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ABSTRACT
In this paper, we extend PVS specification logic with ab-
stract metarouting theory to aid the development of com-
plex routing protocol models based on metarouting, which
is an algebraic framework for specifying routing protocols
in a restricted fashion such that the protocol is guaranteed
to converge. Our formalization of metarouting theory uti-
lizes the theory-interpretation extensions of PVS. Our use
of a general purpose theorem prover provides a structured
framework for a network designer to incrementally develop
and refine their algebraic routing protocol model by start-
ing from various base routing algebras, and composing them
into complex algebra models with composition operators. In
addition, one can leverage PVS’s type checking capability
and built-in proof engine to ensure routing model consis-
tency.

1. INTRODUCTION
The Internet today runs on a complex routing protocol

called the Border Gateway Protocol or BGP for short. BGP
enables Internet-service providers (ISP) world-wide to ex-
change reachability information to destinations over the In-
ternet, and simultaneously, each ISP acts as an autonomous
system that imposes its own import and export policies on
route advertisements exchanged among neighboring ISPs.

Over the past few years, there has been a growing con-
cern on the complexity and fragility of BGP routing. Even
when the basic routing protocol converge, conflicting policy
decisions among different ISPs have lead to route oscillation
and slow convergence. Several empirical studies such as [7]
have shown that there are prolonged periods in which the
Internet cannot reliably route data packets to specific desti-
nations due to routing errors induced by BGP. In response,
the networking community has proposed several Internet ar-
chitectures and policy mechanisms (e.g. [1]) aimed at ad-
dressing these challenges.

Given the proliferation of proposed techniques, there is a
growing interest in formal software tools and programming
frameworks that can facilitate the design, implementation,
and verification of routing protocols. These proposals can
be broadly classified as: (1) algebraic and logic frameworks
(e.g. [3]) that enable protocol correctness checking in the
design phase; (2) runtime debugging platforms that provide
mechanisms for runtime verification and distributed replay,

and (3) programming frameworks that enable network pro-
tocols to be specified, implemented, and in the case of the
Mace toolkit, verified via model checking [6].

In this paper, we extend PVS specification logic with ab-
stract metarouting theory [3] to aid the development of com-
plex routing protocol models based on metarouting, which
is an algebraic framework for specifying routing protocols
in a restricted fashion such that the protocol is guaranteed to
converge. Using the theory-interpretation [8] extensions of
the PVS theorem prover, we formalize in PVS a variety of
metarouting algebra instances and demonstrate that an inter-
active theorem prover is suitable for modeling the compli-
cated BGP system using the metarouting theory developed
in PVS.

The main benefits of formalizing metarouting within a
mechanized theorem prover are as follows. First, the net-
work designer can now focus on high-level protocol design
and the conceptual decomposition of the BGP system, and
shift the low level details of ensuring consistency of the de-
rived protocol model with respect to metarouting theory to
the PVS type checker. Second, the PVS proof engine han-
dles most of the proof effort (via the top-level strategy grind
and other built-in type checking capabilities), and therefore
frees the network operator from the trivial and tedious proof
necessary to ensure the convergence of their BGP algebra
model. In the long run, we believe that our framework will
also result in the support of relaxed algebra models, which
allow a wider range of well-behaved convergent component
protocols to be supported compared to the restrictions im-
posed by metarouting.

2. BACKGROUND

2.1 Internet Routing
The Internet can be viewed as a network of Autonomous

Systems (AS) each administrated by an Internet Server Provider
(ISP). The routing protocol is executed on all ASes in order
to compute reachability information. Given a destination ad-
dress, each packet sent by a source is forwarded by each in-
termediate node to the next neighboring node along the best
path computed by the routing protocol.

In particular, within an AS, the ISP runs its own class
of routing protocols called the Internal Gateway Protocol
(IGP), whereas between ASes , the class of protocols used
are called the External Gateway Protocol (EGP). EGP en-
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ables routing across AS administration borders by includ-
ing mechanism for policy-based routing. The role of policy
routing is to allow ISPs to influence route decisions for eco-
nomical or political concerns, and the basic mechanism used
is to decide which routes to accept from neighbors (import
policies), and which routes to advertise to other neighbors
(export policies).

