Unified Declarative Platform for Secure
Networked Information Systems

Wenchao Zhou® Yun Mao*

*University of Pennsylvania

Boon Thau Loo*
tUC Santa Cruz

Martin Abadi'*
tMicrosoft Research

{wenchaoz, maoy, boonloo}@cis.upenn.edu, abadi@microsoft.com

Abstract— We present a unified declarative platform for specify-
ing, implementing, and analyzing secure networked information
systems. Our work builds upon techniques from logic-based trust
management systems, declarative networking, and data analysis
via provenance. We make the following contributions. First,
we propose the Secure Network Datalog (SeNDlog) language
that unifies Binder, a logic-based language for access control
in distributed systems, and Network Datalog, a distributed
recursive query language for declarative networks. SeNDlog
enables network routing, information systems, and their security
policies to be specified and implemented within a common
declarative framework. Second, we extend existing distributed
recursive query processing techniques to execute SeNDlog pro-
grams that incorporate authenticated communication among
untrusted nodes. Third, we demonstrate that distributed network
provenance can be supported naturally within our declarative
framework for network security analysis and diagnostics. Finally,
using a local cluster and the PlanetLab testbed, we perform
a detailed performance study of a variety of secure networked
systems implemented using our platform.

I. INTRODUCTION

In recent years, we have witnessed a proliferation of net-
worked information systems deployed at Internet-scale for a
variety of application domains ranging from Internet mon-
itoring infrastructures, publish-subscribe systems, to content
distribution networks. Despite their widespread usage, design-
ing and implementing these large-scale systems remains a
challenge, in part because of the sheer scale of deployment,
but also due to emerging security threats.

In response, there have been several proposals aimed at
evolving the underlying network infrastructure to provide
better support for accountability [1], efficient packet tracing [2]
and flow analysis [3], all of which are geared towards better
tools for analyzing and securing networks. Surprisingly few of
these proposals have been integrated in a useful manner in ex-
isting networked information systems, or have any significant
impact on the design of new distributed query engines. We
argue that the reasons are two-fold. First, these mechanisms
are typically designed to tackle specific security threats at the
underlying network, without taking into account content dis-
tribution and information processing at higher layers. Second,
they are often afterthought, implemented and enforced in a
different language or environment from the networks that they
are trying to protect, hence raising the barrier for adoption.

As a step towards the integration of networked information
systems with security policies, we present a unified declarative
platform for specifying, implementing, analyzing and auditing
large-scale secure information systems. Our work has largely
been inspired by recent efforts at using declarative languages

that are aimed at simplifying the process of specifying and
implementing security policies and networks. Our paper builds
upon and unifies three bodies of work: (1) logic-based trust
management systems [4], [5], [6], [7], [8], [9], (2) declarative
networking [10], [11], [12], and (3) database techniques for
analyzing data computations via the concept of provenance
(or lineage [13]). From a practical standpoint, this integration
has several benefits, ranging from ease of management, one
fewer language to learn, one fewer set of optimizations, finer-
grain control over the interaction between security and network
protocols, and the potential of doing analysis, optimizations,
and auditing across levels.

Access control is central to security and it is pervasive in
computer systems. Over the years, logical ideas and tools have
been used to explain and improve access control. Several logic-
based languages (e.g. Binder [7], Cassandra [9], DILP [5],
RT [8], SD3 [4], SecPAL [6]) have been proposed to ease the
process of expressing, analyzing and encoding access control
policies. Similarly, the Network Datalog (NDlog) declarative
networking language also has its roots in logic programming.
NDlog is a distributed variant of Datalog for expressing
recursive queries [14] over network graphs, hence allowing
compact, clear formulations of a variety of routing protocols
and overlay networks which themselves exhibit recursive prop-
erties.

Despite being developed by two different communities and
used for different purposes, logic-based access control lan-
guages and NDlog extend Datalog in surprisingly similar ways:
by supporting the notion of context (location) to identify
components (nodes) in distributed systems. This suggests the
possibility of unifying these languages to create an integrated
system, exploiting good language features, execution engine,
and optimizations. In addition, our unification will dispense
with much of the special machinery proposed for access con-
trol, and instead rely on distributed database engines to process
these policies, leveraging well-studied query processing and
optimization techniques. It has been shown previously [15]
that access control languages such as Binder share similarities
to data integration languages, further suggesting that query
processing and optimization techniques are directly applicable
here. The contributions of this paper are as follows:

e Unified declarative framework: We propose the Secure
Network Datalog (SeNDlog) language that unifies logic-based
access control and declarative networking languages, hence
enabling networked information systems to be specified
within a unified declarative framework. We demonstrate the

flexibility and compactness of SeNDlog via secure specifica-
tions of the path-vector routing protocol, Chord distributed
hash table (DHT) [16], and the PIER [17] distributed query
processor. Our system additionally provides support for dy-
namically layering multiple overlays at runtime (e.g. PIER
over Chord), hence enabling security policies to be enforced
and integrated across various layers.

e Authenticated distributed query processing: We extend
the pipelined semi-naive (PSN) [12] evaluation used in
declarative networks for asynchronous pipelined evaluation
of distributed recursive queries, to incorporate authenticated
communication into query execution. In our proposed authen-
ticated PSN extension, all communication generated by the
execution plans is digitally signed and authenticated to ensure
that the identities of participating nodes can be determined
and validated.

e Diagnostics with network provenance: The dataflow
framework used in declarative networking captures infor-
mation flow as distributed queries. Hence, it is natural to
utilize data provenance [13] to “explain” the existence of
any network state, which is analogous to the use of proof-
trees [4] in security audits. We propose a taxonomy of data
provenance and demonstrate that they map into use cases for
secure networking, including real-time diagnostics, forensics,
and trust management.

e Prototype evaluation: We have developed a prototype
based on the P2 declarative networking system [12]. On a
local cluster and PlanetLab [18], we experimentally validate
declarative secure implementations of the path vector proto-
col, Chord, and PIER query processor, as well as network
provenance support in our system.

The paper is organized as follows. In Section we first
present a background overview of trust management and
declarative networking languages, focusing on the Binder [7]
and NDlog [12]. In Section we present the unified SeNDlog
language, and present several examples in Section that
illustrate usage of the language. In Section [V| we demon-
strate how SeNDlog queries are compiled into authenticated
dataflows to implement a variety of secure information sys-
tems. Section outlines analysis opportunities that are en-
abled with the integration of network provenance into our
system. We present evaluation results in Section

II. BACKGROUND

As background, we first introduce Binder, a representative
logic-based access control language, and the NDlog declarative
networking language. These two languages serve as the basis
for the unified declarative language described in the next
section.

Binder and NDlog are query languages based on Data-
log [14]. A Datalog program consists of a set of declarative
rules. Each rule has the form p :- g1, g2, ..., qn.,
which can be read informally as “gql and g2 and ... and
an implies p”. Here, p is the head of the rule, and g1,
a2,...,an is a list of literals that constitutes the body of the rule.
Literals are either predicates with attributes (which are bound
to variables or constants by the query), or boolean expressions
that involve function symbols (including arithmetic) applied to

attributes. In Datalog, rule predicates can be defined with other
predicates in a cyclic fashion to express recursion. The order
in which the rules are presented in a program is semantically
immaterial; likewise, the order predicates appear in a rule
is not semantically meaningful. Commas are interpreted as
logical conjunctions (aND). The names of predicates, function
symbols, and constants begin with a lowercase letter, while
variable names begin with an uppercase letter. An optional
Query rule specifies the output of interest (i.e. result tuples).
A. Binder: Access Control Language

Binder program is a set of Datalog-style logical rules. In
addition, Binder has a notion of confext that represents a
component in a distributed environment and a distinguished
operator says. For instance, in Binder we can write:

bl access (P,0, read)
b2 access (P,0, read)

:— good (P) .
:— bob says access(P,0,read).

