nodes out of the total is 2n−k/(2n − 1) > (1/2)k. For example, if k=1,
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then the update ratio of OR nodes is more than a half, meaning more than half of the OR

nodes need to update their costs when there is a cardinality change on a leaf level OR

node.

Now we calculate the number of AND nodes that need to be updated because of the

cardinality change of an OR node of level k. At each level i above level k, k < i ≤ n, there

are Ci−k
n−k OR nodes that represent the super expressions of this expression, and each of

these OR nodes has 2i − 2 AND children nodes, whose costs need to be adjusted. Hence,

the total number of AND nodes whose costs need to be updated because of this cardinality

change on an OR node of level k is:

n

∑
i=k+1

Ci−k
n−k(2

i − 2) =
n−k

∑
i=1

Ci
n−k2i+k − 2

n−k

∑
i=1

Ci
n−k

= 2k(
n−k

∑
i=0

Ci
n−k2i − 1)− 2(

n−k

∑
i=0

Ci
n−k − 1)

= 2k((1 + 2)n−k − 1)− 2(2n−k − 1)

= 2k3n−k − 2k − 2n−k+1 + 2

Note that as shown previously, the total number of AND nodes in the and-or-graph

for this n-way join query is 3n + 1− 2n+1. Hence, the update ratio of AND nodes out of

the total number of AND nodes is (2k3n−k − 2k − 2n−k+1 + 2)/(3n + 1− 2n+1) > (2/3)k.

When k=1, the update ratio of AND nodes is more than 2/3, meaning more than 2/3 of

the AND nodes need to update their costs when there is a cardinality change on a leaf

level OR node.

Second, suppose there is a selectivity change on an AND node of level k. It would

certainly affect the cardinality of its parent OR node of level k, moreover, the children

AND nodes of this parent OR node, in other words, the sibling AND nodes of this initial

AND node, needs to update their costs as well. Hence, the update ratio of OR nodes

out of the total number of OR nodes is still 2n−k/(2n − 1) > (1/2)k. The number of

AND nodes that need to update their costs are: 2k3n−k − 2k − 2n−k+1 + 2 + 2k − 2 =

2k3n−k − 2n−k+1. Hence, the update ratio of AND nodes out of the total number of AND

nodes is: (2k3n−k − 2n−k+1)/(3n + 1− 2n+1) > (2/3)k.
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Therefore, the conclusion for our analytical analysis of the bounds for recomputations

in incremental re-optimization is: for a simplified n-way join query, if we only consider

commutativity and associativity of joins as different ways of splitting a query, and we

only assume one physical implementation for the join operator, without considering the

effects of pruning, then a cardinality change of an OR node, or a selectivity change of an

AND node, of level k, would result in at least (1/2)k of the total OR nodes to be updated,

and at least (2/3)k of the total AND nodes to be updated. Later, we shall see in the

experimental section the performance in practice.

5.4 Experimental Results

In this section, we discuss the performance of procedural-based incremental re-optimization.

We applied the lessons learned from declarative incremental query optimization to tra-

ditional procedural-based optimizers, e.g., System-R style bottom-up optimizer with dy-

namic programming and Volcano-style top-down optimizer with branch-and-bounding.

We implement a set of common functions (involving histograms, cost estimation and ex-

pression decomposition) for both top-down style and bottom-up style optimization; and

we implement the search order and execution flow to mimic System-R style bottom-up

style optimizer and Volcano-style top-down with branch-and-bounding. To enable incre-

mental re-optimization, we leverage the ideas from Incremental Aggregate Selection and

Incremental Branch-and-Bounding of declarative incremental re-optimization to make not

only the plan costs and best costs but also the bounds adjustable. We also study the effects

of different optimization techniques such as conditional testing, and different memoizing

schemes on the performance of incremental-re-optimization.

In summary, we aim to answer the following questions empirically in this experimen-

tal section:

1. How different is the performance of procedural-based incremental re-optimization

compared to their non-incremental counterparts?

2. How different is the performance of procedural-based incremental re-optimization

between top-down style enumeration with branch-and-bounding versus bottom-up



128

CHAPTER 5. INCREMENTAL RE-OPTIMIZATION OF QUERIES: THE PROCEDURAL
APPROACH

Q5: SELECT n name, sum(l extendedprice * (1 - l discount)) as revenue FROM
customer, orders, lineitem, supplier, nation, region WHERE c custkey = o custkey
and l orderkey = o orderkey and l suppkey = s suppkey and c nationkey =
s nationkey and s nationkey = n nationkey and n regionkey = r regionkey and
r name = ’AMERICA’ and o orderdate ≥ ’1993-01-01’ and o orderdate < ’1994-01-
01’ GROUPBY n name;

Table 4: TPC-H Q5 benchmark query used in our experiments

style with dynamic programming?

3. What are the effects of conditional testing, and different memoizing schemes on the

performance of procedural-based incremental re-optimization?

4. Given the calculated theoretical bounds for the number of plan entries (OR nodes)

and plan alternatives (AND nodes) that needs to be updated when a single join

selectivity and a scan cardinality changes, how do they look in practice?

We focus on the TPC-H Q5 query (as shown in Table 4), a 6-way joins with aggrega-

tions query, throughout the experiments in this section, since we find that it exemplifies

most of the discussions in this section. These experiments are conducted on a single local

laptop machine with a dual-core Intel Core 2 2.53GHz with 4GB memory running 64-bit

Windows 7 Professional. Performance results are averaged across 10 runs.

