
Enabling Incremental Query Re-Optimization

Mengmeng Liu
∗

@WalmartLabs
liumengmeng@gmail.com

Zachary G. Ives
University of Pennsylvania
zives@cis.upenn.edu

Boon Thau Loo
University of Pennsylvania

boonloo@cis.upenn.edu

ABSTRACT
As declarative query processing techniques expand to the Web,
data streams, network routers, and cloud platforms, there is an
increasing need to re-plan execution in the presence of unantici-
pated performance changes. New runtime information may affect
which query plan we prefer to run. Adaptive techniques require
innovation both in terms of the algorithms used to estimate costs,
and in terms of the search algorithm that finds the best plan. We
investigate how to build a cost-based optimizer that recomputes
the optimal plan incrementally given new cost information, much
as a stream engine constantly updates its outputs given new data.
Our implementation especially shows benefits for stream process-
ing workloads. It lays the foundations upon which a variety of
novel adaptive optimization algorithms can be built. We start by
leveraging the recently proposed approach of formulating query
plan enumeration as a set of recursive datalog queries; we develop
a variety of novel optimization approaches to ensure effective prun-
ing in both static and incremental cases. We further show that the
lessons learned in the declarative implementation can be equally
applied to more traditional optimizer implementations.

1. INTRODUCTION
Today, query optimization is being applied to many settings be-

yond traditional databases. Consider declarative cloud data pro-
cessing systems [5, 22] and data stream processing [7, 23] plat-
forms, where data properties and the status of cluster compute nodes
may be constantly changing. Here it is very difficult to effectively
choose a good plan for query execution: data statistics may be un-
available or highly variable; cost parameters may change due to
resource contention or machine failures; and in fact a combination
of query plans might perform better than any single plan. Given the
complexities of cost estimation, work in the early 2000s was done
on self-tuning so the performance of a query or set of queries can
be improved [1, 6, 21]. More recently, the focus has been on gener-
ating “robust” rather than optimal plans [12] or selecting database
designs that yield robust plans [24].

Nonetheless, there is need for adaptive techniques that can adjust
to runtime conditions during query processing — adaptive query
processing [11]. Adaptivity requires three orthogonal building blocks:

∗This work was done while the author was at UPenn.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’16, June 26–July 1, 2016, San Francisco, CA, USA.
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915212

(1) techniques for acquiring information about performance (ide-
ally, performing accurate cost estimation) and trading off explo-
ration vs. exploitation as we seek to determine the most efficient
plan, (2) a planner capable of taking new information and rapidly
re-estimating the most efficient plan, (3) an execution system whose
computation can be adapted in mid-execution. Most recent work
focused on the first and last problems: namely, new methods for
better statistics collection and costs estimation during query exe-
cution [4, 6, 17, 18, 21, 30]; and techniques for adapting execu-
tion [10]. Our goal is to explore the second capability: how to sup-
port incremental techniques for re-optimization, whereby an opti-
mizer, given new cost information, would only re-explore the min-
imal set of query plans whose costs may be affected. Given any
existing set of cost estimation techniques, pruning heuristics, and
transformation rules, matched with an execution engine, our ap-
proach will always incrementally recompute the same optimal plan
(based on the cost model) as a full-blown optimization.

In this paper, we consider incremental re-optimization for two
main settings: (1) data stream management systems where data
may be bursty, and its distributions may vary over time — mean-
ing that different query plans may be preferred over different seg-
ments. Here it is vital to optimize frequently based on recent data
distribution and cost information; (2) traditional OLAP database
settings when the same query (or highly similar queries) gets ex-
ecuted frequently, as in a prepared statement. Here we may wish
to re-optimize the plan after each iteration, given increasingly ac-
curate information about costs, and we would like this optimiza-
tion to have minimal overhead. Our focus in the paper is not on
novel optimizer strategies or cost estimation techniques per se, but
on redesigning the planning components of the optimizer to incre-
mentally recompute the best plan given any preferred strategy that
would be used in a standard optimizer.

The main contribution of this paper is to show how an incre-
mental re-optimizer can be developed, and how it can be useful in
adaptive query processing scenarios matching the application do-
mains cited above. Our incremental re-optimizer implements the
basic capabilities of a modern database query optimizer, and could
easily be extended to support other more advanced features and es-
timators; our main goal is to show that an incremental optimizer
following our model can be competitive with a standard optimizer
implementation for initial optimization, and significantly faster for
repeated optimization — for any choice of cost model and estima-
tion techniques. Moreover, in contrast to randomized or heuristics-
based optimization methods, we still guarantee the discovery of
the best plan according to the cost model. Since our work is ori-
ented towards adaptive query processing, we evaluate the system
in a variety of settings in conjunction with a basic pipelined query
engine for stream and stored data.

We implement incremental re-optimization using a novel approa-

http://dx.doi.org/10.1145/2882903.2915212


ch, which is based on the observation that query optimization is
essentially a recursive process involving the derivation and subse-
quent pruning of state (namely, alternative plans and their costs).
If one is to build an incremental re-optimizer, this requires preser-
vation of state (i.e., the optimizer memoization table) across opti-
mization runs — but moreover, it must be possible to determine
what plans have been pruned from this state, and to re-derive such
alternatives and test whether they are now viable.

One way to achieve such “re-pruning” capabilities is to carefully
define a semantics for how state needs to be tracked and recom-
puted in an optimizer. However, we observe that this task of “re-
pruning” in response to updated information looks remarkably sim-
ilar to the database problem of view maintenance through aggrega-
tion [15] and recursion as studied in the database literature [16]. In
fact, recent work [9] has shown that query optimization can itself
be captured in recursive datalog. Thus, we initially formulate our
approach to developing an incremental re-optimizer using a declar-
ative specification. A key benefit of the declarative approach is
that it enables us to identify state-pruning strategies agnostic to
the order of control and data flow during plan enumeration.

More precisely, we express the optimizer as a recursive data-
log program consisting of a set of rules, and leverage the existing
database query processor to actually execute the declarative pro-
gram. In essence, this is optimizing a query optimizer using a
query processor. Our implementation approaches the performance
of conventional procedural optimizers for reasonably-sized queries.
Our implementation recovers the initial overhead during subsequent
re-optimizations by leveraging incremental view maintenance [16,
20] techniques. It only recomputes portions of the search space
and cost estimates that might be affected by the cost updates. Fre-
quently, this is only a small portion of the overall search space, and
hence we often see order-of-magnitude performance benefits.

Given this setting, we tackle the problem of pruning while recur-
sively computing the optimal plan. We develop a variety of novel
incremental and recursive optimization techniques to capture the
kinds of pruning used in a conventional optimizer, and more im-
portantly, to generalize them to the incremental case. Our approach
achieves pruning levels that rival or best bottom-up (as in System-
R [27]) and top-down (as in Volcano [13, 14]) plan enumerations
with branch-and-bound pruning. Our techniques are of broader in-
terest to incremental evaluation of recursive queries as well.

Finally, we use insights gained from our declarative implementa-
tion to form a specification for pruning and state management that
we use to retrofit standard optimizer architectures with incremental
re-optimization capabilities. Here we still guarantee optimality of
the pruning techniques based on their equivalence to the declarative
implementation. We make the following contributions:
• A rule-based, declarative approach to query (re)optimization as an

incremental view maintenance problem, which relaxes traditional
restrictions on search order and pruning.
• Novel strategies to prune the state of an executing recursive query,

such as a declarative optimizer: aggregate selection with tuple
source suppression; reference counting; and recursive bounding.
• An implementation over a query engine developed for recursive

stream processing [20], with a comprehensive evaluation of per-
formance against alternative approaches, over a diverse workload.
• “Porting” techniques from incremental re-optimization to conven-

tional cost-based adaptive query processing techniques [17, 30].

2. INCREMENTAL RE-OPTIMIZATION
We show our query processing architecture in Figure 1. We as-

sume a set of transformation rules and initial statistics, using
any existing strategy for statistics collection and cost estimation.
Our specific implementation uses histograms on join attributes and

Incremental
optimizer

Cost 
estimator

Transfor-
mation
rules

Query 
executor

Query
plan Streaming or

disk-based data

Initial 
statistics & 
parameters

Updated
statistics &
parameters

Incremental
update

Incremental
search

Cost
evaluation

Figure 1: Query processing architecture
standard heuristics [8]. The implemented transformation space in-
cludes hash and nested loops join and group-by, as well as a sort
enforcer and merge joins. Our focus is on the incremental search
module: we develop strategies that — given updated runtime con-
ditions from the query executor — can trigger an incremental up-
date to the search, which still guarantees the choice of the lowest-
estimated-cost plan in the search space, i.e., that exactly mirror
what a non-incremental optimizer would have done. The query
executor in our system [20] supports streaming, favors pipelined
execution, and supports runtime monitoring of statistics.

In subsequent sections, we first consider a declarative implemen-
tation of the incremental re-optimizer, which enables us to decou-
ple search and pruning from any particular order of search. Next
we show how to take the same strategies and incorporate them into
a traditional, procedural query optimizer implementation.

3. DECLARATIVE QUERY OPTIMIZATION
Our goal is an optimizer that incrementally maintains informa-

tion about best (sub)plans and takes advantage of pruning oppor-
tunities. Restated, it performs incremental state management of
(recursively computed) plan costs, in response to updates to query
plan cost information. Incremental update propagation is a very
well-studied problem for recursive queries, with a clean semantics
and many efficient implementations. Thus we consider a model in
which our optimizer is itself formulated as a recursive, incremen-
tally maintainable query. (In Section 5.4 we show how to adapt
ideas to a more traditional optimizer setting.)

Prior work has also demonstrated the feasibility of a datalog-
based query optimizer [9]. Hence, rather than re-inventing incre-
mental recomputation techniques we have built our optimizer as a
series of recursive rules in datalog, executed in the query engine
that already exists in the DBMS. In contrast to the prior work, our
focus is not on formulating every aspect of query optimization in
datalog, but rather on capturing the state management and pruning
as datalog rules — so we can adapt incremental view maintenance
(delta rules) and develop novel sideways information passing tech-
niques, respectively. Other optimizer features that are not reliant on
state that changes at runtime, such as cardinality estimation, break-
ing expressions into subexpressions, etc., are specified as built-in
auxiliary functions. As a result, we specify an entire optimizer in
only three stages and 10 rules (dataflow is illustrated in Figure 2).
Plan enumeration (SearchSpace). Searching the space of possi-
ble plans has two aspects. In the logical phase, the original query
is recursively broken down into a full set of alternative relational
algebra subexpressions1. The decomposition is naturally a “top-
down” type of recursion: it starts from the original query expres-
sion, which then breaks down into subexpressions, and so on. The
physical phase takes as input a query expression from the logical
phase, and creates physical plans by enumerating the set of pos-
sible physical operators that satisfy any constraints on the output
1Alternatively, only left-linear expressions may be considered [27].



LocalCost

NotLeafExpr
LeafExpr

PlanCost

PlanCost

LeftCost

BestPlan

LocalCost

Fnscancost

Join

Fnsum

Aggmin

Join

Fnnonscancost

SearchLeaf

Fixpoint

RightExprLeftExpr
Expr

Fnisleaf

Fnisleaf

Tuple
Source 

Suppression

(Sect. 3.1)

Plan Enumeration 

(R1-R5)

Cost Estimation

(R6 – R8)

Plan Selection

(R9 -R10)

Fnsplit Fnsplit

Fnscansummary Fnnonscansummary

Fixpoint

SearchUnary

LeftCost

Fnsum

Join

Fnnonscancost

Fnnonscansummary

SearchBinary

RightCost

PlanCost

SearchSpace

BestCost

base case recursive case

Union

base case

recursive case

Union

Figure 2: Query plan of our declarative query optimizer. Oper-
ators are in ellipses; views are in rectangles. Plan enumeration
(SearchSpace) consists of 5 rules, cost estimation (PlanCost) 3
rules, and plan selection (BestPlan) 2 rules. See Appendix.

properties [14] or “interesting orders” [27] (e.g., the data must be
sorted by a particular attribute). Without physical properties, the
extension from logical plans to physical plans can be computed
either top-down or bottom-up; however, the properties are more ef-
ficiently computed in goal-directed (top-down) manner.

Cost estimation (PlanCost). This phase determines the cost for
each physical plan in the search space, by recursively merging the
statistics and cost estimates of a plan’s subplans. It is naturally a
bottom-up type of recursion, as the plan subexpressions must al-
ready have been cost-estimated before the plan itself. Here we can
encode in a table the mapping from a plan to its cost.

