
Optimizing Declarative GraphQueries at Large Scale
Technical Report

Qizhen Zhang, Akash Acharya, Hongzhi Chen
§
, Simran Arora, Jiacheng Wu

†
, Yucheng Lu

∗
, Ang Chen

‡
,

Vincent Liu and Boon Thau Loo

University of Pennsylvania,
§
The Chinese University of Hong Kong,

†
Tsinghua University,

∗
Cornell

University,
‡
Rice University

ABSTRACT
This paper presents GraphRex, an efficient, robust, scalable,

and easy-to-program framework for graph processing on

datacenter infrastructure. To users, GraphRex presents a

declarative, Datalog-like interface that is natural and ex-

pressive. Underneath, it compiles those queries into efficient

implementations. A key technical contribution of GraphRex
is the identification and optimization of a set of global op-

erators whose efficiency is crucial to the good performance

of datacenter-based, large graph analysis. Our experimen-

tal results show that GraphRex significantly outperforms

existing frameworks—both high- and low-level—in scenar-

ios ranging across a wide variety of graph workloads and

network conditions, sometimes by two orders of magnitude.

1 INTRODUCTION
Over the past decade, there has been a proliferation of graph

processing systems, ranging from low-level platforms [21,

35, 44, 46] to more recent declarative designs [57]. While

users can deploy these systems in a variety of contexts, the

largest instances routinely scale to multiple racks of servers

contained in vast datacenters like those of Google, Facebook,

and Microsoft [54]. This trend of large-scale distributed data

processing is likely to persist as data continues to accumulate.

These massive deployments are in a class of their own:

their size and the inherent properties of the datacenter infras-

tructure present unique challenges for graph processing. To

highlight these performance issues on practical workloads,

Figure 1 illustrates, for multiple graph processing systems

and billion-edge graphs, the running time of a single-source

shortest path (SSSP) query on a representative datacenter

testbed. We tested four systems: (1) BigDatalog [57], a re-

cent system that provides a declarative interface to Spark; (2)

Giraph [21], a platform built on Hadoop that powers Face-

book’s social graph analytics; (3) PowerGraph [29], a highly

optimized custom framework; and as a sneak preview of the

space of possible improvement (4) GraphRex, our system for

large-scale datacenter-based graph processing. As the results

demonstrate, while the three existing systems are capable of

scaling to billion-edge workloads, our approach leads to up
to two orders of magnitude better performance.

 0.1

 1

 10

 100

 1000

 10000

Twitter (2B) Friendster (3.6B) UK2007 (3.7B) ClueWeb (42.6B)

E
xe

cu
tio

n
tim

e
(s

)

BigDatalog
Giraph

PowerGraph
GraphRex

84.98

293.47
499.35

30.02
53.35

148.15

5201.43

12.44
21.94

87.998

1102.01

3.03
5.47

12.31

228.4

O
u

t
O

f
M

em
o

ry

Figure 1: Performance comparison (log scale) of SSSP
between declarative systems: BigDatalog and Graph-
Rex, and low-level graph systems: Giraph and Power-
Graph on large graphs. All systems are run in a data-
center with 6 TB RAM and 1.6 K cores in aggregate.

The above results barely scratch the surface of optimiza-

tion opportunities for large-scale graph queries in datacen-

ters. We note two significant opportunities that are underex-

plored in previous work:

Opportunity #1: The impact of graph workload characteristics.
Real-world graphs exhibit particular qualities that incur se-

rious performance degradation if ignored. One example is a

power-law distribution with high skew, where most vertices

are of fairly low degree, but a few vertices have very high

edge counts. Even within a single execution, the optimal

query plan may then differ depending on which vertex is

being processed. Another is a proclivity to produce redun-

dant data, e.g., in the case of label propagation where nodes

can often reach each other via many paths. Each of these

presents opportunities for optimization.

Opportunity #2: The impact of datacenter architecture. Per-
formance can also depend heavily on the underlying infras-

tructure. Consider the rack-based architecture of Facebook’s

most recent datacenter design [15]. Racks of servers are con-

nected through an interconnection network such that a given

server’s bandwidth to another can differ by a factor of four
depending on whether the other server is in the same rack

or not. Though this type of structure is ubiquitous in today’s

datacenters due to practical design constraints [15, 31, 59],

existing processing systems (e.g., [21, 29, 57]) have largely ig-

nored these effects, typically assuming uniform connectivity

that is not the case in modern datacenters.

The GraphRex system. To exploit these two opportunities,
this paper explores a suite of optimization techniques specifi-

cally designed to ensure good performance for massive graph

queries running in modern datacenters. We have developed

GraphRex (Graph Recursive Execution) that significantly

outperforms state-of-the-art graph processing systems.

The performance of GraphRex stems, in part, from the

high-level language it presents. It compiles Datalog queries

into distributed execution plans that can be processed in

a massively parallel fashion using distributed semi-naïve

evaluation [43]. While prior work has noted that declara-

tive abstractions based on Datalog are natural fits for graph

queries [8, 57], these systems fall short on constructing effi-

cient physical plans that (1) scale to large graphs that can-

not fit in the memory of one machine, and (2) scale to a

large number of machines where the network is a bottleneck.

GraphRex goes beyond these systems by combining tradi-

tional query processing with network-layer optimizations. It
aims to achieve the best of both worlds: ease of program-

ming using a declarative interface and high performance on

typical datacenter infrastructure. Our key observation is that

these two goals exhibit extraordinary synergy.

We note that this synergy comes with a requirement: that

the graph processing system be aware of the underlying

physical network. In a private cloud datacenter where the

operator has full-stack control of the application and infras-

tructure, visibility is trivial. In a public cloud, the provider

would likely expose GraphRex “as a service” in order to

abstract away infrastructure concerns from users.

Our contributions.We make the following contributions

in the design and implementation of GraphRex:
(i) Datacenter-centric relational operators for large-scale graph
processing. We have developed a collection of optimizations

that, taken together, specialize relational operators for data-

center-scale graph processing. The scope and effect of these

optimizations is broad, but their overarching goal is to reduce

data and data transfer, particularly across “expensive” links

in the datacenter. These techniques, applied using knowl-

edge of the underlying datacenter topology and semantics

of relational operators in GraphRex’s declarative language,
allow us to significantly outperform existing graph systems.

(ii) Dynamic join reordering. We also observe that graph

queries may require changing join reorderings as join selec-

tivity is heavily influenced by graph degrees; and degrees can

vary significantly across a graph. Inspired by prior work on

pipelined dynamic query reoptimizations [17], we develop

a distributed join operator that can dynamically adapt to

changing join selectivities as the query execution progresses

along different regions of a graph.

(iii) Implementation and evaluation. We have implemented a

prototype of GraphRex. Based on evaluations on the Cloud-

Lab testbed, we observe that GraphRex has dominant effi-

ciency over existing declarative and low-level systems on a

wide range of real-world workloads and micro-benchmarks.

GraphRex outperforms BigDatalog by factors of 11–109×,

Giraph by factors of 5–26×, and PowerGraph by 3–8×. In

addition, we find thatGraphRex is more robust to datacenter

network practicalities such as cross-traffic and link degrada-

tion because our datacenter-centric operators significantly

reduce the amount of traffic traversing bottleneck links.

2 BACKGROUND
Today’s graph processing processing systems span multiple

layers. Applications are written in low-level languages like

C++ or Java; they run on frameworks including GraphX, Gi-

raph; which in turn run in large datacenter deployments like
those of Google, Amazon, Microsoft, and Facebook. These

systems are powerful, efficient, and robust, but difficult to

program and tune [12, 57].

2.1 Declarative Graph Processing
GraphRex uses Datalog as a declarative abstraction, drawing

inspiration from recent work [51, 57]. Datalog is a particu-

larly attractive choice for writing graph queries because of

its natural support for recursion—a key construct in a wide

variety of graph queries [39, 56].

Datalog rules have the form p :- q1,q2, ...,qn , which can

be read informally as “q1 and q2 ... and qn implies p.” p is

the head of the rule, and q1,q2, ...,qn is a list of literals that
constitutes the body of the rule. Literals are either predicates
over fields (variables and constants), or functions (formally,

function symbols) applied to fields. The rules can refer to

each other in a cyclic fashion to express recursion, which

is particularly useful for graph processing. We adhere to

the convention that names of predicates, function symbols

and constants begin with a lower-case letter, while variable

names begin with an upper-case letter. We use predicate,

table, and relation interchangeably.

Query 1: Connected Components (CC)
cc(A,min <A>) :- e(A,_)

cc(A,min <L>) :- cc(B,L), e(B,A)

Our example above shows a classical graph query that

computes connected components in a graph. This query

takes a set of edges e as inputs, with e(X,Y) representing

an edge from vertex X to vertex Y, and computes a cc tuple

for each vertex, where the first field is the vertex and the

second is a label for the vertex. The first rule initializes the

2

Racks of

Servers

Oversubscribed

Network

Rack Switches

Figure 2: A canonical datacenter network. Racks con-
tain dozens of servers connected by a single switch.
Racks then connect via an oversubscribed network.

label of each vertex with its vertex ID. In the second rule,

cc(A,min<L>) means that the tuples in cc are grouped by A

first, and in each group, the labels L are aggregated with min.

The rule is recursively evaluated so that the smallest label is

passed hop by hop until all vertices in the same connected

component have the same label. An equivalent program in

Spark requires upwards of one hundred lines of code.

Partitioning graph data. Distributed graph processing re-

quires specification of how the graph data and relations are

partitioned. Graph partitioning maps vertices (or edges) to

workers, and is useful when queries have consistent and pre-

dictable access patterns over data. In this paper, we assume a

default graph partitioning where vertex id is hashed modulo

the number of workers, although our optimizations are not

restricted to, and indeed are compatible with, more advanced

graph partitioning mechanisms. Relation partitioning refers
to cases where an attribute of a relation is selected as par-
tition key and all of its tuples with the same partition key

are put in the same location. For example, in Query 1 (CC),

cc has two attributes so it has two potential partitionings:

cc(@A,B) and cc(A,@B), where @ denotes the partition key.

2.2 Graph Queries in Datacenters
A crucial component for performance is an understanding of

the deployment environment, which in the case of today’s

largest graph applications, refers to a datacenter. Modern

datacenter designs, e.g., those of Google [59], Facebook [15],

and Microsoft [31], have coalesced around a few common

features, depicted in Figure 2, which are necessitated by

practical considerations such as scalability and cost.

At the core of all modern datacenter designs are racks of
networked servers [24, 42, 59]. The servers come in many

form factors, but server racks typically contain a few dozen

standard servers connected to a single rack switch that serves
as a gateway to the rest of the datacenter network [52]. The

datacenter-wide network that connects those rack switches

is structured as a multi-rooted tree, as shown in Figure 2.

The rack switches form the leaves of those trees [40].

The above architecture leads to several defining features in

modern datacenter networks. One example: oversubscription.