5.4.0.1 Comparison of Procedural-based Incremental Re-optimization between

Bottom-up and Top-down Implementations, and versus their

Non-incremental Counterparts

The first set of experiments shown in Figure 31 compares the performance of procedu-

ral incremental re-optimizer versus their non-incremental counterparts, in both top-down

and bottom-up procedural implementations. Here we study what happens if a join’s

actual cost varies (by a factor ranging from 1/8th to 8x of its original cost) for TPC-

H query Q5. Here we memoize not only the best-plans, but also alternative subplans

as well during re-optimization. Figure 31 a) shows the running time for incremental

query re-optimization (normalized to the time for non-incremental counterparts), vary-

ing different join’s cost changes. The “(BU)” entries are bottom-up implementations,
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Figure 31: Performance of top-down vs bottom-up-style procedural incremental re-optimization
of TPC-H Q5 — upon change to a join cost value

whereas “(TD)” references a top-down implementation with branch-and-bounding. Ob-

serve that in general incremental re-optimization is 4-30 times faster than a complete

non-incremental optimization, in both bottom-up and top-down implementations. As

expected, the results validate that top-down strategies are generally superior to bottom-

up ones for incremental re-optimization, because they enable greater amounts of pruning

which results in less work in incremental re-optimization. The only exception to this is the

last data point, where we change the join cost of E = Supplier 1 D: here, increasing this

join cost causes the top-down re-optimizer to take more time on incremental re-optimizer

than the bottom-up implementation, possibly because the previously pruned nodes are

re-introduced more often in this case.
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We can see this in more detail in Figure 31 b), which shows the proportion of recom-

puted plan table entries (OR nodes), and c), which shows the proportion of recomputed

plan alternatives (AND nodes). In general, the larger the subexpression for which a join

cost changes, the less work is required to re-compute, and the more benefit is provided

by incremental re-optimization. From Figure b), we can see that the higher level an AND

node is associated with whose join cost has been changed, the less number of OR nodes

it needs to recompute, and generally the recompute ratio of OR nodes is below 30%. The

number of recomputed AND nodes (in Figure c) shows that bottom-up re-optimizers in-

cur constantly below 60% recomputations of the total AND nodes, whereas the top-down

re-optimizers incur far less recomputations of AND nodes (below 20%) when a join cost

decreases and more recomputations when a join cost increases (still below 120%), mainly

due to re-introducing AND nodes that were previously pruned.

5.4.0.2 Effects of Conditional Testing

Figure 32 shows the effects of conditional testing on bottom-up incremental re-optimization.

We study the performance ratio of applying the conditional testing versus non-optimized

version, where we memoize best plans only in bottom-up style incremental re-optimization.

We can see from Figure a) that the conditional testing scheme in general brings about 1.3

to 4 times of speedup in terms of optimization time. We can see more detail from Figure

b) that the conditional testing scheme recomputes around 2% to 40% of the OR nodes

versus a non-optimized version, and from Figure c) that the conditional testing scheme

recomputes around 2% to 45% of the AND nodes versus a non-optimized version. Overall

conditional testing brings a huge speedup to incremental re-optimization.

5.4.0.3 Comparisons Between Memoizing Best Plans and Memoizing All Plans

The set of experiments shown in Figure 33 measures the performance difference between

memoizing best plans (OR nodes) versus memoizing all plans (AND nodes) during top-

down style incremental re-optimization. Here we study what happens if a join’s actual

cost varies (by a factor ranging from 1/8th to 8x of its original cost) for TPC-H query

Q5. The “(Best)” entries denote memoizing only the best plans (OR nodes), whereas
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Figure 32: Performance ratio of conditional testing vs non-optimized version during bottom-up
style incremental re-optimization of TPC-H Q5 — upon change to a join cost value

“(All)” entires denote memoizing all the alternative plans as well (both AND and OR

odes). Figure 33 a) shows the difference of execution time between memoizing best plans

versus memoizing all plans, and the absolute values show the proportion to their non-

incremental counterparts. We can see that the “Best” scheme brings about 3-35 times

speedup compared to its non-incremental version, and the “All” scheme brings about

6-35 times speedup compared to its non-incremental version. In general the “All” scheme

is faster than the “Best” scheme for top-down incremental re-optimization, but in this

TPC-H Q5 query less than 2x faster.

Figure 33 b) shows the proportion of recomputed plan table entries (OR nodes) and

c) shows the proportion of recomputed plan alternatives (AND nodes) during incremen-
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Figure 33: Performance of memoizing best plans vs memoizing all plans during top-down style
incremental re-optimization of TPC-H Q5 — upon change to join cost value

tal re-optimization. Both figures show that the “Best” scheme and the “All” scheme

recompute the exact same number of AND and OR nodes. In general, top-down style

procedural re-optimization incurs less than 10% of the total OR nodes and less than 120%

of the total AND nodes.

5.4.0.4 Changing a Single Join Selectivity or a Scan Cardinality

Figure 34 demonstrates the performance of bottom-up incremental re-optimization when

an AND node changes its join selectivity, or a leaf level OR node changes its scan cardinal-

ity. Here we memoize all the alternative plans as well as the best plans. On the left side,

Figure a), c), and e) show the normalized execution time ratio, recompute ratio of AND



5.4. EXPERIMENTAL RESULTS 133

nodes, and recompute ratio of OR nodes, respectively, when a join selectivity varies 1/8th

to 8x of its original value. On the right side, Figure b), d) and f) show the normalized

execution time ratio, recompute ratio of AND nodes, and recompute ratio of OR nodes,

respectively, when a scan cardinality varies 1/8th to 8x of its original value. Since TPC-H

Q5 query is a 6-way join query, there are in total 6 scan relations, and they all represent

level 1 OR nodes.

From Figure a), we can see that when an AND node changes its join selectivity, incre-

mental re-optimization generally brings about 6-10 times of speedup compared to their

non-incremental counterpart. The higher level the AND node of the selectivity change

is, the bigger the speedup we see. From Figure b), we can see that when an OR node

changes it scan cardinality, incremental re-optimization generally brings about 3-10 times

of speedup compared to their non-incremental counterpart.