Plan selection (BestPlan). As costs are estimated, the program
produces the plan that incurs the lowest estimated cost.

In our declarative approach to query optimization, we treat op-
timizer state as data, use rules to specify what a query optimizer
is, and leverage a database query processor to actually perform the
computation. Figure 2 shows a (simplified) query plan for the dat-
alog rules. As we can see, the declarative program is by nature re-
cursive, and is broken into the three stages mentioned before (with
Fixpoint operators between stages). Starting from the bottom of
the figure, plan enumeration recursively generates a SearchSpace
table containing plan specifications, by decomposing the query and
enumerating possible output properties; enumerated plans are then
fed into the plan estimation component, PlanCost, which com-
putes a cost for each plan, by building from leaf to complex expres-
sions; plan selection computes a BestCost and BestPlan entry for
each query expression and output property, by aggregating across
the PlanCost entries.

This basic datalog program can be evaluated in a conventional
datalog engine, augmented with a few user-defined functions. How-

(C) (O) (L)

OR Node: 

(Level 3)

OR Node: 

(Level 2)

AND Node:

(Level 2) 

OR Node: 

(Level 1)

(C,O) (O,L)

(CO) (OL)

(COL)

(L,CO)(C,OL)
AND Node: 

(Level 3)

BestCost = 0.04 BestCost = 0.19

LocalCost = 0.07
PlanCost = 0.07 + 0.04 + 0.19 = 0.30

BestCost = 0.30

LocalCost = 0.06
PlanCost = 0.06 + 0.19 + 0.68 = 0.93

BestCost = 0.68

BestCost = 0.93

LocalCost = 0.03
PlanCost = 0.03 + 0.30 + 0.68 = 1.01

BestCost = Min (1.00, 1.01) = 1.00

LocalCost = 0.03
PlanCost = 0.03 + 0.04 + 0.93 = 1.00

Figure 3: The and-or-graph for Q3S. Red edges denote the best
plan. Rectangles and ovals denote “OR” and “AND” nodes re-
spectively. Each “OR” node is labeled with its BestCost and
each “AND” node is labeled with its LocalCost and PlanCost.

ever, it will likely perform poorly due to limited pruning of plan
alternatives. A major contribution of this paper is to develop new
strategies for pruning of recursive computations like planning. We
use an example to help explain the overall evaluation process.

EXAMPLE 1. As our driving example, consider a simplified TPC-
H Query 3 with its aggregates and functions removed, called Q3S.

SELECT L_orderkey, O_orderdate, O_shippriority
FROM Customer C, Orders O, Lineitem L
WHERE C_mktsegment = ’MACHINERY’ and C_custkey =

O_custkey and O_orderkey = L_orderkey and
O_orderdate < ’1995-03-15’ and L_shipdate > ’
1995-03-15’

3.1 Plan Enumeration
Plan enumeration takes as input the original query expression as

Expr, and then generates as output the set of alternative plans. As
with many optimizers, it is divided into two levels:

Logical search space. The logical plan search space contains all
the logical plans that correspond to subexpressions of the origi-
nal query expression up to any logically equivalent transformations
(e.g., commutativity and associativity of join operators). In tradi-
tional query optimizers such as Volcano [14], a data structure called
an and-or-graph is maintained to represent the logical plan search
space. The and-or-graph can capture both tree- and DAG-structured
query plans [26]. Bottom-up dynamic programming optimizers do
not physically store this graph, but it is still conceptually relevant.

EXAMPLE 2. Figure 3 shows an example and-or-graph for Q3S,
which describes a set of alternative subplans and subplan choices
using interleaved levels. “AND” nodes represent alternative sub-
plans (typically with join operator roots) and the “OR” nodes rep-
resent decision points where the cheapest AND-node was chosen.

Our implementation captures each node in a table SearchSpace.
As we discuss next, we supplement this information with further
information about the output properties and physical plan. (We ex-
plain why we combine the results from both stages in Section 3.3.)

Physical search space. The physical search space extends the log-
ical one in that it enumerates all the physical operators for each
algebraic logical operator. For example, in our figure above, each
“AND” node denotes a logical join operator, but it may have multi-
ple physical implementations such as pipelined-hash, indexed nested-
loops, or sort-merge join. If the physical implementation is not
symmetric, exchanging the left and right child would become a dif-
ferent physical plan. A physical plan has not only a root physical
operator, but also a set of physical properties over the data that it
maintains or produces; if we desire a set of output properties, this
may constrain the physical properties of the plan’s inputs.

EXAMPLE 3. Table 1 shows the SearchSpace content for a sub-
set of Figure 3. The AND logical operators are either joins (with



*Expr *Prop *Index LogOp *PhyOp lExpr lProp rExpr rProp
(COL) – 1 join sort-merge (C) C_custkey order (OL) O_custkey order
(COL) – 2 join indexed nested-loop (L) index on L_orderkey (CO) –
(OL) O_custkey order 1 join pipelined-hash (O) – (L) –
(CO) – 1 join pipelined-hash (C) – (O) –
(CO) – 1 join sort-merge (C) – (O) –
(O) O_custkey order – scan local scan – – – –
(L) index on L_orderkey – scan index scan – – – –
(C) C_custkey order – scan local scan – – – –

Table 1: A simplified SearchSpace relation encoding the and-or-graph for Q3S’s search space. Primary keys are denoted by *.

2 child expressions), or tablescans (with selection predicates ap-
plied). Each expression Expr may have multiple Indexed alterna-
tives. Prop and PhyOp represent the physical properties of a plan
and its root physical operator, respectively.

For instance, expression SearchSpace(COL) has encodes an
“OR” node with two alternatives the first “AND” (join) child is
SearchSpace(C,OL) and the second is SearchSpace(L,CO). For
the first SearchSpace tuple, the left expression is C and the right
expression isOL. The tuple indicates a Sort-Merge join, whose left
and right inputs’ physical properties require a sort order based on
C_custkey and O_custkey , respectively. The second alternative
uses an Indexed Nested-Loop Join as its physical operator. The left
expression refers to the inner join relation indexed on L_orderkey ,
while there are no ordering restrictions on the right expression.

We enumerate plans using a single recursive query (bottom of
Figure 2). Given an expression, the Fnsplit function enumerates all
the algebraically equivalent rewritings for the given expression, as
well as the possible physical operators and their interesting orders.
Fixpoint is reached when Expr has been decomposed down to leaf-
level scan operations over a base relation (checked using Fnisleaf ).

3.2 Cost Estimation and Plan Selection
The cost estimation component computes an estimated cost for

every physical plan. Given the SearchSpace tuples generated in the
plan enumeration phase, three datalog rules (R6 - R8) are used to
compute PlanCost (corresponding to a more detailed version of the
“AND” nodes in Figure 3, with physical operators considered and
all costs enumerated), and two additional rules (R9 - R10) select
the BestPlan (corresponding to an “OR” node). Cost estimates
are recursively computed by summing up the children costs and
operation costs. The computed sum for each physical plan is stored
in PlanCost.

In addition to the search space, cost estimation requires a set
of summaries (statistics) on the input relations and indexes, e.g.,
cardinality of a (indexed) relation, selectivity of operators, data
distribution, etc. These summaries are computed using functions
Fnscansummary and Fnnonscansummary. The former computes the leaf
level summaries over base tables, and the latter computes the out-
put summaries of an operator based on input summaries. Given the
statistics, the cost of a plan can be computed by combining factors
such as CPU, I/O, bandwidth and energy into a single cost met-
ric. We compute the cost of each physical operator using functions
Fnscancost and Fnnonscancost respectively.

Given the above functions, cost estimation becomes a recursive
computation that sums up the cost of children expressions and the
root cost, to finally compute a cost for the entire query plan. At
each step, Fnsum is used to sum up the PlanCost of its child plans
with LocalCost. The particular form of the operation depends on
whether the plan root is a leaf node, a unary or a binary operator.

EXAMPLE 4. To illustrate the process of cost estimation, we re-
visit Figure 3, which shows a simplified logical search space (omit-
ting physical operators and properties) for our simplified TPC-H
Q3S. For every “AND” node, we compute the plan cost by summing
up the cost of the join operator, with the best costs of computing its

two inputs (e.g., the level 2 “AND” node (C,O) sums up its local
cost 0.07, its left best cost 0.04, and its right best cost 0.19, and
gets its plan cost 0.30). For every “OR” node, we determine the al-
ternative with minimum cost among its “AND” node children (e.g.,
the level 3 “OR” node (COL) computes a minimum over its two
input plan costs 1.00 and 1.01, and gets its best cost 1.00). After
the best cost is computed for the root “OR” node in the graph, the
optimization process is done, and an optimal plan tree is chosen.

Once the PlanCost for every “AND” node are generated, the fi-
nal two rules compute the BestCost for every “OR” node by com-
puting a min aggregate over PlanCost of its alternative “AND”
node derivations, and output the BestPlan for each “AND” node
by computing a join between BestCost and PlanCost.

3.3 Execution Strategy
Given a query optimizer specified in datalog, the natural ques-

tion is how to actually execute it. We seek to be general enough
to incorporate typical features of existing query optimizers, to ri-
val their performance and flexibility, and to only develop imple-
mentation techniques that generalize. We adopt two strategies and
develop novel execution techniques to support them:
Merging logical and physical plan enumeration. The physical
plan elaborates on the logical plan. Since both logical and phys-
ical enumeration are top-down types of recursion, and there is no
pruning information from the physical stage that should be propa-
gated back to the logical one, we can merge the logical and physical
enumeration stages into a single recursive query.

As we enumerate each logical subexpression, we simultaneously
join with the table representing the possible physical operators that
can implement it. This generates the entire set of possible physical
query plans. To make it more efficient to generate multiple physical
plans from a single logical expression, we use caching to memoize
the results of Fnnonscansummary and Fnsplit.
Decoupling of cost estimation and plan enumeration. Cost es-
timation requires bottom-up evaluation: a cost estimate can only
be obtained once cost estimates and statistics are obtained from
child expressions. The enumeration stage naturally produces ex-
pressions in the order from parent to child, yet estimation must be
done from child to parent. We decouple the execution order among
plan enumeration and cost estimation, making the connections be-
tween these two components flexible. For example, some cost es-
timates may happen before all related plans have been enumerated.
Cost estimates may even be used to prune portions of the plan enu-
meration space (and hence also further prune cost estimation itself)
in an opportunistic way.

4. ACHIEVING PRUNING
We now consider how to incorporate pruning of the search space

into pipelined execution of our query optimizer. Our approach is
based on the idea of sideways information passing, in which the
computation of one portion of the query plan may be made more
efficient by filtering against information computed elsewhere, but
not connected directly by pipelined dataflow. Specifically, we in-
corporate the technique of aggregate selection [28] from the de-



ductive database literature, which we briefly review; we extend it
to perform further pruning; and we develop two new techniques for
recursive queries that enable tracking of dependencies and compu-
tation of bounds. Beyond query optimization, our techniques are
broadly useful in the evaluation of recursive datalog queries. In the
next section we make these strategies incrementally maintainable.

Section 4.1 reviews aggregate selection, which removes non-
viable plans from the optimizer state if they are not cost-effective,
and shows how we can use it to achieve the similar effects to dy-
namic programming in bottom-up style optimizers. There we also
introduce a novel technique called tuple source suppression. In the
remainder of the section we show how to introduce two familiar
notions into datalog execution: namely, reference counting that en-
ables us to remove plan subexpressions once all of their parent ex-
pressions have been pruned (Section 4.2), and recursive bounding,
which lets the datalog engine incorporate branch-and-bound prun-
ing as in a typical top-down query optimizer (Section 4.3). Our
approaches relax the traditional restrictions on the search order and
pruning techniques in either Volcano’s [14] top-down traversal or
System R’s [27] bottom-up dynamic programming approaches. For
example, a top-down search algorithm can have a depth-first order,
breadth-first order or another order.