While recent architectures have striven to reduce oversub-

scription [11, 31], fundamentally, cross-rack links are much

longer and therefore more expensive (as much as an order of

magnitude) [42, 67]. As such, the tree is often thinned imme-

diately above the rack level, i.e., oversubscribed, and it may

be oversubscribed even further higher up. This is in contrast

to racks’ internal networks, which are well connected.

The result is that servers can often overwhelm their rack

switch with too much traffic. A 1:y oversubscription ratio

indicates that the datacenter’s servers can generate y× more

traffic than the inter-rack network can handle.
1
In essence,

these networks are wagering that servers either mostly send

to others in the same rack, or rarely send traffic concurrently.

In this way, network connectivity is not uniform. Instead, dat-

acenter networks are hierarchical, and job placement within

the network affects application performance. Ignoring these

issues can lead to poor results (see Figure 1).

3 GRAPHREX QUERY INTERFACE
The goal of GraphRex is to provide a high-level interface

with the performance of a system tuned for datacenters. To

that end, GraphRex presents a Datalog-like interface and

leverages an array of optimizations that reduce data and data

transfer. We illustrate our variant of Datalog with several

graph queries, most of which involve recursion:

Query 2: Number of Vertices (NV)
vnum(count <A>) :- e(A,B)

Query 3: PageRank (PR)
deg(A,count) :- e(A,B)

pr(A, 1.0) :- deg(A,_)

pr(A ,0.15+0.85* sum <PR/DEG >)[10] :- pr(B,PR),

deg(B,DEG), e(B,A)

Query 4: Same Generation (SG)
sg(A,B) :- e(X,A), e(X,B), A!=B

sg(A,B) :- e(X,A), sg(X,Y), e(Y,B)

Query 5: Transitive Closure (TC)
tc(A,B) :- e(A,B)

tc(A,B) :- tc(A,C), e(C,B)

Query 2 counts the number of vertices in a graph (NV). It

takes as input all edge tuples e(A,B) and does a count of all

unique vertices A. Query 3 computes page ranks of all vertices

in a graph (PR). Query 4 returns the set of all vertices that

are at the same generation starting from a vertex (SG). Query

5 computes standard transitive closure (TC). The Datalog

variant we use has similar syntax to traditional Datalog with

1
Typical rack-level oversubscription ratios can range from 1:2 to

1:10 [15, 59]. Some public clouds strive for 1:1, but these are in the

minority [62]. Regardless, as we show in Section 6, other datacenter

practicalities can result in effects similar to oversubscription.

3

Static Optimizer

Coordinator

Compiler

Worker

Vertex-level�
Executor

Runtime�Optimizer

Worker

Vertex-level�
Executor

Runtime�Optimizer

…

Query

Infrastructure

Logical
Plan

Exe
Specs

Exe
Specs

D
e
cl
a
ra
ti
ve
In
te
rf
a
ce

Figure 3: The GraphRex architecture. A compiler gen-
erates a logical plan from a Datalog query (4.1). The
static optimizer then constructs from the logical plan
a datacenter-centric execution specification (4.2) that
is optimized (5) before the final translation to and eval-
uation of the physical plan by workers. Grey lines de-
scribe dissemination of infrastructure configurations
and black lines communication for query execution.

aggregation, where aggregate constructs are represented as

functions with variables in brackets (<>).

One extension we make to Datalog can be seen in PR:

a stopping condition denoted as “[..]” in the rule head, for

rules that may not converge to a fixpoint using traditional

incremental evaluation of aggregates in recursive queries [27,

39, 60, 63]. For example, in PR, instead of stopping the query

when no more new tuples are generated, we can impose a

bound on the number of iterations, e.g., “[10]”.

We also note that some of our queries involve multi-way

joins. For example, SG is a “same generation” query that gen-

erates all pairs of vertices that are of the same distance from

a given vertex (for example, given the root of a tree, SG gen-

erates a tuple for each pair of vertices which have the same

depth. If the graph has cycles, a vertex can appear in differ-

ent generations, significantly increasing query complexity).

In existing distributed Datalog systems, the syntactic order

is the sole determinant for the evaluation strategy of these

joins—they are simply evaluated “from left to right” [57, 63].
This is because in a distributed environment, there is no

global knowledge of relations and no easy way to find the

optimal join order. As we will show later, this naïve order

is suboptimal in many cases, and GraphRex improves on

this by dynamically picking the best join order. Note that PR

also has a multi-way join, but there is no need for picking

join orders dynamically for this particular case, because the

cardinalities of pr, deg and e never change in semi-naïve

evaluation.

4 QUERY PLANNING
Figure 3 shows the overall architecture of GraphRex, con-
sisting of a centralized coordinator and set of workers. The

coordinator first applies a graph partitioning, so that each

worker has a portion of the graph. Then during query exe-

cution, the coordinator’s Query Compiler translates queries

into a logical plan.
A Static Optimizer then generates an execution specifi-

cation from that logical plan. Execution specifications are

similar to physical plans, but include our datacenter-centric

global operators. The final translation of these operators to
concrete physical operators is left until runtime, and depends

on both the placement of workers in the datacenter (which is

obtained through an infrastructure configuration) and data

characteristics. Each worker’s physical plan may differ. We

discuss this process in Section 5.

Finally, each worker runs the Distributed Semi-Naïve (GR-

DSN) algorithm designed for very fine-grained execution,

which is a distributed extension of the semi-naïve algorithm

used in Datalog evaluation [43]. In semi-naïve evaluation

(SN), tuples generated in each iteration are used as input in

the next iteration until no new tuples are generated. The

distributed variant relaxes the set operations by allowing for

tuple-at-a-time pipelined execution. GR-DSN is designed for

graph queries to allowmassively parallel execution and tuple-

level optimizations. We include its details in Appendix B.

The above process occurs directly at the workers, which

receive the execution specification, generate a local vertex-

centric operator, and execute it, all with the help of two

components: (1) a Vertex-level Executor that uses DSN to

execute the specification until a fixpoint; and (2) a Runtime
Optimizer that optimizes each global operator locally.

4.1 Logical Plan
From the query, the first step in processing it is to generate a

logical plan. In GraphRex, a logical plan is a directed graph,

where nodes represent relations or relational operators, and

edges represent dataflow. Figures 4a and 4b show logical

plans for Queries 1 (CC) and 4 (SG), respectively.

An important part of logical plan generation in Graph-
Rex is a Vertex Identification phase, in which the compiler

traverses the plan graph starting from the edge relations and

marks attributes whose types are vertices with a * symbol.

These attributes are candidates for being the partition key.

As an example, in Figure 4a, since both attributes in the

input edge relation e(A,B) represent vertices, they are both

marked with the * symbol. Likewise, all attributes that have a

dependency to either vertex attribute A or B are also marked.

By the time we generate a physical plan, only one partition

attribute will be chosen for every relation. Later, we will

denote the selected attribute by prepending with an @ symbol.

At this stage, we can make the decision for two simple cases.

First, if a relation r only has one vertex attribute, then it

is trivially partitioned by that attribute. Second, the edge

table e is partitioned on the first key by default so that each

4

,��(��)�

∏(�*�����(�

����(�*�

∏(�*�����*��
⋈
����)�*��,��)��(�

∏)�(�*��*

(a) Query 1 (CC)

⋈
!�(����!�(����

����"
∏���

,�!������

!�)����!�(���� ,�!�(��)�

⋈
∏��� ∏(���)��

(b) Query 4 (SG)

Figure 4: Logical plans of CC (a) and SG (b).
vertex maintains the list of outgoing neighbors. This is a

convenient placement for many practical graph applications,

such as PageRank, SSSP, that only require each vertex to

know its outgoing neighbors. All other partitioning decisions

are made during the placement of the SHUFF and ROUT

operators described in the following section.

4.2 Execution Specification
Traditional query planning proceeds directly from a logical

plan to a physical plan. In GraphRex, we add an additional

step to help identify opportunities for datacenter-centric op-

timization. The core of this process is the addition of Global
Operators to the logical plan to form what we term an exe-
cution specification. These operators are special in that they

govern communication across workers; oversubscription, ca-

pacity constraints, and congestion mean that their efficient

execution is a primary bottleneck in processing large graphs.

We describe each Global Operator below.

4.2.1 Join (JOIN)
Joins are one such operation that frequently incurs com-

munication in graph processing. In Datalog, (natural) joins

are expressed as conjunctive queries. GraphRex evaluates

them as binary operations; multi-way joins are executed as a

sequence of binary joins. Graphically, we represent these as:

JOIN

In the case of binary joins, we simply insert a JOIN in

lieu of the logical operator Z. Recursive joins, where one
or more of the inputs are recursive predicates, are handled

similarly to BigDatalog [57]. Namely, if the recursion is lin-

ear, the non-recursive inputs are loaded into a lookup table

and streamed. If the recursion is non-linear, we load all but

one of the recursive inputs into a lookup table and stream

the remaining input. This enables us to reduce non-linear

recursion to linear recursion from the viewpoint of a single

new tuple. Figure 5 shows an example of a recursive join.

Multi-way joins require additional handling, as different join

orders can lead to drastically different evaluation costs (Sec-

tion 5.4). In GraphRex, multi-way joins are implemented

as a sequence of binary joins, where the order is chosen

at runtime and per-tuple. Existing distributed Datalog sys-

tems arbitrarily evaluate ‘left-to-right’ [57, 63]. We represent

this choice in the execution specification by enumerating all

possible decompositions of the multi-way join and routing

between them dynamically with the next operator.

4.2.2 Routing (ROUT)
The ROUT operator enables the dynamic and tuple-level

multi-way join ordering mentioned above. ROUTs take a

tuple and direct it to one among multiple potential branches

in the execution specification. This operator is only used in

conjunction with multi-way joins, and is represented as:

ROUT[X,Y]

For example, Figure 6 shows the specification for Query 4

(SG) where the multi-way join e Z sg Z e in Figure 4b is

broken into (e Z sg) Z e and e Z (sg Z e). We generate

plans for the two possible orderings and insert a ROUT op-

erator that takes A and B as input to decide which will result

in better performance. We discuss how the ROUT operator

makes that decision in Section 5.4.

4.2.3 Aggregation (AGG)
Another important Global Operator is AGG, which aggre-

gates tuples. There are three types of aggregation in Graph-
Rex, two of which are mapped to Global Operators. The one

type of aggregation that is not mapped is purely local aggre-

gation, which operates on tuples with the same partition key,

for instance, in the left branch of Figure 5 (in the projection).

This type of aggregation does not need its own Global Op-

erator as its evaluation does not incur communication. The

other two variants are represented as follows:

AGG[@X,min<L>] AGG[min<L>]

Left to right, (1) also operates at each vertex, but requires

shuffling of inputs to compute the relation, and (2) covers

global aggregation, where a single value is obtained across

the entire graph. For (1), the semantics are similar to a purely

local aggregation, but as communication is required, Graph-
Rex will eventually rewrite the specification in order to re-

duce the data sent across the oversubscribed datacenter in-

terconnect. The right branch of Figure 5 demonstrates this

case. For (2), aggregation is instead finalized at the coordi-

nator. For example, Query 2 (NV) computes the number of

vertices in the graph using a global aggregator. That value

is eventually collected by the coordinator and potentially

redistributed to all workers for subsequent use.

