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ABSTRACT

AUTOMATED CLOUD RESOURCE ORCHESTRATION

Changbin Liu

Boon Thau Loo

Realizing Infrastructure-as-a-Service (IaaS) cloud requires a control platform for

orchestrating the provisioning, configuration, management and decommissioning of

a distributed set of diverse cloud resources (i.e., compute, storage, network) serving

different clients. Cloud resource orchestration is challenging due to the rapid growth

of data centers, the high failure rate of commodity hardware, the enforcement of

service and engineering rules, the increasing sophistication of cloud services, and

the requirement to fulfill provider operational objectives and customer service level

agreements (SLAs).

Towards addressing these challenges, this dissertation makes following contri-

butions: (1) An automated resource orchestration platform that allows cloud op-

erators to declaratively specify optimization goals and constraints given provider

operational objectives and customer SLAs. Based on these specifications, orchestra-

tion commands are automatically generated to optimize resource configurations and

allocations within the cloud; (2) A highly available transactional resource orches-

tration platform for building IaaS cloud infrastructures. Transactional orchestration

procedures automatically guarantee atomicity, consistency, isolation and durability

(ACID) properties for cloud operations. Transactional semantics provide a clean

abstraction which enables cloud operators to focus on developing high level cloud

services without worrying about the complexities of accessing and managing under-

lying volatile distributed resources.

We present the design and implementation of our transactional automated cloud

vii



orchestration platform. Using realistic scenarios and workloads derived from pro-

duction cloud services, we demonstrate that our platform is able to automatically

orchestrate compute, storage, and network resources within and across geographi-

cally distributed data centers to meet operational objectives and SLAs.
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Chapter 1

Introduction

1.1 Motivation

The Infrastructure-as-a-Service (IaaS) cloud computing model exemplified by Ama-

zon EC2 [2] provides users on-demand, near-instant access to a large pool of vir-

tual cloud resources (i.e., compute, storage and network) such as virtual machines

(VMs), virtual block devices, and virtual private networks. The orchestrations [66]

of the virtual resources over physical hardware, such as provisioning, configuration,

management and decommissioning, are exposed to the users as a service via pro-

grammable APIs. These APIs hide the complexity of the underlying orchestration

details.

From the cloud provider’s perspective, however, building a robust system to or-

chestrate cloud resources is challenging. First, today’s large data centers typically

run on the scale of over 10,000 machines based on commodity hardware [50]. As

such, software glitches and hardware failures including power outages and network

partitions are the norm rather than the exception. This unreliability not only im-

pacts the virtual resources assigned to users, but also the controllers that orchestrate
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the virtual resources. Second, to orchestrate a massively concurrent, multi-tenant

IaaS environment, any engineering and service rule must be met while avoiding race

conditions.

Moreover, cloud resource orchestration is highly complex due to the increasing so-

phistication of cloud services. First, as many recent proposals [93, 100, 33, 99, 34, 46]

have articulated, cloud management is inherently complicated due to the heterogene-

ity, infrastructure, and concurrent user services that share a common set of physical

resources. Second, configurations of various resource types interact with each other.

For example, the locations of VMs have an impact on storage placement, which in

turn affects bandwidth utilization within and external to a data center. Third, cloud

resources have to be deployed in a fashion that not only realizes provider operational

objectives, but also guarantees that the customer service-level agreements (SLAs)

can be constantly met as runtime conditions change.

All in all, the orchestration process is complex and potentially tedious and error-

prone if performed manually, and motivates the need for scalable and reliable man-

agement tools that enable us to automate part or all of the decision process without

worrying about the complexities of accessing and managing underlying volatile dis-

tributed cloud resources.

1.2 Existing Solutions

On the public side, there are open-source IaaS cloud control platforms, such as

OpenStack [23], OpenNebula [22] and Eucalyptus [12]. First, none of these solutions

perform automated cloud resource orchestration. Second, we found a lack of disci-

plined approaches in them to enforce service and engineering rules – most of them

are implemented as condition checks (if-then-else), which are scattered in the code
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base. Even when violations are detected, the reconciliation mechanisms are usually

ad-hoc and problematic. Third, when unanticipated errors occur during orchestra-

tion process, they either choose to fail-stop, entering an intermediate state, or to

ignore the errors, leading to undefined behavior. Either way, without proper error

handling, the system could end up in unknown and usually undesirable states, caus-

ing security issues or resources under-utilization. Last but not least, these solutions

have limitations in terms of scale, concurrency control, and high availability. For

instance, Eucalyptus can only handle 750–800 VMs (a hard limit) [37], race con-

ditions exist in OpenStack concurrent VM spawnings even in a small scale cluster

deployment [26], and high availability is entirely missing in all these platforms.

On the proprietary side, a variety of commercial IaaS providers exist, such as

Amazon EC2 [2], Microsoft Windows Azure [29] and VMWare Distributed Resource

Scheduler (DRS) [9] . Unfortunately, how they orchestrate cloud resources is propri-

etary. However, we can still infer that these platforms are not ideal. For instance,

as anecdotally indicated by the outage report [28], in April 2011 EC2 encountered

problems in enforcing safety and concurrency: a human error in router configuration

that violates an implicit service rule and a race condition in storage provisioning

contributed significantly to the prolonged downtime. Due to similar reasons, an-

other EC2 outage occurred in August 2011 [27], and Microsoft encountered a cloud

outage in September 2011 [4]. More importantly, these solutions are insufficient in

orchestrating increasingly sophisticated cloud services due to the lack of appropri-

ate automation tools and programming abstractions. For instance, though VMWare

DRS is able to perform automated VM migration, it is narrowly scoped for load bal-

ancing and does not allow cloud operators to flexibly customize their policy goals and

constraints based on various demands and changing conditions (e.g., migration cost,
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load consolidation, data consistency requirement, latency and bandwidth guarantee

for customers).

1.3 Approach Overview

This dissertation in particular aims to explore the following challenging research

questions in cloud resource orchestration:

1. How can we easily automate cloud resource orchestration? Given

provider operational objectives and customer SLAs as policy goals and con-

straints, we desire that the platform enables cloud operators to formally model

cloud orchestrations, and that it takes the specifications and automatically syn-

thesizes orchestration decisions. As cloud services become increasingly sophis-

ticated, their orchestration logic is complex. In specifying the orchestration

logic, imperative languages like C++ [13] or Java [5] often result in multi-

hundred or even multi-thousand lines of code, which is error-prone and stove-

piped hence inflexible at customizing policies upon user demands. To ease the

process of specifying automated orchestration, we aim to design a compact lan-

guage that allows cloud providers to specify orchestration policies succinctly.

This language should as well be general enough to capture a variety of cloud

resource orchestration scenarios within and across geographically distributed

data centers.

2. How can we guarantee orchestration robustness in the presence of

cloud volatility? Robustness ensures that failures in an orchestration pro-

cedure do not lead to undefined behavior or inconsistent states. This goal is
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critical and yet especially challenging because of high volatility in the cloud en-

vironment. An orchestration procedure usually involves multiple state changes

of distributed resources, any of which can fail due to volatility. For example,

spawning a VM typically has the following steps: clone a VM disk image on

a storage server; create a VM configuration on a compute server; set up vir-

tual local-area networks (VLAN), software bridges, and firewalls for inter-VM

communication; finally start the VM. During the process, an error at any step

would prevent the client from obtaining a working VM. Worse, the leftover

configurations in the compute, storage and network components become or-

phans if not properly cleaned up, which may lead to undefined behavior for

future orchestrations.

3. How can we ensure a cloud service is safe? I.e., the service’s orches-

tration procedures do not violate any constraints. These constraints reflect

service and engineering rules in operation. If violated, an illegal orchestration

operation could disrupt cloud services or even lead to severe outage [28], e.g.,

spawning a VM on an overloaded compute server, or migrating a VM to an in-

compatible hypervisor or CPU with different instruction sets. Enforcing these

constraints is challenging as it often requires acquiring the states of distributed

resources and reasoning about them holistically.

4. How can we allow high concurrency of simultaneous orchestrations?

Our objective is to provide a cloud orchestration system at the scale of at least

100,000 cloud resources (e.g., VMs and block devices) [17]. It should be able

to perform simultaneous execution of massive orchestration procedures safely,

especially when they access the same resources. For example, simultaneous

spawning of two VMs on the same compute server may exceed the physical
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memory limit of the server. Concurrency control guarantees that simultaneous

execution of orchestration procedures avoids race conditions and permits the

system to scale.

5. How can we make a cloud orchestration platform highly-available?

In the era of web-scale applications, unavailability of the cloud system directly

translates to loss of revenue and service degradation for customers. Based on

our estimation of Amazon EC2’s rate of VM creation [3], a mere 10-minute

service disruption can result in not fulfilling over 1,400 VM spawn operations

in a single region. Such disruptions are unacceptable for mission-critical appli-

cations.

To address the above challenges, in this dissertation we present a new point in

the design spaces of cloud resource orchestration architectures that aims to achieve

scalable and reliable orchestration automation. Specifically, we propose a unified

architecture which includes two parts:

• An automated resource orchestration platform [63, 67] that enables cloud oper-

ators to specify optimization policy goals and constraints given provider opera-

tional objectives and customer SLAs. These policies are compactly specified in

a declarative language, which results in orders of magnitude code size reduction

compared to imperative languages. Based on these specifications, orchestra-

tion commands are automatically generated via integrating a declarative net-

working engine [69] with a general constraint solver [13] to optimize resource

configurations and allocations within and across distributed data centers [39]

in the cloud.

• A highly available transactional resource orchestration platform [66, 64] for

building IaaS cloud infrastructures. This platform provides an abstraction

6



to execute the generated commands in a transactional style to guarantee or-

chestration correctness. Transactional orchestration procedures automatically

guarantee atomicity, consistency, isolation and durability (ACID) properties for

cloud operations. Transactional semantics provide a clean abstraction which

enables cloud operators to focus on developing high level automated cloud

services without worrying about the complexities of accessing and managing

underlying volatile distributed resources.

The hypothesis of this dissertation is that our approach of automated cloud re-

source orchestration can address the aforementioned challenges. To validate this

hypothesis, we have designed and implemented a prototype transactional automated

cloud orchestration platform, which is targeted to be used by both private and

public cloud operators and service providers, such as Amazon [2], Cloudscaling [8],

Rackspace [6], RightScale [7], and Windows Azure [29]. Currently these providers

use open-source platforms such as OpenStack [23] or proprietary solutions, which

are inadequate in addressing all the problems of orchestration automation, robust-

ness, safety, concurrency and high availability. In Table 1.1 we list the comparisons

between our platform and current solutions in terms of addressing the research ques-

tions.
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1.4 Organization

The remainder of this dissertation presents the architecture of our transactional auto-

mated cloud resource orchestration platform, its declarative programming language,

two use cases and evaluation of its effectiveness. Chapter 2 presents an architectural

overview of the system. Chapter 3 describes how cloud resource orchestration is

automated via being formulated as declarative constraint optimizations. Chapter 4

describes how generated resource orchestration commands are executed in a trans-

actional style to guarantee safety, robustness and to provide concurrency control.

Chapter 5 presents our evaluation results. Chapter 6 presents related work. Finally,

Chapter 7 summarizes the dissertation and discusses future directions.
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Chapter 2

System Overview

Figure 2.1 presents an overview of the system we are aiming to design and implement

in this dissertation. This system is designed for a cloud environment comprising

of geographically distributed data centers via dedicated backbone networks or the

Internet. At the top, cloud operators specify providers operational objectives and

customer SLAs as input. In the middle, the cloud resource orchestration system is

comprised of two components, COPE (Cloud Orchestration Policy Engine) [63, 67],

and TROPIC (Transactional Resource Orchestration Platform In the Cloud) [66, 64].

COPE is an automated orchestration platform that enables cloud providers to

automate the process of resource orchestration. In COPE, there are a distributed

network of instances communicating with each other. Provider operational objec-

tives and customer SLAs from cloud operators are specified in terms of policy goals,

which are subjected to a number of constraints specific to the cloud deployment

scenario. COPE formulates these specifications as well as underlying cloud system

states reported by TROPIC as a constraint optimization problem (COP), and auto-

matically synthesizes orchestration commands which are input into TROPIC to be

executed as actual orchestration operations.
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Figure 2.1: System architecture.

To ease the process of specifying orchestration COP models, COPE uses a declar-

ative policy language Colog to specify policy goals and constraints. Colog specifica-

tions are compact and close to mathematical formulation of COPs. Colog originates

from declarative networking [69], and it is a distributed variant of Datalog with

extended constraint solving and distributed optimization capabilities. Colog is a

general policy language that can be widely applied to capture a variety of cloud

resource orchestration scenarios within and across data centers.

Residing underneath COPE, TROPIC manages the underlying cloud resources
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(i.e., compute, storage and network) and performs actual orchestration operations

to manipulate the resources. TROPIC is a transactional orchestration platform with

a unified data model that enables cloud providers to develop complex cloud ser-

vices with safety, concurrency, robustness and high availability. Each data center

runs one TROPIC instance. TROPIC translates high-level orchestration commands

automatically generated by COPE to low-level operations and executes them in a

transactional style with ACID properties (atomicity, consistency, isolation and dura-

bility). Transactional semantics provide a clean abstraction to cloud providers to

ensure that, orchestrations that encounter unexpected errors have no effect, concur-

rent orchestrations do not violate safety rules or cause race conditions, and commit-

ted orchestrations persist on physical devices. As a result, service developers only

need to focus on developing high level cloud services without worrying about the

complexities of accessing and managing volatile distributed resources.

TROPIC and COPE are two loosely-coupled components in our platform. To

orchestrate the cloud, COPE first completes constraint solving, and then the op-

timization output is all gathered before being sent to TROPIC for transactional

execution. In this way, even if TROPIC transactions abort, it does not affect the

execution of COPE constraint optimization. Cloud operators only need to rerun

Colog programs for reoptimizations.

If COPE is deployed in the centralized mode, its failure will result in no au-

tomation commands being generated. Cloud operators have to restart COPE in this

case. If COPE is deployed in the distributed mode and one or multiple COPE in-

stances fails, the constraint optimization process may produce partial solutions, i.e.,

only running COPE instances get optimization results. TROPIC adopts a highly

available design via using replicated decentralized components, however, it can still
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experience failures if there are data center-wide outages. Under this scenario, no

orchestration command can be executed in the affected data centers.
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Chapter 3

Declarative Automated

Orchestration

In this chapter, we present COPE (Cloud Orchestration Policy Engine) [63]. COPE

aims to answer the research question 1 in Chapter 1. COPE is a declarative opti-

mization platform that enables cloud providers to formally model cloud resources and

formulate orchestration decisions as a constraint optimization problem (COP) given

policy goals and constraints. Central to COPE is the integration of a declarative

networking [69] engine with an off-the-shelf constraint solver [13]. COPE automates

the process of cloud orchestration via the use of a declarative policy language named

Colog. We have developed the Colog language that combines distributed Datalog

used in declarative networking with language constructs for specifying goals and

constraints used in COPs. Moreover, we apply COPE to two representative cloud

orchestration use cases that allow us to showcase key features of COPE.
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3.1 COPE Architecture

Figure 3.1 presents a system overview of COPE. COPE takes the provider operational

objectives and customer SLAs from cloud operators as input. COPE can be deployed

in either a centralized or distributed mode.
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Figure 3.1: COPE Architecture.

In the centralized deployment scenario, the entire cloud is configured by one cen-

tralized COPE instance. Provider operational objectives and customer SLAs are

specified in terms of goals, which are subjected to a number of constraints specific

to the cloud deployment scenario. These policy constraints and goals are specified

in a declarative policy language called Colog. COPE additionally takes as input sys-

tem states (e.g., node CPU load, memory usage, network traffic statistics) gathered

from the cloud. The specifications are used by a constraint solver to automatically
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synthesizes orchestration commands, which are then input into TROPIC to perform

physical orchestration operations to coordinate resources in each data center. As

we will discuss in Chapter 4, TROPIC executes orchestration commands in a trans-

actional style, where the ACID properties are preserved for a series of commands

grouped within a transaction.

In the distributed deployment scenario, there are multiple COPE instances, typ-

ically one for each data center. Each COPE node has a set of neighbor nodes that it

can directly communicate with via dedicated backbone networks or the Internet. A

distributed query engine [25] is used to coordinate the exchange of system states and

optimization output amongst COPE instances, in order to achieve a global objective

(this typically results in an approximate solution).

A distributed deployment brings two advantages. First, cloud environments like

federated cloud [39] may be administered by different cloud providers. This ne-

cessitates each provider running its own COPE for its internal configuration, but

coordinating with other COPE nodes for inter-data center configurations. Second,

even if the cloud is entirely under one administrative domain, for scalability reasons,

each cloud operator may choose to configure a smaller set of resources using local

optimization commands.

3.2 Use Case Examples

We use the following two scenarios (ACloud and Follow-the-Sun) as our driving ex-

amples throughput the thesis. Both examples are representative of cloud resource

orchestration scenarios within and across data centers, respectively. We will primar-

ily frame our discussions of the use cases in terms of COP expressed mathematically,
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and defer the declarative language specifications and runtime support for realizing

these COP computations to later sections.

3.2.1 ACloud (Adaptive Cloud)

We consider the cloud service ACloud, a simplified version of what current cloud

service providers [2] might offer. In ACloud, a customer may spawn new VMs from

an existing disk image, and later start, shutdown, or delete the VMs. In today’s

deployment, providers typically perform load balancing in an ad-hoc fashion. For

instance, VM migrations can be triggered at an overloaded host machine, whose VMs

are migrated to a randomly chosen machine currently with light load. While such

ad-hoc approaches may work for a specific scenario, they are unlikely to result in

configurations that can be easily customized upon changing policy constraints and

goals, whose optimality cannot be easily quantified.

As an alternative, COPE takes as input real-time system states (e.g., CPU and

memory load, migration feasibility), and a set of policies specified by the cloud

provider. An example optimization goal is to reduce the cluster-wide CPU load

variance across all host machines, so as to avoid hot-spots. Constraints can be

tied to each machine’s resource availability (e.g., each machine can only run up to

a fixed number of VMs, run certain classes of VMs, and not exceed its physical

memory limit), or security concerns (VMs can only be migrated across certain types

of hosts).