4.1 Pruning Suboptimal Plan Expressions
Dating back to System-R [27], every modern query optimizer

uses dynamic programming techniques (although some via memo-
ization [14]). Dynamic programming is based on the principle of
optimality, i.e. an optimal plan can be decomposed into sub-plans
that must themselves be optimal solutions. This property is vital to
optimizer performance, because the same subexpression may ap-
pear repeatedly in many parent expressions. Formally:

PROPOSITION 5. Given a query expression E and property p,
consider a plan tree T 〈E, p〉 that evaluates E with output property
p. For this and other propositions, we assume that plans have dis-
tinct costs. Here one such T will have the minimum cost: call that
TOPT . Suppose Es is a subexpression of E, and consider a plan
tree T s〈Es, ps〉 that evaluates Es with output property ps. Again
one such T s will have the minimum cost: call that T s

OPT . If T s is
not T s

OPT , then T s must not be the subtree of TOPT .

This proposition ensures that we can safely discard suboptimal
subplans without affecting the final optimal plan. Consider the and-
or-graph of example query Q3S (Figure 3). The red (bolded) sub-
tree is the optimal plan for the root expression (COL). The subplan
of the level 3 “AND” node (L,CO) has suboptimal cost 1.00. If
there exists a super-expression containing (COL), then the only
viable subplan is the one marked in the figure. State for any alter-
native subplan for (COL) may be pruned from SearchSpace and
PlanCost. We prune both relations via two novel techniques.

Pruning PlanCost via aggregate selection. Refer back to Fig-
ure 2: each BestCost tuple encodes the minimum cost for a given
query expression-property pair, over all the plans associated with
this pair in PlanCost. To avoid enumerating unnecessary PlanCost
tuples, one can wait until the BestCost of subplans are obtained
before computing a PlanCost for a root plan. This is how Sys-
tem R-style dynamic programming works. However, this approach
constrains the order of evaluation.

We instead extend a logic programming optimization technique
called aggregate selection [28], to achieve dynamic programming-
like benefits for any arbitrary order of implementation. In aggregate
selection, we “push down” a selection predicate into the input of an
aggregate, such that we can prune results that exceed the current
minimum value or are below the current maximum value. In our
case (as shown in the middle box of Figure 2), the current best-
known cost for any equivalent query expression-property pair is

maintained within our Fixpoint operator (which also performs the
non-blocked min aggregation). We only propagate a newly gen-
erated PlanCost tuple if its cost is smaller than the current min-
imum. This does not affect the computation of BestCost, which
still outputs the minimum cost for each expression-property pair.
Since pruning bounds are updated upon every newly generated tu-
ple, there is no restriction on evaluation order. As with pruning
strategies used in Volcano-style optimizers, the amount of state
pruned varies depending on the order of exploration: the sooner
a min-cost plan is encountered, the more effective the pruning is.

Pruning SearchSpace via tuple source suppression. Enumera-
tion of the search space will generally happen in parallel with enu-
meration of plans. Thus, as we prune tuples from PlanCost, we
may be able to remove related tuples (e.g., representing subexpres-
sions) from SearchSpace, possibly preventing enumeration of their
subexpressions and/or costs. We achieve such pruning through tu-
ple source suppression, along the arcs indicated in Figure 2. Any
PlanCost tuples pruned by aggregate selection should also trig-
ger cascading deletions to the source tuples by which they were
derived from the SearchSpace relation. To achieve this, since
PlanCost contains a superset of the attributes in SearchSpace, we
simply project out the cost field and propagate a deletion to the
corresponding SearchSpace tuple.

4.2 Pruning Unused Plan Subexpressions
The techniques described in the previous section remove subop-

timal plans for specific expression-property pairs. However, some
optimal plans for certain expressions may be unused in the final
query execution plan. Consider in Figure 3 the level 2 “AND” node
(C,O): this node is not in the final plan because its “OR” node par-
ent expression (CO) does not appear in the final result. In turn, this
is because (CO)’s parent “AND” nodes (in this example, just a sin-
gle plan (L,CO)) do not contribute to the final plan. Intuitively,
we may prune an “AND” node if all of its parent “AND” nodes
(through only one connecting “OR” node) have been pruned.

We would like to remove such plans once they are discovered,
which requires a form of reference counting within the datalog en-
gine executing the optimizer. Every tuple in SearchSpace is an-
notated with a count: this count represents the number of parent
plans still present in the SearchSpace. For example, in Table 1,
the plan entry of O 1 L has reference count of 1, because it only
has one parent plan, which is C 1 OL; on the other hand, the plan
entry of (O) has reference count of 2, because it has two parent
plans, which are O 1 L and C 1 O.

PROPOSITION 6. Given a query expressionE with output prop-
erty p: let T s be a plan tree forE’s subexpressionEs with property
ps. If T s has reference count of zero, then T s must not be a subtree
of the optimal plan tree for the query E with property p.

The proposition ensures that a plan with a reference count of zero
can be safely deleted. Note that a deleted plan may make more ref-
erence counts to drop to zero, hence the deletion process may be
recursive. Our reference counting scheme is more efficient than
the counting algorithm of [16], which uses a count representing the
total number of derivations of each tuple in bag semantics. Our
count represents the number of unique parent plans from which a
subplan may be derived, and can typically be incrementally up-
dated in a single recursive step (whereas counting often requires
multiple recursive steps to compute the whole derivation count).

Our reference counting mechanism complements the pruning tech-
niques discussed in Section 4.1. Following an insertion (explo-
ration) or deletion (pruning) of a SearchSpace tuple, we update
the reference counts of relevant tuples accordingly; cascading in-
sertions or deletions of SearchSpace (and further PlanCost) tu-
ples may be triggered because their reference counts may be raised



r1: ParentBound(lExpr , lProp, bound − rCost − localCost) :-
Bound(expr , prop, bound), BestCost(rExpr , rProp, rCost),
LocalCost(expr , prop, index , lExpr , lProp, rExpr ,

rProp,−, localCost);
r2: ParentBound(rExpr , rProp, bound − lCost − localCost) :-

Bound(expr , prop, bound), BestCost(Expr , lProp, lCost),
LocalCost(expr , prop, index , lExpr , lProp, rExpr ,

rProp,−, localCost);
r3: MaxBound(expr , prop,max < bound >) :-

ParentBound(expr , prop, bound);
r4: Bound(expr , prop,min < minCost ,maxBound >) :-

BestCost(expr , prop,minCost),
MaxBound(expr , prop,maxBound);

Figure 4: Datalog rules to express bounds computation

above zero (or dropped to zero). Finally, the optimal plan com-
puted by the query optimizer is unchanged, but more tuples in
SearchSpace and PlanCost are pruned. Indeed, by the end of
the process, the combination of aggregate selection and reference
counts ensure SearchSpace and PlanCost only contain those plans
that are on the final optimal plan tree. Such “garbage collection”
greatly reduces the optimizer’s state and the number of data items
that must be updated incrementally, as described in Section 5.

4.3 Full Branch-and-Bound Pruning
Our third innovation generalizes branch-and-bound pruning, as

in top-down optimizers like Volcano, during cost estimation of phys-
ical plans. Branch-and-bound pruning uses prior exploration of re-
lated plans to prune the exploration of new plans: a physical plan
for a subexpression is pruned if its cost already exceeds the cost of a
plan for the equivalent subexpression (or its parent, grandparent, or
other ancestor expression). Typically, branch-and-bound pruning
assumes a single-recursive descent execution thread during its enu-
meration. We develop a branch-and-bounding solution independent
of the search order, which supports parallel enumeration.

Previous work [9] has shown that it is possible to do a limited
form of branch-and-bound pruning in a declarative optimizer, by
initializing a bound based on the cost of the parent expression, and
then pruning subplan exploration whenever the cost has exceeded
an equivalent expression. This can actually be achieved by our
aggregate selection approach described in Section 4.1.

We seek to generalize this to prune against the best known bound
for an expression-property pair — which may be from a plan for
an equivalent expression, or from any ancestor plan that contains
the subplan corresponding to this expression-property pair. (Re-
call that there may be several parent plans for a subplan: this in-
troduces some complexity as each parent plan may have different
cost bounds, and at certain point in time we may not know the
costs for some of the parent plans.) The bound should be contin-
uously updated as different parts of the search space are explored
via pipelined execution. In this section, we assume that bounds are
initialized to infinity and monotonically decreasing. In Section 5.3
we will relax this requirement.

Our solution, recursive bounding, creates and updates a single
recursive relation Bound, whose values form the best-known bound
on each expression-property pair (each “OR” node). This bound is
the minimum of (1) known costs of any equivalent plans; (2) the
highest bound of any parent plan’s expression-property pair, which
in turn is defined recursively in terms of parents of this parent plan.
Figure 4 shows how we can express the bounds table using recur-
sive datalog rules. ParentBound propagates cost bounds from a
parent expression-property pair to child expression-property pairs,
through LocalCost, while the child bound also takes into account
the cost of the local operator, and the best cost from the sibling
side. MaxBound finds the highest of bounds from parent plans,
and Bound maintains the minimum bounding information derived
from BestCost or MaxBound, allowing for more strict pruning.

Given the definition of Bound, we can reason about the viability
of certain physical plans below:

PROPOSITION 7. Given a query expressionE with desired out-
put property p: let T s be a plan tree that produces E’s subexpres-
sion Es and yields property ps. If T s has a cumulative cost that is
larger than Bound 〈Es, ps〉, then T s cannot be a sub-tree of the
optimal plan tree for the query E, for property p.

Based on Proposition 7, recursive bounding may safely remove
any plan that exceeds the bound for its expression-property pair.
Indeed, with our definition of the bounds, this strategy is a general-
ization of the aggregate selection strategy discussed in Section 4.1.
However, bounds are recursively defined here and a single plan cost
update may result in a number of changes to bounds for others.

Overall the execution flow of pruning PlanCost and SearchSpace
via recursive bounding is similar to that described in Section 4.1.
Specifically, PlanCost is pruned inside the Fixpoint operator, where
an additional comparison check PlanCost < Bound is performed
before propagating a newly generated PlanCost. Updates over
other Bound tuples derived from a given PlanCost tuple are com-
puted separately. SearchSpace is again pruned via sideways in-
formation passing where the pruned PlanCost tuples are directly
mapped to deletions over SearchSpace.

5. INCREMENTAL RE-OPTIMIZATION
The previous section described how we achieve pruning at a

level comparable to a conventional query optimizer, without be-
ing constrained to the standard data and control flow of a top-down
or bottom-up procedural implementation. In this section, we dis-
cuss incremental maintenance during both query optimization and
re-optimization. In particular, we seek to incrementally update not
only the state of the optimizer, but also the state that affects pruning
decisions, e.g., reference counts and bounds.

Initial query optimization takes a query expression and meta-
data like summaries, and produces a set of tables encoding the plan
search space and cost estimates. During execution, pruning bounds
will always be monotonically decreasing. Now consider incremen-
tal re-optimization, where the optimizer is given updated cost (or
cardinality) estimates based on information collected at runtime af-
ter partial execution. This scenario commonly occurs in adaptive
query processing, where we monitor execution and periodically re-
optimize based on the updated status. For simplicity, our discussion
of the approaches assumes that a single cost parameter (operator
estimated cost, output cardinality) changes, though our architecture
is able to handle multiple such changes simultaneously.

Given a change to a cost parameter, our goal is in principle to re-
evaluate the costs for all affected query plans. Some of these plans
might have previously been pruned from the search space, meaning
they will need to be re-enumerated. Some of the pruning bounds
might need to be adjusted, as some plans become more expensive
and others become cheaper. As the bounds are changed, we may
in turn need to re-introduce further plans that had been previously
pruned, or to remove plans that had previously been viable. This
is where our declarative query optimizer formulation is extremely
helpful: we use incremental view maintenance techniques to only
recompute the necessary results, while guaranteeing correctness.

Incremental maintenance enabled via datalog. From the declar-
ative point of view, initial query optimization and query re-optimiza-
tion can be considered the same task, if the datalog program is ex-
tended to handle updates (insertions, deletions and replacements).
Indeed, incremental query re-optimization can be specified using
a delta rules formulation like [16]. This requires extensions to the
database query processor to support direct processing of deltas:
instead of processing standard tuples, each operator in the query
processor must be extended to process delta tuples encoding changes.



A delta tuple of a relation R may be an insertion (R[+x]), deletion
(R[-x]), or update (R[x→x’]). For example, a new plan gener-
ated in SearchSpace is an insertion; a pruned plan in PlanCost is a
deletion; an updated cost of BestCost is an update.