4.2.4 Shuffle (SHUFF)
Last, but arguably most important is the SHUFF operator

that encompasses all network communication in GraphRex.

SHUFF[X,@Y]

SHUFFs are inserted into the execution specificationwhen-

ever it is necessary to move tuples from one worker to an-

other between relations. Their placement is therefore closely

5

∏A,L=min<A>

cc(@A,L)

∏A,L1

JOIN

cc(@B,L1)e(@B,A)

SHUFF[@A,L1]

e(@A,B) AGG[@A,min<L1>]

∏A,L=AGG

∏B=A,L1=L

Figure 5: Execution
specification of CC

�!�)�(��!�)���

���(!
∏��(

��!����(�

�!�)��� ��!�)�*�

	��������*,����

����

�!�*�(�

����

∏��(

��!)��*� �!�*�(�

	������)�(,

����

�!�)���

����

∏��(���
���(,

	�����)��*, 	������)�*,

∏)���*�(∏)���*�(

Figure 6: Execution specification of SG

)�������

∏���

*(�������

∏���
⋈
)�������*(�������

∏�����

Figure 7: Logical
plan of TC (Q5).

�������

∏���

,�������

∏���

�������

,�������

∏�����

����

�����(����)

�����(����)

(a)

�������

∏���

,�������

∏���

�������,�������

∏�����

����

�����(����)�����(����)

(b)

Figure 8: Two potential partitionings for TC.

integrated with the process of relation partitioning, which in-

stantiates the partition attribute (@) from the set of partition

candidates (*) and inserts SHUFF operators where necessary.

Conceptually, there are two scenarios that require a SHUFF.

The first is when the tuples of relation r are not generated

in the location specified by r’s partition key. An example of

this is shown in Figure 5. The JOIN operation generates cc

tuples that have a distinct partition key (denoted by the @

sign) from the join key B. This results in the insertion of a

SHUFF operator after the join. The second scenario is when

the input relations to an operator are not partitioned on the

same attribute, such as the inputs to the join operator in

Figure 8a. In the example, there is a join operator for tc and

e on attribute C. If we partition tc on its first attribute, as in

Figure 8a, a SHUFF is needed to repartition the tuples in tc

on the second attribute so that the join can be evaluated.

In relation partitioning, the optimizer checks every possi-

ble partitioning and selects the one that incurs the minimum

number of SHUFFs. The details of partitioning algorithm

are shown in Appendix A. As a heuristic, we assume that

recursive rules are executed many times. To demonstrate

this, Figure 8a shows the execution specification where tc

is partitioned by the first key. The number of SHUFFs in

the plan is 2K , as there are two SHUFFs in each recursive

rule evaluation. In comparison, the other partitioning of tc

shown in Figure 8b requires fewer SHUFFs, i.e., K + 1; there
is a single SHUFF for the non-recursive rule as well as one

for each recursion. Our evaluation later shows that the latter

plan provides a greater than 2× improvement.

5 GLOBAL OPERATOR OPTIMIZATIONS
Translation from the Global Operators described above de-

pends on both context and the structure of the datacenter

network. Refining these operators is important as they can

incur significant performance costs in a large-scale datacen-

ter deployment. We note that translation of the execution

specification’s classic logical operators into equivalent physi-
cal operators follows standard database plan generation, and

we omit those details for brevity.

GraphRex introduces an array of synergistic optimiza-

tions (see Table 1), some of which can be used in combina-

tion, and some of which are intended as complements. Their

benefits stem from a variety of reasons, but the overarch-

ing principle is to reduce data and data transfer, particularly

across “expensive” links in the datacenter. Our results show

that these techniques result in orders of magnitude better

performance in typical datacenter environments.

5.1 Columnization and Compression
One important optimization in GraphRex applies to SHUFF.

In SHUFF, tuples to be shuffled are stored in message buffers,
which are then exchanged between workers. Rather than

directly shuffle those buffers between workers,GraphRex (1)

first sorts the data, (2) reorganizes (transposes) the tuples into

a column-based structure, and (3) compresses the resulting

data using the two techniques described below.

Although columnar databases are well-studied [5–7], their

primary benefit in the literature has been in storage require-

ments. Performance benefits, on the other hand, are tradition-

ally dependent on access patterns [33, 45].GraphRex instead

sends columnar data by default due to its benefits to two

techniques—column unrolling and byte-level compression—

that are particularly effective on typical graph workloads.

The first technique, column unrolling, is a process where

we elide columns of known low cardinality, C , by creating

C distinct columnar data stores—one for each unique value.

For instance, in an adaptively ordered multi-way join, as

described in Section 5.4, each intermediate tuple must carry

with it an ID that denotes the join order and its place in

that ordering of binary joins. In this and many other queries,

6

Optimization Description Section

SHUFF

Columnization & Compression Leverages workload characteristics to reduce the amount of data sent across the

network on every SHUFF.

5.1

Hierarchical Network Transfer Further reduces the amount of data sent over ‘expensive’ links by applying colum-

nization and compression hierarchically.

5.2

JOIN/

ROUT

Join Deduplication To enforce distributed set semantics in JOINs, when a JOIN feeds into a SHUFF,

we push deduplication into the SHUFF evaluation in a datacenter-centric manner.

5.3

Adaptive Join Ordering To account for power-law degree counts, we sometimes allow ROUT to dynami-

cally chose a tuple-level join ordering. Only used when duplicates are uncommon.

5.4

AGG

Hierarchical Global Aggregation Applies our datacenter-centric approach to global aggregation. 5.5

On-path Aggregation When SHUFF comes before a local AGG, we push the AGG down into the SHUFF

to pre-aggregate values, again in a datacenter-centric fashion.

5.6

Table 1: GraphRex’s Global Operator optimizations, when they apply, and where they are described.

[1,1,2]
[1,3,2]
[2,3,4]
[2,3,1] [1,1,2,2] [1,3,3,3] [2,2,4,1]

V�A�B Columnize

Compress

[1,1,2,2]�[1,3,3,3]�[2,2,4,1]

V�������������A�������������B

[2,3,4]
[1,1,2]
[2,3,1]
[1,3,2]

V�A�B Sort

Figure 9: Column-based organization for r(V,A,B),
where V is the partition key. Shaded is compressed.

column unrolling can all but remove the storage requirement

of those columns.

The second technique, byte-level compression, compresses

sorted and serialized streams using the Lempel-Ziv-class LZ4

lossless and streaming compression algorithm [4]. This pro-

cess is shown in Figure 9. Both sorting and columnization

significantly increase the similarity of adjacent data in typical

graph applications, resulting in higher compression ratios.

More optimal algorithms exist, but LZ4 is among the fastest

in terms of both compression and decompression speed. To

further reduce the overhead of this optimization, we only

sort over the partition key (V in the example of Figure 9). We

also limit compression to large messages, directly sending

messages that are under certain size. As typical message sizes

are bimodal, any reasonable threshold will provide a simi-

larly effective reduction of overhead (in our infrastructure, a

threshold of 128 bytes was robust).

Once the shuffle operation is finished, each worker de-

compresses, deserializes and transposes the received data

to access the tuples. We store the tuples in row form for

access and cache efficiency. We also heavily optimize mem-

ory copies, buffer reuse, and other aspects of serialization

and deserialization, but omit the details for space. Applying

columnization and compression together at a worker level

brings ∼2× overall message reduction for the CC query, how-

ever, its effectiveness in typical datacenters can be magnified

by the next optimization we propose to SHUFF operator.

Server

1 2 3 4 1 2 3 4
w1 w2

1 2 3 4 1 2 3 4
w3 w4

1 1 4 42 23 3 1 1 2 23 3

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

4 4

Server
Rack

Figure 10: An example hierarchical transfer. Each
worker groups their tuples by partition key, and sends
the them first within a server, then within a rack, and
finally to their destinations. A naïve system would
send directly to other racks. Colors track where the
tuple was generated; numbers indicate the partition.

5.2 Hierarchical Network Transfer
GraphRex extends the benefits of the previous section by

executing Hierarchical Network Transfers as part of SHUFF.

This optimization reduces transfers over network, particu-

larly the oversubscribed portions described in Section 2.2.

Figure 10 depicts this process for a rack with two servers

and two workers per server. Specifically, transfers occur in

three steps: server-level shuffling, rack-level shuffling and the

final global shuffling. At each level, workers communicate

with other workers in the same group, and split their tuples

so that each partition key is assigned to a single worker in

the group. At each step, tuples are efficiently decompressed,

merge sorted, and re-compressed. The benefit of performing

this iterative shuffling and compression is that, with every

stage, the working sets of workers become increasingly ho-

mogenous and therefore more easily compressed.

To show the effect of this optimization, we present results

for Query 1 (CC) on a billion-edge Twitter dataset running in
a 40-server, 1:5 oversubscription testbed (more results are in

Section 6). Table 2 shows the communication/total speedup

7

Worker Worker Level Server Level Rack Level
W 1 (1,2),(2,3),(3,4),(4,5) (1,2),(3,4) (1,2)

W 2 (1,2),(2,3),(3,4),(4,5) (2,3),(4,5) (2,3)

W 3 (1,2),(2,3),(3,4),(4,5) (1,2),(3,4) (3,4)

W 4 (1,2),(2,3),(3,4),(4,5) (2,3),(4,5) (4,5)

Table 3: An example of Hierarchical Deduplication
with a single rack of two servers, with two workers
per server. At each successive layer of the hierarchy,
workers coordinate to deduplicate join results before
incurring increasingly expensive communication.
of two schemes: simple compression (directly on tuples) and

SHUFF (column-based hierarchical compression).

They are compared against a baseline that does not imple-

ment compression or infrastructure-aware network transfer.

Columnization combined with hierarchical network transfer

creates more total traffic, but with less going over oversub-

scribed links and better load balancing (see Section E for

an explanation). In this case, server-level shuffling reduces

the data by 4.6×, and rack-level shuffling reduces the data

by 6.2× in our datacenter testbed running 20 workers per

server. Together with our optimizations on memory manage-

ment and (de)serialization, SHUFF achieves a 9.8× speedup

in communication time and 7.2× in total execution time.

Comm Total

Only compression 1.02× 1.02×

SHUFF 9.84× 7.2×

Table 2: Communication and total speedup of SHUFF
and row-based compression in CC on Twitter.

5.3 Join Deduplication
JOINs are among the most expensive operations in large

graph applications. One reason for this is the prevalence

of high amounts of duplicate data in real-world distributed

graph joins. For example, with Query 5 (TC) on a social

graph, users may have many common friends and thus many

potential paths to any other user.