Another possible policy is to minimize the total number of VM migrations, as

long as a load variance threshold is met across all hosts. Alternatively, to consolidate

workloads one can minimize the number of machines that are hosting VMs, as long as

each application receives sufficient resources to meet customer demands. Given these
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optimization goals and constraints, COPE can be executed periodically, triggered

whenever imbalance is observed, or whenever VM CPU and memory usage changes.

Given the ACloud scenario, we provide its COP-based mathematical model. A

COP takes as input a set of constraints, and attempts to find an assignment of

values chosen from an domain to a set of variables to satisfy the constraints under

an optimization goal. The goal is typically expressed as a minimization over a cost

function of the assignments.

In ACloud, suppose cloud providers decide to migrate VMs within a data center

in order to balance the load. In this model, there are in total n VMs, denoted

as Vi, where i = 1, 2, . . . , n. Each VM currently consumes CPU Ci and memory

Mi. This monitored information is reported by the underneath TROPIC platform,

which regularly updates CPU and memory utilization data. There are m compute

servers which host the VMs, denoted as Hj, where j = 1, 2, . . . ,m. Each host Hj

has a physical memory capacity of HostMemCapj. Given the resource capacity and

demand, the optimization variables of this COP is a VM-to-host assignment Aij,

which means that VM Vi is assigned to host Hj. The value of Aij is 1 (i.e., VM Vi is

assigned to host Hj) or 0 (otherwise). If we assume that the goal of load balancing

is to minimize the standard deviation of host CPUs across the data center, then the

COP can be formulated as followings:

min hostStdevCpu (3.1)

hostAvgCpu =
1

m

m∑
j=1

(
n∑

i=1

(Aij ∗ Ci)) (3.2)
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hostStdevCpu =

√√√√ 1

m

m∑
j=1

(
n∑

i=1

(Aij ∗ Ci)− hostAvgCpu)2 (3.3)

subject to:

∀i :
m∑
j=1

Aij == 1 (3.4)

∀j :
n∑

i=1

(Aij ∗Mi) <= HostMemCapj (3.5)

Optimization goal: The COP aims to minimize the CPU standard deviation

hostStdevCpu across all hosts. Formula (3.2) aggregates the CPU of all VMs running

on each host and computes the average host CPU. Formula (3.3) takes the output

of (3.2) and computes the system-wide standard deviation of hosts CPUs. The

output from (3.3) is later used by the constraint solver for exploring the search space

that meets the optimization goal.

Constraints. The COP is subjected to two representative constraints. Con-

straint (3.4) ensures that each VM is assigned to one and only one host. Con-

straint (3.5) expresses that no host can accommodate VMs whose aggregate memory

exceeds its physical capacity.

3.2.2 Follow-the-Sun

Our second motivating example is based on the Follow-the-Sun scenario [93], which

aims to migrate VMs across geographical distributed data centers based on customer

dynamics. Here, the geographic location of the primary workload (i.e., majority of

customers using the cloud service) derives demand shifts during the course of a day,

and it is beneficial for these workload drivers to be in close proximity to the resources
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they operate on. The migration decision process has to occur in real-time on a live

deployment with minimal disruption to existing services.

In this scenario, the workload migration service aims to optimize for two parties:

for providers, it enables service consolidation to reduce operating costs, and for

customers, it improves application performance while ensuring that customer SLAs

of web services (e.g., defined in terms of the average end-to-end experienced latency

of user requests) are met. In addition, it may be performed to reduce inter-data

center communication overhead [103, 34]. Since data centers in this scenario may

belong to cloud providers in different administrative domains (similar to federated

cloud [39]), Follow-the-Sun may be best suited for a distributed deployment, where

each COPE instance is responsible for controlling resources within their own data

center.

We present a COP-based mathematical model of the Follow-the-Sun scenario. In

this model, there are n autonomous geographically distributed data centers C1, ..., Cn

at location 1, 2, ..., n. Each data center is managed by one COPE instance. Each

site Ci has a resource capacity (set to the maximum number of VMs) denoted as Ri.

Each customer specifies the number of VMs to be instantiated, as well as a preferred

geographic location. We denote the aggregated resource demand at location j as

Dj, which is the sum of total number of VMs demanded by all customers at that

location. Given the resource capacity and demand, data center Ci currently allocates

Aji resources (VMs) to meet customer demand Dj at location j.

In the formulation, Mijk denotes the number of VMs migrated from Ci to Cj

to meet Dk. Migration is feasible only if there is a link Lij between Ci and Cj.

When Mijk > 0, the cloud orchestration layer will issue commands to migrate VMs

accordingly. This can be periodically executed, or executed on demand whenever

system parameters (e.g., demand D or resource availability R) change drastically.
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A näıve algorithm is to always migrate VMs to customers’ preferred locations.

However, it could be either impossible, when the aggregated resource demand ex-

ceeds resource capacity, or suboptimal, when the operating cost of a designated data

center is much more expensive than neighboring ones, or when VM migrations incur

enormous migration cost.

In contrast, COPE’s COP approach attempts to optimize based on a number of

factors captured in the cost function. In the model, we consider three main kinds of

cost: (1) operating cost of data center Cj is defined as OCj, which includes typical

recurring costs of operating a VM at Cj; (2) communication cost of meeting resource

demand Di from data center Cj is given as CCij; (3) migration cost MCij is the

overhead of moving a VM from Ci to Cj. Given the above variables, the COP

formulation is:

min (aggOC + aggCC + aggMC) (3.6)

aggOC =
n∑

j=1

(
n∑

i=1

(Aij +
n∑

k=1

Mkji) ∗OCj) (3.7)

aggCC =
n∑

j=1

n∑
i=1

((Aij +
n∑

k=1

Mkji) ∗ CCij) (3.8)

aggMC =
n∑

i=1

n∑
j=1

((
n∑

k=1

max(Mijk, 0)) ∗MCij) (3.9)

subject to:

∀j : Rj ≥
n∑

i=1

(Aij +
n∑

k=1

Mkji) (3.10)
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∀i, j, k : Mijk +Mjik = 0 (3.11)

Optimization goal. The COP aims to minimize the aggregate cost of cloud

providers. In the above formulation, it is defined as the sum of the aggregate op-

erating cost aggOC in (3.7) across all data centers, the aggregate communication

cost aggCC in (3.8) to meet customer demands served at various data centers, and

the aggregate VM migration cost aggMC in (3.9), all of which are computed by

summing up OCj, CCij, and MCij for the entire system.

Constraints. The COP is subjected to two representative constraints. In Con-

straint (3.10), each data center cannot allocate more resources than it possesses.

Constraint (3.11) ensures the zero-sum relation between migrated VMs between Ci

and Cj for demand k.

3.3 Colog Language

The above COP mathematical formulations can be specified and solved in any general

constraint solvers, such as Gecode [13] and Choco [5]. However, we note that if

specified in imperative languages like C++ or Java, the COP program typically

consists of multi-hundred lines of code, if not multi-thousand, and the program is

error-prone and inflexible to customize as user demands may vary over time. COPE

uses a declarative policy language Colog to concisely specify the COP formulation in

the form of policy goals and constraints. Colog is based on Datalog [69], a recursive

query language used in the database community for querying graphs. Our choice of

Colog is driven by its conciseness in specifying dependencies among system states,

including distributed system states that exhibit recursive properties. Its root in
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logic provides a convenient mechanism for expressing modularized solver goals and

constraints. Colog enables clean separation of policy goals and constraints for better

usability. Moreover, there exists distributed Datalog engines [25] that will later

facilitate distributed COP computations.

Using as examples ACloud and Follow-the-Sun from Section 3.2, we present the

Colog language and describe its execution model. The detailed language grammar

and syntax can be found in Appendix A. In the rest of this section, we first introduce

centralized Colog (without constructs for distribution), followed by distributed Colog.

3.3.1 Datalog Conventions

Throughout this dissertation, we use Datalog conventions in [79] to present Colog.

A Datalog program consists of a set of declarative rules. Each rule has the form p

<- q1, q2, ..., qn., which can be read informally as “q1 and q2 and ... and

qn implies p”. Here, p is the head of the rule, and q1, q2,...,qn is a list of literals

that constitutes the body of the rule. Literals are either predicates with attributes,

or boolean expressions that involve function symbols (including arithmetic) applied

to attributes. The predicates in traditional Datalog rules are relations, and we will

refer to them interchangeably as predicates, relations, or tables.

Datalog rules can refer to one another in a mutually recursive fashion. The order

in which the rules are presented in a program is semantically immaterial; likewise,

the order predicates appear in a rule is not semantically meaningful. Commas are

interpreted as logical conjunctions (AND). Conventionally, the names of predicates,

function symbols, and constants begin with a lowercase letter, while attribute names

begin with an uppercase letter. Function calls are additionally prepended by f .
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Aggregate constructs (e.g., SUM, MIN, MAX) are represented as functions with

attributes within angle brackets (<>).

3.3.2 Centralized Colog

Colog extends traditional Datalog with constructs for expressing goals and con-

straints and also distributed computations. We defer the discussion of distribution

to Section 3.3.3, and primarily focus on centralized Colog here.

Colog specifications are compiled into execution plans executed by a Datalog

evaluation engine that includes modules for constraint solving. In Colog program,

two reserved keywords goal and var specify the goal and variables used by the

constraint solver. The type of goal is either minimize, maximize or satisfy. As its

name suggests, the first two minimizes or maximizes a given objective, and the third

one means to find a solution that satisfies all given constraints.

Colog has two types of table attributes – regular and solver. A regular attribute is

a conventional Datalog table attribute, while a solver attribute is either a constraint

solver variable or is derived from existing ones. The difference between the two is

that the actual value of a regular attribute is determined by facts within a database,

e.g., it could be an integer, a string, or an IP address. On the other hand, the value

of a solver attribute is only determined by the constraint solver after executing its

optimization modules.

We refer to tables that contain solver attributes as solver tables. Tables that

contain only regular attributes are referred to as regular tables, which are essentially

traditional Datalog based and derived tables.

Given the above table types, Colog includes traditional Datalog rules that only
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contain regular tables, and solver rules that contain one or more solver tables. These

solver rules can further be categorized as derivation or constraint rules:

• A solver derivation rule derives intermediate solver variables based on existing

ones. Like Datalog rules, these rules have the form p <- q1, q2, ..., qn.,

which results in the derivation of p whenever the rule body (q1 and q2 and ...

and qn) is true. Unlike regular Datalog rules, the rule head p is a solver table.

• A solver constraint rule has the form p -> q1, q2, ..., qn., denoting the

logical meaning that whenever the rule head p is true, the rule body (q1 and

q2 and ... and qn) must also be true to satisfy the constraint. In COPE, all

constraint rules involve one or more solver tables in either the rule body or head.

Unlike a solver derivation rule, which derives new variables, a constraint restricts

a solver attribute’s allowed values, hence representing an invariant that must be

maintained at all times. Constraints are used by the solver to limit the search

space when computing the optimization goal.

A compiler can statically analyze a Colog program to determine whether it is

a Datalog rule, or a solver derivation/constraint rule. For ease of exposition, we

add a rule label prefix r, d, and c to regular Datalog, solver derivation, and solver

constraint rules respectively.

As an example, the following program expresses a COP that aims to achieve

load-balancing within a data center for the ACloud resource orchestration scenario in

Section 3.2. This example is centralized, and we will revisit the distributed extensions

in the next section.
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goal minimize C in hostStdevCpu(C).

var assign(Vid,Hid,V) forall toAssign(Vid,Hid).

r1 toAssign(Vid,Hid) <- vm(Vid,Cpu,Mem), host(Hid,Cpu2,Mem2).

d1 hostCpu(Hid,SUM<C>) <- assign(Vid,Hid,V), vm(Vid,Cpu,Mem),

C==V*Cpu.

d2 hostStdevCpu(STDEV<C>) <- host(Hid,Cpu,Mem), hostCpu(Hid,Cpu2),

C==Cpu+Cpu2.

d3 assignCount(Vid,SUM<V>) <- assign(Vid,Hid,V).

c1 assignCount(Vid,V) -> V==1.

d4 hostMem(Hid,SUM<M>) <- assign(Vid,Hid,V), vm(Vid,Cpu,Mem),

M==V*Mem.

c2 hostMem(Hid,Mem) -> hostMemCap(Hid,M), Mem<=M.

Program description. The above program takes as input vm(Vid,Cpu,Mem) and

host(Hid,Cpu,Mem) tables, which are regular tables. Each vm entry stores infor-

mation of a VM uniquely identified by Vid. Additional monitored information (i.e.,

its CPU utilization Cpu and memory usage Mem) are also supplied in each entry.

This monitored information can be provided by the cloud infrastructure, which reg-

ularly updates CPU and memory attributes in the vm table. The host table stores

the hosts’ CPU utilization Cpu and memory usage Mem. Table 3.1 summarizes the
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COP Colog

symbol Aij assign(I,J,V)

symbol Ci,Mi vm(I,C,M)

symbol Hj host(J)

formula (3.1) rule goal
formula (3.2), (3.3) rule d1, d2

formula (3.4) rule d3, c1
formula (3.5) rule d4, c2

Table 3.1: Mappings from ACloud COP to Colog.

mapping from COP symbols to Colog tables, and COP formulas to Colog rules/con-

straints identified by the rule labels. For instance, in the table the V attribute in

assign(I,J,V) stores the value of Aij. Given these input tables, the above program

expresses the following:

• Optimization goal: Minimize the CPU standard deviation attribute C in

hostStdevCpu.

• Variables: As output, the solver generates assign(Vid,Hid,V) entries. V are

solver variables, where each entry indicates VM Vid is assigned to host Hid if V

is 1 (otherwise 0). assign(Vid,Hid,V) is bounded via the keyword forall to

toAssign table, generated by joining vm with host in rule r1.

• Solver derivations: Rule d1 aggregates the CPU of all VMs running on each

host. Rule d2 takes the output from d1 and then computes the system-wide

standard deviation of the aggregate CPU load across all hosts. The output from

d2 is later used by the constraint solver for exploring the search space that meets

the optimization goal. In most (if not all) Colog programs, the final optimization

goal is derived from (or dependent on) solver variables.

• Solver constraints: Constraint c1 expresses that each VM is assigned to one
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and only one host, via first aggregating the number of VM assignments in rule

d3. Similarly, constraint c2 ensures that no host can accommodate VMs whose

aggregate memory exceeds its physical limit, as defined in hostMemCap.

To invoke actual constraint solving, Colog uses a reserved event invokeSolver

to trigger the optimization computation. This event can be generated either peri-

odically, or triggered based on an event (local table updates or network messages).

To restrict the maximum solving time for each COP execution, one can set the

parameter solver time.

Using Colog, it is easy to customize policies simply by modifying the goals, con-

straints, and adding additional derivation rules. For instance, we can add a rule

(continuous query) that triggers the COP program whenever load imbalance is ob-

served (i.e., C in hostStdevCpu exceeds a threshold). Alternatively, we can optimize

for the fewest number of unique hosts used for migration while meeting customer

SLAs when consolidating workloads. If the overhead of VM migration is considered

too high, we can limit the number of VM migrations, as demonstrated by the rules

below.

d5 migrate(Vid,Hid1,Hid2,C) <- origin(Vid,Hid1),

assign(Vid,Hid2,V), Hid1!=Hid2,

C==V.

d6 migrateCount(SUM<C>) <- migrate(Vid,Hid1,Hid2,C).

d7 migrateVM(Vid,Hid1,Hid2) <- migrate(Vid,Hid1,Hid2,C), C==1.

c3 migrateCount(C) -> C<=MAX_MIGRATES.

In rule d5, the origin table records the current VM-to-host mappings, i.e., VM

Vid is running on host Hid1. Derivation rules d5-7 counts how many VMs are to
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be migrated after optimization. In d5, C==V means that if VM Vid is assigned to

host Hid2, then VM Vid should be migrated from host Hid1 to Hid2. Otherwise, C

is not equal to V. Constraint rule c3 guarantees that the total number of migrations

does not exceed a pre-defined threshold MAX MIGRATES.

3.3.3 Distributed Colog

Colog can be used for distributed optimizations, and we introduce additional lan-

guage constructs to express distributed computations. Colog uses the location speci-

fier @ construct used in declarative networking [69], to denote the source location of

each corresponding tuple. This allows us to write rules where the input data spans

across multiple nodes, a convenient language construct for formulating distributed

optimizations. We illustrate Colog using a simple example of two rules that computes

all pairs of reachable nodes in a network:

r1 reachable(@S,N) :- link(@S,N).

r2 reachable(@S,D) :- link(@S,N), reachable(@N,D).

The rules r1 and r2 specify a distributed transitive closure computation, where

rule r1 computes all pairs of nodes reachable within a single hop from all input

links (denoted by the link, and rule r2 expresses that “if there is a link from S

to N, and N can reach D, then S can reach D.” The output of interest is the set of

all reachable(@S,D) tuples, representing reachable pairs of nodes from S to D. By

modifying this simple example, we can construct more complex routing protocols,

such as the distance vector and path vector routing protocols [69].
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To provide a concrete distributed example, we consider a distributed implemen-

tation of the Follow-the-Sun cloud resource orchestration model introduced in Sec-

tion 3.2. At a high level, we utilize an iterative distributed graph-based computation

strategy, in which all nodes execute a local COP, and then iteratively exchange COP

results with neighboring nodes until a stopping condition is reached. In this exe-

cution model, data centers are represented as nodes in a graph, and a link exists

between two nodes if resources can be migrated across them. The following Colog

program implements the local COP at each node X:

goal minimize C in aggCost(@X,C).

var migVm(@X,Y,D,R) forall toMigVm(@X,Y,D).

r1 toMigVm(@X,Y,D) <- setLink(@X,Y), dc(@X,D).

// next-step VM allocations after migration

d1 nextVm(@X,D,R) <- curVm(@X,D,R1), migVm(@X,Y,D,R2), R==R1-R2.

d2 nborNextVm(@X,Y,D,R) <- link(@Y,X), curVm(@Y,D,R1),

migVm(@X,Y,D,R2), R==R1+R2.

// communication, operating and migration cost

d3 aggCommCost(@X,SUM<Cost>) <- nextVm(@X,D,R), commCost(@X,D,C),

Cost==R*C.

d4 aggOpCost(@X,SUM<Cost>) <- nextVm(@X,D,R), opCost(@X,C),

Cost==R*C.

d5 nborAggCommCost(@X,SUM<Cost>) <- link(@Y,X), commCost(@Y,D,C),

nborNextVm(@X,Y,D,R),
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Cost==R*C.

d6 nborAggOpCost(@X,SUM<Cost>) <- link(@Y,X), opCost(@Y,C),

nborNextVm(@X,Y,D,R), Cost==R*C.

d7 aggMigCost(@X,SUMABS<Cost>) <- migVm(@X,Y,D,R),

migCost(@X,Y,C), Cost==R*C.