We extend the query processor following standard conventions
from continuous query systems [19] and stream management sys-
tems [23]. The extended query operators consume and emit deltas
largely as if they were standard tuples. For stateful operators, we
maintain for each encountered tuple value a count, representing the
cumulative total of how many times the tuple has been inserted
and deleted. Insertions increment the count and deletions decre-
ment it; counts may temporarily become negative if a deletion is
processed out of order with its corresponding insertion, though ulti-
mately the counts converge to nonnegative values, since every dele-
tion is linked to an insertion. A tuple only affects the output of a
stateful operator if its count is positive.

Upon receiving a series of delta tuples, every query operator (1)
updates its corresponding state, if necessary; (2) performs any in-
ternal computations such as predicate evaluation over the tuple or
against state; (3) constructs a set of output delta tuples. Joins follow
the rules established in [16]. For aggregation operators that com-
pute minimum (or maximum) values, we must further extend the
internal state management to keep track of all values encountered
— such that, e.g., we can recover the “second-from-minimum”
value. If the minimum is deleted, the operator should propagate
an update delta, replacing its previous output with the next-best-
minimum for the associated group (and conversely for maximum).

Challenge: recomputation of pruned state. While datalog al-
lows us to propagate updates through rules, a major challenge is
that the pruning strategies of Section 4 are achieved indirectly. In
this section we detail how we incrementally re-create pruned state
as necessary. Section 5.1 shows how we incrementally maintain
the output of aggregate selection and “undo” tuple source suppres-
sion. Section 5.2 describes how to incrementally adjust the refer-
ence counts and maintain the pruned plans. Section 5.3 shows how
we can incrementally modify the pruning bounds and the affected
plans. Finally, Section 5.4 discusses how we leverage the ideas
gained from the declarative perspective solving the problem into
more traditional procedural-based query optimization frameworks
and several optimization techniques.

5.1 Incremental Aggregate Selection
Aggregate selection [28] prunes state against bounds and does

not consider how incremental maintenance might change the bound
itself. Our incremental aggregate selection algorithm is a general-
ization of the non-incremental case we describe in Section 4.1. Re-
call that we push down a selection predicate, PlanCost<BestCost,
within the Fixpoint operator that generates PlanCost. To illus-
trate how this works, consider how we may revise BestCost and
BestPlan after encountering an insertion, deletion or update to
PlanCost. There are four possible cases:

1. Upon an insertion PlanCost[+c], set BestCost to min (c,
current BestCost).

2. Upon a deletion PlanCost[-c], set BestCost to the next-
best PlanCost iff the current BestCost is equal to c.

3. Upon a cost update PlanCost[c→c’], if c < c′, set
BestCost to min (c′, next-best PlanCost ) iff the current
BestCost is equal to c.

4. Upon a cost update PlanCost[c→c’], if c > c′, if the
current BestCost is equal to c, then set BestCost to c′; else
set BestCost to min (c′, current BestCost).

Each PlanCost tuple denotes a newly computed cost associated
with a physical plan, and a BestCost tuple denotes the best cost
that has been computed so far for this physical plan’s expression-
property pair. We update BestCost based on the current state of

PlanCost. In Cases 1 and 4, we can directly compute updates to
BestCost. To support Cases 2 and 3, we modify the aggregate
operator to buffer multiple alternative PlanCost tuples, including
those that are non-minimal; we use view-maintenance techniques
to determine when we should replace the current minimum-value
with the next-best value or a new value [20]. In our implementation
we use a priority queue to order the candidate “minimum” tuples.

We may also need to re-introduce tuples in SearchSpace that
were suppressed when they led to PlanCost tuples that were pruned,
we achieve this by propagating an insertion (rather than deletion as
in Section 4.1) to the previous stage.

5.2 Incremental Reference Checking
Once we have updated the set of viable plans for given expres-

sions in the search space, we must consider how this impacts the
viability of their subplans: we must incrementally update the ref-
erence counts on the child expressions to determine if they should
be left the same, re-introduced, or pruned. As before, we simplify
this process and make it order-independent through the use of in-
cremental maintenance techniques.

We incrementally and recursively maintain the reference counts
for each expression-property pair whenever an associated plan in
the PlanCost relation is inserted, deleted or updated. When a new
entry is inserted into PlanCost, we increment the count of each of
its child expression-property pairs; similarly, whenever an existing
entry is deleted from PlanCost, we decrement each child reference
count. Replacement values for PlanCost entries do not change the
reference counts, but may recursively affect the PlanCost entries
for super-expressions. Whenever a count goes from 0 to 1 (or drops
from 1 to 0) we recompute (prune, respectively) all of the physical
plans associated with this expression-property pair.

If we combine this strategy with aggregate selection, only the
best-cost plan needs to be pruned or re-introduced (all others are
pruned via aggregate selection). Similar to Section 5.1, the aggre-
gate operators internally maintain a record of all PlanCost tuples
they have received as input, so “next-best” plans can be retrieved
if the best-cost entry gets deleted or updated to a higher cost value.
During incremental updates, we only propagate changes affecting
the old and new best-cost plan and all recursively dependent plans.

5.3 Incremental Branch-and-bounding
We next consider how to incrementally maintain the branch-and-

bound pruning structure of Section 4.3: as new costs for any opera-
tion are discovered, we must recursively recompute the bounds for
all super-expressions. As necessary we then update PlanCost and
SearchSpace tuples based on the updated bounds. Recall from Fig-
ure 4 that the Bound relation’s contents are computed recursively
based on the max bounds derived from parent plans; and also based
on the min values for equivalent plan costs. Hence, an update to
LocalCost or BestCost may affect the entries in Bound. Here we
again rely in part on the fact that Bound is a recursive query and
we can incrementally maintain it, then use its new content to adjust
the pruning. We illustrate the handling of cost updates by looking
at what happens when a cost increases.

Suppose a plan’s LocalCost increases. As a consequence of the
rules in Figure 4, the ParentBound of this plan’s children may in-
crease due to rules r1 and r2. MaxBound is then updated by r3 to
be the maximum of the ParentBound entries: hence it may also in-
crease. As in the previous cases, the internal aggregate operator for
ParentBound maintains all input values; thus, it can recompute the
new minimum bound and output a corresponding update from old
to new value. Finally, as a result of the updated ParentBound,
Bound in r4 may also increase. The process may continue re-
cursively to this plan’s descendant expression-property pairs, un-
til Bound has converged to the correct bounds for all expression-
property pairs.



Alternatively, suppose an expression-property pair’s BestCost
estimate increases (e.g., due to discovering the machine is heavily
loaded). This may trigger an update to the corresponding entry in
Bound (via rule r4). Moreover, via rules r1 and r2, an update to
this bound may affect the bounds on the parent expression, i.e.,
ParentBound, and thus affecting any expression whose costs were
pruned via ParentBound.

The cases for handling cost decreases are similar. Sometimes
we may get simultaneous changes in both directions. Consider,
for instance, that an expression’s cost bound may increase, as in
the previous paragraph. At the same time, perhaps the expression-
property pair’s ParentBound may decrease. Any equivalent plan
(sibling expression) for our original expression-property pair is bou-
nded both by the bounds of sibling expressions and parents. As
ParentBound decreases, MaxBound and Bound may also poten-
tially decrease through r3 and r4. The results are guaranteed to
converge to the best of the sibling and parent bounds.

So far we focused only on how to update bounds given updated
cost information; of course, there is the added issue of updating
the pruning results. Recall in Section 4.3 that we evaluate the fol-
lowing predicate φ before propagating a newly generated PlanCost
value: if PlanCost < Bound then set Bound to PlanCost. When
PlanCost or Bound is updated, we can end up in any of 3 cases:

1. Upon a plan cost update PlanCost[+c],PlanCost[-c] or
PlanCost[c→c’]: if predicate φ’s result changes from false
to true, then emit an insertion of the PlanCost tuple; other-
wise if φ’s result changes from true to false, then emit a dele-
tion. Incrementally update the corresponding Bound entry,
including its aggregated cost value, as a result.

2. Upon an update on Bound[b→b’] where b < b′: for those
tuples t in PlanCost where b < t.cost < b′, re-insert t
into PlanCost and re-insert t’s counterpart in SearchSpace
to undo tuple source suppression.

3. Upon an update on Bound[b→b’] where b > b′: for those
tuples t in PlanCost where b > t.cost > b′, prune tuple t
from PlanCost and delete t’s counterpart from SearchSpace
via tuple source suppression.

The first step resembles incremental aggregate selection (Section 5.1),
except that here the condition check is not on BestCost but rather
on Bound. Essentially we want to incrementally update Bound
based on the current bounding status, hence a sorted list of PlanCost
tuples needs to be maintained.

An interesting observation of Cases 2 and 3 is that an update
on Bound may affect the pruned or propagated plans as well. If
a bound is raised, it may re-introduce previously pruned plans;
if a bound is lowered, it may incrementally prune previously vi-
able plans. If incremental aggregate selection is used, then only
the optimal plan among the pruned plans needs to be revisited.
SearchSpace is again updated via sideways information passing.

5.4 Adapting Traditional Optimizers
Our declarative query re-optimizer enabled us to define pruning

strategies independently from execution flow, and guaranteed cor-
rectness. This has given us a specification for pruning that we can
“retrofit” into traditional bottom-up or top-down query optimizers.
We can modify the procedural query optimizer to incrementally
recompute portions of a query plan (and the contents of the mem-
oization table), and propagate control flow upwards or downwards
as appropriate to propagate the effects of a change. Then a variety
of our techniques from the prior sections can similarly be adapted:

• Incremental aggregate selection can be used to memoize sub-
optimal plans as well as optimal ones, and only propagate
changes that affect the choice of a “best” alternative plan for
a given expression.

• Incremental branch-and-bound can maintain a table of bounds
for subplans, which can be used for pruning.

• Separating the bounds computation enables it to be updated
during enumeration both of alternative plans and superplans,
as well as smaller subplans.

For both declarative and procedural-based query optimizers, we can
also apply two main optimizations to minimize recomputation and
bookkeeping. We term the first idea lazy propagation: only prop-
agate cost changes if they might affect the choice of a super-plan;
keep any remaining changes local to a node. For example, if we
know in advance that an optimal subplan has not changed or it has
even decreased in cost, we only need to consider alternative (previ-
ously suboptimal) plans whose costs may also have decreased.

The second optimization is to trade-off memoization versus re-
computation, to reduce the cost of bookkeeping for suboptimal
plans. On one extreme, if we memoize nothing during pre-optimiza-
tion, then re-optimization will always need to do a full recomputa-
tion. On the other extreme, if we memoize everything, we might
use up too much memory for bookkeeping. Hence in some cases,
we can choose to only memoize the suboptimal plans most likely
to become viable if small changes are made; and choose to dis-
card the other alternatives, later recomputing them as necessary.
This is a time and space complexity trade-off, but often a small
amount of memoization can limit the recomputation to a few nodes
in the and-or graph. We can also cache the output when a re-
computation occurs, to avoid multiple revisits of the same node
during re-optimization.

6. EVALUATION
In this section, we discuss the implementation and evaluate the

performance of our incremental re-optimizer both versus other strate-
gies, and as a primitive for adaptive query processing. (Note that
we reuse existing adaptive query processing technologies from [17,
30]; our focus is to show that incremental re-optimization improves
these systems.) We also demonstrate that our ideas work in both
declarative and procedural query optimizer implementations.

We implemented the declarative optimizer in 10 datalog rules
(see Appendix) with 8 auxiliary functions (including histogram gen-
eration, cost estimation, expression decomposition and so forth).
Our goal was to implement as a proof of concept the common core
of optimizer techniques — not an exhaustive set. We executed the
optimizer in a modified version of the ASPEN system’s query en-
gine [20]. To support the pruning and incremental update propa-
gation features in this paper, we added approximately 10K lines of
code to the query engine. In addition, we developed a plan genera-
tor to translate the declarative optimizer into a dataflow graph as in
Figure 2. Our experiments were performed on a single local node.

For comparison, we implemented in Java both a Volcano-style
top-down query optimizer with branch-and-bound pruning, and a
System-R-style bottom-up dynamic programming optimizer, which
both reuse the histogram generation, cost estimation, and other core
components as auxiliary functions in our declarative optimizer. We
also built a variant of our declarative optimizer that only uses the
pruning strategies of the Evita Raced declarative optimizer [9]. Wher-
ever possible we used common code across the implementations to
make fair comparisons. Finally, we extended this optimizer to sup-
port incremental computation using the declarative implementation
as a reference.