In order to provide set-semantics for joins, previous sys-

tems perform a global deduplication on the generated tu-

ples [57]. GraphRex instead introduces Hierarchical Dedu-

plication, which takes advantage of datacenter-specific com-

munication structures to decrease the cost of deduplication

when it observes JOIN followed by a SHUFF. Note that when

the results of a JOIN are used directly (without an intermedi-

ate SHUFF), local deduplication is sufficient.

To illustrate the process of Hierarchical Deduplication,

consider again the deployment environment of Figure 10,

where we have four workers in a single rack. Assume also

that all four workers generate the same tuples {(1,2), (2,3),

(3,4), (4,5)}, where the first attribute in the relation is the

partition key. After the tuples are generated, workers insert

them into a hash set that stores all tuples they have seen thus

far. This results in the local state shown in the second column

of Table 3. Workers on the same server then shuffle tuples

among themselves, never traversing the network. The same

is done at a rack level: servers deduplicate tuples without ever

sending across the oversubscribed interconnect. In the end, of

the 16 tuples generated in the rack, only 4 are sent to the other

rack—a factor of 4 decrease in inter-rack communication.

Queries on real-world graphs, e.g., social networks and web

graphs, often exhibit even greater duplication because of

dense connectivity: in the execution of TC over Twitter, for
instance, 98.5% of generated tc tuples are duplicates.

Dup % Comm Total

Baseline 98.5% 39.9 s 41.1 s

Hierarchical Dedup 42.7% 2.7 s (14.8×) 4.3 s (9.6×)

Table 4: Hierarchical Deduplication in TC on Twitter.
Dup % indicates duplicate tuples received at workers

Table 4 presents the Twitter/TC result on the testbed used

in the preceding section. We can see that, for workloads with

many duplicates, hierarchical deduplication can efficiently

remove most of them. In comparison, push-down techniques

at worker level and server level can only reduce the duplica-

tion ratio to 96.3% and 90.7% respectively, which shows that

deduplication should be performed at greater scale. The high

deduplication rate of JOIN results in a 14.8× communication

speedup and 9.6× total speedup. Even for workloads with

few duplicates, the overhead of this optimization is low.

5.4 Adaptive Join Ordering
In the case of multi-way joins,GraphRex sometimes chooses

a more aggressive optimization: Adaptive Join Ordering. To

that end, the ROUT operator decides, per-tuple, of how to

order the constituent binary joins of a multi-way join. A

key challenge here is predicting the performance effects of

choosing one order over another. One reason this can be

difficult is due to duplicates; different join orders may result

in tuples being generated on different workers, impacting

the occurrence of duplicates in unpredictable ways for the

current and future iterations.

For that reason, Adaptive Join Ordering is a complement

to Join Deduplication: when the number of duplicates is

high, the latter is effective, otherwise the optimization de-

scribed here is a better choice. We rely on programmers to

differentiate between the two when configuring the query.

In practice, this is typically straightforward (and akin to the

configuration of combiners in Hadoop/Spark), but profiling

and sampling could automate the process in future work.

To illustrate a simple example of how join ordering can

result in improved performance, consider the evaluation of

8

0

1

2

3

Generation
root

a b

Figure 11: Query 4 (SG) on an example graph.

Query 4 (SG) over the graph in Figure 11. Starting at the

root, vertices a and b are in the same generation, so a tuple

(a,b) in sg is generated by the first rule. The evaluation of

the second rule is decided by how sg is partitioned:

• If the relation is partitioned by the first attribute, then

the join is evaluated from left to right ((e Z sg) Z e)

where (a,b) is sent to a to join with Γa (the adjacency

list of a) before the intermediate tuples are shuffled to

b to finish the join.

• If partitioned by the second key, then the join ordering

is from right to left (e Z (sg Z e)) where Γb is sent to a
to finish the join, less cost than the first order.

For this iteration, the left-to-right ordering used by exist-

ing distributed Datalog systems results in a factor of three

increase in intermediate tuples compared to right-to-left.

The opposite is true for the third generation. Real-world

graphs produce many such structural discrepancies due to

their power-law distributions of vertex degree. This distri-

bution can result in substantial performance discrepancies

between different join orderings, even within a single rela-

tion. Thus, static ordering—any static ordering—can result

in poor performance.

Optimization target. The goal of ROUT is as follows. LetT
be the bag of tuples generated by GR-DSN query evaluation.

T consists of tuples generated in every iteration, so we have

T =
∑K

k=0Tk where Tk is the bag of tuples generated in

iteration k and K is the iteration where a fixpoint is reached.

ROUT’s optimization objective is:

min |T | = min

K∑
k=0

|Tk |

Intuitively, more tuples mean increased cost of tuple gen-

eration and shuffling. More formally, let T α
k be the bag of

intermediate tuples—those that are generated in the inter-

mediate binary joins in order to complete the multi-way

join—andT
β
k be the bag of output tuples of the head relation

(for example, sg in SG), so Tk = T
α
k +T

β
k , and we have:

min |T | = min

K∑
k=0

(|T α
k | + |T

β
k |)

As mentioned previously, GraphRex makes an assump-

tion that there are no duplicates in generated tuples. Formally,

this simplifies optimization in two ways. First, if there are

no duplicates, any ordering generates the same T
β
k (because

of the commutativity and associativity of natural joins) so

|T
β
k | becomes a constant. Second, the ordering of one itera-

tion does not affect another. This independence allows us to

optimize each iteration without worrying about later ones.

With this assumption, we now have

min |T | =
K∑
k=0

min(|T α
k |) +C (1)

where C is a constant representing the number of output

tuples generated in the evaluation.

Ordering joins. With the above, GraphRex picks a tuple-

level optimal ordering using a precomputed index.

For every newly generated tuple that goes through the

ROUT operator, GraphRex enumerates all possible join or-

ders, computes the cost (i.e., the number of tuples in T α
k that

the order generates) for each order, and selects the order

with the minimum cost. Then, GraphRex sets the partition

key of this tuple based on the join order, and sends it to

the destination for join evaluation. For example, in SG, for

every new sg tuple (a,b), there are two possible join orders:

((e Z sg) Z e) and (e Z (sg Z e)). The cost for the first

order is the degree of a because (a,b) is sent to a first for the

first binary join and then Γa is sent to b for the second binary

join. Similarly, the cost for the second order is the degree of

b. The degrees of all vertices are precomputed as an index,

and thus efficiently accessible at runtime.

Generality. For n-way joins, the possible options grow to(n−1
i−1

)
, where i is the position of the recursive predicate, e.g.,

e Z sg Z e is a 3-way join with sg in position 2. Note that

the recursive predicate in position 0 or n leads to only 1 or-

dering. GraphRex scales efficiently by preloading necessary

information as indexes whose total size grows as O(n |V |).
Regardless, typical values of n are small and there are only a

small number of possible orders. See Appendix C for details.

1st 2nd 3rd 4th

% of LR 77.47% 80.64% 87.65% 88.16%

% of RL 22.53% 19.36% 12.35% 11.84%

Table 5: The percentage of tuples using each join order
during the first four iterations of SG on SynTw. LR is
(e Z sg) Z e and RL is e Z (sg Z e).

Table 5 shows the percentages of tuples in the optimal

query plan of the first four iterations of SG on SynTw, a
synthetic graph of Twitter follower behavior (see Section 6

for more information). For most tuples, LR ordering is opti-

mal, but for a non-negligible fraction, it is not. Because of

9

this variability, Table 6 shows that, compared to static order-

ing, Adaptive Join Ordering brings 2.7× and 2× speedup to

communication and execution time respectively.

Comm Total

Static ordering 3.4 s 9.3 s

Adaptive Join Ordering 1.3 s (2.7×) 4.6 s (2×)

Table 6: Comparison of adaptive and static ordering.
5.5 Hierarchical Global Aggregation
As mentioned in Section 4.2, there are three types of aggre-

gations, two of which are translated to Global Operators.

This section describes our optimizations for the global AGG,

which is used to compute and disseminate a single global

value to all workers via the coordinator. A naïve implementa-

tion would create a significant bottleneck at the coordinator.

A classic alternative is parallel aggregation, in which workers

aggregate among themselves in small groups, then aggregate

the sub-aggregates, and so on. GraphRex improves this by

leveraging knowledge of datacenter network hierarchies.

Figure 12 shows an example of this process. First, each

worker applies the aggregate function on its vertices and

computes a partial aggregated value, then it sends its partial

value to a designated aggregation master in the server. When

the server master receives partial values from all workers

in the same server, it again applies the aggregate function

to update its partial value and then it sends the value to the

rack master, which updates its own partial value and finally

sends that value to the global aggregation coordinator.

As in previous instances, hierarchical transmission sig-

nificantly reduces traffic over the oversubscribed network.

As the computations and communications of Hierarchical

Global Aggregation are distributed at each network hierar-

chy, the overhead to the aggregation coordinator is also re-

duced. Table 7 shows the performance of Hierarchical Global

Aggregation in the query of counting vertex number (NV)

on Twitter. The baseline is infrastructure-agnostic, which

means the global aggregation is implemented in an AllRe-

duce manner where all workers send their partial aggregated

values to the coordinator. Hierarchical Global Aggregation

results in 41× speedup in communication and reduces query

processing latency from 2.26 s to 0.16 s.

Comm Total

Baseline 2.154 s 2.26 s

Hier. Glob. Agg. 0.052 s (41.4×) 0.158 s (14.3×)

Table 7: Evaluation of Query 2 (NV) on Twitter.
5.6 On-path Aggregation
Finally, the other AGG operator computes a value for each

vertex, but requires a SHUFF first. In this case, GraphRex

Worker

Server

Rack Switch

1 1

2

Figure 12: Hierarchical Global Aggregation in a rack.
After worker-level aggregation, intermediate aggre-
gates are shuffled (1) at a server-level, and (2) at a rack-
level before finishing global aggregation.

pushes AGG down into SHUFF so that every worker only

sends aggregated tuples. The key insight is that tuples that

are shuffled to the same vertex can be pre-aggregated. On-

path Aggregation again leverages hierarchical shuffling: at

each level in the network, it consolidates the tuples for the

same vertices to efficiently and incrementally apply aggre-

gation and reduce the number of shuffled tuples.

Table 8 shows the performance of On-path Aggregation

in CC on Twitter, where the baseline is aggregation at the

destination, which means that all tuples are shuffled through

the network first, and then aggregated using (min). On-path
Aggregation brings 10× speedup in the communication, and

the end-to-end query processing latency is reduced by 7.8×.

Comm Total

Baseline 119.8 s 124.29 s

On-path Aggregation 11.997 s (10×) 15.97 s (7.8×)

Table 8: Evaluation of Query 1 (CC) on Twitter.

6 EVALUATION
In this section, we evaluate the performance of GraphRex
with a representative set of real-world graph datasets and

queries in order to answer three high-level questions:

• How competitive is the performance of GraphRex? We

compareGraphRexwith BigDatalog [3], which is shown
to outperform other distributed declarative graph pro-

cessing systems (such as Myria [63] and SociaLite [56]),

Giraph [1], and PowerGraph [29], two highly-optimized

distributed graph processing systems.