The says operator implements a common logical construct
in authentication [19], where we assert “p says s” if the
principal p supports the statement s. The above rules bl and
b2 can be read as “any principal P may access any object O in
read mode if P is good or if bob says that P may do so”. The
says operator abstracts from the details of authentication.

A principal in Binder refers to a component in a distributed
environment. Each principal has its own local context where
its rules reside. Binder assumes an untrusted network, where
different components can serve different roles running distinct
sets of rules. Because of the lack of trust among nodes,
a component does not have control over rule execution at
other nodes. Instead, Binder allows separate programs to
interoperate correctly and securely via the export and import
of rules and derived tuples across contexts. For example, rule
b2 can be a local rule that is executing in the context of
principal alice, which imports derived may-access tuples
from the principal bob into its local context via bob says
may—-access (p, o, read) in its rule body. In one specific im-
plementation, communication happens via signed certificates,
where derived tuples and rules signed using the private key of
the exporting context can be imported by another context and
checked using the corresponding public key.

B. NDlog: Declarative Networking Language

The high level goal of declarative networks is to build
extensible network architectures that achieve a good balance
of flexibility, performance and safety. Declarative networks
are specified using Network Datalog (NDlog), which is a
distributed recursive query language used for querying net-
work graphs. NDlog queries are executed using a distributed
query processor to implement the network protocols, and
continuously maintained as distributed views over existing
network and host state. Declarative queries such as NDlog are
a natural and compact way to implement a variety of routing
protocols and overlay networks. For example, traditional rout-
ing protocols can be expressed in a few lines of code [10], and
the Chord DHT in 47 lines of code [11]. When compiled and
executed, these declarative networks perform efficiently rela-
tive to imperative implementations, while achieving orders of
magnitude reduction in code size. To illustrate, the following
two NDlog rules compute all pairs of reachable nodes:

rl reachable (@S,D) :- 1link(@S,D).
r2 reachable (@S,D) :— 1link (@S, 7Z7),
Query reachable (@S,D) .

reachable (QZ,D) .

The rules r1 and r2 specify a distributed transitive closure
computation, where rule r1 computes all pairs of nodes
reachable within a single hop from all input links, and rule
r2 expresses that “if there is a link from S to z, and z can
reach D, then s can reach D.” By modifying this example, it
has been shown in previous work [10] that we can construct
more complex routing protocols, such as the distance vector
and path vector routing protocols.

NDlog supports a location specifier in each predicate, ex-
pressed with @ symbol followed by an attribute. This attribute
is used to denote the source location of each corresponding
tuple. For example, all reachable and 1ink tuples are stored
based on the @s address field. The output of interest (indicated
by the rule Query is the set of all reachable (@S, D)
tuples, representing reachable pairs of nodes from s to D.
The above NDlog program is executed as distributed stream
computations, where streams of 1ink and reachable tuples
are joined at different nodes to compute routing tables.

C. Comparing Binder and NDlog
Having introduced Binder and NDlog, we highlight some

similarities and differences between these two languages to set

the stage for the unified language design in the next section.

e Trusted vs untrusted networks: Since Binder and NDlog
are designed for distributed settings, Binder’s notion of
context is similar to NDlog’s notion of location specifier.
However, NDlog is designed for a fully trusted environment,
where generated tuples are blindly accepted by nodes based
on their specified locations. Binder assumes an untrusted
network, where rules are executed with their own context,
and communication happens via the use of “says” which
requires authentication.

e Export of derived tuples: In Binder, security policies are
not integrated with the policy for exporting data. To illustrate,
in rule b2, it is not possible to express the restriction that
principal alice can export may-access (P, 0, read) only
to principal bob. Such restrictions on messages to selected
recipients are important in secure network protocols, both for
performance and secrecy. NDIlog achieves that with the use
of location specifiers at the rule head.

e Bottom-up vs top-down evaluation: Most practical access
control languages utilize a top-down (or backward-chaining)
evaluation strategy. Specific requests are made as goals,
which are then resolved against the security policies, hence
minimizing the disclosure of sensitive information. On the
other hand, declarative networking protocols adopt a bottom-
up evaluation strategy, which is a better fit for the incremental
continuous execution model of network protocols. To achieve
goal-oriented operations in a bottom-up evaluation engine,
there are well-known database optimizations such as magic-
sets [20] which rewrites existing rules based on the output of
interest to avoid computing redundant facts while leveraging
set-at-a-time operations.

INote that the Query rule is not mandatory, in which case, all derived
output tuples will be continuously computed and maintained in the network.

III. SECURE NETWORK DATALOG

The SeNDlog language unifies Binder and NDlog with the
following goals in mind. First, the language is as expressive
as Binder and NDlog. Second, SeNDlog must support au-
thenticated communication and enable the differentiation of
principals according to their roles in trusted and untrusted
networked environments. Note that we have chosen Binder as
a starting point for SeNDlog because of its simple language
design and similarities to NDlog. Despite its simplicity, we
show in the next section that the unified language can support
a variety of networked systems and security policies.

A. Rules within a Context

In SeNDlog, we bind a set of rules and the associated tuples
to reside at a particular node. We do this at the top level for
each rule (or set of rules), for example by specifying:

At N,
rl p :- pl,p2,...,pn.
r2 pl :- p2,p3,...,pn.

The above rules r1 and r2 are in the context of N, where N is
either a variable or a constant representing the principal where
the rules reside. If N is a variable, it will be instantiated with
local information upon rule installation. In a trusted distributed
environment, N simply represents the network address of
a node: either a physical address (e.g. IP addresses) or a
logical address (e.g. overlay identifier). In a multi-user multi-
layered network environment where multiple users and overlay
networks may reside on the same physical node, N can include
the user name and an overlay network identifier. This is
unlike declarative networking, where location specifiers denote
physical IP address. To differentiate from NDlog’s use of
location specifiers, we refer to such forms of addressing in
SeNDlog as composite location specifiers [21]. As we will
demonstrate later, composite location specifiers enable one to
specify networked information systems that involve multiple
principals and authentication at different network layers.

B. Communicating Contexts

Similar to Binder, the SeNDlog language allows differ-
ent principals or contexts to communicate via import and
export of tuples. The communication serves two purposes:
(1) maintenance messages as part of a network protocol’s
updates on routing tables, and (2) distributed derivation of
security decisions. Imported tuples from a principal N are
automatically quoted using “N says”, to differentiate them
from local tuples. During the evaluation of SeNDlog rules, we
allow derived tuples to be communicated among contexts via
the use of import predicates and export predicates:
Definition 1: An import predicate is of the form “N says p”
in a rule body, where principal N asserts the predicate p.
Definition 2: An export predicate is of the form “N says
p@xX” in a rule head, where principal N exports the predicate
p to the context of principal x. Here, X can be a constant
or a variable. If X is a variable, in order to make bottom-up
evaluation efficient, we further require that the variable X occur
in the rule body. As a shorthand, we can omit “N says” if N
is the principal where the rule resides.

The use of export predicates ensures confidentiality and
prevents information leakage, by only exporting tuples to
specified principals. With the above definitions, a SeNDlog
rule is a Datalog rule where the rule body can include import
predicates, and the rule head can be an export predicate. We
provide a concrete example with the following rules:

At N,
el p(X,Y) :— pl(X), p2(Y).
e2 p(X,Y,W) :— Y says pl(X), Z says p2(W), Z!=N.

e3 p(Y,Z2)@X :— pl(X), Y says p2(Z).

ed 7 says p(Y)@X :— Z says p(Y), pl(X).

Rule e1 is a traditional Datalog rule. Rule e2 contains two
predicates pl and p2 imported from v and z respectively. The
output of el and e2 are stored locally as p. Rules e3 and
e4 contain an import predicate each, and export their derived
heads to x. Note that, in rule e4, the export principal z differs
from the principal N. To ensure that p is indeed asserted by z,
we introduce the honesty constraint in all SeNDlog rules:
Definition 3: A SeNDlog rule in the context of principal N is
honest if the following condition is satisfied: if the rule head
is “X says p”, where X is a constant or a variable, either X
is N, or “X says p’ occurs in the body of the rule.