Experimental Workload. For repeated optimization scenarios
we use TPC-H queries, with data from the TPC-H and skewed
TPC-D data generators [25] (Scale Factor 1, with Zipfian skew fac-
tor 0 for the latter). We focused on the single-block SQL queries:
Q1, 3, 5, 6 and 10. (Q1 and 6 are aggregation-only queries; Q3



0.50s 0.46s 0.34s 2.46s 0.70s 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

Q5 Q5S Q10 Q8Join Q8JoinS 

Top-down 

Bottom-up 

Evita-Raced 

Declarative 

Apache Derby 

(a) Execution time (normalized to top-down style)

0	
   0	
   0	
   0	
   0	
  
0	
  

0.1	
  

0.2	
  

0.3	
  

0.4	
  

0.5	
  

0.6	
  

0.7	
  

0.8	
  

Q5	
   Q5S	
   Q10	
   Q8Join	
   Q8JoinS	
  

Declara8ve	
  
Evita-­‐Raced	
  
Top-­‐down	
  

(b) Pruning ratio: plan table entries

0	
  

0.1	
  

0.2	
  

0.3	
  

0.4	
  

0.5	
  

0.6	
  

0.7	
  

0.8	
  

0.9	
  

1	
  

Q5	
   Q5S	
   Q10	
   Q8Join	
   Q8JoinS	
  

Declara9ve	
  
Evita-­‐Raced	
  
Top-­‐down	
  

(c) Pruning ratio: plan alternatives

Figure 5: Performance comparison for initial query optimization, across different optimizer architectures

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.125 0.25 0.5 1 2 4 8

Change A=REGION*NATION

Change B=CUSTOMER*A

Change C=ORDERS*B

Change D=LINEITEM*C

Change E=SUPPLIER*D

Ratio: new join cost/old join cost

(a) Execution time (normalized to top-down style)

0

0.05

0.1

0.15

0.2

0.25

0.125 0.25 0.5 1 2 4 8

Change A=REGION*NATION

Change B=CUSTOMER*A

Change C=ORDERS*B

Change D=LINEITEM*C

Change E=SUPPLIER*D

Ratio: new join cost/old join cost

(b) Update ratio: plan table entries

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.125 0.25 0.5 1 2 4 8

Change A=REGION*NATION

Change B=CUSTOMER*A

Change C=ORDERS*B

Change D=LINEITEM*C

Change E=SUPPLIER*D

Ratio: new join cost/old join cost

(c) Update ratio: plan alternatives

Figure 6: Performance during incremental re-optimization of TPC-H Q5 — change to join selectivity estimate

joins 3 relations; Q10 joins 4; and Q5 joins 6 relations). Our ex-
periments showed that Q1, 3, and 6 are all simple enough to opti-
mize that (1) there is not a compelling need to adapt, since there
are few plan alternatives; (2) they completed in under 80msec on
all implementations. (The declarative approach tended to add 10-
50msec to these settings, as it has higher initialization costs.) Thus
we focus our presentation on join queries with more than 3-way
joins. To create greater query diversity, we modified the 4-way
and larger join queries by removing aggregation — we constructed
a simplified query Q5S. Finally, to test scale-up to larger queries,
we manually constructed an eight-way join query, Q8Join, and its
simplified version (removing aggregates), Q8JoinS. For adaptive
stream processing we used the Linear Road benchmark [2]: We
modified the largest query, called SegToll, into SegTollS. We show
the TPC-H and LinearRoad benchmark queries used in our experi-
ments in Table 5 in Appendix B.

Experimental Methodology. We aim to answer five questions:
• Can a declarative query optimizer perform at a rate competitive

with procedural optimizers, for 4-way-join queries and larger?

• Does incremental query re-optimization show running time and
search space benefits versus non-incremental re-optimization, for
repeated query execution-over-static-data scenarios?

• How does each of our three pruning strategies (aggregate selec-
tion, reference counting, and recursive bounding) contribute to the
performance?

• Can the ideas of incremental re-optimization studied from the
declarative perspective be applied to traditional procedural-based
query optimization frameworks, and what is their performance
versus their non-incremental counterparts?

• Does incremental re-optimization improve the performance of cost-
based adaptive query processing techniques for streaming?

The TPC-H benchmark experiments are conducted on a single
local desktop machine: a dual-core Intel Core 2 2.40GHz with 2GB
memory running 32-bit Windows XP Professional, and Java JDK
1.6. The Linear Road benchmark experiments are conducted on a
single server machine: a dual-core Intel Xeon 2.83GHz with 8 GB
memory running 64-bit Windows Server Standard. Performance
results are averaged across 10 runs, and 95% confidence intervals
are shown. We mark as 0 any results that are exactly zero.

6.1 Declarative Optimization Performance
Our initial experiments focus on the question of whether our

declarative query optimizer can be competitive with procedu-
ral optimizers based on bottom-up style enumeration through dy-
namic programming and top-down style enumeration with memo-
ization and branch-and-bound pruning models. To show the value
of the pruning techniques developed in this paper, we also measure
the performance when our engine is limited to the pruning tech-
niques developed in Evita Raced [9] (where pruning is only done
against logically equivalent plans for the same output properties).
Recall that all of our implementations share the same procedural
logic (e.g., histogram derivation); their differences are in search
strategy, dataflow, and pruning techniques.

We begin with a running time comparison among top-down style,
bottom-up style, and declarative implementations (one using our
sideways information passing strategies, and one based on the Evita
Raced pruning heuristics) — shown in Figure 5 (a). This graph is
normalized against the running times for our top-down style im-
plementation (which is also included as a bar for visual compar-
ison of the running times). Actual top-down running times are
shown directly above the bar. Observe from the graph that the top-
down strategy is always the fastest, though bottom-up style enu-
meration often approaches its performance due to simpler (thus,
slightly faster) exploration logic. Our declarative implementation
is not quite as fast as the dedicated procedural optimizers, with an
overhead of 10-50%, but this is natural given the extra overhead
of using a general-purpose engine and supporting incremental up-
date processing. The Evita Raced-style declarative implementa-
tion is marginally faster in this setting, as it does less pruning. We
also measure the query optimization performance of Apache Derby
(chosen because it is a state of the art open-source DBMS imple-
mented in Java, like our engine) to show how a well-known DBMS
performs the same query, as a reference.2 We shall see in later ex-
periments that there are significant benefits to our more aggressive
strategies during re-optimization — which is our focus in this work.

To understand the contributions of the different options, we next
study their effectiveness in pruning the search space. We divide
this into two parts: (1) pruning of expression-property entries in

2While some commercial DBMSs offer richer statistical or ma-
chine learning techniques, such capabilities are reliant on static data
or predictable workloads.



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9

Declarative AggSel+RefCount+Branch&Bounding

Split No

(a) Execution time (normalized to top-down style)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9

Declarative AggSel+RefCount+Branch&Bounding

Split No

(b) Update ratio: plan table entries

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9

Declarative AggSel+Refcount+Branch&Bounding

Split No

(c) Update ratio: plan alternatives

Figure 7: Performance during incremental re-optimization of TPC-H Q5 — updates to costs based on real execution over skewed data

the plan table, such that we do not need to compute and maintain
any plans for a particular expression yielding a particular property;
(2) pruning of plan alternatives for a particular expression-property
pair. In terms of the and-or graph formulation of Figure 3, the first
case prunes or-nodes and the second prunes and-nodes. We show
these two cases in Figure 5 parts (b) and (c). We omit bottom-
up style optimizers from this discussion, as they use a dynamic
programming-based pruning model is not directly comparable.

Part (b) shows that our declarative implementation achieves prun-
ing of approximately 35-80% of the plan table entries, resulting in
large reductions in state (and, in many cases, reduced computa-
tion). We compare with the strategies used by Evita Raced, which
never prunes plan table entries, and with our top-down style imple-
mentation. Our pruning strategies, which are flexible with respect
to order of evaluation, are often more effective than the top-down
strategy, which is limited to top-down enumeration with branch-
and-bound pruning. (All pruning strategies’ effectiveness depends
on the specific order in which nodes are explored, and may be non-
deterministic: better pruning is achieved when inexpensive options
happen to be considered early. However, in the common case, high
levels of pruning are observed, as we see next.)

Part (c) shows that our implementation prunes approximately 55-
75% of the plans (95% confidence intervals are plotted but are ex-
tremely tight). It exceeds the pruning ratios obtained by the Evita
Raced strategies by 4-8%, and often results in significantly greater
pruning than the top-down style.

We conclude from these results that a declarative optimizer can
be competitive in terms of running time and pruning.

6.2 Incremental Re-optimization
We next study the trade-offs in processing incremental changes

to costs. A typical setting in a non-streaming context would be the
repeated execution of a prepared statement query, where a bound
variable affects costs. We measure, for a given update, how expen-
sive it is to re-optimize the query and produce the new, predicted-
optimal plan. Note that there exist no comparable techniques for in-
cremental cost-based re-optimization, so we compare the gains ver-
sus those of re-running a complete optimization (as is done in [17,
30]). In these experiments, we consider running time — versus
the running times for the best-performing initial optimization strat-
egy, namely that of our top-down style implementation — as well
as how much of the total search space gets re-enumerated. We
consider re-optimization under “microbenchmark”-style simulated
changes to costs, for synthetic updates as well as observed execu-
tion conditions over skewed data. We measured performance across
the full suite of queries in our workload. However, since the re-
sults are representative, we focus our presentation on query Q5. We
show more experimental results in the appendix.

6.2.1 Synthetic Changes to Subplan Costs
We first simulate what happens if we discover that an operator’s

output is not in accordance with our original selectivity estimates.
Figures 6 (a)-(c) show the impact of synthetically injecting changes
for each join expression’s selectivity, and therefore the PlanCost of

the related plans and their super-plans. For conciseness in the graph
captions, we assign a symbol with each expression, e.g., the first
join Region 1 Nation is expression A, and the second join ex-
pression combines the output of A with data from the Customer
table, yielding B = Customer 1 A. We expect that changes
to smaller subplans will take longer to re-optimize, and changes
to larger subplans will take less time (due to the number of recur-
sive propagation steps involved). We separately plot the results of
changing each expression’s selectivity value, as we change it along
a range from 1/8 the predicted size through 8 times larger than the
predicted size. Running times in part (a) are plotted relative to the
top-down implementation’s performance: we see that the speedups
are at least a factor of 12, when the lowest-level join cost is updated;
going up to over 300, when the topmost join operator’s selectivity
is changed. In general the speedups confirm that larger expressions
are cheaper to update. We can observe from these last two figures
that we recompute only a small portion of the search space.

6.2.2 Changes based on Real Execution
We now look at what happens when costs are updated according

to an actual query execution. We took TPC-H Q5 and to gain bet-
ter generality, we divided its input into 10 partitions (each having
uniform distribution and independent variables) that would result
in equal-sized output. We optimized the query over one such par-
tition, using histograms from the TPC-H dataset. Then we ran the
resulting query over different partitions of skewed data (Zipf skew
factor 0.5, from the Microsoft Research skewed TPC-D genera-
tor [25]); each of which exhibits different properties. At the end we
re-optimized the given the cumulatively observed statistics from the
partition. We performed re-optimization on each of such interval,
given the current plan and the revised statistics.

Figure 7 (a) shows the execution times for each round of incre-
mental re-optimization, normalized against the running time of top-
down style. We see that, as with the join re-estimation experiments
of Figure 6, there are speedups of a factor of 10 or greater. In terms
of throughput, the top-down model takes 500msec to perform one
optimization, meaning it can perform 2 re-optimizations per sec-
ond; whereas our declarative incremental re-optimizer can achieve
20-60 optimizations per second, and it can respond to changing
conditions in 10-100msec. Again, Figure 7 (b) and (c) show that
the speedup is due to significant reductions in the amount of state
that must be recomputed.

Table 2 shows overall performance for this setting, over TPC-
D scale factor 10 data. We omit the cost of initial optimization,
and show (top row) the overall cost of incremental re-optimization
plus execution for each split, vs. (bottom row) the cost of simply
executing the originally optimized plan over the same data split.
This corresponds to running a prepared statement, with selection
predicates over different parts of the data, using incremental re-
optimization given costs for the selected data – vs. a single query
plan over all of the data.