• How robust is GraphRex to datacenter network dynam-
ics?We emulate typical network events that affect the

connectivity between servers, vary network capacity, in-

ject background traffic following typical traffic patterns

in datacenters, and test systems under such dynamics.

• How scalable is GraphRex? We evaluate how Graph-
Rex scales with additional resources. We also perform a

COST [50] analysis to compare it with optimized, single-

threaded implementations, and examine scale-up/out

performance for large-scale graph processing.

10

Due to space constraints, we have includedmore experiments

in the Appendix, including more results (App. F) and the

analysis of communication patterns in GraphRex (App. E).

6.1 Methodology
Setup. Our CloudLab datacenter testbed consists of two

racks and 20 servers per-rack. Each server has two 10-core In-

tel E5-2660 2.60GHz CPUs with 40 hardware threads, 160 GB

of DDR4memory, and a 10Gb/s NIC. In aggregate, the testbed

has 6.4 TB memory and 1.6 k CPU threads. Mirroring modern

datacenter designs [15, 31, 59], our testbed is connected using

a 10Gb/s leaf-spine network [11] with four spine switches

by default, resulting in an over-subscription ratio of 1:5.

Queries. We have selected a set of representative queries

to evaluate GraphRex. General Graph Queries include Con-
nected Components (CC, Q1), PageRank (PR, Q3), Single

Source Transitive Closure (TC, Q5), Single Source Short-

est Path (SSSP, Q6), and Reachability (REACH, Q7). Among

those queries, CC and PR are compute-intensive and TC,

SSSP and REACH are more communication-intensive. We

also evaluated local and global Aggregation queries (CM, Q8)

(sum and min aggregators produced similar results) as well

as Multi-way Join queries like Same Generation (SG, Q4).

Query 6: SSSP (SSSP)
sssp($ID ,0) :- e($ID ,_,_)

sssp(A,min <C1+C2 >) :- sssp(B,C1), e(B,A,C2)

Query 7: Reachability (REACH)
reach($ID) :- e($ID ,_)

reach(A) :- reach(B), e(B,A)

Query 8: CountMax (CM)
inout(A,count) :- e(A,$ID), e($ID ,B)

maxcount(max <CNT >) :- inout(_,CNT)

Datasets. As shown in Table 9, we have selected four real-

world graph datasets, all of which contain billions of edges.

Twitter and Friendster are social network graphs, and UK2007
and ClueWeb are web graphs.

Graph # Vertices # Edges Data Size
Twitter (TW) 52.6M 2B 12GB

Friendster (FR) 65.6M 3.6 B 31GB

UK2007 (UK) 105.9M 3.7 B 33GB

ClueWeb (CW) 978.4M 42.6 B 406GB

Table 9: Large graphs in the evaluation.

System configurations.We compare against the latest ver-

sions of in-comparison systems, and configured them to

achieve the best performance in our datacenter. We provi-

sioned themwith sufficient cores and memory and optimized

other parameters, such as the number of shuffle partitions

in BigDatalog, the number of containers in Giraph, and par-

tition strategies in PowerGraph. When possible, we used the

query implementations provided by these systems, and im-

plemented the remainder from scratch. Not all systems were

able to support all queries easily/efficiently; we omit those

as needed. BigDatalog, for instance, has difficulty supporting

PageRank because it cannot limit the number of iterations.

The original paper [57] also omits PR. Similarly, PowerGraph

cannot easily support SG, because a) vertex adjacency lists

are not readily accessible, and b) it forces message consoli-

dation, which would be very inefficient for SG.

6.2 System Performance
We first evaluate the performance of GraphRex against state-

of-the-art systems in terms of query processing times.

General graph queries. Table 10 compares the overall per-

formance of GraphRex, BigDatalog, PowerGraph, and Gi-

raph across different graphs and queries. CC and PR require

more computation than other queries. Even in these cases,

the oversubscribed network is enough of a bottleneck that

GraphRex outperforms other systems by up to an order of

magnitude. Against BigDatalog and CC, this order of mag-

nitude improvement is consistent. PowerGraph and Giraph,

due to their specialization to graph processing, perform bet-

ter than BigDatalog, but they are still significantly slower

than GraphRex, if they complete (between 3.2× and 17.3×).

We note that the largest graph, CW, caused out-of-memory

issues on both BigDatalog and Giraph; our deduplication and

compression alleviate some issues with working set size.

On more communication-intensive queries, i.e., TC, SSSP

and REACH, GraphRex achieves even greater speedups. On

on these too, BigDatalog failed to complete on the largest

graph, CW. For TC, GraphRex outperforms BigDatalog and

Giraph by up to two orders of magnitude, and PowerGraph

by more than 4× on average. Some of this stems from Graph-
Rex’s automatic relation partitioning (Section 4.2.4). BigDat-

alog, by default, partitions by the first key, which happens to

be a poor choice in this case. Manually partitioning by the

second key leads to 2× better performance, but this is still

much slower than GraphRex as it lacks our other optimiza-

tions. For SSSP (results in Figure 1), GraphRex outperforms

BigDatalog by 28–54× on the workloads BigDatalog could

complete, and outforms PowerGraph and Giraph by an aver-

age of more than 5× and 10×. Finally, for REACH, GraphRex
achieves up to 45.6× higher performance than BigDatalog

and up to 26.2× speedup over PowerGraph and Giraph.

Aggregation queries. Figure 13 shows the results of an ag-

gregation, Query 8 (CM), on TW and FR. Since we have found
similar results on UK, and BigDatalog cannot handle CW, we

have omitted these results. Here, BigDatalog performs better

than Giraph, achieving 2.8× and 5× better performance on

11

CC PR TC REACH

G.R. B.D. Giraph P.G. G.R. B.D. Giraph P.G. G.R. B.D. Giraph P.G. G.R. B.D. Giraph P.G.

TW

Time 10.3s 119.8s 49.1s 35.6s 13.4s - 68.6s 43.2s 3.1s 336.8s 50.8s 11.8s 2.8s 90s 26.7s 11.5s

SpdUp 11.6× 4.7× 3.4× N/A 5.1× 3.2× 109.4× 16.5× 3.8× 32× 9.5× 4.1×

FR

Time 15.3s 278.6s 79.3s 60.5s 18.5s - 148.7s 60s 5.1s 898.5s 81.8s 20.4s 5.2s 236.1s 49.01s 20.7s

SpdUp 18.2× 5.2× 4.0× N/A 8.1× 3.2× 176× 16× 4× 45.6× 9.5× 3.99×

UK

Time 30.9s 452.8s 274.4s 164.6s 9.6s - 149.9s 73.6s 18.5s 866.3s 192.1s 86.1s 17.6s 361.02s 152.6s 87.1s

SpdUp 14.7× 8.9× 5.3× N/A 15.6× 7.7× 46.9× 10.4× 4.7× 20.5× 8.7× 4.9×

CW

Time 472.6s OOM 8159.5s 1808s 188.7s - OOM 668.8s 207.4s OOM 5395.2s 978.7s 187.1s OOM 4909.7s 969.2s

SpdUp N/A 17.3× 3.8× N/A N/A 3.5× N/A 26× 4.7× N/A 26.2× 5.2×

Table 10: Execution time and speedup forGraphRex (G.R.) compared to BigDatalog (B.D.), Giraph and PowerGraph
(P.G.). We present results for four queries (CC, PR, TC, and REACH) (Figure 1 shows results for SSSP), and four
graph datasets (TW, FR, UK, CW). OOM indicates an out-of-memory error. Note that B.D. does not support PR.

 0.1

 1

 10

 100

E
xe

cu
tio

n
tim

e
(s

)

BigDatalog
Giraph

PowerGraph
GraphRex

3.54

9.91

2.17

0.33

(a) Twitter

 0.1

 1

 10

 100

E
xe

cu
tio

n
tim

e
(s

)

BigDatalog
Giraph

PowerGraph
GraphRex

3.7

18.6

2.81

0.36

(b) Friendster

Figure 13: Aggregation query evaluation with CM.

 0.1

 1

 10

 100

 1000

BiasedTree SynTw Citation

E
xe

cu
tio

n
tim

e
(s

)

BigDatalog
Giraph

GraphRex

378.48

34.62

291.64

87.25

25.16

120.86

0.55

4.6

36.18

Figure 14: Multi-way join query evaluation with SG.

TW and FR, respectively, similar to PowerGraph. GraphRex
is almost an order of magnitude faster than all of them as a re-

sult of our AGG Global Operator optimizations (Sections 5.5

and 5.6) and their ability to avoid traversal of the oversub-

scribed network. GraphRex finishes within one second.

Multi-way join queries. Multi-way joins are challenging

even on small social network andweb graphs. Consider SG as

an example: since such graphs arewell-connected, all vertices

will eventually be at the same generation. This would result

in an output size of |V |2, where |V | is the number of vertices;

so a small graph with 1M vertices would result in 1 T sg
tuples. Therefore, we have used three alternative datasets to

evaluate SG: (1) BiasedTree, which amplifies the imbalance

in Figure 11 by setting the degree of the high-degree vertices

to 10K and increasing the depth of the tree to 10, (2) SynTw,
a synthesized graph simulating follower behavior in Twitter

but without cycles, and (3) Citation, which is a real-world

graph of paper citation relationships that we collected from

public sources. While numbers of edges are relatively small

(0.1M, 35.7M, and 20.4M, respectively), the generated tuple

sets are large: 1 B, 70M, 6 B tuples during the evaluation of

SG when using the best static join order.

Figure 14 shows our results (PowerGraph is omitted as

noted earlier). For fairness, we ensured that Giraph and Big-

Datalog used the best static join order for the query. Even

so, GraphRex significantly outperforms both. Adaptive Join

Ordering, by picking the most efficient join ordering for ev-

ery tuple, reduces the number of generated tuples to 0.2M,

17M, and 3 B. The resulting performance improvement is

3.3× in the worst case, with an upper bound of 2–3 orders of

magnitude in the extreme case (BiasedTree).

Summary: This set of experiments shows that, as a declar-

ative system, GraphRex consistently and significantly out-

performs existing systems—both declarative and low-level—

particularly on large-scale graph workloads.

6.3 Robustness to Network Dynamics
We next evaluate the robustness of GraphRex to network

dynamics, which are common in datacenter networks.

Network degradation. One such class is link degradations,

where the link capabilities can experience a sudden drop

due to gray failures, faulty connections, or hardware is-

sues [28, 68]. To emulate this, we randomly select a single

rack switch uplink and throttle its capacity to
1
⁄10,

1
⁄50 and

1
⁄100

of its original capacity. Note that a degradation of a sin-

gle server’s access link would decrease performance for all

systems equally. We deploy five systems and test their per-

formance with CC on Twitter (results are similar for other

12

 0

 100

 200

 300

 400

 500

 600

10 50 100

E
xe

cu
ti

o
n
 t

im
e
 (

s)

Link degradation

BigDatalog
Giraph

PowerGraph
GR-Baseline

GraphRex

Figure 15: System per-
formance under varying
link degradations.