The honesty constraint enables a simple implementation.
Specifically, for security, whenever a principal other than N
exports N says p, it should provide a proof that this is the
case; the proof is a signature by N. With this constraint, the
principal may simply forward the signature that corresponds
to the occurrence of N says p in the rule body. Like NDlog,
SeNDlog allows derived tuples to be exported to specific nodes
via the export predicates. This is done as a way of enforcing
secrecy and also performance (avoiding broadcast of tuples).

C. Different Levels of Says

The implementation of “says” may depend on the system
and its context. Ideally, SeNDlog should support a heteroge-
neous network where nodes have different security levels. In
a hostile world, “says” may require digital signatures. For
example, in rule e3 from Section [[II-B] N should check that p2
indeed came from Y by checking the signature of the imported
tuple against ¥’s public key. In a more benign world, “says”
may simply append a cleartext principal header to a message—
and this will of course be cheaper. Somewhere in between,
the use of digital signatures may be applied only to certain
important messages: there is a trade-off between security and
efficiency, and the language does not provide any leverage in
deciding how that trade-off should be made. Note however that
the policy writer could easily provide hints along with rules,
indicating that some “says” are more important than others.

Going further, one can support multiple “says” constructs
with different security levels. This requires the export predicate
be explicit about the security level, e.g. “N says0 p@X”
exports predicate p to x with security level 0 (which may
simply involve a cleartext principal header with no signatures),
and x can only import p in its rule body via an authentication
scheme at the same or higher security level.

IV. PRACTICAL SENDLOG EXAMPLES

We provide three SeNDlog example specifications of secure
networked systems. Our examples are based on modifications

to existing declarative networks to incorporate various security
policies. This is by no means intended to be an exhaustive
coverage of the possibilities. Our main goal here is to illustrate
flexibility and compactness of SeNDlog, and to illustrate the
key language features of SeNDlog.

A. Path-Vector Routing Protocol

Our first example is based on the declarative path vector pro-
tocol as presented in the original declarative routing [10] paper.
At every node z, this program takes as input neighbor (Z, X)
tuples that contain all neighbors X for z. The program gener-
ates route (Z, X, P) tuples, each of which stores the path p
from source 7 to destination x. The basic protocol specification
is similar to the all-pairs reachable example presented in
Section with additional predicates for computing the
actual path using the f_concat function which prepends
neighbor X to the input path p.

The input carryTraffic and acceptRoute tables are
used to represent the export and import policies of node z
respectively. Each carryTraffic(z,X,Y) tuple represents
the fact that node z is willing to serve all network traffic on
behalf of node x to node v, and each acceptRoute (Z, Y, X)
tuple represents the fact that node 7 will accept a route from
node x to node Y. A more complex version of this protocol
will have additional rules that derive carryTraffic and
acceptRoute, avoid path cycles and also derive shortest paths
with the fewest hop counts.

At 7z,
z1 route(Z,X,P) :- neighbor(Z,X), P=f_initPath(Z,X).
z2 route(Z,Y,P) :- X says advertise(Y,P),
acceptRoute (Z,X,Y) .
z3 advertise(Y,P1l)@X :- neighbor(z,X), route(Z,Y,P),
carryTraffic(Z,X,Y), Pl=f_concat (X,P).

The path-vector protocol is used for inter-domain routing
over the Internet, and it is known to be vulnerable to a
variety of attacks due to the lack of mechanisms for verifying
the authenticity and authorization of routing control traffic.
One potential solution is to authenticate every routing control
message, as proposed for Secure BGP [22].

In our example program, we can specify such authentica-
tion naturally via the use of “says” that ensures that all
advertise tuples are verified by the recipients for authen-
ticity. Rule z1 takes as input neighbor (2, X) tuples, and
computes all the single hop route (z,X,P) containing the
path [Z,X] from node Z to x. Rules z2-z3 are used to
compute routes of increasing hop counts. Upon receiving an
advertise (Y,P) tuple from X, Z uses rule z2 to decide
whether to accept the route advertisement based on its local
acceptRoute table. If the route is accepted, a route tuple
is derived locally, and this results in the generation of an
advertise tuple which is further exported by node z via rule
z3 to some of its neighbors X as determined by the policies
stored in the local carryTraffic table.

B. Chord DHT

Our second example is based on a declarative Chord imple-
mentation originally presented in 47 rules. Our modifications
avoid a security weakness in a DHT where malicious nodes
can occupy a large range of the key space [23]. There are three

types of nodes: (1) a new node NI joining the chord network,
(2) the certificate authority ca, and (3) the landmark nod{]
LI. Each node runs its respective set of rules as follows:

At NI,
nil requestCert (NI,K)QCA :- startNetwork (NI),
publicKey (NI,K), MyCA(NI,CA).
ni2 nodelID (NI,N) :- CA says nodeIDCert (NI,N,K)
ni3 CA says nodeIDCert (NI,N,K)@LI :-
CA says nodeIDCert (NI,N,K), landmark(NI,LI).

At CA,
cal nodeIDCert (NI,N,K)@NI :-
NI says requestCert (NI,K),
S=secret (CA,NI), N=f_generatelID(K,S).

At LI,

1il acceptJoinRequest (NI) :-—

CA says nodeIDCert (NI,N,K).

In rule ni1, a node NT that wishes to join the Chord network
first exports a requestCert tuple to its CA (as indicated in the
entry in its MyCA table) to request nodelD certificates. Upon re-
ceiving the request, the CA generates a nodeIDCert (NI, N, K)
tuple containing the nodelD certificate, which is then exported
back to node NI. The nodeIDCert (NI, N,K) tuple contains
the address of node NI, the corresponding public key K, and
a generated identifier N randomly chosen from the keyspace
using the function f_generateID (K, S) that takes as input the
public key of K and a previously exchanged secret s known
only to the cA and NI.

Upon importing the nodeIDCert tuple from the ca, using
rule ni2, node NI initializes its local node identifier which
is stored as a nodeID (NI,N) tuple. It also forwards the
nodeIDCert to its landmark node LI in order to join the chord
network. At the landmark node LI, nodeIDCert is imported
and checked for authenticity. If nodeIDCert is accepted, the
landmark node derives an acceptJoinRequest (NI) tuple
that can further be used to generate a lookup request to locate
the successor node on behalf of node NI.

Once node NI successfully joins the Chord network, the
rules as presented [11] can then be used by node NI to
implement the rest of the Chord protocol (see [11] for detailed
specification). Beyond addressing this specific weakness of
Chord, one can further modify the current declarative Chord
specifications such that authentication happens among all
Chord nodes. In this case, all message exchanged between
any Chord nodes has to be similarly communicated via the
use of says, and digitally signed by each node.

C. PIER Distributed Query Processor

Our third example is based on the distributed join capabilities
supported by the PIER [17] query processor. In an untrusted
p2p environment, authenticated communication is essential for
ensuring that every PIER node only processes tuples generated
by other PIER nodes that they trust. Our program takes as input
two tables tablea and tableB owned by principals alice
and bob and performs a distributed join:

At alice,
al storeA (X,Y)@NI
NI=Chord: :K.

:— tableA (X,Y), K=f_sha(X),

2In any Chord DHT, there are a number of landmark nodes that are known
apriori. All nodes join the Chord network via these landmarks.

At bob,
bl storeB(X,Y)@NI
NI=Chord: :K.

:— tableB(X,Y), K=f_sha(X),

At NI,
rl result(X,Z)@r :- alice says storeA(X,Y),
bob says storeB(Y,Z).