Figure c) and d) show the recompute ratio of AND nodes during incremental re-

optimization, when an AND node changes its join selectivity, or an OR node changes its

scan cardinality, respectively. Recall that our theoretical lower bounds for recomputed

AND nodes for a typical n way join is (2/3)k where k is the level of the AND node whose

selectivity has been changed, or the level of the OR node whose cardinality has been

changed. Here we can see that in both situations, the recompute ratio of AND nodes are

constantly between 45% to 55%. Note that since the TPC-H query Q5 not only includes

joins but also aggregates, and we consider several physical join implementations instead,

there might be slight difference in the computations. Generally, this matches then bound

where changing AND node’s selectivity (k > 1) and empirically show smaller number of

updates of AND nodes when changing a scan cardinality (k=1).

Figure e) and f) show the recompute ratio of OR nodes during incremental re-optimization,

when an AND node changes its join selectivity, and an OR node changes its scan cardi-

nality, respectively. Recall that our theoretical lower bounds for recomputed AND nodes

for a typical n way join is (1/2)k where k is the level of the AND node whose selectivity

has been changed, or the level of the OR node whose cardinality has been changed. Here

we can see that in the case of a join selectivity change, the actual recompute ratio of OR

nodes in practice matches our theoretical analysis very well: for a join selectivity change

on an AND node of level 2, we see the recompute of OR nodes around 0.25, and then the
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ratio gets cut half when the level of AND nodes increases. In the case of a scan cardinality

change, we can see around 25% to 65% of the recompute ratio of OR nodes, whereas the

theoretical lower bound is 50%.

5.4.0.5 Summary of Experimental Results

Here we summarize the experimental results in this section:

1. In general procedural incremental re-optimization is 4-30 times faster than a com-

plete non-incremental optimization.

2. Top-down strategies are generally superior to bottom-up ones for incremental re-

optimization, because they enable greater amounts of pruning hence result in less

work in incremental re-optimization.

3. Conditional testing brings a 1.3x-4x speedup of optimization time to incremental

re-optimization.

4. Memoizing best plans usually incurs more optimization time than the memoizing

all plans scheme, but no more than 2x for our top-down implementation of the

incremental re-optimizer for TPC-H Q5 query.

5. We see in practice around 45% to 55% of recomputed AND nodes when a join se-

lectivity or a scan cardinality changes, 25% to 65% of recomputed OR nodes when a

scan cardinality changes, and around (1/2)k of recomputed OR nodes when a join

selectivity of a level k AND node changes. These results generally follow the theo-

retical bounds, and the slight difference might be due to our more complex query

(e.g., involving not only joins but also aggregates) and more physical operators per

logical operator compared to a more simplified assumption in the theoretical model.

5.5 Conclusion

In this section, we studied incremental query re-optimization approaches for full-fledged

cost-based procedural query optimization frameworks. We make the following contribu-

tions in this work.
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• We define the cost-based procedural incremental query re-optimization problem in

a formal way.

• We leverage the lessons learned from the declarative perspective and present pro-

cedural incremental re-optimization algorithms for both bottom-up and top-down

style architectures. We also study different optimizations to minimize recomputa-

tion and book-keeping: conditional testing, and memoizing best plans only.

• We analyze the worst-case bounds for re-computations of AND and OR nodes dur-

ing incremental re-optimization. We show that for a simplified n-way join query,

if we only consider commutativity and associativity of joins as different ways of

splitting a query, and we only assume one physical implementation for the join op-

erator, without considering the effects of pruning, then a cardinality change of an

OR node, or a selectivity change of an AND node, of level k, would result in at least

(1/2)k of the total OR nodes to be updated, and at least (2/3)k of the total AND

nodes to be updated.

• We empirically evaluate our procedural incremental re-optimization algorithms and

study the performance differences between top-down and bottom-up style incre-

mental re-optimization, and the difference to their non-incremental counterparts.

Results show that our procedural incremental re-optimization is 4-30 times faster

than a complete non-incremental optimization, and top-down strategies are gen-

erally superior to bottom-up ones for incremental re-optimization. We study the

effects of different optimizations, and see that conditional testing brings about 1.3x-

4x speedup in re-optimization time, and memoizing best plans saves memory con-

sumption by not exceeding 2x optimization time compared to the memoizing all

plan scheme. Finally, we see in practice the actual number of recomputed AND

and OR nodes during incremental re-optimization, and compare them against the

theoretical bounds we presented earlier.
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Figure 34: Normalized number of recomputed AND nodes to non-incremental bottom-up



Chapter 6

A Case Study: The Aspen System

In this chapter, we describe the design and implementation of our prototype stream pro-

cessing system Aspen, as well as a case study on a real-life application scenario SmartCIS.

We start this chapter with general motivations of developing Aspen and SmartCIS.

Low-cost networked sensors are resulting in a new class of applications that com-

bine data from the “digital world” with sensor readings, to create environments that

intelligently manage resources and assist humans. Examples include intelligent power

grids [91], smart hospitals [90], home health monitors, energy-efficient data centers, and

building visitor guides. In such applications, there is a need to bring together disparate

data from databases (e.g., site information, patient treatments, maps) with data from

the Web (e.g., weather forecasts, calendars), from streaming data sources (e.g., resource

consumption within a server), and from sensors embedded within an environment (e.g.,

generator temperature, RFID readings, energy levels) — in order to support decision

making by high-level application logic. Today this sort of data integration, if done at all,

is performed by a proprietary software stack over fixed devices.

In order for intelligent environments to reach their potential, what is necessary is an

extensible, multi-purpose data acquisition and integration substrate through which the ap-

plication can acquire data — without having to be coded with special support for new

device or network types. Over the past 30 years, the database community has devel-

oped a wealth of techniques for performing data integration through views and related

formalisms [57]. Likewise, declarative queries have been shown to be useful beyond
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Figure 35: Display indicating a path to, and information about, the nearest machine with
LaTeX.

databases, with extensions for distributed data stream management [8, 14, 24, 51] and

sensor networks [32, 36, 71]. The key question is how to develop a unified declarative

query and integration substrate, which supports a multitude of stream and static data

sources on heterogeneous, possibly unreliable networks. Computation should be ex-

pressed in a single query language and “pushed” to where it is most appropriate, taking

into account capabilities, battery life, rates of change, and network bandwidth.