2.2 Metarouting
The Internet uses the Border Gateway Protocol (BGP) as

its de facto routing protocol. This protocol is a combina-
tion of the IGP/EGP protocol described above. Metarout-
ing [3] is first proposed to extend the use of routing alge-
bra to BGP design and specification. Metarouting enables
the construction of a complicated BGP system model from
a set of pre-defined base routing algebras and composition
operators. Prior to metarouting, Griffin et al.first proposed
combinatorial models for BGP [2, 4] to aid the static anal-
ysis of convergence of routing protocols. Later a Routing
Algebra Framework was proposed by Sobrinho [9, 10] to
provide the rigorous semantics for the design and specifi-
cation of routing protocols. Sobrinho uses various algebra
instances to represent possible routing protocols and policy
guidelines. Sobrinho further identifies and proves mono-
tonicity as a sufficient condition for protocol convergence.
Meta-routing builds upon these two earlier pieces of work.
In the rest of the section, we provide a short overview of
metarouting.

First, metarouting adopts the use of routing algebra as the
mathematical model for routing. An abstract routing alge-
bra is a tuple A: A = 〈Σ,�,L,⊕,O, φ〉. Here Σ is the set
of signatures used to describe paths in the network totally
ordered by preference relation �. Intuitively, the preference
relation is used by a routing protocol to optimize path cost; L
is a set of labels describing links between immediate neigh-
bors. Note that labels may denote complicated policies as-
sociated with the corresponding link; ⊕ is a mapping from
L×Σ to Σ, which is the label application operation that gen-
erates new paths by combining existing paths and adjacent
links; And O is a subset of Σ called origination that repre-
sents the initial routes stored at network nodes; Finally φ is
a special element in Σ denoting the prohibited path. The se-
mantics of routing algebra is given by the following axioms:

Maximality ∀α∈Σ−{φ} α � φ
Absorption ∀l∈L l ⊕ φ = φ

Monotonicity ∀l∈L∀α∈Σ α � l ⊕ α
Isotonicity ∀l∈L∀α,β∈Σ α � β =⇒ l ⊕ α � l ⊕ β

Maximality and Absorption are straightforward proper-
ties of the prohibited path φ, stating that any other paths are
always preferred over φ, and that extending the un-usable
path φ with any usable link would still result in prohibited
path. On the other hand, Monotonicity and Isotonicity are
two non-trivial properties that ensure network convergence1

1A network routing protocol converges when all routing tables can
be computed to a distributed fixpoint given a stable network, and

of a routing protocol modeled by the routing algebra.
Furthermore, based on the abstract routing algebra, metarout-

ing identifies a set of atomic (base) algebras such as ADD(n,m)
and LP(n), and composition operators such as Lexical Prod-
uct ⊗ and Scaled Product � as the building blocks for more
complicated routing algebras. This paper presents the incre-
mental development of metarouting abstract algebras and the
use of such abstract theory to build concrete BGP systems.

Unlike previous combinatorial models [2, 4], metarout-
ing identifies and proves that the properties of monotonicity
and isotonicity are sufficient conditions for network conver-
gence. Convergence verification of BGP systems are then
reduced to proofs of monotonicity and isotonicity of the re-
lated routing algebra, whereas in the analysis of BGP sys-
tems using previous combinatorial models, the proof requires
genuine insights into the models themselves.

Despite its advantages, metarouting is fairly restricted in
two ways. First, it cannot represent all protocols that con-
verge. Second, it places the burden on network designers
to write algebras and composition operators correctly. Our
work aims to address these two limitations by using PVS
to provide a framework for expressing routing algebras and
their operators correctly, and then flexibly reason about the
convergence properties of these protocols even when the suf-
ficient conditions are violated. One should view our paper
as providing the initial building blocks and methodology for
interesting explorations elaborated in Section 5.

3. BASIC APPROACH
This section describes the basic technique of embedding

metarouting in PVS. In particular, this paper presents the de-
velopment of metarouting in PVS using its extensions on
theory interpretation [8].

The basic approach is to encode metarouting algebraic ob-
jects in PVS’s type system. It involves formalization of ab-
stract routing algebra theory A, the set of atomic algebra
instances of A, and composition operator ⊗.

First of all, the abstract routing algebra structure A =
〈Σ,�,L,⊕,O, φ〉 is formalized as an uninterpreted abstract
(source) theory in PVS, as described in [11, 5, 8]. The ba-
sic idea is to use types to denote the sets of objects Σ,L,O.
Accordingly, the special element φ denoting prohibited path
is expressed as an uninterpreted constant of type Σ. And
the preference relation � and the label application operation
are denoted by functions. The PVS theory for abstract route
algebra A is given as follows:
routeAlgebra: THEORY

BEGIN
sig: TYPE+
prefRel: [sig, sig -> bool]
label: TYPE+
labelApply: [label, sig -> sig]
prohibitPath: sig
initialS: [sig -> bool]
org: TYPE = s: sig | initialS (s)
END routeAlgebra
Here uninterpreted types sig and label denote sets Σ

and L, and org denoting initial route setO is made subtype
when any links are updated, these routing tables can be incremen-
tally recomputed similarly to a fixpoint.
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of Σ via auxiliary predicate initialS which decides if a
path falls into the initial routes. Finally φ is made constant
prohibitPath of type sig.