Rules a1l and bl are executed by alice and bob to store
all tableA and tableB tuples in the DHT. Chord: :K is an
example of a composite location specifier that we introduced
in Section [[II-A] where chord denotes the Chord overlay, and
K denotes a logical address in the form of a Chord identifier.
Both alice and bob compute the SHA-1 hash of the first
attribute x to generate a Chord identifier K. The resulting
storeA and storeB tuples are then sent to the node NI which
is responsible for storing tuples for the Chord identifier K.
These tuples include the signatures of alice and bob, which
are verified before being stored at NT.

The join query (denoted by rule r1) is issued by node r.
This rule is disseminated and executed on all PIER nodes NI,
resulting in a distributed join of all tablea and tableB tuples
indexed by the DHT. The result tuples computed from the
join are sent back to the requesting node r.

Layered authentication

The above SeNDlog program demonstrates layered authen-
tication: the PIER query processor is layered over the Chord
DHT, and authentication can happen at either the PIER or
Chord layer. For example, the rules al and bl enable the
authentication of every published tuple generated by alice
and bob. This authentication happens at the PIER query
processing layer, and the underlying Chord is agnostic to it.
On the other hand, to index the tuples of both alice and bob
in the DHT, the rules al and b1l themselves invoke Chord’s
lookup for the key K. In this case, Chord routing messages
that result from executing these rules may require further
authentication among the underlying Chord nodes.
Distributed join

The above rule r1 specifies a distributed join of two tables.
In the actual PIER system, this requires “rehashing” (or repar-
titioning) both tables based on their respective join attributes.
The following rules perform this repartitioning step followed
by the actual distributed join:

At NI,
rla alice says rehashA(X,Y)@RI :-

alice says storeA(X,Y), K=f_sha(Y), RI=Chord::K.

At RI:
rlb result(X,Z)@r :- alice says rehashA(X,Y),
bob says storeB(Y,Z).

In rule ria, all storen tuples are rehashed as rehasha
tuples based on the hash of the join attribute v. All rehashed
tuples retain the original signature of alice, adhering to the
honesty constraint (Section [[II-B). The join is performed at
node RI with local storeB tuples, and the resulting result
tuples are sent back to the requesting node r.

V. SECURE QUERY PROCESSING

Having presented the SeNDlog language and three represen-
tative protocols written in the language, we next describe query
processing techniques for executing SeNDlog programs. Our

proposed Authenticated Pipelined Semi-naive (APSN) is an
adaptation of the Pipelined Semi-naive (PSN) [12] proposed
for declarative networks.

A. Background on PSN

We briefly introduce PSN before describing APSN. Unlike
traditional semi-naive evaluation, PSN does not require com-
putations in synchronous rounds (or iterations), a prohibitively
expensive operation in distributed settings. We consider the
following recursive Datalog rule:

d :- dl, dg, ...,dn, bl, bg, ceny bm

where there are n derived predicates (dy, ..., d,), and m base
predicates (by,...,by,) in the rule body. Derived predicates
refer to intensional relations that are derived during rule
execution, and may be mutually recursive with d. Base pred-
icates refer to extensional (stored) relations whose values are
not changed during rule execution. In PSN, a delta rule is
generated for each derived predicate, where the k'" delta rule
is of the form:

Ad :- dla 0y dkfla Adka dk+17 o0y dna b17 b27 sry b

where Adj, denotes a tuple t; € dj that is used as input to
the rule for computing new d tuples.

In the simplest version of PSN with no buffering, tuples
are processed tuple-at-time in a pipelined fashion. Each node
maintains a FIFO queue (ordered by arrival timestamp) of
new input tuples. Each new tuple is dequeued and is used
as input to its respective a delta rule. The execution of a
delta rule may generate new tuples which are either inserted
into the local queue or sent to a remote node for further
execution. Duplicate evaluations are avoided using local arrival
timestamps, where each new tuple is only processed with
tuples with older timestamps.

B. Authenticated PSN

APSN differs from PSN in its processing of tuples that
are sent from one node to another. Consider the following
SeNDlog rule in the context of principal p:

At p,

a:-dy,....dp,by,...,;by,p1 SQYS a1, P2 SAYS A2..., Do SAYS Qp.
where there are n derived and m base predicates as before, o
additional import predicates of the form “p; says aj” in the
rule body, and an export predicate in the rule head.

For each k" import predicate, an authenticated delta rule
is generated as follows:

p says Na - diy...;dpn, b1, ..., b,
D1 SQYS A1, ...y DE SAYS DGk, ..., Do SAYS Gp.

The delta rule is similar as PSN with the additional use of
says to authenticate new ay, tuples imported from pj, and sign
any derived a tuples by the local principal p.

In the rest of the section, we will describe the overall
dataflow architecture, and then show how APSN delta rules
are compiled into execution plans.

Dataflow Architecture

Figure (1| shows an exampled dataflow that is automatically
generated from the SeNDlog rules by our query processor. The
dataflow execution model is based on that of the P2 declarative
networking system [11]. In P2, queries are compiled and

executed as distributed dataflows and share a similar execution
model with the Click modular router [24]. At the edges of
the dataflow, there are several network processing operators
(denoted by Network-In and Network-Out) used to process
incoming and outgoing messages. Flow control operators
such as Queue, Mux, Demux, and TimedPullPush support
buffering, multiplexing, demultiplexing, and periodic flow of
tuples within the dataflow.

>

Overlay
Mux Recv
Unwrap

T no EDiscard
ST T S

poigCheckerdves f o R

obin

p Queue [— TimedPullPush l—‘

i

Send Wrap
Local
‘Netwurk OutH Queue HIP

Fig. 1.

LocSpec
Demux {

TimedPullPush <}

Dataflow execution plan for a single node.

To support layering of multiple networks, the execution plan
includes three additional operators shown in Figure (I} The
operators OverlayRecvUnwrap and OverlaySendWrap are
used for de-encapsulation and encapsulation of tuples that
are sent across different network layers. They are used in
conjunction with the LocSpecbDemux operator, which demul-
tiplexes tuples based on the composite location specifier to
the rule strands executing the appropriate network protocol.
For example, if a tuple has a composite location specifier
Chord: :K, it will be routed to the local dataflow strands for
Chord which will process and forward this tuple based on
the Chord protocol. More implementation details on layering
support is available in reference [21].

APSN Rule Strands

At the core of the dataflow are rule strands shown within
the gray box, which are directly compiled from the PSN and
APSN delta rules into a series of relational operators such
as joins, aggregations, selections, and projections. Messages
flowing among dataflows are executed at different nodes,
resulting in updates to local tables, or query results that are
returned to the hosts that issued the queries. The local tables
store the state of intermediate and computed query results,
which include the network state of various network protocols.
Each tuple has an associated lifetime declared at creation time
of each tableﬂ Each incoming tuple is then stored locally for
its lifetime.

In traditional PSN, each delta rule will be compiled into
two rule strands: one for incremental insertion and one for
deletion. Given an input tuple, the output of executing a strand
would either be local state modifications (insertions/deletions

3A zero lifetime tuple is treated as an event that will trigger rules and be
discarded. An infinite lifetime tuple is stored locally until explicitly deleted. In
between, tuples may be maintained as soft-state with a fixed lifetime, similar
to time-based sliding windows in stream processing systems (e.g. [25]).

to local tables), or generation of new messages which are then

transmitted via the Network—-Out operator.

APSN rule strands (shown as the first two gray boxes
in Figure differ from PSN in the use of authenticated
communication. This requires two additional operators shown
in bold in the dataflow:

e The sigGenerator operator is used to sign outgoing tuples
based on the private key of the local principal. Any outgoing
tuple t that requires authentication is communicated as a
(p, s, t) triplet, where p corresponds to the source principal,
s is the signature generated by encrypting a message digest
(essentially a cryptographic hash of t) with p’s private key.

e At the recipient node, the SigChecker operator authen-
ticates incoming (p, s, t) triplets by decrypting s with the
public key of p, and verifying that the decrypted contents
matches the corresponding message digest.