 0

 50

 100

 150

 200

4 3 2 1
E
xe

cu
ti

o
n
 t

im
e
 (

s)

#Spine Switches

BigDatalog
Giraph

PowerGraph
GR-Baseline

GraphRex

Figure 16: System perfor-
mance with varying #ag-
gregation switches.

graphs and queries): GraphRex, BigDatalog, Giraph, Pow-
erGraph, and ‘GR-Baseline’, a version of GraphRex with

Global Operator optimizations disabled.

Figure 15 shows performance under different degrees of

link degradation. Because GraphRex minimizes traffic sent

through bottleneck links, it is by far the most robust to degra-

dations of those links. In fact, a
1
⁄10 degradation shows almost

no effect at all (10.61 s vs 10.3 s); even in the
1
⁄100 case, Graph-

Rex finishes in 17.24 s. In comparison, GraphRex-baseline
experiences significant delay, taking 140 s in the

1
⁄10 case, and

433 s in the
1
⁄100 case. Among all systems, PowerGraph is most

sensitive to network dynamics (16× slower than normal for

the
1
⁄100 case. Other systems are also severely impacted.

Over-subscription variation.We next evaluate the effect

of over-subscription. We emulate this by adding/removing

spine switches from the testbed. Less spine switches means

less inter-rack capacity and greater over-subscription. Due to

hardware constraints, we only vary the number of switches

in the spine layer from 4 to 1.

Figure 16 shows results for CC on TW. Results for other

graphs are included in Appendix F.1. The over-subscription

significantly degrades the performance of other systems:

PowerGraph performance drops 52% (36 s to 54 s) between 4

and 1 spine switches, BigDatalog drops 31% (120 s to 157 s),

Giraph 20% (49 s to 59 s), and GR-Baseline 23% (124 s to 152 s).

For reasons similar to the prior section, GraphRex’s perfor-
mance only changes 7% (10.3s to 11.1s) over the same range.

Background traffic. Finally, since datacenters typically host
multiple applications, applications often experience unpre-

dictable “noise” in the network in the form of background

traffic. To evaluate GraphRex and the other systems in its

presence, we inject background traffic using a commonly

used datacenter traffic pattern [13, 14, 37]. Following the

existing methodology, we generate traffic flows from ran-

dom sender/receiver pairs, with flow sizes and flow arrival

times governed by the real-world datacenter workloads [14].

Overall, we generated five representative traffic traces, each

with an average network utilization of 40%. Details of the

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

Pe
rc

e
n
ta

g
e
 (

%
)

Running Time (s)

GraphRex PowerGraph Giraph BigDatalog GR-Baseline

Figure 17: TheCDF of performancewith randomback-
ground traffic. Each dot represents a complete run.

 0

 50

 100

 150

 200

10 12 14 16 18 20

150.7s

89.7s

44.8s

20.97s

119.8s

49.1s

35.6s

10.3s

E
xe

cu
ti

o
n
 t

im
e
 (

s)

#Servers/Rack

BigDatalog
Giraph

PowerGraph
GraphRex

Figure 18: Scalability with the number of servers.
G.R. B.D. Giraph P.G.

Running Time 19.95s 142.31s 86.09s 42.33s

Two-rack Speedup 1.93× 1.18× 1.76× 1.2×

Table 11: The performance in single rack.

generated traces are included in Appendix D. We ran CC

on TW in each system with background traffic, and note

that other query workloads have similar findings. As Fig-

ure 17 shows, the performance variation is significant for

other systems, with standard deviations (σ) of 3.6 (P.G.), 4.3
(Giraph), 3.9 (B.D.) and 4.2 (GR-Baseline). GraphRex, on the

other hand, achieves σ = 0.96, which is much more robust,

and its performance is significantly better than other sys-

tems, with average speedups of 4.6× (over P.G.), 5.2× (over

Giraph), 10.1× (over B.D.), and 10.6× (over the baseline).

Summary: The datacenter-centric design in GraphRex in-

creases robustness to network dynamics, even in harsh net-

work conditions with significant link degradation, over-sub-

scription, and random background noise.

6.4 Scalability Analysis
Finally, we evaluate scalability compared to other systems.

Number of servers/racks. We first examine how adding

servers to the job affects performance. Specifically, we vary

the number of servers per rack in our two-rack testbed from

10 to 20 with a step of 2. Figure 18 shows the result of running

13

TW(S) TW(D) FR(D) UK(D) CW(D)

EmptyHeaded 57.5s N/A N/A N/A N/A

Timely 65.6s 25.96s 44.5s 23.5s 464.9s

GraphRex 99.3s 13.4s 18.5s 9.6s 188.7s

Table 12: Scale-up and out performance comparison. S
stands for single-machine and D for distributed. Emp-
tyHeaded ran OOM on graphs larger than Twitter.

CC on TW. For all systems, the running times decrease when

more servers are added. However, more servers per rack

also leads to higher oversubscription, which poses scalability

bottlenecks. As a result, BigDatalog and PowerGraph only

achieve around 1.3× speedup when we double the number of

servers; Giraph achieves a 1.8× speedup, yet it still has lower

performance than PowerGraph. In contrast, GraphRex, in
our representative datacenter configuration, scales almost

linearly: 2× speedup when server count doubles.

We saw a similar result when scaling up the number of 20-

machine racks from one to two, as shown in Table 11. Here

too, doubling the number of racks almost doubled Graph-
Rex performance. Giraph also scaled well achieving 1.76×

speedup, but the other systems did not. Appendix F.2 includes

results for other workloads.

COST and scale-up/out analysis. For reference, we also
compared our system to centralized alternatives, though we

note that GraphRex is not optimized for single-machine ex-

ecution. One comparison is a COST analysis [50]. We found

that, compared to a COST of hundreds or thousands for many

other systems [50], GraphRex only has a COST metric of 8

for CC and 10 for PR, meaning that it requires 10 threads to

beat an optimized single-threaded implementation in [48].

We also present results with EmptyHeaded [8], the state-

of-the-art single-machine system for Datalog-based graph

processing, and Timely Dataflow [49] (Timely, hereafter), a

distributed dataflow system optimized for both high through-

put and low latency. Table 12 shows results for PageRank, the

most accessible benchmark for both systems, on all four big

graphs. In single machine experiments, TW is the only graph

that can be processed on a single server with 160GB mem-

ory. EmptyHeaded has the best performance, showing the

efficiency of its single-machine optimizations, while Timely

is only 14% slower. Although GraphRex is slower than both

EmptyHeaded (1.7×) and Timely (1.5×) in single machine,

its performance in distributed execution is much faster than

Emptyheaded (4.3×2) and also faster than distributed Timely

(1.9×).GraphRex outperforms Timely by 2.4×, 2.4× and 2.5×

on FR, UK and CW, respectively. EmptyHeaded ran out of

memory in the three larger graphs, demonstrating the need

for scale-out to process large graphs. Appendix F.3 contains

2
Only for illustration as they are not using the same hardware resources.

the evaluation of performance stability with Timely under

different network conditions.

7 RELATEDWORK
Many graph processing systems have been proposed, includ-

ing Pregel [46], Giraph [21], GraphX [30], PowerGraph [29],

GPS [55], Pregelix [20], GraphChi [38], and Chaos [53].Graph-
Rex adopts a Datalog-like interface and computation model

in order to explore the space of optimizations for large graph

queries running on modern datacenter infrastructure.

Declarative data analytics: SociaLite [39] and Emptyh-

eaded [8] are Datalog systems optimized for a single-machine

setting. Hive [2] and SparkSQL [16] are distributed, but only

accept SQL queries without recursion. BigDatalog [57] and

Datalography [51] explore an intermediate design point (Dat-

alog compiled to SparkSQL and GiraphUC); however, they

ignore infrastructure-level optimizations and can be worse

than the systems they are built on. GraphRex instead lever-

ages Datalog for graph-specific and datacenter-centric opti-

mizations, and outperforms existing systems significantly.

Performance optimizations. Several existing proposals [10,
22, 25, 32, 34] have explored the network-level optimization

of groups of related network traffic flows, e.g., in a shuffle

operation. GraphRex is distinguished by its deep level of in-

tegration with the Datalog execution model and its optimiza-

tions for graph workloads. Recent work has also proposed

techniques to either partition input graphs [47, 66] or execute

in a subgraph-centric fashion [61, 64] to minimize commu-

nication. Our optimizations at the infrastructure and query

processing layers are orthogonal to, and could potentially

benefit from, optimizations from these layers.

Graph compression and deduplication. Recent work has
used data compression on graphs. Blandford et al. [18, 19]

propose techniques to compactly represent graphs. Ligra+ [58]

further parallelizes these techniques. GBASE [36] and SLASH-

BURN [41] perform compression for MapReduce to reduce

storage. Succinct [9] can directly process compressed data.

GraphRex is mostly related to C-Store [5], a column-oriented

database, and we have further proposed novel techniques

like the compressed transpose data structure.

Priorwork has also explored deduplication, e.g., viaMapRe-

duce combiners [26, 65] and mechanisms for distributed set

semantics [23, 57]. Our system pursues the same goals, but

our key contribution is to adapt these techniques to create

datacenter-centric optimizations for relational operators.

8 CONCLUSION
GraphRex is a framework that supports declarative graph

queries by translating them to low-level datacenter-centric

implementations. At its core, GraphRex identifies a set of

14

global operators (SHUFF, JOIN/ROUT, and AGG) that ac-

count for a significant portion of typical graph queries, and

then heavily optimizes them based on the underlying dat-

acenter, using techniques such as hierarchical deduplica-

tion, aggregation, data compression, and dynamic join or-

ders. With a comprehensive evaluation, we demonstrate that

GraphRex works efficiently over large graphs and outper-

form state-of-the-art systems by orders of magnitude. Gener-

alizing our techniques to not rely on graph-specific proper-

ties (e.g., the ability to preload join cardinalities for Adaptive

Join Ordering) is left to future work.

15

REFERENCES
[1] Apache Giraph. http://giraph.apache.org/.

[2] Apache Hive. https://hive.apache.org/.

[3] BigDatalog. https://github.com/ashkapsky/BigDatalog.

[4] Lz4 - extremely fast compression. http://lz4.github.io/lz4/.

[5] D. J. Abadi, S. R. Madden, and M. C. Ferreira. Integrating compression

and execution in column-oriented database systems. In SIGMOD, 2006.
[6] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores vs. row-

stores: How different are they really? In Proc. SIGMOD, 2008.
[7] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden. Materialization

strategies in a column-oriented DBMS. In Proc. ICDE, 2007.
[8] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré. EmptyHeaded: A relational

engine for graph processing. In SIGMOD ’16.
[9] R. Agarwal, A. Khandelwal, and I. Stoica. Succinct: Enabling queries

on compressed data. In Proc. NSDI, 2015.
[10] F. Ahmad and et al. ShuffleWatcher: Shuffle-aware scheduling in

multi-tenant mapreduce clusters. In USENIX ATC ’14, 2014.
[11] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data

center network architecture. SIGCOMM ’08. ACM, 2008.