The Aspen (Abstraction-based Sensor Programming ENvironment) project [62, 64]

that we have developed at Penn tackles these issues, extending the formalisms of data

integration (schema mappings, views, queries) to the distributed stream world. The nov-

elty of our solutions to prior work include 1) new query processing algorithms suit-

able for integrating highly distributed stream data sources, both in low-power sensor

devices [75, 76] and more traditional PCs and servers [66, 67], 2) query optimization tech-

niques for federations of stream processors specialized for sensor, wide area, and LAN

settings, and 3) new datatypes, query extensions, and data description language abstrac-

tions for environmental monitoring and for routing information to users. In support of

smart environments, we seek a single data access layer for integrating sensor, stream, and

database data, regardless of origins.

The showcase application for the Aspen architecture, which we term SmartCIS, in-
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volves instrumenting Penn’s Computer and Information Science (CIS) Department build-

ings, labs, and data centers to help improve energy efficiency, guide visitors to their

desired destinations, and locate resources. Our live demonstration of SmartCIS [62] at

SIGMOD 2009 received Honorable Mention for Best Demo. SmartCIS consists of GUI and

query logic built over the Aspen data integration substrate. It combines information from

on-site sensors (e.g., pressure-sensitive seat cushions, RFID tags, energy meters) with data

from the Web (calendars) and from our Distributed Systems Laboratory at Penn (machine

and desk-occupied status; machine configurations).

In this chapter, we will demonstrate 1) the architectural design of a declarative smart

environment system; 2) how Aspen enables a uniform stream acquisition framework

for various data sources such as physical sensors, digital streams, web data as well as

databases; and finally, 3) how Aspen uses a federated query optimizer that is able to parti-

tion a query specified over heterogeneous data sources into a series of subqueries defined

over a specific type of data sources. We first describe the SmartCIS as an example appli-

cation of our Aspen system in Section 6.1. Then we present the underlying Aspen system:

its architecture (Section 6.2), federated query optimizer (Section 6.3), and stream query

processor (Section 6.4). Finally, we conclude in Section 6.5.

6.1 SmartCIS Building Application

One of the most compelling emerging applications of sensors are intelligent building

environments: they promise to make the experience of visiting a large building or a

hospital less disorienting, to make buildings or large data centers more energy-efficient,

to help occupants remember to take their medications or make it to a next meeting. A

distinguishing feature of such environments, versus other sensor network applications, is

a need to bring together database data with streaming data from the Web or Internet and

streaming data from sensor devices. The task of designing a smart building usually can

be separated into three tiers: data acquisition and integration, query and control logic,

and a user-interface view (analogous to model-view-controller architectures).

Our Aspen/SmartCIS system focuses on monitoring and querying the data of inter-

est to CIS students and faculties, as well as system administrators: lab status, machine
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activity, resource consumption, and machine physical state. We target two main tasks:

giving a real-time update of the building state, and guiding students to the resources

they need. Through the SmartCIS GUI, visitors can see occupied and unoccupied desks

in the laboratories and on-site (detected through the seat sensors); their positions in the

building (obtained via RFID); temperature, light, and energy usage levels for every ma-

chine and lab; room reservation status from Google Calendar; and the resources available

at each machine (e.g., software, special equipment). Visitors can see status information or

issue a query for directions (a physical path) to a machine with a particular resource.

6.1.1 User Experience

SmartCIS interacts with users through a touch interface on a kiosk or (for the demo) a

tablet PC. Figure 35 shows a screen shot of our graphical interface, which centers around a

building schematic. In the full application, the user will see the individual information on

a kiosk located somewhere in the building. Our screen shot shows the demo application,

which has a selector in the upper right-hand corner enabling a SIGMOD attendee to

choose a simulated kiosk location.

Buildings, entrances and exits, rooms, and machines are illustrated schematically.

Their status is refreshed in real-time based on data streams from the environment and the

Web, combined with database information about locations and configurations. Rooms are

grayed out when marked as reserved in a standard Google calendar, or when their lights

are out (as detected by sensors). Machines are grayed out when they are currently in use

(as detected by high CPU utilization or a pressure-sensitive seat cushion connected to a

Crossbow iMote). The presence of a user is detected through active RFID tags (IRIS motes

that broadcast a low-power signal that is tracked by stationary motes located throughout

the building hallways) and is indicated in the schematic.

The user can also trigger new continuous queries over the streaming data in the sys-

tem. Clicking on a machine icon switches the right-hand pane to show details about

that device: its host name (from a database table mapping coordinates to machine iden-

tities), CPU type (also from the database), CPU utilization and the most CPU-intensive

task (from a “soft sensor” application), temperature (from an iMote), and energy (from a
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USB energy meter or an IP-based Power Distribution Unit or PDU). A double-click opens

up a secondary window showing energy consumption on a per-task basis (scaling over-

all energy consumption by the amount of resources consumed by each process). Finally,

a visitor can also request to be directed to an available machine with specific resources

(e.g., software packages like Microsoft Office or a video editor). A shortest-path query

is initiated between the user’s current location and the nearest available room with the

specified resource.

6.1.2 Sensors and Data Sources

The data sources underpinning SmartCIS are heterogeneous, requiring a variety of wrap-

pers (interface modules), and can be divided into four broad categories.

Sensor devices. We use Crossbow IRIS and iMote2 sensors to monitor the rooms’ and

workstations’ temperatures, as well as light levels (useful for determining if a lab is open).

A pressure-sensitive seat cushion attached to a wireless mote monitors whether someone

is seated at each desk in the lab. A “wrapper” periodically extracts this value and sends

it along a data stream. Energy meters are physically plugged into machines and feed

raw readings into the system. To track users’ locations, “mote” sensors are embedded in

the hallways at major intersection points, at approximately every 50 feet. These sensors

listen for a “beacon” transmission from an active RFID device (also a mote) carried by

an occupant and based on the strength of the signal determine where that person is

positioned in the building.