The SigGenerator and SigChecker use a public-key
cryptography scheme that can be computationally expensive.
The SigChecker operator requires knowledge of the public
key of the principal whom the dataflow is importing tuples
from. Note that key management is an orthogonal problem to
our work. In the simplest model, each node has full apriori
knowledge of all the public keys of all other communicating
peers. An alternative approach involves the runtime system
to fetch public keys on demand (upon receiving a tuple that
requires authentication) from a known CA, and cache the
public key for future use.

Our declarative framework and runtime system do not pre-
clude the use of other lightweight key management schemes
or alternative schemes such as the message authentication
code (MAC) which is computationally less expensive. MAC
enables APSN to be more efficient but requires the use of
shared symmetric keys among principals that wish to com-
municate. To support different levels of “says”, an optional
security level attribute can be included to the output of the
SigGenerator operator. The SigChecker operator can then
apply the appropriate level of authentication.

C. Example: Path-Vector Routing

We provide an example based on rule z2 used in the path
vector protocol presented in Section The APSN delta
rules for rule z2 are as follows:
z2a Aroute(Z,Y, P) - X says Nadvertise(Y, P),

acceptRoute(Z, X,Y).
22b Aroute(Z,Y, P):- X says advertise(Y, P),
AacceptRoute(Z, X, Y).

Since rule z2 takes as input two predicates advertise and
acceptRoute, two delta rules (shown above) are generated.
These two delta rules are used to generate the dataflow strands
labeled z2a@z and z2b@z in Figure[2] The first strand (z2a@z)
takes as input advertise(Y,P) tuples from the network.
After each advertise tuple is verified by the SigChecker
operator based on the public key of x retrievable from the
local store, the advertise tuple is inserted via the Insert
operator. All new advertise tuples not seen previously will
be joined with matching tuples from the local acceptRoute
table to generate new route tuples which are further inserted
into the local route table.

RECV advertise

i 1SS Aadvertise Join

Schecker frsert Dadvertise.Y = acceptRouteV Insert
Join

Aaccepmoutev advertise.Y H Insert

Aaccep(Rc ute
- accepmou:e

Generated Rule Strands for rule z2.

22a@Z

22b@Z

-@

Fig. 2.

r“““‘f“

The second strand (z2b@z) takes as input any tuple updates
stored in its local acceptRoute table. Since the table is local,
no authentication is required. A similar join is performed with
the local advertise table to generate new route tuples.
Since both delta rules insert into the local route table rather
than export the output tuples to remote principals, they need
not be signed. The rule strand for rule z3 would require a
SigGenerator operator to generate the signature using the
private key of z before being sent.

APSN evaluation preserves the authenticity of tuples derived
by SeNDlog rules. A tuple is authentic if it is derived from a
SeNDlog rule that takes as input local tuples (that are trusted
by the local principal) or authenticated tuples imported from
other principals. In our execution framework, each tuple can
be derived in two ways: (1) a delta rule generated from a
regular Datalog rule that takes as input only local tuples
to generate new derivations, or (2) an authenticated delta
rule that takes as input a combination of local tuples and
authenticated tuples imported from remote principals. For
example, in Figure [2] both rule strands z2a@z and z2b@z
take as input local acceptRoute tuples, and perform a join
with incoming advertise tuples which are authenticated via
the SigChecker operator.

VI. NETWORK PROVENANCE

In this section, we demonstrate a variety of opportunities for
cross-layer analysis on both security policies and network state
within our unified declarative platform. The dataflow frame-
work used in our system captures information flow naturally as
distributed queries, which allows one to track the derivation of
any network state for real-time and forensic analysis. Network
provenance in SeNDlog is inspired by the database notion of
data provenance to ‘“explain” the existence of any network
state. We capture network provenance naturally within our
declarative framework as the building blocks of provenance
such as derivation rules and authenticated derivations are
already being used throughout the system. A similar notion
of provenance in security has previously been formalized as
proof-trees (e.g. [4], [26]), where the focus is on checking the
correctness and authenticity of derived security policies.

A. Taxonomy and Use Cases

To illustrate network provenance, we make use of a SeND-
log version of the all-pairs reachable program introduced

in Section [II-B| with the additional use of says language
construct. Given a three-node network consisting of three uni-
directional links, Figure [3] shows the provenance in the form
of a derivation tree for reachable (a, c) derived at node a.

reachable(a, c, <a+ta*b>)

Qnion @3>

a says reachable(a, ¢, <a>) b says reachable(a, ¢, <a*b>)

link(a, ¢, <a>) asays linkD(b, a, <a>) b says reachable(b, ¢,)
link(a, b, <a>) link(b, ¢,)

Fig. 3. SeNDlog provenance for reachable (a, c) in a’s context.

The base tuples are at the leaves of the tree, namely
link (a,b) and link (b, c). We annotate each operator (de-
noted by the oval) with the location (or context) where the rule
is executed. Each node in the tree is asserted by a principal us-
ing “says”. The provenance is authenticated, where individual
nodes in the provenance tree need to validate the authenticity
of the computed provenance using digital signatures. Each
tuple in the derivation tree has an additional field denoted
by <...> that encodes the principals used for deriving the
tuple as an algebraic expression [27]. Here, we utilize + to
represent a union, and x to represent a join. Based on this
algebraic expression, each principal can determine the other
principals involved in deriving the fact, and hence determine
whether to accept or reject this fact based on existing trust
relationships.

In addition to encoding authenticity, the above derivation
tree can be stored in a local or distributed fashion. In local
provenance, the entire derivation tree is stored at node a. This
requires each tuple to contain its entire provenance when com-
municated from one node to another. Meanwhile, in distributed
provenance, provenance information is fetched on demand,
and only points to the child derivations which are potentially
stored on another node. Distributed provenance requires no
extra communication overhead during query execution, but
incurs the additional cost of querying the provenance in a
distributed fashion. On the other hand, local provenance has
the advantage of enabling trust policies (e.g. accepting or
rejecting incoming tuples based on source origin) and at each
node locally without having to execute a potentially expensive
distributed query.

We can further classify provenance as either online or offline.
Online provenance is maintained for network state that is
currently valid (i.e. not expired), and offline provenance is kept
even when the derivations have expired. Online provenance
enables real-time diagnostics to detect anomalies at runtime,
whereas offline provenance enable one to perform forensic
analysis where historical data is used to correlate traffic
patterns of attackers [3].

B. Example: Network Traffic Traceback

We provide an example based on the SeNDlog routing
program presented in Section We modify the program

to add additional rules for performing network traffic trace-
back [2]. The following SeNDlog program performs packet
forwarding given the forwarding table at every router:
At Router,
f1l packet (Pid,Dest,Data)@NextHop :—
forwarding (Dest,NextHop), Router != Dest,
P says packet (Pid,Dest,Data) .

The forwarding table is computed by modifying the path
vector protocol in Section [[V-A] to compute the nextHop
router along the shortest path to any given destination (Dest).
Rule f£1 forwards a packet Pid along the best path to Dest
via the nextHop router. This payload is recursively routed by
rule £1 to the destination.

In order to traceback potential malicious traffic, one can
annotate each outgoing packet tuple with its provenance. This
can be in the form of local provenance, in which case the entire
path (encoded in the packet’s derivation tree) is forwarded
with each packet tuple. In distributed provenance, states are
maintained at every router to traceback the reverse path of
each packet that is uniquely identified by its pid. If routers are
untrusted, authentication can be achieved by adding a signature
generated from each packet. Annotating every packet with its
provenance can be expensive, both in terms of computation
and bandwidth consumption. In the original IP traceback
proposal, sampling is performed, where 1/20,000th packets
are annotated with its provenance. Exploring such automatic
optimizations in provenance computation is an interesting
avenue of future work.