[12] O. Alipourfard and et al. Cherrypick: Adaptively unearthing the best

cloud configurations for big data analytics. NSDI’17, 2017.

[13] M. Alizadeh, T. Edsall, and et al. CONGA: Distributed congestion-

aware load balancing for datacenters. In Proc. SIGCOMM, 2014.

[14] M. Alizadeh and et al. Data center TCP (DCTCP). In SIGCOMM, 2010.

[15] A. Andreyev. Introducing data center fabric, the next-generation

facebook data center network. https://goo.gl/rE8wkL, 2014. Facebook.

[16] M. Armbrust and et al. Spark SQL: relational data processing in spark.

In SIGMOD ’15, 2015.
[17] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query

processing. 2000.

[18] D. K. Blandford, G. E. Blelloch, and I. A. Kash. Compact representations

of separable graphs. In Proc. SODA, 2003.
[19] D. K. Blandford, G. E. Blelloch, and I. A. Kash. An experimental analysis

of a compact graph representation. In Proc. ALENEX, 2004.
[20] Y. Bu and et al. Pregelix: Big(ger) graph analytics on a dataflow engine.

PVLDB, 2014.
[21] A. Ching and et al. One trillion edges: Graph processing at facebook-

scale. PVLDB, 2015.
[22] M. Chowdhury and et al. Managing data transfers in computer clusters

with Orchestra. SIGCOMM ’11. ACM, 2011.

[23] X. Chu, I. F. Ilyas, and P. Koutris. Distributed data deduplication.

PVLDB, 2016.
[24] Cisco Systems. Data Center Design Summary, August 2014.

https://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/

Aug2014/DataCenterDesignSummary-AUG14.pdf.

[25] P. Costa and et al. Camdoop: Exploiting in-network aggregation for

big data applications. In NSDI ’12. USENIX, 2012.
[26] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on

large clusters. In OSDI’04, San Francisco, CA, 2004.

[27] S. Ganguly, S. Greco, and C. Zaniolo. Extrema predicates in deductive

databases. J. Comput. Syst. Sci., 51(2):244–259, 1995.
[28] P. Gill and et al. Understanding network failures in data centers:

measurement, analysis, and implications. In SIGCOMM, 2011.

[29] J. E. Gonzalez and et al. PowerGraph: Distributed graph-parallel com-

putation on natural graphs. In OSDI, 2012.
[30] J. E. Gonzalez and et al. GraphX: Graph processing in a distributed

dataflow framework. In OSDI, 2014.
[31] A. Greenberg and et al. VL2: A scalable and flexible data center network.

SIGCOMM Comput. Commun. Rev., 2009.
[32] K. Hasanov and A. L. Lastovetsky. Hierarchical optimization of MPI

reduce algorithms. In PaCT 2015.

[33] Intel. Optimize data structures and memory access patterns to improve

data locality. https://goo.gl/xQ3ZGT, 2012. Intel.

[34] V. Jalaparti and et al. Network-aware scheduling for data-parallel jobs:

Plan when you can. SIGCOMM ’15, 2015.

[35] M. Kabiljo and et al. A comparison of state-of-the-art graph pro-

cessing systems. https://code.facebook.com/posts/319004238457019/

a-comparison-of-state-of-the-art-graph-processing-systems/.

[36] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos. GBASE: An

efficient analysis platform for large graphs. In Proc. VLDB, 2012.
[37] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford. HULA: Scalable

load balancing using programmable data planes. In Proc. SOSR, 2016.
[38] A. Kyrola, G. E. Blelloch, and C. Guestrin. GraphChi: Large-scale graph

computation on just a PC. In OSDI 2012, pages 31–46, 2012.
[39] M. S. Lam, S. Guo, and J. Seo. Socialite: Datalog extensions for efficient

social network analysis. In ICDE ’13, 2013.
[40] C. E. Leiserson. Fat-trees: universal networks for hardware-efficient

supercomputing. IEEE Trans. Comput., 34:892–901, October 1985.
[41] Y. Lim, U. Kang, and C. Faloutsos. Slashburn: Graph compression and

mining beyond caveman communities. IEEE TKDE, 2014.
[42] V. Liu and et al. Subways: A case for redundant, inexpensive data

center edge links. CoNEXT ’15. ACM, 2015.

[43] B. T. Loo and et al. Declarative networking: language, execution and

optimization. In SIGMOD ’06.
[44] Y. Low and et al. GraphLab: A new framework for parallel machine

learning. UAI’10. AUAI Press, 2010.

[45] Z. Majo and T. R. Gross. Matching memory access patterns and data

placement for NUMA systems. In Proc. CGO, 2012.
[46] G. Malewicz and et al. Pregel: a system for large-scale graph processing.

In SIGMOD ’10.
[47] D. W. Margo and et al. A scalable distributed graph partitioner. PVLDB,

8(12):1478–1489, 2015.

[48] F. McSherry. Cost. https://github.com/frankmcsherry/COST.

[49] F. McSherry. Timely dataflow. https://github.com/frankmcsherry/

timely-dataflow.

[50] F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what COST?

In HotOS ’15, 2015.
[51] W. E. Moustafa and et al. Datalography: Scaling datalog graph analytics

on graph processing systems. In IEEE BigData 2016.
[52] Open Compute Project. Server/SpecsAndDesigns, June 2018. http:

//www.opencompute.org/wiki/Server/SpecsAndDesigns.

[53] A. Roy and et al. Chaos: scale-out graph processing from secondary

storage. In SOSP 2015, 2015.
[54] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the

social network’s (datacenter) network. In SIGCOMM ’15, 2015.
[55] S. Salihoglu and et al. GPS: a graph processing system. In SSDBM ’13.
[56] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed Socialite: A Datalog-

based language for large-scale graph analysis. PVLDB, 2013.
[57] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C. Zaniolo.

Big data analytics with Datalog queries on Spark. In SIGMOD ’16, 2016.
[58] J. Shun and et al. Smaller and faster: Parallel processing of compressed

graphs with Ligra+. In Proc. Data Compression Conference, 2015.
[59] A. Singh and et al. Jupiter rising: A decade of clos topologies and

centralized control in Google’s datacenter network. In Sigcomm, 2015.

[60] S. Sudarshan and R. Ramakrishnan. Aggregation and relevance in

deductive databases. In VLDB ’91, pages 501–511, 1991.
[61] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson. From

"think like a vertex" to "think like a graph". PVLDB, 7(3):193–204, 2013.
[62] W. Vogels. https://twitter.com/werner/status/25137574680.

[63] J. Wang and et al. Asynchronous and fault-tolerant recursive datalog

evaluation in shared-nothing engines. PVLDB, 2015.
[64] D. Yan and et al. Blogel: A block-centric framework for distributed

computation on real-world graphs. PVLDB, 2014.

16

http://giraph.apache.org/
https://hive.apache.org/
https://github.com/ashkapsky/BigDatalog
http://lz4.github.io/lz4/
https://goo.gl/rE8wkL
https://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/Aug2014/DataCenterDesignSummary-AUG14.pdf
https://www.cisco.com/c/dam/en/us/td/docs/solutions/CVD/Aug2014/DataCenterDesignSummary-AUG14.pdf
https://goo.gl/xQ3ZGT
https://code.facebook.com/posts/319004238457019/a-comparison-of-state-of-the-art-graph-processing-systems/
https://code.facebook.com/posts/319004238457019/a-comparison-of-state-of-the-art-graph-processing-systems/
https://github.com/frankmcsherry/COST
https://github.com/frankmcsherry/timely-dataflow
https://github.com/frankmcsherry/timely-dataflow
http://www.opencompute.org/wiki/Server/SpecsAndDesigns
http://www.opencompute.org/wiki/Server/SpecsAndDesigns

[65] Y. Yu and et al. Distributed aggregation for data-parallel computing:

Interfaces and implementations. SOSP ’09, 2009.

[66] C. Zhang, F. Wei, Q. Liu, Z. G. Tang, and Z. Li. Graph edge partitioning

via neighborhood heuristic. In SIGKDD ’17, pages 605–614, 2017.
[67] D. Zhuo and et al. RAIL: A case for redundant arrays of inexpensive

links in data center networks. In NSDI ’17, 2017.
[68] D. Zhuo and et al. Understanding and mitigating packet corruption in

data center networks. In SIGCOMM, 2017.

A RELATION PARTITIONING
Algorithm 1 shows the specific relation partitioning algo-

rithm that is adopted in the Static Optimizer. For each rela-

tion r, if there is only one attribute being marked as ‘*’, then

r is partitioned by that attribute, because that is the only

vertex attribute that can maintain the tuples of r; otherwise

the static optimizer enumerates every possible partitioning

and selects the one with the minimum number of SHUFFs.

We assume the heuristic that recursive rules are executed

many times. This assumption is reasonable as practical graph

queries often run more than one iteration because of the

dense connectivity between vertices in real-world graphs.

B GRAPHREX DSN EVALUATION
The Distributed Semi-Naïve in GraphRex (GR-DSN) pseu-

docode is shown inAlgorithm 2. Here,wi represents aworker

that stores the subgraph Vi , and each vertex v maintains its

own vertex id idv and the edge list Γv .
The DSN algorithm works as follows. Initially,wi initial-

izes each vertex with init function (line 12-13). Specifically,

wi creates a local table rv for each vertexv and each relation

r except edge relation. Recall that the logical plan already

ensures that all relations are indexable by vertex. In the init

function (line 1-3), base rules are evaluated, which gener-

ates the initial tuple set NewTuples in each relation, and

the entire tuple set AllTuples is initialized to be the same

set.wi then loops to iteratively evaluate recursive rules. In

each iteration, wi checks if new tuples were generated in

last iteration (the ∆ tuples in semi-naïve evaluation [43]) at

vertex v and uses recur function to evaluate recursive rules

one time, otherwise calls sleep to deactivate v (line 14-19).

Inside recur, the recursive rules are evaluated based on Γv
and NewTuples of last iteration to generate new NewTuples

Algorithm 1 Static Relation Partitioning

1: v_atts ← get the list of marked attributes of r

2: if size of v_atts = 1 then
3: Mark the attribute as the partition key

4: else
5: v ← argminv (the number of SHUFF operators in the

physical plan based on partition key v ∈ v_atts)
6: Mark v as the partition key

sleep()

recur()

SLEEPING

INITIALIZED

RUNNING

recur()

init()

Figure 19: Vertex states in DSN.

(line 5), and then the deduplication is performed to eliminate

redundant evaluation (line 6) and the resulting tuples are

merged to the entire tuple set (line 7).

In the eval function, the corresponding part of execution

plan is evaluated; and the executor consults the dynamic opti-

mizer to execute each global operator efficiently. In particular,

A SHUFF operator sends around new tuples according to

their partition key. If a vertex v receives tuples, the callback

function onrecv is invoked to handle the tuples. Specifically,

the received tuples are merged to NewTuplesv and dedupli-

cated, and also added to AllTuplesv (line 8-11).