// total cost

d8 aggCost(@X,C) <- aggCommCost(@X,C1), aggOpCost(@X,C2),

aggMigCost(@X,C3), nborAggCommCost(@X,C4),

nborAggOpCost(@X,C5), C==C1+C2+C3+C4+C5.

// not exceeding resource capacity

d9 aggNextVm(@X,SUM<R>) <- nextVm(@X,D,R).

c1 aggNextVm(@X,R1) -> resource(@X,R2), R1<=R2.

d10 aggNborNextVm(@X,Y,SUM<R>) <- nborNextVm(@X,Y,D,R).

c2 aggNborNextVm(@X,Y,R1) -> link(@Y,X), resource(@Y,R2), R1<=R2.

// propagate to ensure symmetry and update allocations

r2 migVm(@Y,X,D,R2) <- setLink(@X,Y), migVm(@X,Y,D,R1), R2:=-R1.

r3 curVm(@X,D,R) <- curVm(@X,D,R1), migVm(@X,Y,D,R2), R:=R1-R2.

Program description. Table 3.2 summarizes the mapping from COP symbols to

Colog tables, and COP equations to Colog rules identified by the rule labels. For

instance, each entry in table Ri is stored as a resource(I,R) tuple. Likewise,
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COP Colog

symbol Ri resource(I,R)

symbol Ci dc(I,C)

symbol Lij link(I,J)

symbol Aij curVm(I,J,R)

symbol Mijk migVm(I,J,K,R)

equation (3.6) rule goal, d8
equation (3.7) rule d4,d6
equation (3.8) rule d3,d5
equation (3.9) rule d7
equation (3.10) rule d9-10,c1-2
equation (3.11) rule r2

Table 3.2: Mappings from Follow-the-Sun COP to Colog.

the R attribute in migVm(I,J,K,R) stores the value of Mijk. The distributed COP

program works as follows.

• Optimization goal: Instead of minimizing the global total cost of all data cen-

ters, the optimization goal of this local COP is the total cost C in aggCost within

a local region, i.e., node X and one of its neighbors Y.

• COP execution trigger: Periodically, each node X randomly selects one of its

neighbors Y (denoted as a link(@X,Y) entry) to initiate a VM migration process1

setLink(@X,Y) contains the pair of nodes participating in the VM migration pro-

cess. This in essence results in the derivation of toMigVm in rule r1, which directly

triggers the execution of the local COP (implemented by the rest of the rules). The

output of the local COP determines the quantity of resources migVm(@X,Y,D,R)

that are to be migrated between X and Y for all entries in toMigVm.

1To ensure that only one of two adjacent nodes initiates the VM migration process, for any
given link(X,Y), the protocol selects the node with the larger identifier (or address) to carry out
the subsequent process. This distributed link negotiation can be specified in 13 Colog rules, which
we omit for brevity.
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• Solver derivations: During COP execution, rule d1 and d2 compute the next-

step VM allocations after migration for node X and Y, respectively. Rule d3-6

derive the aggregate communication and operating cost for the two nodes. We note

that rule d2 and d5-6 are distributed solver derivation rules (i.e., not all rule tables

are at the same location), and node X collects its neighbor Y’s information (e.g.,

curVm, commCost and opCost) via implicit distributed communications. Rule d7

derives the migration cost via aggregate keyword SUMABS, which sums the absolute

values of given variables. Rule d8 derives the optimization objective aggCost by

summing all communication, operating and migration cost for both node X and Y.

• Solver constraints: Constraints c1 and c2 express that after migration node X

and Y must not have too many VMs which exceed their resource capacity given

by table resource. Rule c2 is a distributed constraint rule, where X retrieves

neighbor Y’s resource table over the network to impose the constraint.

• Stopping condition: At the end of each COP execution, the migration result

migVm is propagated to immediate neighbor Y to ensure symmetry via rule r2.

Then in rule r3 both node X and Y update their curVm to reflect the changes

incurred by VM migration. Above process is then iteratively repeated until all links

have been assigned values, i.e., migration decisions between any two neighboring

data centers have been made. In essence, one can view the distributed program

as a series of per-node COPs carried out using each node’s constraint solver. The

complexity of this program depends upon the maximum node degree, since each

node at most needs to perform m rounds of link negotiations, where m is the node

degree.

Our use of Colog declarative language provides ease in policy customizations. For

example, we can impose restrictions on the maximum quantity of resources to be
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migrated due to factors like high CPU load or router traffic in data centers, or impose

constraints that the total cost after optimization should be smaller by a threshold

than before optimization. These two policies can be defined as rules below.

d11 aggMigVm(@X,Y,SUMABS<R>) <- migVm(@X,Y,D,R).

c3 aggMigVm(@X,Y,R) -> R<=MAX_MIGRATES.

c4 aggCost(@X,C) -> originCost(@X,C2), C<=COST_THRES*C2.

Rule d11 derives total VM migrations between X and Y. Constraint c3 ensures

that total migrations do not exceed a pre-defined threshold MAX MIGRATES. Rule c4

guarantees that aggCost after migration is below the product of the original cost

originCost and a threshold COST THRES. originCost can be derived by additional

5 Colog rules which are omitted here.

In distributed COP execution, each node only exposes limited information to their

neighbors. These information includes curVm, commCost, opCost and resource, as

demonstrated in rules d2, d5-6 and c2. This leads to better autonomy for each

COPE instance, since there does not exist a centralized entity which collects the

information of all nodes. Via distributing its computation, Colog has a second ad-

vantage: by decomposing a big optimization problem (e.g., VM migrations between

all data centers) into multiple sub-problems (e.g., VM migrations on a single link)

and solving each sub-problem in a distributed fashion, it is able to achieve better

scalability as the problem size grows via providing approximate solutions.
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3.4 Execution Plan Generation

This section describes the process of generating execution plans from Colog programs.

COPE’s compiler and runtime system are implemented by integrating a distributed

query processor (used in declarative networking) with an off-the-shelf constraint

solver.

In our implementation, we use the RapidNet [25] declarative networking engine

together with the Gecode [13] high performance constraint solver. However, the

techniques describe in this section is generic and can be applied to other distributed

query engines and solvers as well.

3.4.1 General Rule Evaluation Strategy

COPE uses a declarative networking engine for executing distributed Datalog rules,

and as we shall see later in the section, for implementing solver derivation and en-

forcing solver constraint rules. A declarative networking engine executes distributed

Datalog programs using an asynchronous evaluation strategy known as pipelined

semi-näıve (PSN) [68] evaluation strategy. The high-level intuition here is that in-

stead of evaluating Datalog programs in fixed rounds of iterations, one can pipeline

and evaluate rules incrementally as tuples arrive at each node, until a global fix-

point is reached. To implement this evaluation strategy, COPE adopts declarative

networking’s execution model. Each node runs a set of local delta rules, which are

implemented as a dataflow consisting of database operators for implementing the

Datalog rules, and additional network operators for handling incoming and outgoing

messages. All rules are executed in a continuous, long-running fashion, where rule

head tuples are continuously updated (inserted or deleted) via a technique known as
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incremental view maintenance [73] as the body predicates are updated. This avoids

having to recompute a rule from scratch whenever the inputs to the rule change.

A key component of COPE is the integration of a distributed query processor

and a constraint solver running at each node. At a high level, Colog solver rules are

compiled into executable code in RapidNet and Gecode. Our compilation process

maps Colog’s goal, var, solver derivations and constraints into equivalent COP

primitives in Gecode. Whenever a solver derivation rule is executed (triggered by an

update in the rule body predicates), RapidNet invokes Gecode’s high-performance

constraint solving modules, which adopts the standard branch-and-bound searching

approach to solve the optimization while exploring the space of variables under

constraints.

Gecode’s solving modules are invoked by first loading in appropriate input regular

tables from RapidNet. After executing its optimization modules, the optimization

output (i.e., optimization goal goal and variables var) are materialized as RapidNet

tables, which may trigger reevaluation of other rules via incremental view mainte-

nance.

3.4.2 Solver Rules Identification

In order to process solver rules, COPE combines the use of the basic PSN evaluation

strategy with calls to the constraint solver at each node. Since these rules are treated

differently from regular Datalog rules, the compiler needs to identify solver rules via

a static analysis phase at compile time.

The analysis works by first identifying initial solver variables defined in var.
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Solver attributes are then identified by analyzing each Colog rule, to identify at-

tributes that are dependent on the initial solver variables (either directly or tran-

sitively). Once an attribute is identified as a solver attribute, the predicates that

refer to them are identified as solver tables. Rules that involve these solver tables

are hence identified as solver rules. Solver derivation and constraint rules are differ-

entiated trivially via rule syntax (<- vs ->).

Example. To demonstrate this process, we consider the ACloud example in Sec-

tion 3.3.2. assign, hostCpu, hostStdevCpu, assignCount, hostMem are identified

as solver tables as follows:

• Attribute V in var is a solver attribute of table assign, since V does not appear

after forall.

• In rule d1, given the boolean expression C==V*Cpu, C is identified as a solver at-

tribute of table hostCpu. Hence, transitively, C is a solver attribute of

hostStdevCpu in rule d2.

• In rule d3, V is a known solver attribute of assign and it appears in rule head, so

V is a solver attribute of table assignCount.

• Finally, in rule d4, since M depends on V due to the assignment M==V*Mem, one can

infer that M is a solver attribute of hostMem.

Once the solver tables are identified, rules d1-d4 are trivially identified as solver

derivation rules. Rules c1 and c2 are legal solver constraint rules since their rule

heads assignCount and hostMem are solver tables.

In the rest of this section, we present the steps required for processing solver

derivation and constraint rules. For ease of exposition, we first do not consider

distributed evaluation, which we revisit in Section 3.4.5.
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3.4.3 Solver Derivation Rules

To ensure maximum code reuse, solver derivation rules leverage the same query

processing operators already in place for evaluating Datalog rules. As a result, we

focus only on the differences in evaluating these rules compared to regular Datalog

rules. The main difference lies in the treatment of solver attributes in selection

and aggregation expressions. Since solver attribute values are undefined until the

solver’s optimization modules are executed, they cannot be directly evaluated simply

based on existing RapidNet tables. Instead, constraints are generated from selection

and aggregation expressions in these rules, and then instantiated within Gecode as

general constraints for reducing the search space. COPE currently does not allow

joins to occur on solver attributes, since according to our experience, there is no

such use cases in practice. Furthermore, joins on solver attributes are prohibitively

expensive to implement and complicate our design unnecessarily, since they require

enumerating all possible values of solver variables.

Example. We revisit rule d1 in the ACloud example in Section 3.3.2. The selection

expression C==V*Cpu involves an existing solver attribute V. Hence, a new solver

variable C is created within Gecode, and a binding between C and V is expressed as

a Gecode constraint, which expresses the invariant that C has to be equal to V*Cpu.

Likewise, in rule d4, the aggregate SUM is computed over a solver attribute M.

This requires the generation of a Gecode constraint that binds a new sum variable

to the total of all M values.

3.4.4 Solver Constraint Rules

Unlike solver derivation rules, solver constraint rules simply impose constraints on

existing solver variables, but do not derive new ones. However, the compilation
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process share similarities in the treatment of selection and aggregation expressions

that involve solver attributes. The main difference lies in the fact that each solver

constraint rule itself results in the generation of a Gecode constraint.

Example. We use as example rule c2 in Section 3.3.2 to illustrate. Since the

selection expression Mem<=M involves solver attribute M, we impose a Gecode solver

constraint expressing that host memory M should be less than or equal to the memory

capacity Mem. This has the effect of pruning the search space when the rule is

evaluated.

3.4.5 Distributed Solving

Finally, we describe plan generation involving Colog rules with location specifiers

to capture distributed computations. We focus on solver derivation and constraint

rules that involve distribution, and describe these modifications with respect to Sec-

tions 3.4.3 and 3.4.4.

At a high level, COPE uses RapidNet for executing distributed rules whose predi-

cates span across multiple nodes. The basic mechanism is not unlike PSN evaluation

for distributed Datalog programs [68]. Each distributed solver derivation or con-

straint rule (with multiple distinct location specifiers) is rewritten using a localization

rewrite [69] step. This transformation results in rule bodies that can be executed

locally, and rule heads that can be derived and sent across nodes. The beauty of

this rewrite is that even if the original program expresses distributed derivations and

constraints, this rewrite process will realize multiple centralized local COP opera-

tions at different nodes, and have the output of COP operations via derivations sent

across nodes. This allows us to implement a distributed solver that can perform

incremental and distributed constraint optimization.
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Example. We illustrate distributed solving using the Follow-the-Sun orchestration

program in Section 3.3.3. Rule d2 is a solver derivation rule that spans across two

nodes X and Y. During COP execution, d2 retrieves rule body tables link and curVm

from node Y to perform solver derivation. In COPE, d2 is internally rewritten as

following two rules via the localization rewrite:

d21 tmp(@X,Y,D,R1) <- link(@Y,X), curVm(@Y,D,R1).

d22 nborNextVm(@X,Y,D,R) <- tmp(@X,Y,D,R1), migVm(@X,Y,D,R2),

R==R1+R2.

Rule d21 is a regular distributed Datalog rule, whose rule body is the tables with

location Y in d2. Its rule head is an intermediate regular table tmp, which combines all

the attributes from its rule body. In essence, rule d21 results in table tmp generation

at node Y and sent over the network to X. This rewrite is handled transparently by

RapidNet’s distributed query engine. Rule d22 is a centralized solver derivation rule,

which can be executed using the mechanism described in Section 3.4.3.

3.5 Summary

This chapter presents COPE, a platform enabling automated cloud resource or-

chestration, and its declarative policy language Colog. We have demonstrated the

viability of COPE in both centralized and distributed optimization scenarios via two

cloud services, where cloud resource orchestration are formulated as constraint opti-

mization problems. We have also discussed Colog’s language specification, and the

compilation of both centralized and distributed Colog programs.
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Chapter 4

Transactional Orchestration

In this chapter we present the design and implementation of TROPIC (Transac-

tional Resource Orchestration Platform In the Cloud) [66, 64], and how it achieves

transactional orchestration. Residing underneath COPE, TROPIC translates high-

level orchestration commands generated by COPE to low-level operations to execute.

TROPIC aims to answer research questions 2–5 in Chapter 1: robustness, safety, high

concurrency, and high availability, which are essentially the design goals of TROPIC.

4.1 TROPIC Architecture

To achieve these design goals, TROPIC platform performs transactional cloud re-

source orchestrations. Transactions provide ACID semantics which fit our design

goals well: (i) Robustness is provided by the atomicity and durability properties,

which guarantee that committed orchestrations persist on physical devices, while or-

chestrations that encounter unexpected errors have no effect; (ii) Safety is enforced by

integrity constraints in order to achieve transactional consistency; (iii) Concurrency

is supported by a concurrency control algorithm that permits multiple transactions
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Figure 4.1: TROPIC architecture.

to execute in parallel while preserving the transactional behavior of isolation; (iv)

High availability is enabled by TROPIC’s adoption of a decentralized architecture of

replicated components.

Figure 4.1 depicts TROPIC’s architecture. The orchestration requests of clients

are initiated either directly by COPE, or indirectly by cloud operators or end users

via the API service gateway. Between the clients and cloud resources, TROPIC

provides a two-layer orchestration stack with the controllers at the logical layer and

the workers at the physical layer.
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In the logical layer, the controllers provide a unified data model for representing

the control states of cloud resources and a domain-specific language for implement-

ing services. The controllers accept orchestration requests and invoke corresponding

orchestration operations—stored procedures written in TROPIC’s programming lan-

guage. These stored procedures are executed as transactions with ACID semantics.

In the physical layer, the workers straddles the border between the controllers and

the physical devices, and provide a physical data model of devices’ state. The logi-

cal data model contains a replica of the physical data model with weak, eventually

consistent semantics.

Execution of orchestration operations in the logical layer modifies the logical data

model. In the process, actions on physical devices are simulated in the logical layer.

TROPIC guarantees safety by transitioning the logical model transactionally from

one consistent state to another, only after checking that all relevant global safety

constraints are satisfied. Resource conflicts are also checked to avoid race conditions.

After the checks in the logical layer, corresponding physical actions are executed in

the physical layer, invoking device-specific APIs to actually manipulate the devices.

Transactional orchestration in both layers is described in detail in Section 4.3.

The separation of logical and physical layers is unique in TROPIC and has several

benefits. First, updating physical devices’ state can take a long time to complete.

Simulating changes to physical devices in the logical layer is more efficient than ex-

ecuting the changes directly at the physical layer, especially if there are constraint

violations or execution errors. Second, the separation facilitates rapid testing and

debugging to explore system behavior and performance prior to deployment (Sec-

tion 4.6). Third, if the logical and physical models diverge (e.g., due to physical

resource volatility), useful work can still be completed on consistent parts of the
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data model, and in the meantime, repair and reload strategies (Section 4.4) are used

to reconcile any inconsistencies.

The TROPIC architecture is carefully designed to avoid single point of failure.

The components of TROPIC are connected via distributed queue services (inputQ

and phyQ) that are highly available, which reduce the dependency between the com-

ponents. In addition, TROPIC runs multiple controllers simultaneously on separate

servers. We use a quorum-based leader election algorithm [56, 81] to ensure that

there is one lead controller at any time. Other controllers are followers serving as

hot standbys. In the event that the leader becomes unavailable and a new leader

is being elected, workers can execute pending physical operations, and clients can

also send in requests to inputQ without service disruptions. Critical states such as

transaction state and the logical data model are shared by all TROPIC controllers

through a replicated persistent storage. The details of TROPIC high availability

design is given in Section 4.5.