“Soft” sensors. Servers and workstations run daemon softwares to monitor machine

activities: job executions, users logged in, CPU utilizations, number of requests being

handled in a Web server application, etc. In addition, the status of Aspen, our back-end

data acquisition and integration substrate itself, is also monitored: the queries and plans

being executed, the counts of tuples received and sent for every operator, etc. This helps

developers diagnose problems at the query execution level and also helps determine per-

query energy usage.

Web and streaming data sources. A wrapper periodically polls a Google Calendar for

room reservations. Another wrapper polls energy usage from a Web interface to our lab’s
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Query over the federated query system

(Find a free machine with MS in an open lab):

SELECT m.mid, ss.rid

FROM Machines m, MachineSoftware ms, SeatSensor ss, 

  RoomSensor sr

WHERE ms.software = “MS Word” AND ms.mid = m.mid AND 

  ss.mid = m.mid AND ss.weightLevel < threshold AND 

  sr.rid = ss.rid AND sr.status = “open”;

Query sent to the stream subsystem

(Find a free machine with Word in an open lab):
SELECT m.mid, so.rid

FROM Machines m, MachineSoftware ms, SensorOut so

WHERE ms.software = “MS Word” AND ms.mid = m.mid AND

 so.mid = m.mid; 

Query sent to the sensor subsystem

(Find a free machine in an open lab):
CREATE STREAM SensorOut AS {

   SELECT ss.mid AS mid, sr.rid AS rid

   FROM SeatSensor ss, RoomSensor sr

   WHERE ss.weightLevel < threshold AND sr.status = “open” 

     AND ss.rid = sr.rid

}

Base station

Figure 36: Architecture of SmartCIS, including Aspen components in bold.

power distribution units (PDUs).

Databases. A conventional DBMS stores the coordinates of each RFID detector (the motes

have no built-in absolute positioning capability), a list of machine configurations and

locations, and a table of “routing points” describing possible path segments and distances

in the building in order to suggest routes to resources.

One of the novelty of our system is that the data streams from these inputs are

“hooked” to the SmartCIS GUI through a series of Stream SQL queries [87] and view

definitions, plus callbacks to Java functions that update the graphical widgets. They are

done through different implementations of a uniform abstraction wrapper. On top of this

architecture, It is trivial to extend the GUI to support visual or auditory alarms if ma-

chines exceed a temperature or load factor, or to aggregate the sensor data across users,

applications, or machines. Even the path routing in the GUI can be done declaratively,

using our recursive extensions to Stream SQL and support using the techniques we in-

troduced in Chapter 3. We next describe how SmartCIS maps onto the Aspen substrate

that provides distributed Stream SQL services.
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6.2 System Architecture

The SmartCIS system consists of three major components: the graphical interface de-

scribed previously, which can be deployed on kiosks; the Aspen data integration and

acquisition substrate, which includes two query runtime systems (one that enables cer-

tain computations to be “pushed” to sensor devices, and one that does distributed stream

processing over PC-style servers) plus a federated query optimizer; and wrappers and

interfaces over the actual sensors, databases, and machines. (See Figure 36.) Components

of the Aspen substrate appear in boldface. (For full data stream integration Aspen will

also include support for schema mappings and query reformulation, but SmartCIS does

not require these components.)

Most of the research innovations are in the Aspen modules. Aspen takes a query

(Stream SQL with extensions for devices and for routing query output to displays) and

invokes a federated query optimizer that partitions it into two portions (see Figure 36): a

subquery that is “pushed” out to the sensor network and sensor devices, and the remain-

ing computations that get executed on our distributed stream engine for servers.

The distributed sensor engine, whose core features were described in [75], is novel in

supporting not only aggregation and selection queries over sensor devices, but also in-

network joins between devices. This is useful in SmartCIS, for instance, when we return

machine temperature data for workstations that are in use. We detect that a workstation is

being used by checking the status of seat cushions as well as the light level at an adjacent

chair. The most efficient query strategy is to perform a proximity-based join between

status of seat cushion and light level sensors (with a threshold applied on the light level),

and route the temperature information across the sensor network only if the light level

threshold is not met. A query optimizer decides where to perform the join computation

on a sensor-by-sensor basis.

Our distributed stream engine, described in [66, 67, 92], supports not only Stream SQL

queries over windowed data, but also transitive closure queries to compute neighborhoods

and paths. The stream engine brings together streaming data, database data, and the data

returned by the subqueries sent to the sensor engine. It is also responsible for computing

suggested routes for building occupants to get to their destination: this can be done in
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real-time based on the occupant’s current position and information about the topology of

the buildings (connected by routing points described previously).

6.3 Federated Optimizer

As discussed in the previous section, one of the major components of Aspen is its feder-

ated query optimizer. The job of a federated query optimizer is to find the optimal query

plan over federated data sources, which may span across multiple subsystems, each of

which has its own custom optimizer and cost metric, customized to the target device and

network capabilities (e.g., energy, latency, bandwidth). We give an example of the task of

the federated optimizer in SmartCIS.

Example 14. Suppose we have two types of sensors deployed in the lab, seat sensors

and room sensors. Each seat sensor is pre-initialized with information about its position

relative to a machine and the room; it reports the occupied-status of the seat cushion to

which it is attached. Each room sensor is pre-initialized with its room, and detects the

current light level to tell whether the room is occupied or not. Suppose we also have

a static table Machines storing machine information for the lab, and a dynamic stream

MachineSoftware containing information about installed software and versions from a web

page. The user may pose a query to find all the free machines in an open lab which have

the software “Word”.