6.3 Contributions of Pruning Strategies
Here we investigate how each of our pruning and incremental



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.125 0.25 0.5 1 2 4 8

AggSel

AggSel+RefCount

AggSel+Branch&Bounding

All

Ratio: new scan cost/old scan cost

(a) Execution time (vs top-down style)

0 0 0 0 0 00 0 00 0 0
0

0.05

0.1

0.15

0.2

0.25

0.125 0.25 0.5 1 2 4 8

AggSel

AggSel+RefCount

AggSel+Branch&Bounding

All

Ratio: new scan cost/old scan cost

(b) Pruning ratio: plan table entries

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.125 0.25 0.5 1 2 4 8

AggSel

AggSel+RefCount

AggSel+Branch&Bounding

All

Ratio: new scan cost/old scan cost

(c) Pruning ratio: plan alternatives
Figure 8: Contributions of pruning techniques for re-optimization of Q5 when Orders has updated scan cost

Split number
1 2 3 4 5 6 7 8 9

2.07 2.91 2.05 2.02 2.91 2.02 2.04 2.04 2.06
2.77 3.49 2.66 2.04 2.95 2.01 2.23 2.86 3.01

Table 2: Query processing time (s) of incrementally re-
optimized vs. single-stage TPCH-Q5, for splits of Fig. 7
strategies from Sections 4 and 5 contribute to the overall perfor-
mance of our declarative optimizer. We systematically considered
all techniques individually and in combination, unless they did not
make sense (e.g., reference counting must be combined with one
of the other techniques, and branch-and-bound requires aggregate
selection to perform pruning of the search space). See Figure 8,
where AggSel refers to aggregate selection with source tuple sup-
pression; RefCount refers to reference counting; and Branch&-
Bounding refers to recursive bounding. We consider aggregate se-
lection in isolation and with the other techniques.

The incremental setting — shown for Q5 and changes to the
orders table, in Figures 8 (a)-(c) — shows benefits in running time
and pruned search space. In contrast to our other graphs for in-
cremental re-optimization, plots (b) and (c) isolate the amount of
pruning performed, rather than showing the total state updated. Our
different techniques work best in combination, and each increases
the amount of pruning.

Query Num of Joins Pruning Strategy Space (KB)
Q10 4 No pruning 2211

AggSel 253
All pruning 412

Q5 6 No pruning 3046
AggSel 266

All pruning 445
Q8Join 8 No pruning DNC

AggSel 1046
All pruning 1669

Table 3: Overhead of memoized state in declarative optimizer

Table 3 shows the total state size in our declarative optimizer.
We measure the size of the objects instead of the JVM memory to
alleviate the effects of garbage collection. We measure the space
overhead of TPC-H Q10, Q5 and Q8Join, with 4, 6, 8 joins respec-
tively. Since we employ the same memoization scheme for initial
query pre-optimization and query re-optimization in the declara-
tive approach, these numbers both relate to pre-optimization and
re-optimization. The table shows the size of the unpruned state.
(Here since the optimization time for Q8Join without pruning did
not complete within over 2 minutes, due to a complete lack of prun-
ing.) If we only prune by using AggSel, we have less state to
maintain than the full pruning scenario, but the optimization time
is worse, as shown in Figure 8.

6.4 Incrementalizing a Conventional Optimizer
To this point, we have focused on the performance of our datalog-

based query optimizer implementation. As described in Section 5.4,
some of the ideas from this implementation can also be retrofitted

into more conventional optimizers (both top-down and bottom-up).
Thus we measure, in Figure 9, how a traditional optimizer, retrofitted
with incremental re-optimization, performs versus an equivalent
non-incremental implementation.

In this experiment, we see the cost of re-optimization if a join’s
actual cost is discovered to vary (by a factor ranging from 1/8th to
8x of its estimated cost) for TPC-H query Q5. In our procedural
implementation we memoize not only the best plans, but alterna-
tive subplans. Figure 9 (a) shows the running time for incremental
query re-optimization (normalized to the time for non-incremental
counterparts), for several different queries. The “(BU)” entries
are bottom-up implementations, whereas “(TD)” references a com-
parable top-down implementation. Observe that incremental re-
optimization is 4-20 times faster than a complete optimization. As
expected, the results validate that top-down strategies are generally
superior to bottom-up ones, because they enable greater amounts of
pruning. The only exception to this is the last data point, where we
change the join cost of E = Supplier ∗ D: here, increasing this
join cost causes the top-down re-optimizer to recompute a larger
number of nodes than the bottom-up implementation.

We can see this in more detail in Figure 9 (b), which shows
the proportion of updated plan table entries (OR nodes), and in
(c), which shows the proportion of recomputed plan alternatives
(AND nodes). In general, the larger the subexpression for which a
join cost changes, the less work is required to re-compute and up-
date, and the more benefit provided by incremental re-optimization.
Bottom-up re-optimizers generally incur the same amount of up-
dated plan table entries as the non-incremental approach due to lack
of pruning, and constantly recompute less than 60% of the plan al-
ternatives; top-down re-optimizers usually incur far less updates
and recomputations when a join cost decreases and more updates
when a join cost increases.

6.5 Incremental Reoptimization for AQP
A major motivation for our work was to facilitate better cost-

based adaptive query processing, especially for continuous opti-
mization of stream queries. Our goal is to show the benefits of in-
cremental reoptimization; we leave as future work a broader com-
parison of adaptive query processing techniques. Our final set of
experiments shows how our techniques can be used within a stan-
dard cost-based adaptive framework, one based on the data-partitio-
ned model of [17] where the optimizer periodically pauses plan ex-
ecution, forming a “split” point from which it may choose a new
plan and continue execution. In general, if we change plans at a
split point, there is a challenge of determining how to combine state
across the split. In contrast to [17] we chose not to defer the cross-
split join execution until the end: rather, we used CAPE’s state
migration strategy [30] to transfer all existing state from the prior
plan into the current one. As necessary, new intermediate state is
computed. Note that our data-partitioned model could be combined
with other cost-based adaptive schemes such as [18, 21].

To evaluate this setting, we combine unfold the various views
comprising the SegToll query from the Linear Road benchmark [2]



0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.125 0.25 0.5 1 2 4 8 

Change A=REGION*NATION (BU) Change A=REGION*NATION (TD) 
Change B=CUSTOMER*A (BU) Change B=CUSTOMER*A (TD) 
Change C=ORDERS*B (BU) Change C=ORDERS*B (TD) 
Change D=LINEITEM*C (BU) Change D=LINEITEM*C (TD) 
Change E=SUPPLIER*D (BU) Change E=SUPPLIER*D (TD) 

Ratio: new join cost/old join cost  

(a) Optimization time ratio to non-incremental
counterparts

0 

0.5 

1 

1.5 

2 

2.5 

0.125 0.25 0.5 1 2 4 8 

Change A=REGION*NATION (BU) Change A=REGION*NATION (TD) 
Change B=CUSTOMER*A (BU) Change B=CUSTOMER*A (TD) 
Change C=ORDERS*B (BU) Change C=ORDERS*B (TD) 
Change D=LINEITEM*C (BU) Change D=LINEITEM*C (TD) 
Change E=SUPPLIER*D (BU) Change E=SUPPLIER*D (TD) 

Ratio: new join cost/old join cost  

(b) Update ratio: plan table entries

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0.125 0.25 0.5 1 2 4 8 

Change A=REGION*NATION (BU) Change A=REGION*NATION (TD) 
Change B=CUSTOMER*A (BU) Change B=CUSTOMER*A (TD) 
Change C=ORDERS*B (BU) Change C=ORDERS*B (TD) 
Change D=LINEITEM*C (BU) Change D=LINEITEM*C (TD) 
Change E=SUPPLIER*D (BU) Change E=SUPPLIER*D (TD) 

Ratio: new join cost/old join cost  

(c) Recompute ratio: plan alternatives

Figure 9: Performance of top-down vs bottom-up style procedural incremental re-optimization of TPC-H Q5 — upon change to join cost value

1 

10 

100 

1000 

10000 

100000 

1000000 

0 5 10 15 

Bad Plan Good Plan AQP-Cumulative 

Ex
ec

u
ti

o
n

  T
im

e 
(m

s)
 

Slice No  

Paging to disk 
 

0 

50 

100 

150 

200 

250 

300 

350 

400 

0 30 60 90 120 

Tukwila's Non-Inc Re-Opt 

Apache Derby's Non-Inc Re-Opt 

Our Declarative Inc Re-Opt 

R
e-

o
p

t 
Ti

m
e 

(m
s)

 

Slice No  

Figure 10: AQP execution (left) and re-optimization times
— resulting in a 5-way join plan SegTollS with multiple windowed
aggregates. We use the standard Linear Road data generator to syn-
thesize data whose characteristics frequently change.

In the adaptive setting, our goal is to have the optimizer start with
zero statistical information on the data, and find a sequence of plans
whose running time equals or betters the single best static plan that
it would pick given complete information (e.g., histograms).

On the left of Figure 10, we see that our incremental AQP scheme
provides superior performance to the single best plan (“good
single plan”), if we re-optimize every 1 second. This is because
the adaptive scheme has a chance to “fit” its plan to the local char-
acteristics of whatever data is currently in the window, rather than
having to choose one plan for all data.

Per Slice Re-Opt Time N.C. Exec Time Total Time
1s 5.75s 2.20s 7.95s
5s 1.23s 6.82s 8.05s

10s 0.63s 13.35s 13.98s

Table 4: Frequency of Adaptation (20 sec stream)

A natural question is where the “sweet spot” is between query
execution versus optimizer overhead. We measured, for several
slice sizes, the total query processing time over each new slice of
data (not considering the additional overhead of state migration,
which depends on how similar the plans are). Table 4 shows sig-
nificant gains in shrinking the interval from 10sec to 5sec, but little
more gain to be had in going down to 1sec. Figure 10 shows that as
we re-optimize and execute, the overhead of a non-incremental re-
optimizer remains constant (about 200 msec each time), whereas
the incremental re-optimization time drops off rapidly, going to
nearly zero as the plan stabilizes. This means that the system has
essentially converged on a plan and that new executions do not
affect the final plan. We measure the performance against Tukwila-
style query optimizer implementation [17], as well as the Apache
Derby query optimizer. We see that the majority of incremental re-
optimizations are much faster than the non-incremental baselines.

6.6 Experimental Conclusions
We summarize the answers to questions posed at the start of

this section. First, our declarative query optimizer performs re-
spectably when compared to a procedural query optimizer, for ini-
tial optimization: despite the overhead of a full query processor,
it gets within 10-50% of the running times of a dedicated opti-

mizer. It more than recovers this overhead during incremental re-
optimization, where it typically shows an order-of-magnitude speed-
up or better. Such gains are largely due to having to re-enumerate
a much smaller space of plans. In addition, our pruning tech-
niques of Section 4 and Section 5 each contribute in a meaningful
way to the overall performance of incremental re-optimization. We
also successfully adapted our novel pruning techniques to a pro-
cedural implementation, providing speedup factors of more than
4. Finally, our incremental re-optimization techniques enable finer-
grained adaptivity and hence better overall performance. Overhead
decreases as the system converges on a single plan.

7. RELATED WORK
Our work takes a first step towards supporting continuous adap-

tivity in a distributed (e.g., cloud) setting where correlations and
runtime costs may be unpredictable at each node. Fine-grained
adaptivity has previously only been addressed in the query process-
ing literature via heuristics, such as flow rates [3, 29], that contin-
uously “explore” alternative plans rather than using long-term cost
estimates. Exploration adds overhead even when a good plan has
been found; moreover, for joins and other stateful operators, the
flow heuristics has been shown to result in state that later incurs
significant costs [10]. Other strategies based on filter reordering [4]
are provably optimal, but only work for selection-like predicates.
Full-blown cost-based re-optimization can avoid these future costs
but was previously only possible on a coarse-grained (high multiple
seconds) interval [17, 30].

Our use of declarative techniques to specify the optimizer was in-
spired in part by the Evita Raced [9] system. However, their work
aims to construct an entire optimizer using reprogrammable data-
log rules, whereas our goal is to effectively perform incremental
maintenance of the output query plan. We seek to fully match the
pruning techniques of conventional optimizers following the Sys-
tem R [27] and Volcano [14] models. Our results show for the first
time that a declarative optimizer can be competitive with a proce-
dural one, even for one-time “static” optimizations, and produce
large benefits for future optimizations.