4.2 Data Model and Language

As illustrated in Figure 4.2, TROPIC adopts a hierarchical data model, in which

resources are organized into a tree-like structure. We use a semi-structured data

model because it handles heterogeneity of cloud resources well. Each tree node is an

object representing an instance of an entity. An entity may have multiple attributes of

primitive types, and multiple one-to-many and one-to-one relations to other entities,

represented by children nodes. An entity has a primary key that uniquely identifies

an object among its sibling objects in the tree.
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Figure 4.3 shows a TROPIC code example that contains the definitions of objects

in the data model of Figure 4.2. Although incomplete, the code is very close to the

real code in TROPIC. In the example, each entity instance is defined as a class object,

and children instances are referenced as one attribute in the object. For example,

Root denotes the root of the tree, and it has vmRoot, storageRoot as children.

vmRoot itself has multiple VMHost children, which are comprised of a compute server

and several guest VMs (VM). Note that not all TROPIC data models are isomorphic

to Figure 4.2. In practice, a cloud operator could flexibly define a different hierarchy,

for example, by grouping VMHost under the entity of Rack, which is then grouped

under Pod, Availability Zone, etc.

Each entity has associated expressions and procedures for inspecting and mod-

ifying the entity: queries (@query), actions (@action), constraints (@constraint),

and stored procedures (@proc).

Definition 1. A query inspects system state in the logical layer and provides read-

only access to resources.
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1 class VM(LogicalModel):

2 name = Attribute(str)

3 state = Attribute(VMState)

4 mem = Attribute(int)

5 @primaryKey # the primary key is attribute ‘name’

6 def id(self): return self.name

7 ...

8 class VMHost(LogicalModel):

9 name = Attribute(str)

10 mem = Attribute(int)

11 vms = Many(VM)

12 @query

13 def allVMs(self):

14 for vm in self.vms:

15 yield (self, vm.name, vm.state)

16 @constraint

17 def memLimit(self):

18 if sum(vm.mem for vm in self.vms) >= self.mem:

19 yield ("not enough physical memory", self)

20 @action

21 def startVM(self, ctxt, name):

22 self.vms[name].state = VMState.On

23 ctxt.appendlog(action="startVM", args=[name],

24 undo_action="stopVM", undo_args=[name])

25 ...

26 class VMRoot(LogicalModel):

27 hosts = Many(VMHost)

28 ...

29 class Root(LogicalModel):

30 vmRoot = One(VMRoot)

31 storageRoot = One(StorageRoot)

32 ...

33 @proc

34 def spawnVM(root, vmName, hostName, imageTemplate):

35 storageHostName = root.vmRoot.hosts[hostName].vms[vmName].storageHostName

36 vmImage = vmName + "_img"

37 root.storageRoot.hosts[storageHostName].cloneImage(imageTemplate, vmImage)

38 root.storageRoot.hosts[storageHostName].exportImage(vmImage)

39 root.vmRoot.hosts[hostName].importImage(vmImage)

40 root.vmRoot.hosts[hostName].createVM(vmName, vmImage)

41 root.vmRoot.hosts[hostName].startVM(vmName)

Figure 4.3: TROPIC code example.
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Example 4.2.1. Lines 13–15 define the query allVMs, which returns the names and

states of all VMs defined on a compute server.

Definition 2. An action models an atomic state transition of a resource.

Actions generalize the myriad APIs, ranging from file-based configurations,

command-line interfaces (CLIs), to RPC-style APIs, provided by vendors to con-

trol physical resources. Each action is defined twice: in the physical layer, the action

implements the state transition by calling the device’s API, and in the logical layer,

the action simulates the state transition on the logical data model. Preferably, an

action is associated with a corresponding undo action. Undo actions are used to roll

back a transaction (Section 4.3.1).

Example 4.2.2. Lines 20–22 define the action startVM, which boots a VM. Lines 23–

24 define its corresponding undo action stopVM. The undo action is recorded to the

log within the execution context at runtime (Section 4.3.1).

Definition 3. A constraint in TROPIC specifies service and engineering rules.

TROPIC constraint is similar to database integrity constraints [78]. A constraint

is satisfied if and only if it evaluates to an empty list. Otherwise, the list contains

messages to help pinpoint the cause of the violation. Constraints support the safety

property, and TROPIC automatically enforces them at runtime.

Example 4.2.3. The constraint on lines 16–19 specifies that the total memory of

guest VMs on a physical host cannot exceed the host’s memory limit.

Definition 4. A stored procedure is composed of a series of queries, actions and

other stored procedures to orchestrate cloud resources.
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Example 4.2.4. For instance, lines 33–41 define a stored procedure that spawns a

VM, which consists of five sequential actions1: cloning the VM storage (cloneImage)

from an image template, exporting the image (exportImage), importing the image

(importImage), provisioning the VM on the target host (createVM), and then start-

ing the newly created VM (startVM).

Definition 5. Stored procedures specify orchestration logic, and they are executed as

transactions that enforce ACID properties.

Table 4.1 lists supported actions and their parameters in TROPIC, divided by re-

source categories (i.e., compute, storage, and network). A valid TROPIC transaction

consists of zero or more actions only listed in Table 4.1. In complement to Table 4.1

and Figure 4.3, Appendix B gives more TROPIC code examples. TROPIC is a

general IaaS cloud orchestration platform, and cloud operators and service providers

can flexibly add more actions, queries and constraints upon needs. We note that

TROPIC can only manipulate cloud states which are exposed to it. TROPIC does

not handle the states such as VM’s internal application states, including network

connections and software updates.

To illustrate how orchestration commands generated by Colog in COPE are trans-

lated to TROPIC transactions, we use the ACloud scenario in Section 3.3.2. Af-

ter constraint solving in COPE, rule d7 stores materialized table migrateVM(Vid,

Hid1, Hid2) that denotes vm Vid should be migrated from source host Hid1 to

destination host Hid2. migrateVM(Vid, Hid1, Hid2) tuples are easily mapped

to migrateVM procedure (which is a single-action procedure listed in Table 4.1) in

TROPIC. Specifically, the procedure’s parameter vmName is tuple’s attribute Vid,

srcHost is Hid1, and dstHost is Hid2.

1Network operations, such as VLAN and firewall configurations, are omitted for brevity.
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Resource Action Parameter

Compute (VM) pause -
unpause -
startVM vmName

stopVM vmName

createVM vmName, vmImage

removeVM vmName, vmImage

saveVM vmName, path

restoreVM vmName, path

migrateVM vmName, srcHost, dstHost

importImage vmImage

unimportImage vmImage

Storage exportImage imageName

unexportImage imageName

cloneImage templateImageName, imageName
deleteImage imageName

Network (router) addBgpRoute netAddr, nextHop
delBgpRoute netAddr, nextHop

Table 4.1: Actions supported by TROPIC.

In general, the output of Colog is one or multiple materialized tables. The tuples

of these tables are one-to-one mapped into TROPIC transactions in the way that

each tuple’s predicate becomes a procedure, and attributes become the parameters

of the procedure. COPE is restricted to invoking TROPIC procedures as APIs. If

TROPIC detects an undefined procedure name as input or mismatched parameters,

it immediately raises an error to indicate invalid input. In TROPIC, transactional

orchestration is expressed in Python syntax, which is Turing-complete in terms of

language expressiveness. As long as TROPIC procedures defined in Python syntax

are safe, Colog output is safe. Therefore, Colog is deemed to be safer than raw

Python code.

49



4.3 Design

In this section, we describe TROPIC’s transaction execution model, and explain

how TROPIC can meet our design goals of safety, concurrency, and robustness,

through the enforcement of ACID properties in orchestration operations. Specifi-

cally, TROPIC makes the following guarantee: if the logical and physical layers are

consistent at the beginning of each transaction, ACID properties can always be en-

forced in the logical layer. Furthermore, in the absence of cross-layer inconsistency

caused by resource volatility, these properties are also enforced in the physical layer.

We defer the discussion of inconsistency between the logical and physical layers to

Section 4.4, and focus on transaction processing here.

We first describe a typical life cycle of a transactional orchestration operation,

followed by the execution details in the logical and physical layers. Figure 4.4 depicts

the typical steps in executing a transaction t, from the initial request submitted by

a client until t is committed or aborted.

Step 1: initialization. A client issues a transactional orchestration as a call to a

stored procedure. The transaction is initialized and enqueued to inputQ.

Step 2: acceptance. The controller (leader) accepts t by dequeuing it from inputQ

and enqueues it to todoQ.

Step 3: logical execution. The controller is responsible for scheduling accepted

transactions, making sure there is no constraint violation or possible race condition,

and generating the execution logs for future undo and physical layer execution. All

these steps happen in the logical layer and are explained in Section 4.3.1.
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Step 4: physical execution. Any transaction that has gone through the controller

is dequeued from phyQ and executed in the physical layer by the physical workers

(Section 4.3.2). The execution result (e.g., committed or aborted) is enqueued to

inputQ to notify the controller.

Step 5: cleanup. The controller examines the execution result received from the

workers. If it is successful, the transaction state is marked as committed and the

locks held by the transaction are released (5A). Otherwise, if the transaction fails in

Step 4, it is marked as aborted. The controller then rolls back the logical layer and

releases corresponding locks (5B).

4.3.1 Logical Layer Execution

The logical layer execution logic is depicted as Steps 3A–3C in Figure 4.4. When a

transaction t is scheduled to execute (schedule() in the figure), it is first dequeued

from todoQ. The controller decides t is runnable, if and only if: (i) It does not violate

any safety constraints, and (ii) It does not access or modify resources that are being

used by outstanding transactions (race conditions). If there is a safety violation, t is

marked as aborted and the controller rolls back the logical layer state (3A). If there

is a resource conflict, t is put back into the front of todoQ for subsequent retry (3B).

Otherwise, t is runnable. The controller acquires the locks on related resources, and

the transaction state is changed to started before t is enqueued into phyQ (3C).

Scheduling

In executing the schedule() operation, TROPIC adopts a FIFO queue todoQ for

fairness and simplicity. It dequeues and schedules a new transaction whenever one

of the following conditions is met: (i) A transaction is inserted into an empty todoQ;
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(ii) A transaction is aborted from its logical execution due to a constraint violation;

(iii) A transaction finishes its physical execution (either committed or aborted); (iv)

A transaction has been identified as runnable and is sent to phyQ. More sophisticated

scheduling policies are possible (e.g., an aggressive strategy of scheduling transactions

queuing behind the one with conflicts). We leave a detailed study of alternative

scheduling policies as future work.

Simulation

Once scheduled, instead of directly executing on the physical resources, a simulation

step in the logical layer is used to analyze the transaction for possible constraint

violations and infer the resources it reads and writes (i.e., queries and actions in

Section 4.2 respectively) for concurrency control. This provides early detection of

unsafe operations without touching actual physical resources. Table 4.2 shows an

example transaction for spawning a VM (spawnVM in Figure 4.3). The transaction

consists of 5 actions, which are recorded in an execution log for use in subsequent

phases. In simulation, every action within the transaction is applied sequentially,

and whenever an action results in a constraint violation, the transaction is aborted.

Modifications to the logical layer are rolled back via the undo actions in the execution

log.

Concurrency Control

TROPIC adopts a pessimistic concurrency-control algorithm based on multi-granularity

locking [78]. A lock manager keeps track of the locks acquired by each transaction

and detects possible conflicts. New transactions are allowed to run only if their

required locks do not conflict with existing locks used by outstanding transactions.
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Figure 4.5: An example of lock-based concurrency control. The locks acquired by
transactions t1 (VM suspend) and t2 (VM resume) are in squares and circles respec-
tively.

During its execution, a transaction t acquires write (read) locks on resource ob-

jects used by individual actions (queries). For instance, in table 4.2, write locks are

acquired for each object identified by its resource path. Once these objects and their

corresponding lock types are identified, the lock manager acquires read (R) or write

(W) locks on the actual object, and intention locks (IR/IW) 2 on the ancestors of

this object.

Besides acquiring locks on the resources used by transactions, additional locks

are also acquired based on the constraints that impact transactions. When a write

operation is performed on an object, we find its highest ancestor that has constraints

defined and acquire an R lock on the node. As a result, all its descendants are read-

only to other concurrent transactions, hence preventing others from making state

changes that potentially break safety.

2Intention locks are commonly used for managing concurrency in hierarchical data structures.
They summarize the locking status of descendant nodes, and allow conflicts to be detected higher
up the tree. IW locks conflict with R/W locks, while IR locks conflict with W locks.
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For instance, Figure 4.5 shows the locks acquired by two transactions t1 and t2.

t1 suspends a VM (VM 1) and t2 resumes another VM (VM 2) on the same host. A

constraint is defined to limit the physical memory utilization of each host (memLimit

in Figure 4.3). If t1 and t2 were allowed to run concurrently, the abort of t1 and

commit of t2 may violate this constraint by exceeding the memory limit of VMHost 1.

The locking algorithm prevents this from happening. Assuming t1 is scheduled

first, it acquires a W lock on VM 1, followed by the IW locks on its ancestors VMHost 1,

VMRoot and Root. Due to the memLimit constraint, an R lock is also acquired on

VMHost 1. When t2 is scheduled, it first acquires a W lock on VM 2. However, when

it tries to acquire subsequent IW locks on its ancestors, there is a R/IW conflict

detected on VMHost 1. Therefore, t2 is deferred until t1 finishes.

TROPIC controller runs only one thread in the logical layer for transaction

scheduling, simulation, and concurrency control that adopts a conservative way of

locking. For each transaction t, TROPIC lock manager acquires all its locks before

it is dispatched to the physical layer. After t is committed or aborted, the locks

of t are removed at once in the lock manager. This is similar to strict two phase

locking [78] in traditional database, i.e., lock acquiring is the first phase and lock

releasing is the second phase. Therefore, we observe no deadlock in TROPIC. More-

over, we note that cloud resource orchestration is different from traditional online

transaction processing (OLTP) workload, i.e., millions of transactions with critical

performance requirement. As we will demonstrate in the evaluation (Section 5.1),

TROPIC has good performance in processing intensive realistic cloud workload and

the logical-layer locking overhead is negligible compared to physical resource opera-

tions.
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4.3.2 Physical Layer Execution

Once a transaction t is successfully executed in the logical layer, it is ready for

actual execution in the physical layer. t is stored in phyQ and dequeued by one of

the physical workers in Step 4. Executing t in the physical layer involves replaying

the execution log generated in the logical layer simulation. If all the physical actions

succeed, t is returned as committed. If any action fails, the worker selects the actions

that have been successfully executed, identifies the corresponding undo actions, and

executes them in reverse chronological order.

To guarantee atomicity of transactions, each action in a transaction must have

a corresponding undo action. In our experience, most actions, such as resource

allocation and configuration are reversible. Once all undo actions complete, the

transaction is returned as aborted. Using the execution log in Table 4.2 as example,

suppose the first four actions succeed, but the fifth one fails. TROPIC reversely

executes the undo actions in the log, i.e., record #4, #3, #2 and #1, to roll back the

transaction. As a result, the VM configuration and cloned VM image are removed.

If an error occurs during undo in physical execution 3, the transaction is returned

as failed. The logical layer is still rolled back. However, failures during undo may

result in cross-layer inconsistencies between the physical and logical layers.

4.4 Handling Resource Volatility

In cloud environments, unexpected software and hardware errors (e.g., power glitches,

unresponsive servers, misconfigurations, out-of-band access) may occur. We explore

3We choose to stop executing undo actions in the physical layer once an undo action reports an
error, because they might have temporal dependencies.
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mechanisms in TROPIC for dealing with this volatility of resources during transac-

tion execution. TROPIC does not attempt to transparently tolerate failures of the

volatile cloud resources. Instead, it makes the best effort to maintain consistency

between the logical and the physical layer, by using two reconciliation mechanisms

that achieve eventual consistency. In the event of resource failures, TROPIC pro-

vides feedback to the cloud operator, in the form of transaction aborts and timeouts,

and recovery is handled at higher layers, in accordance with the end-to-end argu-

ment [86].

4.4.1 Cross-layer Consistency Maintenance

In order for a transaction to execute correctly, the logical layer needs to reflect

the latest state of the physical layer. However, achieving cross-layer consistency

at all times is improbable given the volatility of cloud resources. To illustrate,

consider three scenarios in which inconsistencies occur: (i) During the physical layer

execution, an error triggers the rollback procedure, and the execution of an undo

action fails. The transaction is terminated as failed, with the logical layer fully

rolled back and the physical layer partially rolled back; (ii) An intentional out-of-

band change is made to a physical device. For example, an operator may add or

decommission a physical resource, or she may log in to a device directly and change

its state via the CLI without using TROPIC; (iii) An unintentional crash or system

malfunction changes the resource’s physical state beyond TROPIC’s knowledge. At

the scale of large data centers, these events are the norm rather than the exception,

and TROPIC must be able to gracefully handle the resulting inconsistencies.

TROPIC adopts an eventual consistency model for reconciliation, which allows

the two layers to go out of sync in between reconciliation operations. Inconsistency
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can be automatically identified when a physical action fails in a transaction, or can

be detected by periodically comparing the data between the two layers. Once an

inconsistency is detected on a node in the data model tree, the node and its descen-

dants are marked inconsistent to deny further transactions until the inconsistency

is reconciled. Any transactions involving inconsistent data are also aborted with

rollback.

The two mechanisms for reconciliation are as follows:

Physical to logical synchronization (reload). States of specified devices are

first retrieved from the physical layer and then used to replace the current ones in

the logical layer. Similar to normal transaction execution, the controller ensures

reload is concurrently executed with outstanding transactions while not violating

any constraints. If any constraints are violated, reload is aborted.

Logical to physical synchronization (repair). Physical states of devices are

also first retrieved. TROPIC then compares the two set of states in the logical and

physical layers, and performs corresponding pre-defined actions to repair physical

devices. For instance, suppose a compute server is unexpectedly rebooted, resulting

in all its running VMs being powered off. By comparing the VM states in two layers

— one “running” and the other “stopped”, repair will execute multiple startVM

actions to start the powered-off VMs. After repair the logical layer is intact and

hence no constraint violation should be found in this process.

In the event that reload and repair operations do not succeed due to hardware

failures, the failed resources are marked as unusable, and future transactions are

prevented from using them.

Given that repair and reload operations are expensive, we do not run them

at the beginning of each transaction. Instead, reload is called when devices are
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added to or decommissioned from TROPIC, and repair can be issued in an event-

driven style when there is cross-layer inconsistency. Often in practice, cross-layer

inconsistency is observed when there are aborted transactions. For example, suppose

in the logical layer a VM is running, but in the physical layer the VM is somehow

powered off. In this case, suppose a transaction t is issued to stop the VM. t will

succeed in the logical layer but fail in the physical layer, finally ended as aborted.