SELECT m.mid, sr.rid

FROM Machines m, MachineSoftware ms, SeatSensor ss, RoomSensor sr

WHERE software = "Word" AND ms.mid = m.mid AND ss.mid = m.mid

AND ss.weightLevel < threshold AND sr.rid = ss.rid AND

sr.status = "open";

There are multiple plausible ways of splitting the query for subsystems (both sensor

and stream) to execute. One method pushes the SeatSensor-RoomSensor join and all rel-

evant selection conditions to the sensor subsystem, then sends the output to the stream

engine. (Example SQL for this scenario is shown in Figure 36.) Alternatively, we can issue

two subqueries to the sensor subsystem: one to fetch SeatSensor readings above threshold,

and the other to fetch RoomSensor readings with open status. The join between the two



6.3. FEDERATED OPTIMIZER 145

will be done at the stream end. Intuitively, the first query partitioning is likely to return

fewer results to the stream system only if the predicates are selective.

The search space of candidate plans for a federated query optimizer is quite huge.

First, combing query fragments can be realized through a bunch of join methods: two-

way join (semi-join, bloom-join, natural-join, or cartesian products) and multi-way join,

etc. These join methods might be executed in a decentralized fashion, thus we also need to

explore all possible ordering of joins and parallelism opportunities, as well as all potential

locations (such as sending join predicates to the base station, all nodes in the sensor

network, grouped nodes, horizontally partitioned nodes, etc) to execute the joins.

The federated optimizer must choose among these candidate plans by minimizing an

over-arching cost metric (e.g., query latency). This metric may be different from the metrics

of the “local” optimizers for the underlying stream and sensor engines (e.g., bandwidth,

energy consumption). The federated optimizer must find a query partitioning that, when

each subquery is optimized according to its target platform’s specific metric, results in

the best plan with respect to the federated optimizer’s over-arching metric. Its plan enu-

meration strategy resembles that of [48], which predicts the query plan produced by an

external optimizer, in order to produce the minimum-cost plan according to its own met-

ric.

We have developed heuristics to prune the huge search space of candidate plans. For

example, we partition a query involving both sensor and stream sources into subqueries,

where we limit the number of in-network joins performed at a sensor subsystem to only

one. This means a join between sensor sources could either be done in-network, at the

base station or at the stream engine, and if done in-network, the results must be sent to

the base station. We exploit the opportunities for semi-join (collecting unique values of

the joined attributed of one relation to be probed against another), bloom-join (building

bloom-filters on one relation) as well as natural joins and we assume cartesian products

are usually expensive hence could not be done in-network. Query partitioning itself is a

non-trivial task as it needs to maintain the correct algebraic transformations of SPJ queries

while exploring all possible candidate subquery combinations.
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6.4 Stream Engine

Our stream engine is derived from the distributed SQL query processing engine from Or-

chestra [92]. This engine supports horizontal partitioning of data across nodes within a

cluster or peer-to-peer network, and is based on a push-style query processing model. It

supports full SPJ queries, as well as unions and aggregates. We enhance the engine with

support for continuous queries (where the query is active unless deliberately stopped)

over windows, where the size of the sliding window tells the system when to evict ex-

pired tuples. The engine can seamlessly combine data from streaming sources, tables

partitioned throughout the cluster, ODBC/JDBC sources, and the sensor query engine.

The query optimizer uses a Volcano-style top-down plan enumeration and branch-and-

bound algorithm, and takes into account the network latency as well as data transmission

rate when estimating the cost of a certain query plan.

A novel aspect of our engine is its support for transitive closure queries (such as short-

est paths) computed (and incrementally maintained) over streaming data. Such queries

commonly appear in sensor settings. We have developed techniques, discussion in Chap-

ter 3, based on (1) the use of a particular kind of data provenance that enables us to detect

when a tuple in the output stream should be expired, (2) early pruning of intermediate

results that do not contribute to the output, and (3) careful use of buffering to reduce

traffic. SmartCIS exploits these features to compute path queries, when a user requests

to be directed to a resource within the building.

6.5 Conclusion

This chapter provided a case study of the SmartCIS “smart building” application and the

design and implementation of its underlying Aspen prototype system. We introduced

new query processing schemes for integrating highly distributed stream data sources, as

well as query optimization techniques for federations of stream processors.
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Related Work

In this chapter, we survey several important lines of related work for this dissertation.

Generally, our related work falls into two categories: related systems (e.g., data stream

management systems, rule-based active database systems, deductive database systems,

sensor query processing systems, map-reduce systems, and adaptive query processing

systems) and related approaches (e.g., other provenance alternatives, declarative approaches,

and incremental view maintenance approaches). Below we review each one in detail.

Data stream management systems. In the past decade, several influential data stream

management systems (DSMS) [14, 24, 51, 77, 88] have been proposed. These systems have

established the basic semantics and query languages for stream processing. In parallel,

stream SQL techniques have shown to be highly advantageous in sensor settings [32, 36,

71]. Work such as REED [2] has shown that there is great promise in coupling these two

classes of systems. To the best of our knowledge, none of these systems support recursive

queries natively in the execution engine. We share many similar goals with data stream

management systems [14, 24, 51, 77, 88] and complex event processing systems [20, 46],

such as real-time delivery of results, smart memory management mechanisms, extended

unified stream and non-stream query languages, and so forth. Indeed, in this dissertation,

we leverage many important language- and architectural designs from those systems,

such as push-based query processing, stream data models, and stream query languages.

Our focus in this thesis is on extending capabilities of data stream management systems to

answering recursive queries natively, and support for incremental query re-optimization
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to improve the overall efficiency of data stream processing.

Rule-based active database systems. A typical active database system [99] features an

event driven architecture (often in the form of Event-Condition-Action rules) which can

respond to conditions both inside and outside the database. Indeed, active database sys-

tems are among the first to provide monitoring and triggering capabilities in database

management systems. In ECA rules, triggered events usually include data modifica-

tions, data retrieval, or temporal events; conditions usually refer to database predicates

and database queries; and actions usually involve data modifications, data retrieval or

application procedures. Omitting the event part would be more declarative, but it sac-

rifices the flexibility that different actions can be specified when a condition is satisfied

depending on which event occurred. The main difference between our work and active

database systems is the level of declarativity of the language and the system architecture.