We note that a naive implementation of network provenance
may result in information leakage: the provenance of each
tuple reveals information on the derivation rules used for its
derivation. The leakage is especially problematic in the case
of local provenance, where each tuple is shipped with its
entire derivation tree, and nodes at remote locations can learn
about derivation rules of nodes that are several hops away.
For example, in the above traceback example, storing the
provenance with each packet reviews the entire path traversed
by each packet, and this may violate confidentiality policies
of individual routing domains, and in addition, reveal import
and export policies. If distributed provenance is used, such
leakage can be mitigated since the child derivations require
a network traceback which triggers a distributed query, and
the source of each rule invocation can enforce access control
over such queries. Another possibility that we are exploring is
providing mechanisms where provenance information can be
hidden based on security levels of principals, or stored only
on specific trusted nodes.

VII. EVALUATION

In this section, we present the evaluation of several secure
networked information systems developed using our platform.
Our evaluation is based on the P2 declarative networking sys-
tem [11], with enhancements to support the SeNDlog language
and APSN. Our dataflow execution utilizes two signature
schemes: (1) the OpenSSL v0.9.8b cryptographic libraries
that generate 1024-bit RSA signatures given input data, and
(2) keyed-Hash Message Authentication Code (HMAC) that
generates a 160-bit SHA-1 cryptographic hash from the input

data and a secret key. This allows us to validate that our
implementation can support signature schemes as described
in Section [V-B] For example, 1024-bit RSA signatures are the
most expensive, while the HMAC approach is computationally
less expensive but requires pair-wise symmetric keys. We
further added runtime support to the P2 system to compute
online, local and authenticated provenance (Section .

In previous work [10], [11], [12], it has been shown that
performance of declarative networks is comparable to tradi-
tional imperative implementations. For example, a /N-node
declarative Chord implementation [11] resolves lookups via
O(logN') messages as expected, and the latency numbers are
within the same order of magnitude as the published num-
bers [16] of the MIT Chord deployment. Hence, we focus on
experimentally quantifying the additional overheads incurred
by SeNDlog’s security extensions and network provenance
computations, by comparing directly with existing declarative
network implementations.

Our performance metrics are as follows:

e Execution time (s): Time taken for a SeNDlog program to
reach a distributed fixpoint in a static network.

e Average bandwidth utilization (KBps): The per-node
average bandwidth utilization for executing a distributed

SeNDlog program in a dynamic setting where nodes are

continuously joining and leaving the network.

e Aggregate communication overhead (MB): The total
traffic generated when executing a single SeNDlog program
to fixpoint in a stable network.

A. Experimental Setup

Our first set of experiments are executed within a local
cluster with sixteen quad-core machines with Intel Xeon
2.33GHz CPUs and 4GB RAM running Fedora Core 6 with
kernel version 2.6.20, which are interconnected by high-speed
Gigabit Ethernet. The LAN environment allows us to isolate
and examine CPU overhead of executing our platform within
a controlled environment with high bandwidth. Our second set
of experiments are conducted on the PlanetLab [18] testbed,
where 80 geographically distributed nodes in Asia, Europe
and North America are selected to execute our system. The
PlanetLab testbed allows us to examine the real-world effects,
such as bandwidth constraints and propagation delays imposed
by geographic distances and queueing delays.

Our workload consists of the three SeNDlog programs pre-
sented in Section The Path-Vector program involves a
distributed recursive query for computing all-pairs shortest
paths. The rules used in this query are similar to that pre-
sented in Section with two additional local rules for
computing the path with the minimum hop count for each
source/destination pair of nodes. The Chord program extends
the declarative Chord DHT [11] in SeNDlog with authenticated
communication among all nodes (Section [[V-B). The PIER
program implements distributed query processing over the
Chord DHT (Section [[V-C).

To get an accurate measure of actual bandwidth utilization,
we make use of the tcpdump system tool that allow us to
intercept and measure all network packets transmitted from
one P2 node to another.

B. LAN Experiments

In this section, we present the results of executing the Path-
Vector query and Chord DHT on the local cluster. These
two workloads are different: the first involves executing a
distributed recursive query given a static network as input,
while the second performs incremental maintenance of a
Chord network and continuously issues Chord lookup requests
in the background. Due to space constraints, we do not present
PIER evaluation results on a LAN environment where the
observations on performance overhead are similar to these two
workloads. We will revisit an evaluation of PIER on PlanetLab
later in this section.

Path-Vector Routing Protocol

Our first experiment consists of executing the Path-Vector
query on all 16 cluster nodes. We vary the network size from
16 to 128, where each cluster machine runs up to 8 P2 virtual
nodes. As input to the Path-Vector query, we initialized a
neighbor table where each node has an outdegree of 3.

Figures [and [5] show the aggregate communication overhead
and completion latency for the Path-Vector query averaged
over 8 experimental runs. In Auth-RSA1024, RSA signatures
of 1024 bits are generated from each tuple and verified by
the recipient nodes. Auth-MAC represents the HMAC-based
authentication scheme while Auth-None does not utilize any
authentication. As a performance/security tradeoff illustration,
we include Auth-RSA512, which uses 512-bit RSA signatures
but is less secure compared to Auth-RSA1024.

We make the following observations. For the largest network
size of 128, a lightweight authentication scheme such as Auth-
MAC results in a 10% increase in aggregate communication
overhead, and a negligible increase in execution completition
time. On the other hand, the most expensive signature scheme
Auth-RSA1024 leads to a 40% increase in communication
overhead, and increases the completion time from 10s to 34s.

Since our experiments are carried out in a high-speed
network, the additional overhead is due largely to the gen-
eration (and not transmission) of the signatures. Given that
authentication with 1024-bit signatures represents an upper-
bound in performance overhead, we focus our evaluation on
authentication overheads on this scheme, denoted as Auth in
the rest of this section.

Chord DHT

Next, we study the performance characteristics of a SeNDlog
implementation of the Chord protocol. The main difference
compared to the previous Path-Vector query is the continuous
execution flavor as opposed to a single program execution,
where routing tables are incrementally maintained as nodes
either and leave the network. Our experimented Chord network
size consist of 128 nodes, and after all nodes have joined the
Chord overlay at 1600s, random Chord lookup queries are
issued simultaneously from 8 different nodes at three seconds
interval for the next 400 seconds.

Figure [6] shows the per-node bandwidth utilization over
time, obtained by averaging t cpdump statistics gathered across
all nodes at any point in time. After all nodes have joined
the Chord network (at time 800s), the per-node bandwidth
utilization stabilizes at 0.2KBps and 0.4KBps respectively for

N
i
wu
o

—+Auth-None

- Auth-RSA1024
-A-Auth-RSA512
-+ Auth-MAC

—+Auth-None

- Auth-RSA1024
A-Auth-RSA512
-+ Auth-MAC

N
IS
o

=

)
w
o

o =
[ZJE N
N
o

=
o

Communication Overhead (MB)
o
'S

Query Completion Time (s)

o

0 16 32 48 64 80 96 112 128 0 16 32 48
Number of Nodes

Fig. 4. Per-Node aggregate communica-

tion overhead (MB) for Path-Vector. Vector.

Auth-None and Auth. At 1600s, Chord lookups are issued,
where each lookup with random key is issued from a randomly
chosen node to retrieve the IP address of the node responsible
for the key. The bandwidth consumption increased due to the
additional Chord lookups which require hop counts that are
logarithmic [28] the size of the network on average.

We make two observations attributed to the smaller Chord
messages (180 bytes per lookup message) and the continuous
nature of the Chord protocol. First, Auth incurs twice as much
bandwidth compared to Auth-None, which is larger compared
to Path-Vector. Second, in Figure the CDF of Auth-None and
Auth of Chord lookup latency show that signature generation
leads to a marginal increase in latency.

We observe that our earlier Path-Vector query workload
incurs higher authentication overhead compared to Chord.
This is largely due to the bandwidth intensive nature of the
Path-Vector query, which is a distributed recursive query that
executes to fixpoint over a large dataset. At 128 nodes, the
average bandwidth utilization of the Path-Vector query is
45KBps, which is significantly higher compared to the band-
width utilization of Chord which does periodic routing table
maintenance. As a result, Chord incurs far lesser overhead in
terms of signature generation, and this is reflected by the lower
authentication overhead incurred by Chord.