When the transaction issuer sees the error message, she can conclude that the state

of this VM differs in the logical and physical layers. Then she can issue a repair

on the affected VM to bring it back to the running state. Alternatively, repair can

be issued periodically (on either the whole resource tree or specified subtrees), and

the frequency is customizable based on cloud operators’ preference or failure rates

of underlying resources (the higher the rate, the shorter the repairing cycle).

TROPIC can repair cases including VM crash, host machine reboot, and transient

network disconnection (which resets the resource roles of replicated storage). Cloud

operators and service providers can add more based on demand.

4.4.2 Terminating Stalled Transactions

Another source of error induced by resource volatility is the indefinite stalling of

a transaction, caused by transient network disconnection, power outage, hardware

failure, etc. For example, when a VM is being migrated from source to destination

host, the underlying network gets disconnected during half-way. This prevents a

orchestration operation from completing (either to a committed, aborted, or failed

state) within a bounded period of time.

To handle unresponsive transactions, TROPIC provides clients two mechanisms

to end them, by sending either TERM or KILL signals4.

4Analogous to SIGTERM and SIGKILL signals to a POSIX-compliant process.
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When the controller receives a TERM signal for one of its outstanding transac-

tions, it forwards the signal to the corresponding physical worker, which aborts this

transaction and rolls back its actions. In this process, graceful cleanups at both the

logical and physical layer (e.g., undo actions, lock releasing) are performed so that

cross-layer consistency is maintained.

If a transaction is stuck in an uninterruptable physical action and does react to

TERM, sending a KILL signal makes the controller always immediately aborts the

transaction, but only in the logical layer. The signal is forwarded to the physical

worker as well, but the controller does not wait for it to respond. Once the worker

receives the signal, it simply stops executing (without undo). Any resulting cross-

layer inconsistencies are then reconciled using the strategies in Section 4.4.1. KILL

resembles the case where a transaction is failed in physical layer execution during

undo.

4.4.3 Transactional Semantics

In the presence of volatile cloud resources, TROPIC maintains a weakly and eventu-

ally consistent logical / physical layer and provides following transactional semantics.

First, TROPIC makes the guarantee that if the logical and physical layers are

consistent at the beginning of each transaction, ACID properties can always be

enforced in the logical layer. Furthermore, in the absence of cross-layer inconsistency

caused by resource volatility, these properties are also enforced in the physical layer.

Second, TROPIC guarantees that the successful completion (committed) or abort

(aborted) of a transaction should preserve the logical-physical layer consistency. Dur-

ing the execution of a transaction, if resource volatility can not be elegantly handled

60



via rollback, TROPIC can send a TERM or KILL signal to stop a hanging transac-

tion and later invoke repair to reconcile any cross-layer inconsistencies.

After a transaction is finished (either committed or aborted), if new resource

volatility is introduced, it may result in cross-layer inconsistency. In this case, cloud

operators can invoke repair to reconcile the inconsistency. If a repair transaction

unfortunately fails, cloud operators can mark the resource as unusable, and need to

manually resolve related constraint violations.

4.5 High Availability

As highlighted in Section 4.1, all the TROPIC components in Figure 2.1, including

the distributed queues (inputQ and phyQ), the persistent storage service, the con-

trollers and the workers, are architected with redundancy to avoid single point of

failure. We adopt ZooKeeper [52] to implement the queues and the storage service

with high availability (Section 4.6). We run multiple identical worker instances. The

failure of a worker with no active transactions does not affect TROPIC at all. If a

worker with active transactions fails, its transactions can be terminated with KILL

(in a similar fashion whenever resources fail, as described in Section 4.4). In the rest

of the section, we describe how we design the controllers to provide high availability

while maintaining the transactional semantics.

4.5.1 Controller State Management

TROPIC runs multiple controller instances. One of them is the leader, and the

rest are followers. Only the leader serves transaction executions in the logical layer.

When it fails, the followers among themselves elect a new leader, which then resumes

execution after restoring the most recent state of the previous leader. Our design
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has the following assumptions: (i) Controllers may crash at any time (i.e., fail-

stop) or be subject to network partitions, which are common in a large-scale data

center. However, they do not suffer arbitrary Byzantine faults [57], because they are

operated in a single trusted administrative domain; (ii) The storage service offers

atomic key-value pair updates. It maintains sufficient state to allow the new leader

to resume execution.

TROPIC controllers only maintain state in local memory as a cached copy for

performance reasons and can be safely discarded without impacting the correctness

of transaction execution. Whenever the lead controller fails, the new leader elected

among the followers has to be able to restore the state of the controller at failure

time, by retrieving data from persistent storage. Since the I/O performance in the

replicated persistent storage is orders of magnitude worse than in memory, we aim

to limit the amount of persistent data to only those required for subsequent failure

recovery. Specifically, we maintain the following key data structures in persistent

storage:

1. txns is a hash table indexed by transaction ID (assigned to each transaction as

a monotonically increasing number when it is accepted by the controller). Each

transaction t has an entry which maintains its parameters and current state

throughout its life cycle, e.g., from accepted to started, followed by committed

or aborted after execution. In Figure 4.5, txns.set(t,s) sets the state of

transaction t to s.

2. logs is a journal that records all actions of committed transactions. Whenever

a transaction is committed, the actions on its execution log are atomically ap-

pended into logs indexed by a monotonically increasing log ID. In Figure 4.6,

logs.append(t) stores the actions of transaction t in logs.
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Figure 4.6: The design of TROPIC controller for high availability, from the perspec-
tive of a transaction t. Circled numbers denote failure points (FP), and italic texts
denote data writes to persistent storage and distributed queues. As indicated from
Figure 4.4, the controller takes input from inputQ and feeds phyQ.

Note that in addition to txns and logs, after the leader crashes, the new leader

still has access to the inputQ and phyQ queues, both of which are persistently stored

as highly available distributed queues (Section 4.6).

At recovery time, the new controller can rebuild the internal data structures (such

as its todoQ and locks) from accepted and started transactions in txns, and recon-

struct the logical layer data by replaying the actions from logs. As an optimization,

snapshots can be periodically made to shorten the time of log replay.

4.5.2 Controller Failure Recovery

To understand how controller failure recovery works, we consider the scenario where

the lead controller l has failed, and a follower f has been elected as replacement for

l. Because all controller internal data is recoverable from persistent storage, only

data write to persistent storage and distributed queues affects the the logic of failure

recovery. These data writes include updating transaction state in txns, appending
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the action log of a committed transaction to logs, dequeuing and enqueuing of

inputQ and phyQ, as shown in Figure 4.6. Because the storage service offers atomic

data write, the problem of recovering failure at any time is reduced to recovering

from failures at all possible points before and after each data write, denoted as the

17 failure points (FP) numbered in Figure 4.6.

There are two recovery strategies. First, if an FP can be identified at f by

examining the states in txns and logs, then it can be directly recovered by resuming

execution from the FP. For instance, in FP 5, the front of inputQ is a transaction t

in committed state (as retrieved from txns). To resume execution, the actions of t

are appended to logs and t is dequeued from inputQ. FP 2, 6 and 9 are in the same

category with 5. Note that we have carefully designed the write order to make these

FPs identifiable. E.g., if we were to dequeue inputQ before FP 5, then it would not

have been identified and recoverable.

Second, if an FP cannot be identified, f always resumes from the default recovery

point (shown in the straight down arrow in Figure 4.6) right before schedule(),

which corresponds to the scheduling step in Section 4.3.1. This strategy leverages

the idempotent nature of the steps that occur between the recovery point and the

FP. We briefly describe why these steps are idempotent as follows:

1. The immediate next step of FP 3, 7 and 10 is schedule(), which is their

natural recovery point.

2. For FP 1, 4 and 8, since the corresponding transaction t has not been dequeued

from the front of inputQ, by starting from schedule(), the controller will

eventually process the front of inputQ again.

3. FP 11, 13 and 15 repeat the logical simulation of the transaction t at the front

of todoQ. While this results in extra work already performed by l, it does not
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affect the correctness of f . For instance, in FP 11, resuming at the recovery

point would simply repeat the constraint violation of t.

4. In FP 17, the transaction is slated for execution in the physical layer, and thus

has no impact on controller’s internal state. Resuming at schedule() simply

selects the next transaction in todoQ to be simulated in the logical layer. This

similarly applies to FP 12 and 14. FP 16 is treated as a special case of FP

17, and it results in a transaction not enqueued in phyQ. This is deemed as a

stalled transaction and hence is removed using the KILL signal (Section 4.4.2).

Note that after KILL no cross-layer inconsistency will be found since no actual

physical action was ever performed.

4.6 Implementation

We have implemented a prototype of TROPIC. We briefly describe some of our

implementation choices and outline our experiences in developing two cloud services

based on top of TROPIC.

4.6.1 Development and Deployment

Language choice. We chose Python as our implementation language and the

prototype of TROPIC is implemented in 11K lines of code. Python has rich libraries

and a large community. Its syntax is highly readable and provides multiple high-level

language features (e.g., meta programming, function decoration, list comprehension)

that make it easy for us to embed TROPIC’s domain-specific language (Section 4.2)

inside. As demonstrated in the example code in Figure 4.3, Python enables succinct
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and expressive syntax to define resource models and orchestration logic, while hiding

the complexity of transaction processing behind the scene.

Client APIs. Once resources and orchestration logic are modeled in the language,

a client can issue orchestration commands using the TROPIC client library. The

library provides four basic APIs: submit, inquire, term and kill. Clients use

submit to submit orchestration requests into inputQ to invoke stored procedures. It

can be executed in either synchronous mode (block until the transaction finishes) or

asynchronous mode (return immediately with a transaction ID for inquiring results

later via inquire). If a transaction is stalled for too long, the client can try to termi-

nate it with transaction rollback via term, or directly kill it via kill (Section 4.4.2).

We have also developed an interactive command-line shell and a visualization tool.

Testing and debugging. TROPIC offers a logical-only mode to simplify testing

and debugging. In this mode, we bypass the physical resource API calls in the

workers, and instead focus on various scenarios in the logical layer execution. In this

mode, we can easily plug in arbitrary configurable resource types and quantities to

study their possible impact on TROPIC. Our experiments in Section 5.1 heavily use

the logical-only mode to explore TROPIC performance under large scale of diverse

cloud resources.

4.6.2 Coordination and Persistent Storage

We use ZooKeeper [52] as the distributed coordinator to implement leader election

and distributed queues (inputQ and phyQ). ZooKeeper provides highly available

coordination services to large-scale distributed systems. These services are usually

easier to realize with ZooKeeper APIs than conventional ways [56].
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It is worth noting that we have made a few optimizations to the queue implemen-

tation for inputQ. By default, queue producers insert new items with sequentially

increasing IDs as children of a ZooKeeper node (zknode). The queue consumer reg-

isters a watch on the zknode to get notifications when new items are enqueued, and

uses the getChildren API to get the new items. We found that getChildren has

the I/O overhead linear to the queue length, which is costly when the queue is long.

Hence the first optimization in TROPIC is that, when the queue is long, we au-

tomatically switch to a polling mode where the new items of the queue are probed

with the get API based on guessing the item IDs. This incurs constant overhead

and we observe up to twice the throughput performance under heavy bursty load.

Second, to improve transaction latency, inputQ is configured as a priority queue,

where committed and aborted transactions are prioritized over new client requests.

We also unconventionally use ZooKeeper as a highly available persistent stor-

age engine for storing txns and logs (Section 4.5). In theory, any replicated SQL

databases or key-value stores should work. However, since we already use ZooKeeper

for coordination, not introducing another software component reduces operation bur-

dens. ZooKeeper’s limitation as a storage engine is that the data size is bounded by

the main memory size, which is not a problem for our workload (Section 5.1).

4.6.3 Case Study: ACloud

Using TROPIC we have developed the ACloud cloud service described in Section 3.2.1.

ACloud is deployed in a single data center and has features similar to Amazon EC2.

It allows clients to spawn new VMs from disk images, and start, stop, and destroy

these VMs. In addition, the operator can migrate VMs between hosts to balance or

consolidate workloads.
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The data center provides storage servers that export block devices via the net-

work, compute servers that allocate VMs, and a programmable switch layer with

VLAN features. Specifically, we use GNBD [15] and DRBD [82] over the Linux logi-

cal volume manager (LVM) as storage resources, Xen [36] as compute resources, and

Juniper routers as network resources.

These three classes of resources provide very different APIs for orchestration.

GNBD and DRBD rely on text-based configuration files and CLIs to update re-

source roles and other state in the kernel. Xen provides its own APIs, but is also

compatible with a generic set of virtualization APIs from libvirt [19], a configu-

ration toolkit that works with a variety of virtualization technologies. The process

of building data models for GNBD, DRBD and libvirt on Xen is entirely manual,

requiring user effort to define entities and relationships, and wrapping their API

calls to actions in TROPIC. In contrast, since Juniper routers use the XML-based

NETCONF protocol [20] for configuration, we are able to automatically import the

XML scheme into TROPIC’s tree model. The only remaining work is to develop

router actions (e.g., configuration commit) and constraints (e.g., network protocol

dependencies).

We note that ACloud is developed with minimal effort. Typical VM-related

operations (e.g., migrate, clone, start/stop) and constraints require only a handful

of lines of code. The data models themselves are also constructed in a straightforward

manner, requiring us to wrap device-specific API calls into actions, and importing

their configurations into the tree model.

In developing ACloud, we have learned a few lessons: (i) Based on our concur-

rency control algorithm design (Section 4.3.1), imposing constraints high up in the

tree (e.g., in the extreme case, on the root node) is undesirable because it reduces

concurrency. Our experience shows that there is no compelling use case in ACloud

68



for such constraints. The constraints either fit at the low level naturally, or can be

moved down to lower levels via data model rearrangements to improve concurrency;

(ii) Not all orchestration procedures need to be executed in an atomic manner. For

instance, we once tried to perform maintenance on a server by migrating all its VMs

away at once. When some of the migrations fail, we observe that it is unnecessary

to move the migrated VMs back. Instead, we decomposed the stored procedure into

smaller transactions that migrate only one VM each and submitted them separately

to TROPIC. We plan to add the feature of allowing a procedure to contain a sequence

of TROPIC transactions in future work.

4.6.4 Case Study: Follow-the-Sun

Figure 4.7 visualizes another cloud service named Follow-the-Sun (Section 3.2.2)

we have realized in TROPIC. Follow-the-Sun involves a multi-data center, cross-

domain cloud orchestration scenario. In Follow-the-Sun [93], VMs are live migrated

over wide area network (WAN) across geographically dispersed data centers to be

closer to where work is being performed. During VM migration, the IP address of

the VM does not change, so existing application-level sessions are not disrupted.

This involves the orchestration of various cloud resources, i.e., compute, storage and

network. Specifically, a layer-2 VPN is first established between migration source and

destination data centers, and the storage (we use DRBD) associated with the VM is

replicated. Then the VM itself is migrated over and the network router updates by

advertising a more specific BGP route to the migrate VM from the destination data

center.

We emulate the Follow-the-Sun cloud environment that TROPIC controls and

orchestrates on ShadowNet [41], our operational wide-area testbed. In particular we
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Figure 4.7: Follow-the-Sun cloud service.

create a slice in ShadowNet for TROPIC that consists of a server and a router in

each of two ShadowNet locations, i.e., Illinois (IL) and California (CA). The router

in each location provides access to the public Internet and is used to create an inter-

data center VPN for this slice. The physical servers are configured so that DRBD

storage replication can be performed between them and the to-be-migrated VM runs

on this storage. We have also implemented a GUI visualizer for Follow-the-Sun and

we have a demo video available at [10].
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4.7 Summary

This chapter presents TROPIC, a highly available transactional framework for ser-

vice providers to safely and efficiently orchestrate cloud resources. Our experience

in building cloud services on top of TROPIC demonstrates its usability in handling

errors, enforcing constraints, and eliminating race conditions.
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Chapter 5

Evaluation

We have developed a prototype of our proposed automated cloud resource orchestra-

tion platform which consists of COPE and TROPIC. As shown in Figure 2.1, within

the platform TROPIC reports cloud system states to COPE as optimization input,

and orchestration commands generated by COPE are fed into TROPIC to perform

actual orchestration operations.

In this chapter we present extensive evaluation of this platform in terms of two

layers – first the transactional orchestration layer and then the automated orches-

tration layer. Specifically, this includes evaluating TROPIC in terms of its design

goals, followed by COPE evaluation with two representative resource orchestration

scenarios – ACloud and Follow-the-Sun.

5.1 Transactional Orchestration Layer

In this section, we present the evaluation of our TROPIC prototype implementation.

We emulate cloud orchestration workloads using traces from two production systems.

The first trace (EC2) is inferred from Amazon EC2 and is representative of the rate
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at which VMs are created within a large scale cloud environment. We use this trace

to evaluate the performance of TROPIC, in particular its ability to achieve the design

goal of high concurrency, as defined in terms of metrics such as transaction overhead,

latency and throughput.

The EC2 trace is limited to VM spawn operations, which does not capture all

the complexities involved in cloud orchestration. We therefore make use of a second

workload (hosting) derived from the traces obtained from a large US hosting provider.

We use this second workload to evaluate the safety, robustness and high availability

aspects of TROPIC.

Throughout the experiments, we run three TROPIC controllers, instantiated on

three physical machines. Each machine has 32GB memory with 8-core 3.0GHz

Intel Xeon E5450 CPU processors and runs CentOS Linux 5.5, interconnected via

Gigabit Ethernet. TROPIC runs one physical worker with multiple threads1 which

co-locates with one of the physical machines. As the distributed coordinator and

replicated persistent storage, three ZooKeeper instances reside on the same set of

physical machines.

In the first three subsections (Section 5.1.1–5.1.3) of our evaluation, we focus pri-

marily on controller overhead in the logical layer. Actual physical layer benchmarks

are presented in Section 5.1.4.

5.1.1 Performance

Workload. The EC2 workload used to evaluate the performance of TROPIC

was collected in July 2011. We measured the number of newly launched VM in-

stances over a week period in the US-east region using the methodology described

1TROPIC can of course run multiple workers, but doing so does not alter the conclusions drawn
from our evaluation results.
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Figure 5.1: VMs launched per second (EC2 workload).
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Figure 5.2: Controller CPU utilization (EC2 workload).
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by RightScale [3]. Specifically, we created a VM instance every 60 seconds and

recorded the VM ID. The ID (after decoding) is unique and the distance between

any two consecutive IDs reflects the quantity of VMs spawned in between. Figure 5.1

shows the measured workload in a 1-hour period. The workload in total contains

8417 VM spawnings, with an average of 2.34 per second and a peak of 14.0 at 0.8

hours. We choose this time window because it has a typical average VM launch rate

(2 VMs/s) and also the highest peak rate during the week we observed.