ECA rules are known to be less declarative than datalog rules, hence they involve more

physical details such as data modifications or the order of executing rules. Performance-

wise active database systems are not as successful as commercial DBMSs, however, active

database systems influence many subsequent systems such as stream query processing

systems and complex event processing systems. We leverage the ideas of monitoring

and triggering events from active database systems, however, we use high-level declara-

tive languages to specify events and actions, such as computing shortest paths. Overall

our architectural design and fundamental assumptions are more similar to data stream

management systems.

Deductive database systems. Rules also form the core of deductive database systems.

Indeed, declarative logic programming style rules, e.g., in datalog, are used in deduc-

tive database systems to add the power of recursively defined views to conventional

DBMSs [99]. Most work in this area focus on developing efficient strategies for queries

on recursively defined views. The techniques related to this dissertation are deductive

logic programming techniques to address general incremental view maintenance and op-

timization problems over recursively defined views, such as semi-naı̈ve evaluation [15],

magic sets [16] and aggregate selection [89]. We extend many ideas from this field in this

dissertation.
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Sensor query processing systems. In support of smart environments, we seek a single

data access layer for integrating sensor, stream, and database data, regardless of origins.

This single programming interface over heterogeneous sensors and stream sources dis-

tinguishes us from other database-style sensor systems [32, 36, 71], which focuses on

specialized sensor query processing engines. We enable generalized declarative queries

that integrate both sensor data and stream data, and introduce stream-based techniques

that were not supported for sensor query processing systems.

Map-Reduce and Spark systems. Recently there is a proliferation of large-scale dis-

tributed engines built on top of the Map-Reduce and Spark paradigm [31, 101]. Map-

Reduce was originally developed for analyzing unstructured data, such as Web doc-

uments and Web search query logs, on large-scale shared-nothing commodity servers.

Recently, such engines are extended to support complex SQL-like queries on top of the

lower-level Map-Reduce operations [93, 100] essential for traditional enterprise data ware-

housing use cases. Spark is a more recent distributed computing paradigm that utilizes

in-memory RDDs (Resilient Distributed Datasets) for intermediate steps of multi-stage

transformations, hence can more efficiently compute batch queries. In comparison to

Map-Reduce and Spark systems, we support data models that are not just static, but also

dynamic, and our execution models can support stream-based query executions, such as

stream joins and stream aggregates, and so forth, more in the flavor of data stream man-

agement systems. Also, our work on recursive query processing and adaptive query pro-

cessing may advance the understanding of supporting recursion and incremental query

re-optimization over Map-Reduce and Spark-based systems.

Adaptive query processing systems. Adaptive query processing has been extensively

studied in the 1990s. Initial efforts include query re-optimization at materialized points [56],

CPU scheduling-based adaptation [50, 94] and redundantly-computed adapting meth-

ods [6]. Recently there has been work in addressing the moving state problem [54, 72, 85].

Apart from these plan-based methods, a tuple-based routing scheme, Eddies [10, 83], has

been proposed to re-route tuples to plans in highly dynamic environments. There are also

a few surveys that summarize various aspects of adaptive query processing [11, 34, 35].

Our work takes a step towards supporting cost-based query re-optimization in an incre-
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mental way, with an ultimate goal of supporting continuous adaptivity in a distributed

(e.g., cloud) setting where correlations and runtime costs may be unpredictable at each

node. Fine-grained adaptivity has previously only been addressed in the query process-

ing literature via heuristics, such as flow rates [10, 95], which looks at local phenomena

rather than long-term cost estimates. For joins and other stateful operators, this has been

shown to result in state that later incurs significant costs [33]. Full-fledged cost-based re-

optimization can avoid these future costs but has only been possible in a coarse-grained

(every few seconds) level [53, 54, 85]. Our dissertation looks at full-fledged cost-based

query re-optimization in a systematic way.

Provenance. Provenance (also called lineage) has often been studied to help “explain”

why a tuple exists [22] or to assign a ranking or score [18, 40]. Lineage was studied in [30]

as a means of maintaining the data in the data warehouses. Our absorption provenance

model is a compact encoding of the PosBool provenance semiring in [41] (which provides

a theoretical provenance framework, but does not consider implementability). We special-

ized it for maintenance of derived data in recursive settings. Our approach improves over

the counting algorithm [45] which does not support recursion. We have demonstrated the

benefits of our approaches in this dissertation versus DRed [45] and maintenance based

on relative provenance [40] (both of which were developed for non-distributed query

settings).

Declarative approaches. Distributed recursive queries have been proposed as a mecha-

nism for managing state in declarative networks [69]. Our work formalizes aspects of soft-

state management and significantly improves the ability to maintain recursive views over

dynamic networks. Our distributed recursive view maintenance techniques are applica-

ble to other networked environments, particularly programming abstractions for region-

based computations in sensor networks [96, 98]. Our use of declarative techniques to

specify the optimizer was inspired in part by the Evita Raced [29] system. However, their

work aims to construct an entire optimizer using reprogrammable Datalog rules, whereas

our goal is on effective incremental maintenance of the output query plan. We seek to

fully match the pruning techniques of conventional optimizers and aim at incremental

re-optimization instead of static query optimization.
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Incremental view maintenance. Related approaches to incremental maintenance of re-

cursive views and aggregations include graph structured view maintenance have been

studied in [102], incremental view maintenance for semi-structured data [4] and for

non-distributive aggregate functions [81]. Among these, the closest to our approach is

the DRed algorithm [45], which is widely used in conventional centralized framework

of handling recursive views. However, it falls short in a distributed framework as its

over-deleted and re-derived tuples are too expensive to propagate in many distributed

scenarios, as demonstrated in this dissertation.
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Conclusions and Future Directions

To overcome the fundamental limitations of existing approaches to data stream manage-

ment systems, our dissertation research addresses two important problems: 1) enabling

incremental maintenance of transitive closure type of queries over distributed data streams;

2) enabling incremental query re-optimization, both in a declarative fashion and in a pro-

cedural fashion. The first work addresses the scale and performance issues in supporting

transitive closure queries over data streams. It makes practical the support for linear re-

cursion in (distributed) data stream management systems. The second work focuses on

the performance issues of frequent query re-optimizations in stream processing.

