Secure Forensics without Trusted Components

Wenchao Zhou”, Qiong Fei’, Arjun Narayan’, Andreas Haeberlen’, Boon Thau Loo”, Micah Sherr*
‘University of Pennsylvania, *Georgetown University

Introduction

Goal: Develop capability to answer diagnostic or forensics
qguestions about network state
eSystems are found to be in an unexpected state
°Determine the causes — why did the route to foo.com change?
*Determine the effects — what other routes have been affected?

Route to foo.com Fe Attacker changes policy

not exported to Alice s to ed rect traffic, so she =——>> (Q ROUte r2

can intercept it

foo.com

Route r,

Figure 1. In the system (left), network A’s policy blocks traffic to Alice, and Alice reaches foo.com
through B & C. If Eve compromises A (right), she can change the policy and eavesdrop Alice’s traffic.

Getting correct forensics answers is difficult
*Nodes may be compromised by the attacker
eFabricate plausible (yet incorrect) response
*Misdirect accusation to innocent nodes

*Existing work relies on trusted components, e.g., OS kernel,
virtual machine, monitor, hardware, etc

Tamper-evident provenance (TEP), a forensics system that
can operate in a completely untrusted environment
* A novel data structure for forensics in adversarial environments
eTamper-evident forensics query engine
*Prototype implementation and case studies on various systems

Threat Model and Guarantees

Byzantine adversaries
*May have compromised an arbitrary subset of the nodes
*May have complete control over the nodes — arbitrary behavior

*May collude with each other

Guarantees
e|dealism: Always get correct forensics results (not possible!)
ePracticality: The conservative model requires compromises
- TEP can only answer queries about observable network state

- Responses may be incomplete, though the missing parts are
always clearly identifiable

+ An observable symptom of an attack can ALWAYS be traced
to a specific misbehavior by at least one incorrect node

+ Forensics results are supported by VERIFIABLE evidence

Provenance for Forensics

System representation: tuple and derivation rules
eSystem state as tuples: E.g. link(@C,D,5), bestCost(@C,D,5)
*System’s algorithms as derivation rules:

E.g. cost(@X,Z,Y,C1+C2) & link(@X,Y,C1) A bestCost(@Y,Z,C2).

Network provenance [Zhou et al. SIGMOD 2010]
*A DAG representing dependencies between state
*Explains the existence of system state

bestCost(@C,D,5) [t1=min(t1.,t1,), now]: EXIST bestCost(C,D,5)@C

f‘fﬂ" ‘\
fﬁ H—ﬁ“—h——h.
Bl DERI\TIE R3@C i DER*E R3@C

cos(@C,D,D,5) cost(@C,B,D,5) t1,: APPEAR cost(C.D.D.5\@C t1,: BELIEVE-APPEAR cost(C,B.D.5)@C

X t1,: DERI\1/‘E R1@C t1,; RECEIVE +cost(C,B,D,5)@C (from B)
A

link(@C,D,5) link(@B,C,2) bestCost(@B,D,3)

t1,: INSERT link(C,D,5)@C t2: SEND +cost(C,B,D,5)@B (to C)
‘ t2: DERIVE R2@B
= 2 Sl

cost(@B,D,D,3) e —

+ [t3, t2]: EXIST link(B,C,2)@B t2: APPEAR bestCost(B,D,3)@B

link(@B,D,3) t3: INSERT link(B,C,2)@B

Figure 2. Example provenance graph for the bestCost(@C,D,5) tuple in the classic provenance
notation (left) and the extended TEP provenance notation (right).

Strawman solution: provenance + fault detection
eQuery results are not guaranteed to be correct (detection delay)
*The information on other (benign) nodes may be corrupted
eSystem becomes useless when it is most needed!

Extended TEP provenance graph (Figure 2 - right)
* An additional temporal dimension — system state in the past
eExplanation of state changes — sometimes more important

eClean partition of the provenance graph — binding nodes’
commitments to each of the partitions

Tamper-evident Query Engine

Architectural overview ' _ Provenancesystem e
eLogging at execution time »sﬁ
*On-demand replay for querying %4_ '

Provenance store
eUse tamper-evident logging

eRecord minimal system state for deterministic replay

Vertex processor
*Fetch the logs and perform deterministic replay
*Generate immediate successors and predecessors

Query processor
*Recursively expand the provenance graph

eUse vertex processor to assemble answers to higher-level queries

gEORgETOZMVERSH'Y

Implementation and Case Studies

Three techniques to extract provenance

*M1 - Inferred Provenance: Dependencies are explicitly captured
in the implementation (e.g. via the use of declarative language)

* M2 - Reported Provenance: Modified code reports provenance

M3 - External Specification: Dependencies are defined between
observed input and output of black-box applications

Use cases

eChord DHT (M1): explain finger entries / lookup results

eHadoop MapReduce (M2): explain suspicious WordCount results
*Quagga BGP (M3): explain routing entry changes / oscillations

Evaluation — secure forensics with reasonable overheads
*Runtime overhead: fixed-size overhead for each message
eStorage overhead: easily fit into commodity hard disks
*Query overhead: up to 70 seconds for provenance querying

19 0.8

= Acknowledgments
16 |- mmmmm Authenticators
——3 Provenance
Emm Proxy

B Bascline

e |ndex

—3 Authenticators
mEmm Signatures
mms Vessages

o
o)

13

10 |

7 F

o
N

4 |

Per-node log growth (MB/minute)
o
LN

1

Total traffic (normalized to baseline)

Chord Chord Quagga Chord Chord Hadoop Hadoop
Small Large Small Large Small Large Small Large

Figure 3. Normalized increase in trdffic (left), and per-node log growth (right) excluding checkpoints

o

Demo: Interactive Visualization Tool

Provenance graph on a hyperbolic plane
*Focus on the part that users are most interested in
eSmooth transition when the focus changes

Future extensions
*Progressively expand provenance vertices
e|ncorporate tamper-evident query engine

Acknowledgments

This work was supported by NSF grants [1S-0812270, CNS-0845552, CNS-1040672,
CNS-1054229, AFOSR MURI grant FA9550-08-1-0352, DARPA award N66001-11-C-
4020, and NPS award N00244-11-1-0008.