Controller CPU overhead. Next we use the 1-hour EC2 trace to inject the

synthetic workload in TROPIC, by submitting VM spawn transactions every second.

To simulate a large-scale cloud environment, we run TROPIC in the logical-only

mode (Section 4.6) with 12,500 compute servers. Each server has 8 VMs, totaling

100,000 VMs (our target scale). 3,125 storage servers are used to hold the VM

images, i.e., 4 compute servers share a storage server. To explore the behavior of

TROPIC under higher load, we further multiply the EC2 workload from 2 times

(2×) to 5 times (5×), and measure the CPU utilization of the controller (leader) as

shown in Figure 5.2.

We observe that the CPU utilization is synchronized with the workloads. As the

workloads scale up, CPU utilization rises linearly. However, even during the peak

load of 5× EC2 workload, the CPU only reaches as high as 54.0%. After 0.8 hours the

CPU peaks of 4× and 5× EC2 workloads retain longer than the workload peak. It is

because during the period TROPIC reached the limit of transaction throughput, and

hence experienced delays in processing each transaction. Additionally, we measure

the memory footprint of TROPIC controller. It is relatively stable, at around 5.4%

(of 32GB) for all workloads. We note that the dominant factor contributing to the

memory footprint is the quantity of all managed cloud resources, instead of the active

workload.
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Transaction latency. Figure 5.3 shows a detailed breakdown of per-transaction

latency results, in the form of a cumulative distribution function (CDF). We define

the transaction latency as the time duration from the submission of a transaction

until it is successfully committed or aborted. In Figure 5.3 the median latency is less

than 1s for all the workloads. For 1× workload, the latency is almost negligible. As

expected, 4× and 5× workloads have higher transaction latency, mostly as a result

of the workload spike from 0.8 to 1.0 hours.

Performance breakdown. To further investigate the factors affecting performance

bottlenecks of TROPIC under high load, Figure 5.4 shows a breakdown of time

overhead of TROPIC from 0.8 to 1.0 hours. The overhead includes CPU (time spent

in the logical layer execution), I/O (ZooKeeper I/O API calls), and Idle (blocking

at reading from inputQ when there is no input). Not surprisingly, more time are

consumed by CPU and I/O as the workloads scale up. More importantly, we note the

dominant overhead comes from I/O, on average 2.1 times of CPU. This is because

ZooKeeper I/O requires the quorum among ZooKeeper instances as well as logging

into replicated persistent storage on disks, which is order-of-magnitude longer than

in-memory data manipulation in the logical layer.

Scalability analysis. The EC2 workload demonstrates that TROPIC can well

handle production load of concurrent VM spawn transactions. Our next set of ex-

periments evaluate TROPIC’s scalability as cloud resources and loads are increased.

Instead of using the EC2 workload, we use a synthetically generated workload that

consists of a larger variety of transaction types, including VM Spawn, Start, Stop

and Migrate. This allows us to study transaction throughput for a wider range of

transaction types.

First, we measure transaction throughput as the quantity of resources scales up,

i.e., compute servers from 12,500 to 225K, each with 8 VMs. This equals to as
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many as 1.8 million VMs (more than the scale of a typical data center). We submit

1,500 transactions at the start of the experiment, measure the time to complete all

transactions, and derive transaction throughput accordingly.

Figure 5.5 shows that the transaction throughput is steady across all resource

scales, averaging 67.9 transactions per second for Spawn, 83.8 for Start, 84.4 for Stop

and 56.9 for Migrate. VM Spawn and Migrate take more time than Start and Stop

because they involve more complex logical layer processing (e.g.,Spawn consists of

five actions as exemplified in Section 4.3).

Our results demonstrate that TROPIC transaction throughput stays constant

even as the number of resources increases. This is due in part to our efficient imple-

mentation and optimizations (Section 4.6). Moreover, most of the factors affecting

throughput (e.g., locking overhead, Zookeeper queue management) incur constant

costs. The main bottleneck of TROPIC lies instead with physical memory used to

store the data model. For instance, when there are 225K compute servers, the mem-

ory consumption is 92.1% on our physical machine. Given our specific hardware, the

maximum resource scale TROPIC can handle is 2 million VMs.

We repeat the previous experiment but vary the number of transactions (load

input) from 1,000 to 2,000, with a step of 250. We use the setting of 12,500 compute

servers with 8 VMs each, totaling 100,000 VMs. We observe that the transaction

throughput (given in Figure 5.6) is similar to Figure 5.5 and stable across different

loads.

To study TROPIC’s logical / physical layer resource inconsistency behavior under

automatic repair reconciliation mechanism (Section 4.4), we conduct another set of

simulation experiment where random resource volatility is introduced. Specifically,

in our experiment, we focus on VMs and their random crashes (failures). We run

N = 1024 VMs in one data center, and use a discrete event simulator to simulate
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random VM crashes. The failure rate rf ranges from 1 to 16 VMs per second, as

we vary the degree of resource volatility. TROPIC repair is invoked every tr = 10

seconds. To repair a crashed VM, repair first compares the VM state in the logical

layer (i.e.,running) and the physical layer (i.e.,stopped), and then restarts the VM

if the two states differ. Each VM is set to take ts = 5 seconds to restart on average,

with a standard deviation σs = 2 seconds. Given the above mathematical model,

the maximum resource inconsistency ratio (i.e., non-running VMs out of all VMs)

can be roughly derived as rf ∗ (tr + ts)/N , and the minimum is rf ∗ ts/N . The

inconsistency ratio does not drop to zero because while VMs are being repaired, new

VM crashes are constantly introduced.

Figure 5.7 depicts our simulation results. The X-axis corresponds to a total

of 50-second simulation, and the Y-axis is the resource inconsistency ratio. We

observe that over time the inconsistency ratios across all five groups gradually rise.
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Every 10 seconds, the ratios drop since repair transactions reconcile the cross-

layer inconsistencies by bringing crashed VM back to running. As VMs become

more volatile with higher failure rates, the resource inconsistency ratios increase

accordingly. Suppose a transaction t consists of a series of actions to orchestrate

n VMs (e.g., pause, suspend, or stop), and each action randomly manipulates an

independent VM, then the probability that t will commit can be computed as (1−p)n,

since each action may fail with a probability of p, which is the resource inconsistency

ratio. The probability that t aborts is 1− (1−p)n. If the resource failure rates are so

high that p reaches 100%, then all transactions will abort. In other words, TROPIC

cannot perform any effective orchestration.

5.1.2 Safety
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Figure 5.8: Workload derived from a data center hosting trace.

To evaluate the design goals of safety, robustness and high availability of TROPIC,
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we use the hosting workload derived from a data center trace obtained from a large

US hosting provider. Unlike the EC2 workload, it involves a more complex set of

orchestration procedures.

The trace contains 248 customers hosted on a total of 1,740 statically allocated

physical processors (PPs). Each customer application is deployed on a subset of

the PPs. The entire trace is one-month in duration, and it primarily consists of

sampling of CPU utilization at each PP gathered at 300 seconds interval. From

the trace, we generate the hosting workload consisting of VM Spawn, Start, Stop

and Migrate operations to mimic a realistic ACloud deployment (Section 4.6). We

use 480 servers, of which 384 are compute hosts and 96 are storage hosts. Each

compute server runs 8 VMs. Figure 5.8 shows the hosting workload broken down by

orchestration types over a period of 720 seconds. It corresponds to an actual 4-hour
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period in the original trace (20-to-1 time scale reduction). In total, there are 1257

transactions, with an average of 1.75 transaction per second and a peak at 5.9.

We first use the hosting workload to evaluate the overhead of enforcing constraints

in TROPIC. We consider two representative constraints featured in ACloud:

VM type constraint. VM migration cannot be performed across hosts running

different hypervisors, e.g., from Xen to VMWare. While evaluating an open-source

cloud platform, we accidentally performed such an operation. The platform in ques-

tion accepted the operation without an error. However, the VM was stuck in the

“migrating” state indefinitely and became unrecoverable. Using TROPIC, this mis-

take can be easily avoided by specifying a constraint that ensures each hypervisor can

only run VMs with its compatible type (Appendix B). This automatically prevents

the illegal VM migration scenario.

VM memory constraint. Many cloud orchestrations such as VM spawn and start

involve a common operation which is to power on a VM. As mentioned before in

Section 4.1, when starting VMs on a host, it is necessary to guarantee that there

is enough physical memory, otherwise in our experience the host machine might

freeze and lead to service disruption. TROPIC can avoid this with ease by adding a

constraint that aggregated VMs memory cannot exceed the host’s capacity (lines 16–

19 in Figure 4.3.) This constraint inherently guarantees that VMs on each host will

not be excessive.

Figure 5.9 shows the logical layer overhead incurred in checking the above con-

straints. We focus primarily on per-transaction CPU overhead, since the bulk of

constraint checking overhead happens at the logical layer. We compare across three

cases: (i) No constraint does not impose any constraint; (ii) Type constraint imposes

the VM type constraint; and (iii) Type+Memory constraint imposes both constraints.
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On average, No constraint takes 6.57ms, while Type constraint takes 1.2% extra over-

head. Due to the additional VM memory constraint in Type+Memory constraint,

we observe another 12.8% increase in CPU time.

The overhead incurred by the VM memory constraint is significantly higher than

the first one. This is because the VM memory constraint needs to retrieve and

aggregate data from all underlying affected resources (i.e., all VMs on each host),

more expensive to evaluate than the simple “type checking” in the first constraint.

To examine TROPIC’s performance under different degrees of loads, we scale up

the hosting workload by up to 5×, and observe that the results are stable across all

workloads.

5.1.3 Robustness

To evaluate TROPIC’s performance in guaranteeing robustness via transaction atom-

icity, we highlight two cases from our experiences in deploying ACloud.

VM spawning error. As described earlier in Section 4.2, and as implemented in

ACloud, VM spawning involves multiple steps. Errors can happen in any step and

thus prevent the user from getting a working VM. For example, in the last step

of starting a VM in Xen, the Xen daemon may occasionally fail with an “out of

memory” error2, even though the server still has enough memory. This error usually

happens when the server is under high load. In this scenario, the VM creation trans-

action succeeds in the logical layer without any constraint violations, but fails when

performing the actual physical operation. Fortunately, TROPIC guarantees transac-

tion atomicity via rollback. This automatically avoids the undesirable scenario that

a failed VM creation operation results in the cloned disk image and configuration

2A similar problem is reported at "http://lists.xensource.com/archives/html/

xen-users/2010-05/msg00646.html".
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file becoming “orphans”, occupying resources and possibly disrupting future VM

creations due to name conflict.

VM migration error. In ACloud, VM migration involves three steps: creating

VM configuration file on the destination host, migrating the VM from source to

destination host, and deleting original configuration file on the source host. If an error

happens at the last step (e.g., file deletion failure), TROPIC performs transaction

rollback by first migrating the VM back to the source host, and then deleting the

configuration file on the destination host.

In our experiment, we measure the logical layer overhead of TROPIC in perform-

ing transaction rollback in the presence of the previous two errors. To emulate the

errors, we execute TROPIC with the hosting workload, and randomly raise excep-

tions in the last step of VM spawn and migrate. We run three groups of experiments:

Default, Fail 5% and Fail 10% with failure probability of 0%, 5% and 10%, respec-

tively. We repeat the experiment for the workload scaling from 1× to 5×.

Figure 5.10 shows that on a per-transaction basis, Fail 5% increases the CPU

overhead by 14.5% compared to Default, while Fail 10% additionally adds 11.1%

more computation time. The overhead is mostly due to applying undos in transaction

rollback. In all our experiments, the logical layer operations complete in less than

9ms. This demonstrates that TROPIC is efficient at handling transaction errors and

rollback.

5.1.4 High Availability

In our final set of experiments, we evaluate the availability of TROPIC in the pres-

ence of controller failures. Unlike our previous experiments where TROPIC runs in
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the logical-only mode, we execute the hosting workload with parts of the cloud re-

sources as real machines in our ACloud deployment on the ShadowNet [41] testbed.

Specifically, among the 480 servers, we use 15 actual machines, accommodating a

total of 96 CentOS Linux 5.5 VMs. The physical machines are geographically dis-

persed across three locations (California, Illinois, and Texas). Each physical machine

has 32GB memory, with 8-core 3.0GHz Intel Xeon E5450 CPU processors, and runs

CentOS Linux 5.5 as host OS. The machines within each location are connected via

Gigabit Ethernet, while a layer-2 VPN provides inter-site connectivity.

Physical layer overhead. Table 5.1 lists the average physical execution times for

each type of transaction, measured by running TROPIC in ACloud deployment with

a smaller benchmark consisting of a subset of the hosting workload. The results show

that TROPIC logical layer overhead is negligible compared to the actual physical

layer overhead. Comparing across all four, VM start is the quickest with 2.10s, VM

stop takes a much longer time of 9.19s since powering off a VM involves plenty

routine procedures in Linux shutdown. For VM migrate, the dominant factor is the

VM memory size (300MB in ACloud) and the network bandwidth among compute

servers. We use the measured times to simulate the physical actions (via sleeping)

of the remaining synthetic resources in the workload.

Transaction Quantity Logical (ms) Physical (s)
VM spawn 16 8.00 6.40
VM start 6 2.33 2.10
VM stop 11 2.18 9.19
VM migrate 8 9.75 8.56

Table 5.1: Breakdown of transactions. The columns include the quantity and the
average execution time taken by each transaction.

Failover time. Figure 5.11 shows the percentage of completed transactions as a

function of time, under two scenarios. In Default, we execute the workload with no
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controller failure. Failure has the same settings as Default, except that we manually

failed the lead controller at time 60s (1st failure) and the new leader at 390 seconds

(2nd failure). After the second failure, only one controller remained and it took the

role of being the leader.

Figure 5.11 shows that the failure recovery time is minimal, when comparing

Failure against Default. In each failure case, TROPIC required a small amount

of additional time, 12.5s and 11.7s respectively, to process the same percentage of

transactions. This demonstrates that TROPIC can recover quickly enough to resume

processing on-going transactions. Moreover, the majority of the time gap (about 10s)

is incurred by ZooKeeper’s leader failure detection, not the failure recovery procedure

in TROPIC controller (e.g., rebuild internal data and play transaction logs). One

can tune the configuration parameters of ZooKeeper to shorten this period thus

making failure detection faster.

Failover correctness. Finally, we have explored the above failure scenarios at all

17 failure points presented in Section 4.5. We observe that at each failure point, a

TROPIC controller is able to recover gracefully as the new leader, while achieving

short failure recovery time without losing any transactions.

5.2 Automated Orchestration Layer

This section provides a performance and effectiveness evaluation of COPE. Our pro-

totype system is developed using the RapidNet declarative networking engine [25]

and the Gecode [13] constraint solver. COPE takes as input policy goals and con-

straints written in Colog, and then generates RapidNet and Gecode in C++, using

the compilation process described in Section 3.4.
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Our experiments are carried out using a combination of realistic network simula-

tions and actual distributed deployments, using production traces. In our simulation-

based experiments, we use RapidNet’s built-in support for the ns-3 simulator [21],

an emerging discrete event-driven simulator which emulates all layers of the network

stack. This allows us to run COPE instances in a simulated network environment

and evaluate COPE distributed capabilities. In addition, we can also run our exper-

iments under an implementation mode, which enables users to run the same COPE

instances, but uses actual sockets (instead of ns-3) to allow COPE instances deployed

on real physical nodes to communicate with each other.

Our evaluation aims to demonstrate the following. First, COPE is a general

platform that is capable of enabling a wide range of cloud resource orchestrations.

Second, most of the policies specified in COPE result in orders of magnitude re-

duction in code size compared to imperative implementations. Third, COPE incurs

low communication overhead and small memory footprint, requires low compilation

time, and converges quickly at runtime for distributed executions.

Our evaluation section is organized around various use cases that we have pre-

sented in Section 3.2. These include: (1) ACloud load balancing orchestration (Sec-

tion 3.3.2 and 4.6.3); and (2) Follow-the-Sun orchestration (Section 3.3.3 and 4.6.4).

Our cloud orchestration use cases derive their input data from actual data center

traces obtained from a large hosting company. In our evaluations, we run COPE

over the ns-3 simulator.

5.2.1 Compactness of Colog Programs

We first provide evidence to demonstrate the compactness of our Colog implemen-

tations, by comparing the number of rules in Colog and the generated C++ code.
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Protocol Colog Imperative (C++)

ACloud (centralized) 10 935
Follow-the-Sun (centralized) 16 1487
Follow-the-Sun (distributed) 32 3112

Table 5.2: Colog and compiled C++ comparison.

Table 5.2 illustrates the compactness of Colog, by comparing the number of

Colog rules (2nd column) for the three representative programs we have implemented

against the actual number of lines of code (LOC) in the generated RapidNet and

Gecode C++ code (3rd column) using sloccount. Each Colog program includes

all rules required to implement Gecode solving and RapidNet distributed commu-

nications. The generated imperative code is approximately 100X the size of the

equivalent Colog program. The generated code is a good estimation on the LOC

required by a programmer to implement these protocols in a traditional imperative

language. In fact, Colog’s reduction in code size should be viewed as a lower bound.

This is because the generated C++ code implements only the rule processing logic,

and does not include various COPE’s built-in libraries, e.g., Gecode’s constraint solv-

ing modules and the network layers provided by RapidNet. These built-in libraries

need to be written only once, and are reused across all protocols written in Colog.

While a detailed user study will allow us to comprehensively validate the usability

of Colog, we note that the orders of magnitude reduction in code size makes Colog

programs significantly easier to fast model complex problems, understand, debug

and extend than multi-thousand-line imperative alternatives.
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5.2.2 Use Case: ACloud

In our first set of experiments, we perform a trace-driven evaluation of the ACloud

scenario as described in Section 3.2, which has been realized in TROPIC (Sec-

tion 4.6). Here, we assume a single cloud controller deployed with COPE, running

the centralized ACloud program written in Colog (Section 3.3.2). Benchmarking

the centralized program first allows us to isolate the overhead of the solver, without

adding communication overhead incurred by distributed solving.

Experimental workload. As input to the experiment, we reuse the data center

trace obtained from a large hosting company in the US, as described in Section 5.1.