C. PlanetLab Experiments

To examine the effects of bandwidth constraints and prop-
agation delays over the wide-area, we deploy our SeNDlog
implementations of Chord and PIER on PlanetLab. The Chord
setup on PlanetLab is similar to that of the local cluster. In
the PIER setup, we execute a distributed join of two tables
with 100 tuples each, using the underlying SeNDlog Chord
implementation as its routing layer. The distributed join query
is issued after the Chord overlay has stabilized and the two
input tables have been indexed by Chord.

Figure [8| shows the average bandwidth utilization of Chord
on PlanetLab. Compared to a similar LAN experiment in
Figure [6] the bandwidth utilization of 0.2KBps and 0.4KBps
for Auth-None and Auth are identical, validating that Chord
is executing correctly on PlanetLab in terms of protocol
messages. In terms of Chord lookup latencies, we note that
Chord lookups on PlanetLab (Figure [J) are an order of mag-
nitude slower compared to a LAN environment (Figure [7). We
attribute the increase to real-world effects, where competing
slices on PlanetLab contend for limited bandwidth and CPU
resources. Hence, the performance penalty of authenticated

Number of Nodes

Fig. 5. Query completion time (s) for Path-

o
=Y

o
n
i%

0.4
03 el

0.2

—+Auth-None
- Auth

Bandwidth Utilization (KBps)
o
s

o

64 80 96 112 128 0 400 800 1200 1600

Time Elapsed (s)

2000 2400

Fig. 6. Per-Node bandwidth utilization
(KBps) for Chord on LAN.

communication is more apparent.

We make similar observations on executing the PIER dis-
tributed join on PlanetLab. Figure [0 shows the execution
progress of PIER in terms of percentage of results received:
Auth-None requires an additional 30s to receive 50% of the
result tuples. On PlanetLab, effects of congestion are more
apparent, as reflected by the long-tailed distribution of the
query results.

D. Network Provenance for Traffic Traceback

In our final experiment, we perform an evaluation of the
SeNDlog-based traffic tracing query as described in Sec-
tion [VI-B| in both the LAN and PlanetLab settings. This
experiment serves to validate our runtime system support
for network provenance, and also experimentally quantify
the overhead of provenance computations concurrently with
authenticated communication.

The experiment consists of 128 P2 virtual nodes executing
on our 16-node cluster. The P2 nodes are used to emulate
routers, where the Path-Vector query is executed on all 128
nodes to compute the forwarding tables used to determine
the next hop along the shortest path from any given source to
destination node. After the Path-Vector query has reached a
distributed fixpoint, we execute the SeNDlog packet forward-
ing rule described in Section |VI-B| where 800-byte packets
are continuously injected and forwarded from random sources
to destinations at a rate of 160 packets/second. The forwarding
rules are executed with the following settings (based on the

labels in Figures [IT] and [T2):

e Regular communicates all packets without authentication
and provenance.

e Prov annotates local provenance (the derivation tree storing
information of the entire path traversed) to every packet that
is being forwarded.

o AuthProv-MAC and AuthProv-RSA annotates /ocal
provenance with authentication to every packet using HMAC
and RSA signatures.

Figure shows the CDF of packets delivery latency (the
time elapsed between sending and receiving a packet) of
the various schemes in a LAN environment. The additional
overhead due to provenance generation and communication is
negligible with marginal increase in the median latency. The
use of HMAC for authenticated provenance leads to a 5%
increase in median latency. In the worst case, using 1024-
bit RSA signatures increases the median latency significantly,

2
gos Yook
08 c /) 038
204 RO 000 60606
%06 '_E‘i 03 L 0.6
o = X o
]
0.4 02 04
% X
0.2 —+Auth-None -E 01 -+Auth-None 02 X —+Auth-None
c S
. > Auth S o > Auth o seboce > Auth
0 600 1200 1800 2400 0 4 8 12 16 20 24 28 32 36 40
0 03 06 0.9 12 15]
Time Elapsed (s) Time Elapsed (s) Time Elapsed (s)
Fig. 7. CDF of Chord lookup latency on Fig. 8. Per-Node bandwidth utilization Fig. 9. CDF of Chord lookup latency on
LAN (KB/s) for Chord on PlanetLab. PlanetLab.
1 Rk
& b M il
.5 0.8 ““
goe s
S -l
04 A
b q —+Regular —+Regular
g ““ > Prov > Prov
02 ~+Auth-None \ - AuthProv-RSA - AuthProv-RSA
o > Auth -6-AuthProv-MAC -6-AuthProv-MAC
0 0 80 120 160 200 0.06 0.09 0.12 015 0 2 4 6
Time Elapsed (s) Time Elapsed (s) Time Elasped (s)
Fig. 10. Query progress over time for Fig. 11. CDF of packet delivery latency Fig. 12. CDF of packet delivery latency

PIER on PlanetLab.

although in a high-bandwidth LAN environment, the absolute
increase is less than 0.05 seconds.

On PlanetLab, the relative overhead of authenticated prove-
nance is mitigated by the bandwidth limitations and larger
WAN latencies, as shown in Figure @ On PlanetLab, the
relative increase in median latency is marginal, but on all
schemes, we observed a long-tailed distribution in latencies
due to network congestion.

E. Summary of Results

In summary, our experiments validate SeNDlog implementa-
tions of the path-vector protocol, Chord DHT, and distributed
DHT-based joins. We note that the performance overhead of
authentication depends on the type of authentication scheme
used (e.g. HMAC vs RSA), and also the nature of the SeNDlog
protocol being executed. A bandwidth-intensive distributed
recursive query of large input tables will incur large over-
head due to signature generation, while a continuous incre-
mental protocol such as Chord DHT incurs less overhead.
The overhead due to authentication may be mitigated with
alternative authentication schemes that achieve different per-
formance/security tradeoffs, and the use of tuple batching to
amortize the cost of signature generation (at the expense of
increased convergence times).

In addition, we validate and evaluate experimentally our sys-
tem support for distributed authenticated provenance. On Plan-
etLab, the relative overhead of authentication and provenance
is lower compared to a LAN environment, as the increased
overhead is amortized by the larger inter-node latencies.

VIII. RELATED WORK
This paper builds upon our initial SeNDlog language de-
sign [29] with an exploration of new use cases in various
networked information systems such as performing distributed
joins in an authenticated fashion, layered authentication, query

for traffic traceback on the local cluster.

for traffic traceback on PlanetLab.

processing techniques, as well as an evaluation of a proto-
type implementation. Additionally, reference [30] discusses
the notion of quantifiable provenance where a trust value
can be computed based on a tuple’s lineage, and proposes
optimization techniques such as sampling to compute and
maintain distributed provenance efficiently. We adopted the
use of composite location specifiers from the MOSAIC [21]
declarative network composition platform.

Our work is related to a large literature on access control in
distributed systems (e.g. [4], [5], [8], [6], [7], [9]). In addition,
through our use of declarative networking techniques, our
work is related to a large literature of network specification
languages. Our system extends and unifies these bodies of
work to enable a unified declarative platform for developing
secure networked information systems.

While access control in database systems is a well-explored
topic, to our best knowledge, the usage has been limited to
traditional database management systems. In recent months,
security and access control policies are becoming increasingly
integrated with stream processing systems (e.g. [31], [32]),
as distributed stream processing systems become pervasively
deployed on potentially untrusted networked environments
(e.g. RFID, sensors, wireless mobile devices). While our paper
focuses on securing declarative networks, as future work, we
would like to further explore applying our framework to other
distributed stream processing environments.

IX. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we present a unified declarative platform for
specifying, implementing, analyzing and auditing large-scale
secure information systems. Our three main contributions are
as follows: (1) a unified declarative language, (2) authen-
ticated query processing techniques for distributed settings,
and (3) support for network provenance within a declarative

framework. We validated our contributions via an extensive
prototype evaluation on a LAN and the PlanetLab testbed.