Vertex states. A vertex in GraphRex could be in one of

three states: initialized, running and sleeping. A vertex enters

initialized after calling init to evaluate the base rules, and

transitions to running on calling recur, where the recursive

rules are iteratively evaluated in GR-DSN.

A significant difference from traditional, centralized semi-

naïve evaluation is that when a vertex has no new tuples, it

Algorithm 2 Distributed Semi-Naïve in GraphRex

1: function Init(v)
2: NewTuplesv ← eval(BaseRules, Γv)
3: AllTuplesv ← NewTuplesv

4: function Recur(v)
5: NewTuplesv ← eval(RecurRules, Γv , NewTuplesv)
6: NewTuplesv ← NewTuplesv − AllTuplesv
7: AllTuplesv ← AllTuplesv

⋃
NewTuplesv

8: function OnRecv(v)
9: NewTuplesv ← NewTuplesv

⋃
v’s received tuples

10: NewTuplesv ← NewTuplesv − AllTuplesv
11: AllTuplesv ← AllTuplesv

⋃
NewTuplesv

12: for each vertex v ∈ Vi do
13: init(v)

14: loop until the coordinator signifies to terminate

15: for each vertex v ∈ Vi do
16: if the size of NewTuplesv > 0 then
17: recur(v)

18: if the size of NewTuplesv = 0 then
19: sleep(v)

17

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5x106 1x107 1.5x107 2x107 2.5x107 3x107

C
u
m

u
la

ti
v
e
 F

ra
ct

io
n

Flow Size (Byte)

(a) Flow size distribution in
real data centers.

 2

 3

 4

 5

 6

 7

 8

 9

 0 200 400 600 800 1000 1200 1400 1600 1800
O

v
e
ra

ll
Tr

a
ffi

c
(G

B
)

Seconds

Intra-rack only
Inter-rack

Total

(b) Summarized pattern of
background traffic.

Figure 20: Background traffic generation.

transitions to sleeping; if later, new tuples are received, the

vertex will be activated again and transition into running
again. This design ensures that the distributed evaluation

converges globally rather than locally at a vertex level. The

recursion reaches a fixpoint when: (1) all vertices in the

graph are at the sleeping state, and (2) no tuples are being

shuffled, i.e., no vertex received new tuples. The coordinator

sends termination signal toworkerswhen either the specified

number of iterations or the fixpoint is reached.

C GENERALIZATION OF JOIN ORDERING
Here we explain how adaptive join ordering is applied to

a 4-way join example: r(X,Y) :- e(X,A), r(A,B), e(B,C),

e(C,Y). Given a new r tuple, there are three possible join

orders: (1) (((e Z r) Z e) Z e), (2) ((e Z (r Z e)) Z
e), and (3) (e Z ((r Z e) Z e)). The costs (in terms of

the numbers of intermediate tuples) of the three orders for

r(v1,v2) are: (1) C1 = InDeд(v1) + InDeд(v1) ×OutDeд(v2),
(2) C2 = OutDeд(v2) + InDeд(v1) × OutDeд(v2), and (3)

C3 = OutDeд(v2)+Out
2Deд(v2), where InDeд(v) isv’s inde-

gree,OutDeд(v) is v’s outdegree andOut2Deд(v) is v’s two-
hop outdegree. Therefore, the global information needed by

GraphRex for this query is: the indegrees of all vertices, the

outdegrees of all vertices and the two-hop outdegrees of all

vertices, which is O(|V |) where V is the set of vertices. This

information can be computed offline and loaded by Graph-
Rex as index, so that when GraphRex enumerates the three

orders for a tuple, the costs of the orders can be efficiently

computed and GraphRex selects the order with minimum

cost for this tuple. Similarly, the adaptive join ordering can

be extended to other values of n for n-way joins.

D DATACENTER TRAFFIC GENERATOR
We generate background traffic by using the commonly used

datacenter flow patterns from DCTCP [14]. Figure 20a shows

DCTCP flow size distribution, and Figure 20b shows an ex-

ample of the random background traffic that we inject into

our testbed (the first half hour). The blue line represents the

total volume of intra-rack only traffic in each second, and

(a) The baseline.

0

2

4

6

8

10

(b) GraphRex.

Figure 21: Heat maps of traffic volume (number of
bytes sent between servers, values are log 10 scale) for
CC on Friendster.GraphRex (b) saves 94.8% traffic com-
pared to the infrastructure-agnostic baseline (a).

High

Low

No network

Figure 22: Heat map of cross-server communication.

red line represents inter-rack traffic. We note that inter-rack

traffic also consumes the bandwidth of intra-rack links. The

total traffic volume in every second is represented in black

line. We control the overall network utilization as 40%.

E COMMUNICATION PATTERN
Figure 22 shows the communication cost distribution in

the datacenter, with three layers: (1) communications inside

servers require no network traffic (the left diagonal in the

server matrix), (2) communications between servers in the

same rack require traffic to be sent intra-rack (the light blue

areas), and (3) communications between servers in different

racks, which incur the highest traffic cost.

Figure 21 compares GraphRex against the infrastructure-

agnostic baseline in terms of the communication patterns. Al-

though the baseline has server-level locality, i.e., each worker

sends more traffic to the workers in the same server than

the workers in other servers, it ignores the network struc-

ture and treats all other servers as the same. However, the

communication pattern in GraphRex results in two benefits.

Reduced traffic: GraphRex prefers low-cost communications

to reduce high-cost traffic due to its infrastructure-aware

design, minimizing the amount of inter-rack traffic by incur-

ring additional intra-rack communication. As a result, in this

example, it reduces the traffic cost by 94.8%.

18

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

4 3 2 1

E
xe

cu
ti

o
n
 t

im
e
 (

s)

#Spine Switches

BigDatalog
Giraph

PowerGraph
GraphRex

Figure 23: Performance
on Friendster.

 0

 100

 200

 300

 400

 500

 600

 700

4 3 2 1
E
xe

cu
ti

o
n
 t

im
e
 (

s)

#Spine Switches

BigDatalog
Giraph

PowerGraph
GraphRex

Figure 24: Performance
on UK.

Fewer connections: In the baseline, every worker directly

builds N −1 connections with all other workers for shuffling,

where N is the number of parallel workers. In GraphRex,
each worker establishesW − 1 connections with other work-

ers in the same server first, whereW is the number of work-

ers in the same server; then, at the rack level, it establishes at

most S − 1 connections with other servers in the same rack,

where S is the number of servers in the same rack. Finally, it

establishes at most R−1 connections with other racks, where
R is the number of racks in the datacenter. Therefore, the

number of connections that each worker builds in GraphRex
is O(W + S + R). In the naïve approach, assuming that all

racks have the same number of servers and all servers have

the same number of workers, we haveO(W × S × R) instead.
In summary, The infrastructure-centric design minimizes

traffic cost by reducing traffic sent over bottleneck links.

F ADDITIONAL RESULTS
We show results on more workloads in this section.

F.1 Spine Switch Count
Figure 23 and 24 compare the performance of GraphRex
with other systems when querying CC on FR and UK when

we vary the network capacity by changing the number of

spine switches from 4 to 1. The results show similar trend

as on TW that GraphRex is the most robust system when

network performance varies. Among other systems, Power-

Graph is fastest when network capacity is not constrained,

and it is also the most sensitive system to network changes.

Its performance is lower than Giraph on FR when network

capacity is low. Giraph and BigDatalog are also significantly

impacted when the number of switches drops. We omit other

queries for space and note that the finding of GraphRex be-

ing the most robust system still holds.

F.2 Server-rack Ratio
Figure 25 and 26 present the performance of different sys-

tems for CC on FR and UK, respectively, when the number of

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

10 12 14 16 18 20

E
xe

cu
ti

o
n
 t

im
e
 (

s)

#Servers/Rack

BigDatalog
Giraph

PowerGraph
GraphRex

Figure 25: Scalability on
Friendster with #Servers.

 0

 100

 200

 300

 400

 500

 600

 700

10 12 14 16 18 20

E
xe

cu
ti

o
n
 t

im
e
 (

s)

#Servers/Rack

BigDatalog
Giraph

PowerGraph
GraphRex

Figure 26: Scalability on
UK with #Servers.

 0
 100
 200
 300
 400

10 50 100Ex
ec

ut
io

n
tim

e
(s

)

Link degradation

Timely
GraphRex

 0

 20

 40

 60

 80

 100

 15 20 25 30 35 40

Pe
rc

en
ta

ge
 (%

)

Running Time (s)

GraphRex Timely

 10
 15
 20
 25
 30
 35
 40

4 3 2 1Ex
ec

ut
io

n
tim

e
(s

)

#Spine Switches

Timely
GraphRex

Figure 27: Comparison with Timely.

servers in the cluster changes. GraphRex achieves the high-

est speedup when the number of servers in the datacenter

doubles: 1.8× on FR and 1.7× on UK. Although PowerGraph

always has the best performance, it does not scale as well

as other systems, and on UK, its performance does not con-

tinue to improve when the number of servers in each rack

is higher than 16. Adding more machines improves the per-

formance of Giraph and BigDatalog, but their scalability is

not as good as GraphRex which minimizes the impact from

network constraints, and scales better with more resources.

F.3 Comparison with Timely Dataflow
Figure 27 shows additional experiments comparing Graph-
Rex and Timely in PageRank under different network situa-

tions. As we can see, GraphRex is more robust than Timely.

Upper-left figure shows that when the number of spine

switches drops from 4 to 1, the speedup of GraphRex over

Timely increases from 1.9× to 2.4×, lower-left figure shows

that link degradation severely impacts the performance of

Timely, and the speedup of GraphRex over Timely goes up

from 2.5× to 6.8× when the link capacity drops from
1
⁄10 to

1
⁄100. The right figure presents the CDF of running times of

GraphRex and Timely under random background traffic,

showing that GraphRex has better and more stable perfor-

mance (σ = 0.7) than Timely (σ = 3.7) when noise is present.

19

	Abstract
	1 Introduction
	2 Background
	2.1 Declarative Graph Processing
	2.2 Graph Queries in Datacenters

	3 GraphRex Query Interface
	4 Query Planning
	4.1 Logical Plan
	4.2 Execution Specification

	5 Global Operator Optimizations
	5.1 Columnization and Compression
	5.2 Hierarchical Network Transfer
	5.3 Join Deduplication
	5.4 Adaptive Join Ordering
	5.5 Hierarchical Global Aggregation
	5.6 On-path Aggregation

	6 Evaluation
	6.1 Methodology
	6.2 System Performance
	6.3 Robustness to Network Dynamics
	6.4 Scalability Analysis

	7 Related Work
	8 Conclusion
	References
	A Relation Partitioning
	B GraphRex DSN Evaluation
	C Generalization of Join Ordering
	D Datacenter Traffic Generator
	E Communication Pattern
	F Additional Results
	F.1 Spine Switch Count
	F.2 Server-rack Ratio
	F.3 Comparison with Timely Dataflow