Based on the trace, we generate a workload in a hypothetical cloud environment

similar to ACloud where there are 15 physical machines geographically dispersed

across 3 data centers (5 hosts each). Each physical machine has 32GB memory.

We preallocate 80 migratable VMs on each of 12 hosts, and the other 3 hosts serve

as storage servers for each of the three data centers. This allows us to simulate a

deployment scenario involving about 1000 VMs. We next use the trace to derive the

workload as a series of VM operations:

• VM spawn: CPU demand (% PP used) is aggregated over all PPs belonging to

a customer at every time interval. We compute the average CPU load, assuming

that load is equally distributed among the allocated VMs. Whenever a customer’s

average CPU load per VM exceeds a predefined high threshold (80% in our ex-

periment) and there are no free VMs available, one additional VM is spawned on

a random host by cloning from an image template.

• VM stop and start: Whenever a customer’s average CPU load drops below a

predefined low threshold (20% in our experiment), one of its VMs is powered off

to save resources (e.g., energy and memory). We assume that powered-off VMs
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are not reclaimed by the cloud. Customers may bring their VMs back by powering

them on when the CPU demands become high later.

Using the above workload, the ACloud program takes as input vm(Vid,Cpu,Mem)

and host(Hid,Cpu,Mem) tables, which are continuously being updated by the work-

load generator as the trace is replayed.
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Figure 5.12: Average CPU standard deviation of three data centers (ACloud).

Policy validation. We compare two ACloud policies against two strawman

policies (default and heuristic):

• ACloud. This essentially corresponds to the Colog program presented in Sec-

tion 3.3.2. We configure the ACloud program to periodically execute every 10

minutes to perform a COP computation for orchestrating load balancing via VM

migration within each data center. To avoid migrating VMs with very low CPUs,

the vm table only includes VMs whose CPU utilization is larger than 20%.
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Figure 5.13: Number of VM migrations (ACloud).

• ACloud (M). To demonstrate the flexibility of Colog, we provide a slight variant

of the above policy, that limits the number of VM migrations within each data cen-

ter to be no larger than 3 for each interval. This requires only minor modifications

to the Colog program, by adding rules d5-6 and c3 as shown in Section 3.3.2.

• Default. A näıve strategy, which simply does no migration after VMs are initially

placed on random hosts.

• Heuristic. A threshold-based policy that migrates VMs from the most loaded

host (i.e., with the highest aggregate CPU of the VMs running on it) to the

least one, until the most-to-least load ratio is below a threshold K (1.05 in our

experiment). Heuristic emulates an ad-hoc strategy that a cloud operator may

adopt in the absence of COPE.
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Figure 5.12 shows the average CPU standard deviation of three data centers

achieved by the ACloud program over a 4 hours period. We observe that ACloud

is able to more effectively perform load balancing, achieving a 98.1% and 87.8%

reduction of the degree of CPU load imbalance as compared to Default and Heuristic,

respectively. ACloud (M) also performs favorably compared to Default and Heuristic,

resulting in a marginal increase in standard deviation.

Figure 5.13 shows that on average, ACloud migrates 20.3 VM migrations every

interval. On the contrary, ACloud (M) (with migration constraint) substantially

reduces the number of VM migrations to 9 VMs per interval (3 per data center).

Compilation and runtime overhead. The Colog program is compiled and

executed on an Intel Quad core 2.33GHz PC with 4GB RAM running Ubuntu 10.04.

Compilation takes on average 0.5 seconds (averaged across 10 runs). For larger-scale

data centers with more migratable VMs, the solver will require exponentially more

time to terminate. This makes it hard to reach the optimal solution in reasonable

time. As a result, we limit each solver’s COP execution time to 10 seconds. Never-

theless, we note from our results that the solver output still yields close-to-optimal

solutions. The memory footprint is 9MB (on average), and 20MB (maximum) for

the solver, and 12MB (relatively stable) for the base RapidNet program.

5.2.3 Use Case: Follow-the-Sun

Our second evaluation is based on the Follow-the-Sun scenario. We use the dis-

tributed Colog program (Section 3.3.3) for implementing the Follow-the-Sun policies.

The focus of our evaluation is to validate the effectiveness of the Follow-the-Sun

program at reducing total cost for cloud providers, and to examine the scalability,

convergence time and overhead of distributed solving using COPE. Our evaluation
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is carried out by running COPE in simulation mode, with communication directed

across all COPE instances through the ns-3 simulator. We configure the underlying

network to use ns-3’s built-in 10Mbps Ethernet, and all communication is done via

UDP messaging.

Experimental workload. Our experiment setup consists of multiple data cen-

ters geographically distributed at different locations. We conducted 5 experimental

runs, where we vary the number of data centers from 2 to 10. For each network

size, we execute the distributed Colog program once to determine the VM migra-

tions that minimize the cloud providers’ total cost. Recall from Section 3.3.3 that

this program executes in a distributed fashion, where each node runs a local COP,

exchanges optimization outputs and reoptimizes, until a fixpoint is reached.

The data centers are connected via random links with an average network degree

of 3. In the absence of actual traces, our experimental workload (in particular, op-

erating and communication and migration costs) here are synthetically generated.

However, the results still provide insight on the communication/computation over-

head and effectiveness of the Follow-the-Sun program.

Each data center has a resource capacity of 60 units of migratable VMs (the

unit here is by no means actual, e.g., one unit can denote 100 physical VMs). Data

centers have a random placement of current VMs for demands at different locations,

ranging from 0 to 10. Given that data centers may span across geographic regions,

communication and migration costs between data centers may differ. As a result,

between any two neighboring data centers, we generate the communication cost

randomly from 50 to 100, and the migration cost from 10 to 20. The operating cost

is fixed at 10 for all data centers.

Policy validation. Figure 5.14 shows the total costs (migration, operating, and

communication) over time, while the Follow-the-Sun program executes to a fixpoint
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in a distributed fashion. The total cost corresponds to the aggCost (optimization

goal) in the program in Section 3.3.3. To make it comparable across experimental

runs with different network sizes, we normalize the total cost so that its initial value

is 100% when the COP execution starts. We observe that in all experiments, Follow-

the-Sun achieves a cost reduction after each round of distributed COP execution.

Overall the cost reduction ranges from 40.4% to 11.2%, as the number of data centers

increases from 2 to 10. As the network size gets larger, the cost reduction is less

apparent. This is because distributed solving approximates the optimal solution.

As the search space of COP execution grows exponentially with the problem size, it

becomes harder for the solver to reach the optimal solution.

To demonstrate the flexibility of Colog in enabling different Follow-the-Sun poli-

cies, we modify the original Follow-the-Sun program slightly to limit the number of

migrations between any two data centers to be less than or equal to 20, achieved

with rules d11 and c3 as introduced in Section 3.3.3. This modified policy achieves

comparable cost reduction ratios and convergence times as before, while reducing

the number of VM migrations by 24% on average.

Compilation and runtime overhead. The compilation time of the program

is 0.6 seconds on average for 10 runs. Figure 5.14 indicates that as the network size

scales up, the program takes a longer time to converge to a fixpoint. This is due

to more rounds of link negotiations. The periodic timers between each individual

link negotiation is 5 seconds in our experiment. Since the solver computation only

requires input information within a node’s neighborhood, each per-link COP com-

putation during negotiation is highly efficient and completes within 0.5 seconds on

average. The memory footprint is tiny, with 172KB (average) and 410KB (maxi-

mum) for the solver, and 12MB for the RapidNet base program.
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In terms of bandwidth utilization, we measure the communication overhead dur-

ing distributed COP execution. The per-node communication overhead is shown

in Figure 5.15. We note that COPE is highly bandwidth-efficient, with a linear

growth as the number of data centers scales up. For 10 data centers, the per-node

communication overhead is about 3.5KBps.

5.3 Summary

The evaluation of our TROPIC prototype shows its capability to support production

workload at scale with high degrees of concurrency, provide high availability with

low overhead, and ensure the transactional semantics of cloud operations. COPE

evaluation results demonstrate its feasibility, both in terms of the wide range of

policies supported, and the efficiency of the platform itself.
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Chapter 6

Related Work

In this chapter, we summarize related work in the domains of declarative networking,

constraint optimization, and cloud resource orchestration.

6.1 Declarative Networking

Colog is a superset of a domain-specific programming language NDlog (i.e., Network

Datalog) used in declarative networking [69]. In declarative networks users spec-

ify network protocols as NDlog programs which are compiled into dataflow runtime

graphs. This is in principle ensembles the Click extensible router dataflows [55].

NDlog enables a variety of routing protocols and overlay networks to be specified in

a natural and concise manner. For example, traditional routing protocols such as the

path vector and distance-vector protocols can be expressed in a few lines of code [71],

and the Chord distributed hash table in 47 lines of code [70]. When compiled and

executed, these declarative protocols perform efficiently relative to imperative imple-

mentations. As evidence of its widespread applicability, declarative techniques have
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been used in several domains, including, fault tolerance protocols [88], cloud comput-

ing [35], sensor networks [42], overlay network compositions [72], wireless adaptive

routing [60, 61], wireless channel selection [59], and as a basis for course projects in

a networked systems class [44].

In addition to ease of implementation, another advantage of the declarative ap-

proach is its amenability to formal and structured forms of correctness checks. These

include the use of theorem proving [94], algebraic techniques for constructing safe

routing protocols [95], and runtime verification [105]. These formal analysis tech-

niques are strengthened by recent work on formally proving correct operational se-

mantics of NDlog [76]. Finally, the dataflow framework used in declarative network-

ing naturally captures information flow as distributed queries, hence providing a

natural way to use the concept of network provenance [104] to analyze and explain

the existence of any network state.

6.2 Constraint Optimization

Prior to COPE, there have been a variety of systems that use declarative logic-based

policy languages to express constraint optimization problems in resource manage-

ment of distribute computing systems. [97] proposes continuous optimization based

on declaratively specified policies for autonomic computing. [85] describes a model

for automated policy-based construction as a goal satisfaction problem in utility

computing environments. The XSB engine [32] integrates a tabled Prolog engine

with a constraint solver. Rhizoma [102] proposes using rule-based language and con-

straint solving programming to optimize resource allocation. [75] uses a logic-based

interface to a SAT solver to automatically generate configuration solution for a single
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data center. [43] describes compiling and executing centralized declarative modeling

languages to Gecode programs.

Unlike the prior work, COPE is designed for a different application domain – one

that aims to achieve cost reduction and maximize infrastructure utilization by au-

tomatically orchestrating the cloud based on policies configured by cloud providers

and customers. Another unique feature of COPE is its support for distributed op-

timizations, achieved by using a general declarative policy language–Colog which

is user-friendly for constraint solving modeling and results in orders of magnitude

code size reduction compared to imperative alternatives, and the integration of a

distributed query engine with a constraint solver. COPE platform supports both

simulation and deployment modes. This enables one to first simulate distributed

COP execution within a controllable network environment and then physically de-

ploy the system on real devices. Our grand vision is that COPE is targeted to

be a general-purpose declarative distributed platform for constraint optimizations

that can support the original use cases and more. Actually in our prior work, we

have made initial attempts at developing specialized optimization platforms tailored

towards wireless network configuration [59]. Our work [67] generalizes ideas from

these early experiences to develop a general framework, a declarative programming

language, and corresponding compilation techniques.

6.3 Cloud Resource Orchestration

There are a variety of commercial IaaS providers such as Amazon EC2 [2] and Mi-

crosoft Windows Azure [29]. Unfortunately, how they orchestrate cloud resources

is proprietary. Open-source cloud control platforms, such as OpenStack [23], Euca-

lyptus [12], and OpenNebula [22] have predefined cloud service models embedded in

101



their implementations. However, none of them provide transactional resource man-

agement at the granularity of cloud operations. In contrast, TROPIC is not simply

a cloud service, but a general-purpose programming platform to build safe, robust,

and highly available cloud services.

Transaction processing has been studied in database area for decades [78]. As

a programming paradigm, it has also received more attentions recently from the

systems community. For instance, Locus [96] and TxOS [77] introduce transaction

APIs to OS system calls: a system transaction executes a series of system calls in

isolation and atomically publishes the effects to the rest of the OS. Transaction sup-

port has also been proposed for file systems [90], as well as a user-level library [87]

for lightweight data management. In Microsoft Windows Vista/7, the Kernel Trans-

action Manager (KTM) [30] enables the development of transactional registry and

transactional file system. When failure happens, transactions are rolled back to

restore previous states.

Although not in the cloud computing scope, there are several related frame-

works proposed for the management of systems and networks. From the open-source

community, Puppet [24] is a data center automation and configuration management

framework. Puppet has a transactional layer, but not in the sense of enforcing ACID

properties. Instead it allows user to visually examine the operations before they are

submitted as a dry run. Once executed, they are not guaranteed to be atomically

committed. COOLAID [40] is a data-centric network configuration management

framework. It adopts a relational data model and uses Datalog to encode network

protocol dependencies. COOLAID provides transactional configuration updates to

routers, but supports neither concurrent transactions nor VM management. Autopi-

lot [53] is a data center software management infrastructure for automating software

provisioning, monitoring and deployment. It has repair actions similar to TROPIC,
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but it does not provide a transactional programming interface. Its periodic repair

procedures maintain weak consistency between the provisioning data repository and

the deployed software code.

TROPIC borrows ideas from these prior work, such as undo log based rollback,

multi-granularity locking. However, the transactional orchestration in TROPIC is

unique, in dealing with the logical and physical layer separation and volatile nature

of cloud resources, with a “safety-first” mindset, and in providing high concurrency

and availability.
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Chapter 7

Conclusion

7.1 Conclusion

This dissertation presents an automated cloud resource orchestration architecture, a

novel approach that provides: (1) COPE, a platform that enables cloud providers to

automate the process of cloud orchestration formulated as declarative constraint op-

timizations. COPE uses a declarative policy language Colog to specify orchestration

polices concisely and enables distributed optimization; (2) TROPIC, a transactional

orchestration platform with a unified data model that enables cloud providers to

develop complex cloud services with robustness, safety, high concurrency, and high

availability. We further discuss two concrete use cases ACloud and Follow-the-Sun

as representative cloud orchestration scenarios, and demonstrate how the Colog lan-

guage enables a wide range of policies to be customized in support of these two

scenarios.

We have implemented a complete TROPIC prototype deployed on the ShadowNet

testbed [41]. We extensively evaluated our prototype using production-scale traces

obtained from EC2 and a large US hosting provider, demonstrating that TROPIC
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is able to manage cloud resources at a large scale, while ensuring transactional se-

mantics and high availability. Moreover, we have implemented a prototype of COPE

based on RapidNet declarative networking engine and Gecode constraint solver, and

have integrated COPE with TROPIC. We have demonstrated the viability of COPE

in specifying both centralized and distributed optimization scenarios in Colog. We

validate our prototype using realistic scenarios and workloads derived from produc-

tion cloud services that orchestrate compute, storage, and network resources within

and across geographically distributed data centers for load balancing and consolida-

tion. Our evaluation results demonstrate the feasibility of COPE, both in terms of

the wide range of policies supported, and the efficiency of the platform itself. We

expect our platform to be able to rapidly build reliable and sophisticated IaaS cloud

services.

Moving forward, we are in the process of releasing TROPIC and COPE (as well

as the realized ACloud and Follow-the-Sun cloud services) to the open-source com-

munity for use by other researchers and practitioners to quickly build reliable cloud

services. We have also started integrating their capabilities into the popular Open-

Stack platform. This integration of transactional task management was highlighted

in AT&T’s official announcement [1, 10] in collaboration with OpenStack to launch

to a developer friendly cloud.

7.2 Open Questions and Future Directions

In this section, we discuss some open questions and future directions in order to make

TROPIC and COPE cloud resource orchestration platform into reality. Moreover,

look beyond this dissertation, our long-term goal is to enable automated building

and management of large scale distributed systems with safety and robustness. This
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dissertation work is the first step towards this vision, and we would like to leverage

TROPIC and COPE framework to further explore other areas.

7.2.1 Open Questions

COPE’s general constraint optimization approach has a few limitations. First, there

exist problems which can not be easily formulated as constraint optimization prob-

lems. For instance, it is hard to accurately quantify network throughput given a

strategy of allocating bandwidth shared by VMs [49]. For these problems, we sug-

gest that COPE may not be the best solution. Another limitation of COPE is that

when the scale of a constraint optimization problem is very large, COPE could not

produce a satisfiable solution using either centralized or distributed (i.e., divide-and-

conquer) solving. To deal with these cases, users are advised to design customized

heuristic algorithms [58] instead.

While TROPIC is designed within a data center, we intend to investigate dis-

tributed orchestrations coordinated by multiple TROPIC instances, e.g., each in-

stance responsible for one type of cloud resources [23]. The open research issues

include distributed transactions, data replication and partitioning, and their inter-

actions with manageability.

In the cloud there could be scenarios where customer SLAs and providers oper-

ational objectives may not be consistent. For instance, customers may put CPU as

load balancing objective while providers desire to balance network bandwidth uti-

lization. We plan to extend our platform so that it can detect such inconsistencies

in optimization goals and constraints and report errors to users. Alternatively, the

platform can be extended to give users options to remove some conflicting policies

so that it can find a solution.
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7.2.2 Cloud Ecosystem

Building upon TROPIC and COPE, we hope to incorporate into the integrated

framework recent models on resource provisioning and deployment analysis in the

cloud. We plan to build and evaluate novel and more sophisticated cloud services

in the framework to further explore new opportunities, which include cloud storage

provisioning and distribution [83, 92, 11, 31], virtualized desktop [46], database con-

solidation [45], execution runtime [16], network management [34, 33], MapReduce

job processing [98], and federated experiment testbed deployment [14]. The eventual

goal is to build a cloud ecosystem which provides a variety of services ranging from in-

frastructure, platform, and software. One interesting use case within this ecosystem

is in mobile computing. It is expected that as mobile devices become more pervasive,

heavy computing tasks will be mostly shifted into the backend in the cloud. Driven

by this emerging trend, we plan to explore the use of this dissertation work as well

as our prior research in optimizing wireless network performance [59, 60, 61] (some

examples are given in Appendix C) to deploy mobile computing services more effec-

tively. Research questions here include reducing data access latency and increasing

data bandwidth between mobile devices and the cloud, providing reliable and highly

available services, considering geographical factors which may affect performance.