8. CONCLUSIONS AND FUTURE WORK
To build large-scale, pipelined query processors that are reac-

tive to conditions across a cluster, we must develop new adaptive
query processing techniques. This paper represents the first step
towards that goal: namely, a fully cost-based architecture for incre-
mentally re-optimizing queries. As future work, we plan to study
how our declarative execution model parallelizes across multi-core
hardware and clusters, and how it can be extended to consider the
cost of changing a plan given existing query execution state.

9. ACKNOWLEDGMENTS
This work was funded in part by grants NSF IIS-0713267, IIS-

1050448, CNS-0845552, CNS-1218066, CNS-1513679, and NIH
1U01EB020954-01.



References
[1] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated

selection of materialized views and indexes in SQL databases.
In VLDB, 2000.

[2] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey,
E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear road: a
stream data management benchmark. In VLDB, pages 480–
491, 2004.

[3] R. Avnur and J. M. Hellerstein. Eddies: Continuously adap-
tive query processing. In SIGMOD, 2000.

[4] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and
J. Widom. Adaptive ordering of pipelined stream filters. In
SIGMOD, 2004.

[5] A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li,
N. Onose, R. Vernica, A. Deutsch, Y. Papakonstantinou, and
V. J. Tsotras. Asterix: towards a scalable, semistructured data
platform for evolving-world models. Distributed and Parallel
Databases, 29(3):185–216, 2011.

[6] N. Bruno and S. Chaudhuri. Exploiting statistics on query
expressions for optimization. In SIGMOD, 2002.

[7] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden,
V. Raman, F. Reiss, and M. A. Shah. TelegraphCQ: Contin-
uous dataflow processing for an uncertain world. In CIDR,
2003.

[8] S. Chaudhuri. An overview of query optimization in relational
systems. In PODS, pages 34–43, 1998.

[9] T. Condie, D. Chu, J. M. Hellerstein, and P. Maniatis. Evita
raced: metacompilation for declarative networks. PVLDB,
1(1):1153–1165, 2008.

[10] A. Deshpande and J. M. Hellerstein. Lifting the burden of
history from adaptive query processing. In VLDB, pages 948–
959, 2004.

[11] A. Deshpande, Z. Ives, and V. Raman. Adaptive query pro-
cessing. Foundations and Trends in Databases, 2007.

[12] A. Dutt and J. R. Haritsa. Plan bouquets: query process-
ing without selectivity estimation. In SIGMOD, pages 1039–
1050, 2014.

[13] G. Graefe. The Cascades framework for query optimization.
IEEE Data Eng. Bull., 18(3):19–29, 1995.

[14] G. Graefe and W. J. McKenna. The Volcano optimizer gener-
ator: Extensibility and efficient search. In ICDE, pages 209–
218, 1993.

[15] A. Gupta, H. Jagadish, and I. S. Mumick. In P. Apers,
M. Bouzeghoub, and G. Gardarin, editors, EDBT. Berlin /
Heidelberg, 1996.

[16] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining
views incrementally. In SIGMOD, pages 157–166, 1993.

[17] Z. G. Ives, A. Y. Halevy, and D. S. Weld. Adapting to source
properties in processing data integration queries. In SIGMOD,
pages 395–406, 2004.

[18] N. Kabra and D. J. DeWitt. Efficient mid-query re-
optimization of sub-optimal query execution plans. In SIG-
MOD, pages 106–117, 1998.

[19] L. Liu, C. Pu, R. Barga, and T. Zhou. Differential evaluation
of continual queries. Technical Report TR95-17, University
of Alberta, June 1995.

[20] M. Liu, N. E. Taylor, W. Zhou, Z. G. Ives, and B. T. Loo. Re-
cursive computation of regions and connectivity in networks.
In ICDE, 2009.

[21] V. Markl, V. Raman, G. Lohman, H. Pirahesh, D. Simmen,
and M. Cilimdzic. Robust query processing through progres-
sive optimization. In SIGMOD, 2004.

[22] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive analysis of
web-scale datasets. PVLDB, 3(1):330–339, 2010.

[23] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query processing, resource management, and approximation
in a data stream management system. In CIDR, 2003.

[24] B. Mozafari, E. Z. Y. Goh, and D. Y. Yoon. Cliffguard: A
principled framework for finding robust database designs. In
SIGMOD, pages 1167–1182, New York, NY, USA, 2015.

[25] V. Narasayya. TPC-D skewed data generator. 1999.
[26] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient

and extensible algorithms for multi query optimization. In
SIGMOD, volume 29(2), pages 249–260, 2000.

[27] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lo-
rie, and T. G. Price. Access path selection in a relational
database management system. In SIGMOD, pages 23–34,
1979.

[28] S. Sudarshan and R. Ramakrishnan. Aggregation and rele-
vance in deductive databases. In VLDB, 1991.

[29] S. D. Viglas and J. F. Naughton. Rate-based query optimiza-
tion for streaming information sources. In SIGMOD, pages
37–48, 2002.

[30] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman. Dynamic
plan migration for continuous queries over data streams. In
SIGMOD, 2004.

APPENDIX
A. DATALOG RULES FOR OPTIMIZER
R1: SearchSpace(expr , prop, index , logOp, phyOp, lExpr ,

lProp, rExpr , rProp) :-
Expr(expr , prop), Fn_isleaf(expr , false),
Fn_split(expr , prop, index , logOp, phyOp, lExpr ,

lProp, rExpr , rProp);
R2: SearchSpace(expr , prop, index , logOp, phyOp,

lExpr , lProp, rExpr , rProp) :-
SearchSpace(−,−,−,−,−, expr , prop,−,−),
Fn_isleaf(expr , false),
Fn_split(expr , prop, index , logOp, phyOp,

lExpr , lProp, rExpr , rProp);
R3: SearchSpace(expr , prop, index , logOp, phyOp,

lExpr , lProp, rExpr , rProp) :-
SearchSpace(−,−,−,−,−,−,−, expr , prop),
Fn_isleaf(expr , false)),
Fn_split(expr , prop, index , logOp, phyOp,

lExpr , lProp, rExpr , rProp);
R4: SearchSpace(expr , prop,−,′ scan ′, phyOp,−,−,−,−)) :-

SearchSpace(−,−,−,−,−, expr , prop,−,−),
Fn_isleaf(expr , true), Fn_phyOp(prop, phyOp);

R5: SearchSpace(expr , prop,−,′ scan ′, phyOp,−,−,−,−) :-
SearchSpace(−,−,−,−,−,−,−, expr , prop),
Fn_isleaf(expr , true), Fn_phyOp(prop, phyOp);

R6: PlanCost(expr , prop, index , logOp, phyOp,−,−,−,−,
md , cost) :-

SearchSpace(expr , prop, index , logOp, phyOp,−,−,−,−),
Fn_scansummary(expr , prop,md),
Fn_scancost(expr , prop,md , cost);

R7: PlanCost(expr , prop, index , logOp, phyOp,
lExpr , lProp,−,−,md , cost) :-

SearchSpace(expr , prop, index , logOp, phyOp,
lExpr , lProp,−,−, Fn_isleaf(lExpr , false),

PlanCost(lExpr , lProp,−,−,−,−,−,−,−, lMd , lCost),
Fn_nonscansummary(expr , prop, index , logOp, lMd ,−,md),
Fn_nonscancost(expr , prop, index , logOp, phyOp,

lExpr , lProp,−,−,md , localCost),
Fn_sum(lCost ,null , localCost , cost);



Q1: SELECT l_returnflag, l_linestatus, sum(l_quantity) as sum_qty, sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice*(1-l_discount)) as sum_disc_price, sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,
avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price, avg(l_discount) as avg_disc, count(*) as count_order FROM
lineitem WHERE l_shipdate ≤ ’1998-09-01’ GROUPBY l_returnflag, l_linestatus;
Q3: SELECT l_orderkey, sum(l_extendedprice*(1-l_discount)) as revenue, o_orderdate, o_shippriority FROM customer, orders,
lineitem WHERE c_mktsegment = ’MACHINERY’ and c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate <
’1995-03-15’ and l_shipdate > ’1995-03-15’ GROUPBY l_orderkey, o_orderdate, o_shippriority;
Q5: SELECT n_name, sum(l_extendedprice * (1 - l_discount)) as revenue FROM customer, orders, lineitem, supplier, nation, re-
gion WHERE c_custkey = o_custkey and l_orderkey = o_orderkey and l_suppkey = s_suppkey and c_nationkey = s_nationkey and
s_nationkey = n_nationkey and n_regionkey = r_regionkey and r_name = ’AMERICA’ and o_orderdate ≥ CAST( ’1993-01-01’ and
o_orderdate < ’1994-01-01’ GROUPBY n_name;
Q5S: SELECT n_name, l_extendedprice * (1 - l_discount) FROM customer, orders, lineitem, supplier, nation, region WHERE
c_custkey = o_custkey and l_orderkey = o_orderkey and l_suppkey = s_suppkey and c_nationkey = s_nationkey and s_nationkey
= n_nationkey and n_regionkey = r_regionkey and r_name = ’AMERICA’ and o_orderdate≥ ’1993-01-01’ and o_orderdate< ’1994-
01-01’;
Q6: SELECT sum(l_extendedprice*l_discount) as revenue FROM lineitem WHERE l_shipdate ≥ ’1994-01-01’ and l_shipdate <
’1995-01-01’ and l_discount ≥ 0.06 - 0.01 and l_discount ≤ 0.06 + 0.01 and l_quantity < 24.2;
Q10: SELECT c_custkey, c_name, sum(l_extendedprice * (1 - l_discount)) as revenue, c_acctbal, n_name, c_address, c_phone,
c_comment FROM customer, orders, lineitem, nation WHERE c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate≥
’1993-06-01’ and o_orderdate < ’1993-09-01’ and l_returnflag = ’R’ and c_nationkey = n_nationkey GROUPBY c_custkey, c_name,
c_acctbal, c_phone, n_name, c_address, c_comment;
Q8Join: SELECT c_name, p_name, ps_availqty, s_name, o_custkey, r_name, n_name, sum(l_extendedprice * (1 -l_discount)) FROM
orders, lineitem, customer, part, partsupp, supplier, nation, region WHERE o_orderkey = l_orderkey and c_custkey = o_custkey and
p_partkey = l_partkey and ps_partkey = p_partkey and s_suppkey = ps_suppkey and r_regionkey = n_regionkey and s_nationkey =
n_nationkey GROUPBY c_name, p_name, ps_availqty, s_name, o_custkey, r_name, n_name;
Q8JoinS: SELECT c_name, p_name, ps_availqty, s_name, o_custkey, r_name, n_name, l_extendedprice * (1 -l_discount) FROM
orders, lineitem, customer, part, partsupp, supplier, nation, region WHERE o_orderkey = l_orderkey and c_custkey = o_custkey and
p_partkey = l_partkey and ps_partkey = p_partkey and s_suppkey = ps_suppkey and r_regionkey = n_regionkey and s_nationkey =
n_nationkey;
SegTollS: SELECT r1_expway, r1_dir, r1_seg, COUNT(distinct r5_xpos) FROM CarLocStr [size 300 time] as r1, CarLocStr [size 1
tuple partition by expway, dir, seg] as r2, CarLocStr [size 1 tuple partition by caid] as r3, CarLocStr [size 30 time] as r4, CarLocStr
[size 4 tuple partition by carid] as r5 WHERE r2_expway = r3_expway and r2_dir = 0 and r3_dir = 0 and r2_seg < r3_seg and r2_seg
> r3_seg - 10 and r3_carid = r4_carid and r3_carid = r5_carid and r1_expway = r2_expway and r1_dir = r2_dir and r1_seg = r2_seg
GROUP BY r5_carid, r2_expway, r2_dir, r2_seg;

Table 5: Queries modified based on TPC-H and LinearRoad benchmark queries used in our experiments

R8: PlanCost(expr , prop, index , logOp, phyOp,
lExpr , lProp, rExpr , rProp,md , cost) :-

SearchSpace(expr , prop, index , logOp, phyOp,
lExpr , lProp, rExpr , rProp),

Fn_isleaf(lExpr , false),Fn_isleaf (rExpr , false),
PlanCost(lExpr , lProp,−,−,−,−,−,−,−, lMd , lCost),
PlanCost(rExpr , rProp,−,−,−,−,−,−,−, rMd , rCost),
Fn_nonscansummary(expr , prop, index , logOp, lMd , rMd ,md),
Fn_nonscancost(expr , prop, index , logOp, phyOp,

lExpr , lProp, rExpr , rProp,md , localCost),
Fn_sum(lCost , rCost , localCost , cost);

R9: BestCost(expr , prop,min < cost >) :-
PlanCost(expr , prop, index , logOp, phyOp,

lExpr , lProp, rExpr , rProp,md , cost);
R10:BestPlan(expr , prop, index , logOp, phyOp,

lExpr , lProp, rExpr , rProp,md , cost) :-
BestCost(expr , prop, cost),
PlanCost(expr , prop, index , logOp, phyOp,

lExpr , lProp, rExpr , rProp,md , cost);

B. EXPERIMENTAL QUERIES
Table 5 shows our experimental query workload, which con-

sists of the main select-project-join-aggregate queries from TPC-H
(queries 1, 3, 5, 6, 8, and 10) with some modifications; as well as a
streaming query from Linear Road [2].