Our proposed SeNDlog language draws its inspirations from
declarative languages for access control and declarative net-
working, and lays the groundwork for richer explorations into
the language design space. We have focused on the Binder
access control language due to its simplicity and similarities
with the NDlog declarative networking language. Despite its
simplicity, SeNDlog supports a variety of practical uses cases
in secure networking and distributed query processing.

We briefly survey some possible language extensions for
future explorations. While we have focused on authentica-
tion, one can introduce additional security constructs for
secrecy [33] and encrypted facts [26], hence ensuring that only
authorized principals can interpret facts in distributed settings.
Given our use of roles among principals, one can incorporate
the notion of restricted delegation [5] and speaks-for [19]
to the language. Another language feature involves security
protocols that utilize distributed vote-based agreements. This
has been formalized in various trust management languages
such as DL [5], where a fact in the rule head is derived only
when k-out-of-n principals in a rule body predicate derive
a similar fact concurrently. Privilege revocation is another
practical aspect of access control that we would like to support.
Interestingly, time-based revocation can be enforced naturally
using the declarative networking feature of soft-state [34]
derivations where each derived tuple receives an associated
lifetime, after which the tuple is deleted.

One of our overarching goals is to exploit the declarative
framework for cross-layer optimizations in a unified manner.
First, a query optimizer with knowledge of network state and
security policies can exploit the performance/security trade-
offs, for example, by prioritizing the evaluation of facts with
increased trust or security levels. Second, traditional database
optimizations such as magic-sets [20] can potentially bridge
the top-down evaluation approach used in access control,
versus the typical bottom-up continuous evaluation of network
protocols. This will enable us to utilize a query optimizer
to adaptively choose between two different approaches: the
“need-to-know” approach where sensitive information is on-
demand given a specific access control request, and the
“authorized-to-know” approach where a bottom-up evaluation
engine computes and propagates facts limited by export pred-
icates. Third, there is an inherent tradeoff between expressive-
ness and complexity in SeNDlog, and while each extension
may be intriguing in isolation, one would not want to add them
all indiscriminately. One can perhaps exploit this tension in a
structured manner, as proposed in the Cassandra [9] system
for trust management.

We are currently working towards bandwidth efficient tech-
niques for querying and maintaining network provenance in
distributed settings. Additionally, we plan to further explore
the interplay between security and privacy of network prove-
nance that we have highlighted in Section

X. ACKNOWLEDGMENTS

This work was partially supported by NSF grants CNS-
0721845 and I1S-0812270.

[1]
[2]
[3]
[4]
[5]
[6]

[7]
[8]

[9]

(10]
(11]
[12]
[13]

[14]

[15]

[16]

[17]

(18]
[19]

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]
(30]
(31]

[32]
[33]
[34]

REFERENCES

P. Laskowski and J. Chuang, “Network monitors and contracting sys-
tems: Competition and innovation,” in SIGCOMM, 2007.

S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical network
support for IP traceback,” in SIGCOMM, 2000.

Y. Xie, V. Sekar, M. Reiter, and H. Zhang, “Forensic analysis for
epidemic attacks in federated networks,” in /CNP, 2006.

T. Jim, “SD3: A Trust Management System With Certified Evaluation,”
in IEEE Symposium on Security and Privacy, May 2001.

N. Li, B. N. Grosof, and J. Feigenbaum, “Delegation Logic: A logic-
based approach to distributed authorization,” ACM TISSEC, Feb. 2003.
Moritz Y. Becker and Cedric Fournet and Andrew D. Gordon, “SecPAL:
Design and Semantics of a Decentralized Authorization Language,”
Microsoft Research, Tech. Rep. MSR-TR-2006-120, 2006.

J. DeTreville, “Binder: A logic-based security language,” in [EEE
Symposium on Security and Privacy, 2002.

N. Li, W. H. Winsborough, and J. C. Mitchell, “Distributed credential
chain discovery in trust management,” Journal of Computer Security,
vol. 11, no. 1, pp. 35-86, 2003.

M. Y. Becker and P. Sewell, “Cassandra: Distributed Access Control
Policies with Tunable Expressiveness,” in 5th IEEE International Work-
shop on Policies for Distributed Systems and Networks, 2004.

Boon Thau Loo et. al, “Declarative Routing: Extensible Routing with
Declarative Queries,” in SIGCOMM, 2005.

B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica, “Implementing Declarative Overlays,” in ACM SOSP, 2005.
Boon Thau Loo et. al., “Declarative Networking: Language, Execution
and Optimization,” in ACM SIGMOD, June 2006.

P. Buneman, S. Khanna, and W. C. Tan, “Why and where: A character-
ization of data provenance,” in /CDT, 2001.

R. Ramakrishnan and J. D. Ullman, “A Survey of Research on Deductive
Database Systems,” Journal of Logic Programming, vol. 23, no. 2, pp.
125-149, 1993.

M. Abadi, “On Access Control, Data Integration and Their Languages,”
Computer Systems: Theory, Technology and Applications, A Tribute to
Roger Needham, vol. Springer-Verlag, pp. 9-14, 2004.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applica-
tions,” in SIGCOMM, 2001.

R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and
I. Stoica, “Querying the Internet with PIER,” in VLDB, 2003.
PlanetLab, “Global testbed,” http://www.planet-lab.org/,

B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication
in Distributed Systems: Theory and Practice,” ACM TOCS, 1992.

F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman, “Magic Sets and Other
Strange Ways to Implement Logic Programs,” in SIGMOD, 1986.

Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith, “MOSAIC: Unified
Declarative Platform for Dynamic Overlay Composition,” in ACM
CONEXT 2008.

Secure BGP, http://www.ir.bbn.com/sbgp/.

M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and D. Wallach, “Secure
Routing for Structured Peer-to-peer Overlay Networks,” in OSDI, 2002.
E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click Modular Router,” ACM TOCS, vol. 18(3), 2000.

Daniel J. Abadi et. al., “The Design of the Borealis Stream Processing
Engine,” in CIDR, 2005.

K. Minami and D. Kotz, “Secure context-sensitive authorization,” in
PERCOM, 2005.

T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,”
in ACM Symposium on Principles of Database Systems, 2007.

H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Looking Up Data in P2P Systems,” Communications of the ACM, Vol.
46, No. 2, 2003.

M. Abadi and B. T. Loo, “Towards a Language and System for Secure
Networking,” in NetDB, 2007.

W. Zhou, E. Cronin, and B. T. Loo, “Provenance-aware Secure Net-
works,” in NetDB, 2008.

R. V. Nehme, E. A. Rundensteiner, and E. Bertino, “A security punc-
tuation framework for enforcing access control on streaming data,” in
ICDE, 2008.

Barbara Carminati and Elena Ferrari and Kian-Lee Tan, “Specifying
Access Control Policies on Data Streams,” in DASFAA, 2007.

M. Abadi and B. Blanchet, “Analyzing security protocols with secrecy
types and logic programs,” in POPL, 2002.

S. Raman and S. McCanne, “A model, analysis, and protocol framework
for soft state-based communication,” in SIGCOMM, 1999.

http://www.planet-lab.org/

	Introduction
	Background
	Binder: Access Control Language
	NDlog: Declarative Networking Language
	Comparing Binder and NDlog

	Secure Network Datalog
	Rules within a Context
	Communicating Contexts
	Different Levels of Says

	Practical SeNDlog Examples
	Path-Vector Routing Protocol
	Chord DHT
	PIER Distributed Query Processor

	Secure Query Processing
	Background on PSN
	Authenticated PSN
	Example: Path-Vector Routing

	Network Provenance
	Taxonomy and Use Cases
	Example: Network Traffic Traceback

	Evaluation
	Experimental Setup
	LAN Experiments
	PlanetLab Experiments
	Network Provenance for Traffic Traceback
	Summary of Results

	Related Work
	Conclusion and Future Directions
	Acknowledgments
	References