7.2.3 Declarative Distributed Constraint Optimizations

In distributed systems management, operators often have to configure system pa-

rameters that optimize performance objectives given constraints in the deployment

environment. We believe COPE is a flexible and general distributed constraint op-

timization platform [67], which not only applies to the cloud, but also to a vari-

ety of vastly different domains. We expect that such a platform has tremendous

107



practical value in facilitating extensible distributed systems optimizations. In fact

our prior experience demonstrates COPE’s approach in managing and optimizing

adaptive wireless channel selection and routing in mobile ad-hoc and mesh net-

works [62, 59, 60, 65, 61, 74] (Appendix C). As future work, we plan to apply this

approach to explore additional use cases in a wide range of emerging domains that in-

volve distributed constraint optimization, including decentralized data analysis and

model fitting, engineering design, control and signal processing, finance, resource

allocations in other distributed settings, network design and optimizations, etc.

7.2.4 Automated Synthesis of Declarative Optimizations

As a longer-term agenda, we hope to develop novel techniques to aid distributed

system operators to synthesize Colog programs automatically. Currently, COPE

requires operators to manually specify optimization models including constraints and

goals. In large-scale distributed systems, figuring out these goals and constraints may

be a non-trivial process. For instance, it was challenging for engineers to pinpoint

the root causes of the recent Amazon [27, 28] and Blackberry outages [18]. To

automate this process, we plan to explore the use of machine learning and formal

analysis techniques (in particular satisfiability modulo theories solving) to develop

new strategies to automatically synthesize goals and constraints, by learning from

example configurations, operating experiences and even failures in deployed systems.

This is an active area of research currently in the programming languages community,

as shown by recent work in program sketching [89], concurrent programming [84], and

auto-completion of spreadsheets [51]. It is an inter-disciplinary research topic that we

hope to explore, in collaboration with researchers in machine learning, programming

languages, and formal methods.
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We also intend to explore the use of high-level declarative languages for formally

reasoning about the convergence time and quantifying the optimality of distributed

systems configurations specified in Colog. Depending on the specific problem and

how Colog is modeled, distributed optimization may produce results with different

level of optimality. Applying formal techniques to verifying Colog program correct-

ness and detecting constraint contradiction will as well be interesting future work

beyond this dissertation.
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Appendix A

Colog Grammar and Syntax

The grammar that specifies the Colog language syntax is described below, with

following conventions:

• Lower-lettered phrases in typewriter font are grammar classes.

• Lower-lettered phrases in italic font are literal constants.

• Precedence is lower for alternative forms that appear later.

• Upper-lettered phrases are literal constants generated by the lexer. In par-

ticular, NAME represents the name of a predicate beginning with a lower-case

letter; AGG represents the name of an aggregation operator (MIN, MAX, COUNT,

SUM, AVG, STDEV are currently supported); VALUE represents numerical con-

stants; STRING represents string constants in double quotes; VAR represents

variable names starting with a upper-case letter. It may also be the symbol

“ ” which read as do-not-care; FUNC represents function names beginning with

“f ”.
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program ::= clauselist

clauselist ::= clause

| clause clauselist

clause ::= rule

| materialize

| solver_time

| solver_goal

| solver_var

solver_time ::= solver time VALUE

solver_goal ::= goal goal_type NAME in functor

goal_type ::= minimize

| maximize

| satisfy

solver_var ::= var functor forall functor

materialize ::= materialize(functorname,tablearg,tablearg,primkeys)

| materialize(functorname,tablearg,tablearg,primkeys,

range(VALUE, VALUE))
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tablearg ::= VALUE

primkeys ::= keys(keylist)

keylist ::= VALUE

| VALUE, keylist

rule ::= NAME functor <- termlist.

| NAME functor -> termlist.

| NAME delete functor <- termlist.

termlist ::= term

| term, termlist

term ::= functor

| assign

| select

functor ::= functorname functorbody

| delete functorname functorbody

| insert functorname functorbody

| refresh functorname functorbody

| overwrite functorname functorbody

functorname ::= NAME
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functorbody ::= (functorargs)

functorargs ::= functorarg

| functorarg, functorargs

| @ atom

| @ atom, functorargs

functorarg ::= atom

| aggregate

aggregate ::= AGG<VAR>

| AGG<@VAR>

| AGG<*>

function ::= FUNC(funcargs)

| FUNC()

funcargs ::= funcarg

| funcarg, funcargs

funcarg ::= math_expr

| atom

select ::= expr
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assign ::= VAR := expr

expr ::= atom

| function

| ( expr )

| not expr

| expr binaryop expr

| [ ]

| [ exprlist ]

exprlist ::= expr

| expr,exprlist

atom ::= VALUE

| VAR

| STRING

| NULL

binaryop ::= + | - | * | / | and | or | ::

| == | != | > | < | >= | <=
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Appendix B

TROPIC Code Examples

Below we give more TROPIC code examples on compute (VM), storage, and network

(router) cloud resources to complement Figure 4.3 and Table 4.1.
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1 class VM(LogicalModel):

2 type = Attribute(str)

3

4 @constraint

5 def domain0State(self):

6 if (self.name == "Domain-0" and

7 self.state != VMState.On):

8 yield ("Domain-0 must be running", self)

9

10 @action

11 def pause(self, ctxt):

12 self.state = VMState.Paused

13 ctxt.appendlog(action="pause", args=(),

14 undo_action="unpause", undo_args=())

15

16 @action

17 def unpause(self, ctxt):

18 self.state = VMState.On

19 ctxt.appendlog(action="unpause", args=(),

20 undo_action="pause", undo_args=())

21 ...

Figure B.1: TROPIC code example–Compute (VM).
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1 class VMHost(LogicalModel):

2 type = Attribute(str)

3

4 @constraint

5 def typeCompatible(self):

6 for vm in self.vms:

7 if self.type != vm.type:

8 yield ("VM and host types are incompatible", self)

9

10 @action

11 def stopVM(self, ctxt, name):

12 self.vms[name].state = VMState.Off

13 ctxt.appendlog(action="stopVM", args=[name],

14 undo_action="startVM", undo_args=[name])

15

16 @action

17 def createVM(self, ctxt, name, image):

18 vm = VM(name, image)

19 self.vms.insert(vm)

20 ctxt.appendlog(action="createVM", args=[name, image],

21 undo_action="removeVM", undo_args=[name, image])

22

23 @action

24 def removeVM(self, ctxt, name, image):

25 del self.vms[name]

26 ctxt.appendlog(action="removeVM", args=[name, image],

27 undo_action="createVM", undo_args=[name, image])

28

29 @action

30 def saveVM(self, ctxt, name, path):

31 self.vms[name].state = VMState.Off

32 ctxt.appendlog(action="saveVM", args=[name, path],

33 undo_action="restoreVM", undo_args=[name, path])

34

35 @action

36 def restoreVM(self, ctxt, name, path):

37 self.vms[name].state = VMState.On

38 ctxt.appendlog(action="restoreVM", args=[name, path],

39 undo_action="saveVM", undo_args=[name, path])

40 ...

Figure B.2: TROPIC code example–Compute (VMHost).
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1 class BlockDevice(LogicalModel):

2 name = Attribute(str)

3 file = Attribute(str)

4

5 @primaryKey

6 def id(self):

7 return self.name

8 ...

9

10 class StorageHost(LogicalModel):

11 uri = Attribute(str)

12 hostname = Attribute(str)

13 devices = Many(BlockDevice)

14

15 @action

16 def exportImage(self, ctxt, name):

17 dev = BlockDevice(name)

18 self.devices.insert(dev)

19 ctxt.appendlog(action="exportImage", args=[name],

20 undo_action="unexportImage", undo_args=[name])

21

22 @action

23 def unexportImage(self, ctxt, name):

24 del self.devices[name]

25 ctxt.appendlog(action="unexportImage", args=[name],

26 undo_action="exportImage", undo_args=[name])

27

28 @action

29 def cloneImage(self, ctxt, template, target):

30 ctxt.appendlog(action="cloneImage", args=[template, target],

31 undo_action="deleteImage", undo_args=[target])

32

33 @action

34 def deleteImage(self, ctxt, name):

35 ctxt.appendlog(action="deleteImage", args=[name],

36 undo_action=None, undo_args=())

37 ...

38

39 class StorageRoot(LogicalModel):

40 hosts = Many(StorageHost)

41 ...

Figure B.3: TROPIC code example–Storage.
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1 class Router(LogicalModel):

2 name = Attribute(str)

3 bgpRoutes = Attribute(dict)

4

5 @primaryKey

6 def id(self):

7 return self.name

8

9 @action

10 def addBgpRoute(self, ctxt, netAddr, nextHop):

11 self.bgpRoutes[netAddr] = nextHop

12 ctxt.appendlog(action="addBgpRoute", args=[netAddr, nextHop],

13 undo_action="delBgpRoute", undo_args=[netAddr, nextHop])

14

15 @action

16 def delBgpRoute(self, ctxt, netAddr, nextHop):

17 del self.bgpRoutes[netAddr]

18 ctxt.appendlog(action="delBgpRoute", args=[netAddr, nextHop],

19 undo_action="addBgpRoute", undo_args=[netAddr, nextHop])

20 ...

21

22 class RouterRoot(LogicalModel):

23 routers = Many(Router)

24 ...

Figure B.4: TROPIC code example–Network (router).
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Appendix C

Wireless Network Configuration

In addition to cloud resource orchestration, another use case of COPE’s declara-

tive constraint optimization approach is based on optimizing wireless networks by

adjusting the selected channels used by wireless nodes to communicate with one an-

other [59]. In wireless networks, communication between two adjacent nodes (within

close radio range) would result in possible interference. As a result, a popular opti-

mization strategy performed is to carefully configure channel selection and routing

policies in wireless mesh networks [47, 48]. These proposals aim to mitigate the

impact of harmful interference and thus improve overall network performance. For

reasonable operation of large wireless mesh networks with nodes strewn over a wide

area with heterogeneous policy constraints and traffic characteristics, a one-size-

fits-all channel selection and routing protocol may be difficult, if not impossible, to

find.

To address the above needs, our platform PUMA (Policy-based Unified Multi-

radio Architecture) serves as a basis for developing intelligent network protocols

that simultaneously control parameters for dynamic (or agile) spectrum sensing and
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access, dynamic channel selection and medium access, and data routing with a goal

of optimizing overall network performance.

In PUMA, channel selection policies are formulated as COPs that are specified

using Colog. The customizability of Colog allows providers a great degree of flexibility

in the specification and enforcement of various local and global channel selection

policies. These policy specifications are then compiled into efficient constraint solver

code for execution. Colog can be used to express both centralized and distributed

channel selection protocols.

In the next sections, We first formulate wireless channel selection as a constraint

optimization problem (COP), followed by presenting its equivalent Colog programs

(both centralized and distributed).

C.1 COP Formulation

In wireless channel selection, the optimization variables are the channels to be as-

signed to each communication link, while the values are chosen from candidate chan-

nels available to each node. The goal in this case is to minimize the likelihood of

interference among conflicting links, which maps into the well-known graph-coloring

problem [54].

We consider the following example that avoids interference based on the one-hop

interference model [101]. In this model, any two adjacent links are considered to

interfere with each other if they both use channels whose frequency bands are closer

than a certain threshold. The formulation is as follows:

Input domain and variables: Consider a network G = (V,E), where there are

nodes V = {1, 2, . . . , N} and edges E ⊆ V ×V . Each node x has a set of channels Px

121



currently occupied by primary users 1 within its vicinity. The number of interfaces

of each node is ix.

Optimization goal: For any two adjacent nodes x, y ∈ V , lxy denotes the link

between x and y. Channel assignment selects a channel cxy for each link lxy to meet

the following optimization goal:

min
∑

lxy ,lxz∈E,y 6=z

cost(cxy, cxz) (C.1)

where cost(cxy, cxz) assigns a unit penalty if adjacent channel assignments cxy

and cxz are separated by less than a specified frequency threshold Fmindiff :

cost(cxy, cxz) =

 1 if |cxy − cxz| < Fmindiff

0 otherwise
(C.2)

Constraints: The optimization goal has to be achieved under the following three

constraints:

∀lxy ∈ E, cxy /∈ Px (C.3)

∀lxy ∈ E, cxy = cyx (C.4)

∀x ∈ V, |
⋃

lxy∈E

cxy| ≤ ix (C.5)

(C.3) expresses the constraint that a node should not use channels currently

occupied by primary users within its vicinity. (C.4) requires two adjacent nodes to

communicate with each other using the same channel. (C.5) guarantees the number

of assigned channels is no more than radio interfaces.

1Primary users own exclusive rights to certain spectrum in white space networks.
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C.2 Centralized Channel Selection

In centralized channel selection [80, 38], a channel manager is deployed on a single

node in the network. Typically, this node is a designated server node, or is chosen

among peers via a separate leader election protocol. The centralized manager collects

the network status information from each node in the network – this includes their

neighborhood information, available channels, and any additional local policies. The

following Colog program takes as input the link table, which stores the gathered

network topology information, and specifies the one-hop interference model COP

formulation described in Section C.1. We omit the location specifier @ for brevity.

goal minimize C in totalCost(C)

var assign(X,Y,C) forall link(X,Y)

// cost derivation rules

d1 cost(X,Y,Z,C) <- assign(X,Y,C1), assign(X,Z,C2),

Y!=Z, (C==1)==(|C1-C2|<F_mindiff).

d2 totalCost(SUM<C>) <- cost(X,Y,Z,C).

// primary user constraint

c1 assign(X,Y,C) -> primaryUser(X,C2), C!=C2.

// channel symmetry constraint

c2 assign(X,Y,C) -> assign(Y,X,C).

// interface constraint
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d3 uniqueChannel(X,UNIQUE<C>) <- assign(X,Y,C).

c3 uniqueChannel(X,Count) -> numInterface(X,K), Count<=K.

Optimization goal and variables: The goal in this case is to minimize the

cost attribute C in totalCost, while assigning channel variables assign for all com-

munication links. Each entry of the assign(X,Y,C) table indicates channel C is used

for communication between X and Y.

Solver derivations: Rule d1 sets cost C to 1 for each cost(X,Y,Z,C) tuple if

the chosen channels that X uses to communicate with adjacent nodes Y and Z are

interfering. Rule d2 sums the number of interfering channels among adjacent links

in the entire network, and stores the result in totalCost.

Solver constraints: Constraint c1 restricts the domain of assign(X,Y,C) to

only valid channel assignments for existing links link(X,Y) and ensures that only

available channels are considered. Constraint c2 applies to the input availChannel

table, and states that a channel C at node X is only available, if there does not exist

a primary user within the vicinity of X. Constraint c3 enforces channel symmetry on

the output assign table.

In some wireless deployments, e.g. IEEE 802.11, the two-hop interference model [101]

is often considered a more accurate measurement of interference. This model con-

siders interference that results from any two links using similar channels within two

hops of each other. The two-hop interference model requires minor modifications to

rule d1 as follows:

d3 cost(X,Y,Z,W,C) <- assign(X,Y,C1), link(Z,X), assign(Z,W,C2),

X!=W, Y!=W, Y!=Z,
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(C==1)==(|C1-C2|<F_mindiff).

The above rule considers four adjacent nodes W, Z, X, and Y, and assigns a cost of 1

to node X’s channel assignment with Y (assign(X,Y,C1)), if there exists a neighbor

Z of X that is currently using channel C2 that interferes with C1 to communicate with

another node W. The above policy requires only adding one additional link(Z,X)

predicate to the original rule d1, demonstrating the customizability of Colog. To-

gether with rule d1, one can assign costs to both one-hop and two-hop interference

models.

C.3 Distributed Channel Selection

We next demonstrate PUMA’s ability to implement distributed channel selection.

Our example here is based on a variant of distributed greedy protocol proposed

in [91]. This example highlights PUMA’s ability to support distributed COP com-

putations, where nodes compute channel assignments based on local neighborhood

information, and then exchange channel assignments with neighbors to perform fur-

ther COP computations. Distributed channel selection provides approximations to

the optimal centralized solution, and hence scales better for large networks. More-

over, it has the added advantages of not introducing single points of failure and is

amenable to incremental computations as the network topology changes.

The protocol works as follows. Periodically, each node randomly selects one of

its links to start a link negotiation process with its neighbor. This is similar to the

distributed Colog program for Follow-the-Sun in Section 3.3.3. To avoid conflicting

channel assignments, for any given link(X,Y), the link negotiation protocol selects

the node with the larger identifier (or address) to carry out the subsequent channel
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negotiation process. Once a link is selected for channel assignment, the result of link

negotiation is stored in table setLink(X,Y). The negotiation process then solves a

local COP and assigns a channel such that interference is minimized. The following

Colog program implements the local COP operation at every node X for performing

channel assignment. The output of the program sets the channel assign(X,Y,C)

for one of its links link(X,Y) (chosen for the current channel negotiation process)

based on the two-hop interference model:

goal minimize C in totalCost(@X,C)

var assign(@X,Y,C) forall setLink(@X,Y)

// cost derivation for two-hop interference model

d1 cost(@X,Y,Z,W,C) <- assign(@X,Y,C1), link(@Z,X),

assign(@Z,W,C2), X!=W, Y!=W, Y!=Z,

(C==1)==(|C1-C2|<F_mindiff).

d2 totalCost(@X,SUM<C>) <- cost(@X,Y,Z,W,C).

// primary user constraint

c1 assign(@X,Y,C) -> primaryUser(@X,C2), C!=C2.

c2 assign(@X,Y,C) -> primaryUser(@Y,C2), C!=C2.

// propagate channels to ensure symmetry

r1 assign(@Y,X,C) <- assign(@X,Y,C).

The distributed program is similar to the centralized equivalent presented in

Section C.2, with the following differences:
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While the centralized channel selection searches for all combinations of channel

assignments for all links, the distributed equivalent restricts channel selection to a

single link one at a time, where the selected link is represented by setLink(@X,Y)

based on the negotiation process. For this particular link, the COP execution takes

as input its local neighbor set (link) and all currently assigned channels (assign)

for itself and nodes in the local neighborhood. This means that the COP execution is

an approximation based on local information gathered from a node’s neighborhood.

Specifically, distributed solver rule d1 enables node X to collect the current set

of channel assignments for its immediate neighbors and derive the cost based on the

two-hop interference model. In executing the channel selection for the current link,

constraint c1-2 express that the channel assignment for link(@X,Y) does not equal

to any channels used by primaryUser. Once a channel is set at node X after COP

execution, the channel-to-link assignment is then propagated to neighbor Y, hence

resulting in symmetric channel assignments (rule r1).
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