C. PROOFS OF PROPOSITIONS IN SEC-
TION 3

PROOF OF PROPOSITION 5. ⇒: Prove by contradiction. If T s

is T s
OPT , then suppose T s is not the subtree of TOPT . Let T ′s

be the subtree of TOPT . Since T s = T s
OPT , then we must have

PlanCost(T s〈Es, ps〉) < PlanCost (T ′s〈Es, ps〉). If we substi-
tute T ′s with T s in the tree TOPT , we get a new tree T ′′, with
PlanCost(T ′′〈E, p〉) < PlanCost ( TOPT 〈E, p〉). Contradiction
to the definition of TOPT .

⇐: Prove by contradiction. If T s is the subtree of TOPT , then
suppose T s is not T s

OPT , since plans have distinct costs, we have
PlanCost(T s〈Es, ps〉) > PlanCost(T s

OPT 〈Es, ps〉). If we sub-
stitute subtree T s with subtree T s

OPT in the tree TOPT , we get
a new plan tree T ′, which has PlanCost (T ′〈E, p〉) < PlanCost
(TOPT 〈E, p〉). Contradiction to the definition of TOPT .

PROOF OF PROPOSITION 6. ⇒: Prove by contradiction. If
RefCount 〈Es, ps〉 = 0, then any plan tree whose root is the AND
node representing the parent of 〈Es, ps〉 is pruned. Suppose T s

is a subtree of TOPT 〈E, p〉, then consider the immediate parent
node of T s in TOPT , let it be T s′ . According to Proposition 5,
T s′ = T s′

OPT . This means it has the minimal cost to subexpression
〈Es′ , ps

′
〉, is on the optimal tree of the final optimal plan, but has

been pruned. Contradiction.
⇐: Prove by contradiction. If T s is not a subtree of TOPT , ac-

cording to Proposition 5, T s is not T s
OPT . Hence, PlanCost(T s

OPT )
< PlanCost(T s). Suppose T s has the reference count other than
zero, then it must have at least a parent plan that has not been
pruned. Suppose that parent plan is T ′s′ . If we substitute T s with
T s
OPT in T ′s′ , we get a plan tree T ′′s′ that has a smaller cost than
T ′s′ . Hence T ′s′ can be pruned in the final result because it is
suboptimal to T ′′s′ . Contradiction.

PROOF OF PROPOSITION 7. ⇒: Prove by contradiction. Sup-
pose PlanCost(T s) > Bound〈E, p〉. And suppose T s is a subtree
of the optimal plan tree TOPT , according to Proposition 5, T s is
T s
OPT . Hence, PlanCost(T s

OPT ) > Bound〈E, p〉. Now we prove
by induction that if T s is a subtree of T ′ of subexpression Es′ and
property ps

′
, then PlanCost(T ′

OPT ) > Bound〈Es′ , ps
′
〉.

First, the base case PlanCost(T s
OPT ) > Bound〈Es, ps〉 holds.

Now, if PlanCost(T s
OPT ) > Bound〈Es, ps〉, according to the def-

inition of Bound where Bound〈Es, ps〉 = min(BestCost(T s),



maxBound〈Es, ps〉), we have Bound〈Es, ps〉=MaxBound〈Es, ps〉
< PlanCost(T s

OPT ). According to the definition of MaxBound,
MaxBound〈Es, ps〉 = max(ParentBound〈Es, ps〉), therefore, for
any arbitrary sibling OR node of T s, Sib(T s), and corresponding
parent AND node of T s, Par(T s) of expression Es′ and property
P s′ , we have Bound〈Es′ , ps

′
〉 - BestCost(Sib(T s))

- LocalCost(Par(T s))≤MaxBound〈Es, ps〉<PlanCost(T s
OPT ).

Hence, Bound〈Es′ , ps
′
〉 < BestCost(Sib(T s)) + BestCost(T s)

+ LocalCost (Par(T s)). Because this holds for any sibling and
parent, we have Bound〈Es′ , ps

′
〉 < min(BestCost(Sib(T s)) +

BestCost(T s) + LocalCost(Par(T s))) = BestCost(Par(T s)) =
PlanCost(Par(T s)OPT ).

By applying this induction we prove that if T s is a subtree of
T ′ of subexpression Es′ and property ps

′
, then PlanCost(T ′

OPT )

> Bound〈Es′ , ps
′
〉. Since T s is a subtree of the optimal plan

tree TOPT , hence PlanCost(TOPT ) > Bound〈E, p〉. However,
as TOPT is the root, it has no parent, according to the definition of
Bound, it should have Bound(TOPT ) = PlanCost(TOPT ). Con-
tradiction.
⇐: Prove by contradiction. Suppose T s is not a subtree of

TOPT , according to Proposition 5, T s is not T s
OPT , hence,

PlanCost(T s) > PlanCost(T s
OPT ). Suppose PlanCost(T s) ≤

Bound〈Es, ps〉, then we have PlanCost(T s
OPT ) < PlanCost(T s)

≤ Bound〈Es, ps〉. According to the definition of Bound,
Bound〈Es, ps〉 = min(BestCost(T s), maxBound〈Es, ps〉), we have
PlanCost(T s

OPT ) < BestCost(T s), contradiction to the definition
of T s

OPT .

D. ADDITIONAL EXPERIMENTAL RESULTS
As a supplement to the figures in Section 6.3, Figures 11 (a)-(c)

compare the three pruning strategies when performing initial query
pre-optimization on various TPC-H queries. It can be observed that
each of the pruning techniques adds a small bit of runtime over-
head (never more than 10%) in this setting, as each requires greater
computation and data propagation. Parts (b) and (c) show that each
technique adds greater pruning capability, however.

For greater completeness, we show additional experimental re-
sults to gain more insights over a full range of TPC-H queries under
different scenarios.

Figure 12 is a supplement to Figure 8 where it measures the per-
formance breakdown of different pruning strategies during incre-
mental re-optimization of TPC-H query Q5 when a different table,
Suppliers, other than Orders, has updated its scan cost from 1/8
to 8x of the original. We can observe in the figure that each prun-
ing strategy contributes in a meaningful way to the effectiveness of
incremental re-optimization, as well.

Figure 13 and Figure 14 show a full range of incremental re-
optimization performance upon a scan cost change of each base re-
lation, for TPC-H query Q10 (a 4-way join query) and Q8Join (a 8-
way join query as shown in Table 5) respectively. We can see from
Figure 13 (a) and Figure 14 (a) that incremental re-optimization has
at least 3x of speedup compared to a top-down style non-incremental
optimizer. (b) and (c) show the numbers of plan table entries and
plan alternatives updated during incremental re-optimization, to
gain more insights on where the speedup comes from.



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Q5 Q5S Q10 Q8Join Q8JoinS

AggSel

AggSel+RefCount

AggSel+Branch&Bounding

All

(a) Execution time (normalized to top-down style)

0 0 0 0 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Q5 Q5S Q10 Q8Join Q8JoinS

AggSel

AggSel+RefCount

AggSel+Branch&Bounding

All

(b) Pruning ratio: plan table entries

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Q5 Q5S Q10 Q8Join Q8JoinS

AggSel

AggSel+RefCount

AggSel+Branch&Bounding

All

(c) Pruning ratio: plan alternatives

Figure 11: Performance breakdown of pruning techniques for initial optimization, across full query workload

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.125 0.25 0.5 1 2 4 8 

AggSel 

RefCount+AggSel 

Branch&Bounding 

Branch&Bounding+RefCount 

Ratio: new scan cost/old scan cost  

(a) Execution time (normalized to top-down style)

0 0 0 0 0 0 
0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.125 0.25 0.5 1 2 4 8 

AggSel 

RefCount+AggSel 

Branch&Bounding 

Branch&Bounding+RefCount 

Ratio: new scan cost/old scan cost  

(b) Pruning ratio: plan table entries

0 

0.002 

0.004 

0.006 

0.008 

0.01 

0.012 

0.014 

0.016 

0.125 0.25 0.5 1 2 4 8 

AggSel 

RefCount+AggSel 

Branch&Bounding 

Branch&Bounding+RefCount 

Ratio: new scan cost/old scan cost  

(c) Pruning ratio: plan alternatives
Figure 12: Performance breakdown of pruning techniques during incremental re-optimization of Q5 when Suppliers has updated scan cost

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.125 0.25 0.5 1 2 4 8 

Change Customer Change Orders 

Change Lineitem Change Nation 

Ratio: new scan cost/old scan cost  

Ex
e

cu
ti

o
n

 T
im

e
 N

o
rm

al
iz

e
d

 

(a) Execution time (normalized to top-down style)

0 0 0 0 0 0 0 0 0 
0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.125 0.25 0.5 1 2 4 8 

Change Customer Change Orders 

Change Lineitem Change Nation 

Ratio: new scan cost/old scan cost  

R
at

io
 o

f 
U

p
d

at
e

d
 O

R
 N

o
d

e
 

(b) Update ratio: plan table entries

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.125 0.25 0.5 1 2 4 8 

Change Customer Change Orders 

Change Lineitem Change Nation 

Ratio: new scan cost/old scan cost  

R
at

io
 o

f 
U

p
d

at
e

d
 A

n
d

 N
o

d
e

 

(c) Update ratio: plan alternatives
Figure 13: Performance during incremental re-optimization of TPC-H Q10 — changes to a base scan relation cardinality estimate

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.125 0.25 0.5 1 2 4 8 

Change Customer Change Orders Change Lineitem 

Change Supplier Change Nation Change Region 

Change PartSupp Change Part 

Ratio: new scan cost/old scan cost  

Ex
e

cu
ti

o
n

 T
im

e
 N

o
rm

al
iz

e
d

 

(a) Execution time (normalized to top-down style)

0 0 0 0 0 0 0 0 0 0 0 0 0 
0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.125 0.25 0.5 1 2 4 8 

Change Customer Change Orders Change Lineitem 

Change Supplier Change Nation Change Region 

Change PartSupp Change Part 

Ratio: new scan cost/old scan cost  

R
at

io
 o

f 
U

p
d

at
e

d
 O

r 
N

o
d

e
 

(b) Update ratio: plan table entries

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.125 0.25 0.5 1 2 4 8 

Change Customer Change Orders Change Lineitem 

Change Supplier Change Nation Change Region 

Change PartSupp Change Part 

Ratio: new scan cost/old scan cost  

R
at

io
 o

f 
U

p
d

at
e

d
 A

n
d

 N
o

d
e

 

(c) Update ratio: plan alternatives
Figure 14: Performance during incremental re-optimization of TPC-H Q8Join — changes to a base scan relation cardinality estimate


	Introduction
	Incremental Re-Optimization
	Declarative Query Optimization
	Plan Enumeration
	Cost Estimation and Plan Selection
	Execution Strategy

	Achieving Pruning
	Pruning Suboptimal Plan Expressions
	Pruning Unused Plan Subexpressions
	Full Branch-and-Bound Pruning

	Incremental Re-Optimization
	Incremental Aggregate Selection
	Incremental Reference Checking
	Incremental Branch-and-bounding
	Adapting Traditional Optimizers

	Evaluation
	Declarative Optimization Performance
	Incremental Re-optimization
	Synthetic Changes to Subplan Costs
	Changes based on Real Execution

	Contributions of Pruning Strategies
	Incrementalizing a Conventional Optimizer
	Incremental Reoptimization for AQP
	Experimental Conclusions

	Related Work
	Conclusions and Future Work
	Acknowledgments
	Datalog Rules for Optimizer
	Experimental Queries
	Proofs of Propositions in Section 3
	Additional Experimental Results