Our general thesis is that efficient incremental processing and re-optimization of up-

date streams can be achieved by various incremental view maintenance techniques if we cast

the problems as incremental view maintenance problems over data streams. In particular,

we make the following contributions:

• We formulate the problem of computing recursive tasks over dynamic data streams

as a classical incremental view maintenance problem, which facilitates many generic

incremental view maintenance techniques to address the challenges. We develop

a novel, compact absorption provenance as an annotation attached to each data item,

which enables us to directly detect when view tuples are no longer derivable and

should be removed, where the views are defined over a stream of insertions or dele-

tions. We also develop several heuristics to ensure that the absorption provenance

annotation, maintained in a Binary Decision Diagram (BDD), remains compact un-
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der different topologies. We implement all of the above solutions in our Aspen pro-

totype system, and experimentally validate the performance under several different

scenarios. Results show that we have orders of magnitude savings compared to

prior approaches in various settings.

• We explore whether full-fledged cost-based incremental techniques for query re-

optimization can be developed, where an optimizer would only re-explore query

plans whose costs were affected by an updated cardinality or cost value; and whether

such incremental techniques could be used to facilitate more efficient adaptivity in

dynamic scenarios. We propose a rule-based and declarative approach to query re-

optimization. We develop a formulation of query re-optimization as an incremental

view maintenance problem, for which we develop novel algorithms like incremen-

tal aggregate selection, incremental reference counting and incremental pruning.

We implement our solutions in our prototype system, Aspen, with comprehensive

studies of performance against alternative approaches over a diverse set of work-

loads. Results show that we have an order-of-magnitude performance gains versus

non-incremental approaches to query re-optimization.

• We show that our approaches to incremental re-optimization from the declarative

perspective can be easily incorporated into traditional procedural-based query opti-

mizers (e.g., bottom-up optimizers with dynamic programming and top-down opti-

mizers with branch-and-bounding), without changing their architectures. We study

how to design and implement full-fledged cost-based procedural incremental query

re-optimization frameworks and present both analytical and empirical results.

• As a case study of this dissertation, we have also developed a prototype system As-

pen (in approximately 80k lines of code), which serves as an end-to-end distributed

adaptive query processing system to address the challenges of our applications at

hand. This system not only implements all of the solutions in this dissertation,

but also serves as the backend of a real campus building application (SmartCIS) at

Penn [62, 63].

To extend the dissertation work, we have identified a few promising future directions,
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which include but are limited to: the extensions of our declarative query optimization

framework to multi-core and distributed architectures, cost modeling of plan switching

for adaptive stream processing, the problem of determining when to adapt in adaptive

stream processing scenarios and adaptive stream processing over federated data centers.

We illustrate each of them below.

Rethinking query optimization over multi-core and distributed architectures. A tradi-

tional query optimizer is performed on a single machine; however, when more and more

data sources are correlated and aggregated, and as multi-query optimization becomes

essential, how to re-architect a query optimizer over parallel architectures such as multi-

core or distributed environment is particularly important and relevant today. One of the

natural extensions of our work on declarative query optimization is to exploit parallelism

of computation in query optimization: as we express a query optimizer in a set of rules,

we can rely on the distributed execution engine to parallelize the computation. There

are lots of research on parallelizing Datalog queries and since a query optimizer can be

cast as a specific Datalog program, there are numerous opportunities in optimizing the

parallelization of this program. The main challenge of parallelizing query optimization

lies in the various dependencies of computations within a query optimizer. Recent work

on distributed query optimizer [49] adopts a different approach to our declarative work,

which proposes heuristics to allocate the entire search space of candidate plans to differ-

ent machines. Our declarative paradigm of query optimizer will allow us to cast the state

of intermediate computations as data, and exploit data-driven approaches to partition the

work of computation.

Cost modeling of plan switching for adaptive stream processing. One of the biggest

challenges in adaptive query processing is the treatment of plan switching, which was not

a challenge in conventional engines. Unfortunately, few existing work considered the cost

of switching plans, e.g., the work to be shared across plans, during query re-optimization.

Indeed, in many scenarios, the expensive cost of switching is so dominant that migrating

to a more cost-efficient plan might not offset the benefit. On the other hand, in an online

scenario, one can only predict the future based on past observations, hence one needs

to estimate how expensive the plan switching might become given past evidence. By
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overlooking the cost of plan switching, a query re-optimization solution would become

incomplete as it may pick wrong plans to adapt. One line of future directions of this

dissertation is to develop a cost model for plan switching and incorporate this into the

entire query re-optimization framework. One can decide whether to adapt to a plan which

might have better performance for the rest of data streams but is expensive to migrate to.

Determining when to adapt in adaptive stream processing. One of the most important

decisions to make in adaptive query processing systems for data streams is determining

when to adapt. The granularity of adaptation will play a huge role in determining the

overall performance of query answering over data streams. Open questions lie in deciding

the globally optimal points of adaptation in the life time of data streams, as well as

online mechanisms to determine optimal points of adaptations when only part of the

data streams have been seen and no predications of the future is available.

Adaptive stream processing across federations of data centers. Today in reality a com-

puting platform may sit across multiple geographically distributed data centers. This

brings unseen challenges such as huge costs of data transfer, privacy and security issues,

partitioning of plans over the federation, load-balancing and re-partitioning, adaptivity

and so forth. As the Map-Reduce paradigm becomes increasingly popular these days, we

could enhance the capabilities of cloud processing by leveraging the ideas from this dis-

sertation such as incremental processing of data streams, and extend them in nontrivial

ways to address the issues of adaptivity, re-partitioning and federated query optimiza-

tion, etc.
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