Semantics of abstract routing algebra A are given by the
following axiomatic specification:
monotonicity: AXIOM

FORALL (l: label, s: sig): mono(l, s)

isotonicity: AXIOM
FORALL (l: label, s1, sig, s2: sig):
prefRel(s1,s2) =>

prefRel(labelApply (l,s1),labelApply(l,s2))

maximality: AXIOM
FORALL (s: sig): prefRel (s, prohibitPath)

absorption: AXIOM
FORALL (l: label):
labelApply (l, prohibitPath) = prohibitPath

Where eqRel (eqRel will be used later) and mono are
defined by the following auxiliary predicates:
eqRel (s1, s2: sig): bool =

prefRel (s1, s2) and prefRel (s2, s1)
mono(l: label, s: sig): bool =

prefRel (s, labelApply (l, s))

Note that this abstract routing theory A then stands for all
possible routing algebra instances. We also observed that
PVS parametric theories offer an alternative to define ab-
stract algebra, sketched as follows:
routeAlgebra[sig: TYPE+,

prefRel: [sig, sig -> bool],
label:TYPE+,
labelApply: [label, sig -> sig]]

BEGIN
prohibitPath: sig
initialL: [label -> bool]
org: TYPE+ = l: label | initialL (l)
...

END routeAlgebra
In the rest of this paper, to exploit PVS’s theory interpre-

tation mechanism, we will use of the first uninterpreted the-
ory representation. To encode the basic building blocks of
metarouting: atomic routing algebras and composition oper-
ators, we utilize two features provided by the PVS theory in-
terpretation [8] extensions: mapping and declaration. With
the mapping mechanism, a general (source) theory is instan-
tiated to an interpretation (target) theory. On the other hand,
the theory declaration mechanism takes PVS theories as pa-
rameters, and therefore, unlike mapping, can build a theory
from multiple source structures.

Figure 1 shows our basic two-step approach to formalize
metarouting building blocks. First, we utilize abstract rout-
ing algebra theory A developed above as a source theory,
applying PVS’s mapping mechanism to this source theory to
yield the set of interpretation theories Ii for atomic routing
algebras Ii. Second, by applying PVS’s theory declaration
mechanism, we encode composition operatorOi as PVS the-
ories taking routing algebra as parameters, which can be fur-
ther instantiated to yield the resulting compositional routing
algebra Oi.

The main benefit of this approach is that the semantics
(axioms) of source routing theory A are enforced automat-
ically in all target theories Ii and Oi. This ensures that

all atomic routing algebra instances are valid routing alge-
bras and that all composition operators are closed under ab-
stract routing algebra (i.e. any compositional routing alge-
bras that can be derived using operators Oi are guaranteed to
be routing algebras as defined by the abstract routing algebra
theory). The detailed formalization of metarouting building
blocks using PVS theory interpretation is presented in the
next section.

4. COMPOSITIONAL ROUTING ALGEBRA
This section presents the formalization of metarouting build-

ing blocks by stepping through atomic routing algebras
addA(n,m) and cpA(n); as well as composition operator lex-
ical product ⊗.

4.1 Atomic Routing Algebra Instance

Shortest Path Routing.
The first simple routing algebra addA(n,m) describes short-

est path routing. The labels/signatures can be thought of as
the distance costs associated with the corresponding links/paths.
Note that in practice, costs of valid links/paths have an up-
per bound, and links/paths with higher cost are considered
prohibited. We use PVS theory addA to capture algebra
addA(n,m) as follows:
addA: THEORY
BEGIN
n, m: posnat
N_M: AXIOM n < m
LABEL: TYPE = upto(n)
SIG: TYPE = upto(m + 1)
...

END addA
Here n, m are the uninterpreted constants denoting link/path
cost bounds. The preference relation � over signatures SIG
are then simply interpreted as the normal ≤ relation over
natural numbers, indicating that a low-cost path is preferred
over high-cost path. The label application operation ⊕ can
be interpreted as a function that computes the cost of the new
path obtained from a sub-path and the adjacent link, where
the cost of the new path is simply the normal addition of that
of the sub-path and link. In PVS, we write as follows:
PREF(s1, s2: SIG): bool = (s1 <= s2)
APPLY(l: LABEL, s: SIG): SIG =

IF (l+s < m+1) THEN (l+s) ELSE (m+1) ENDIF

Note that in the definition of label application function APPLY,
m+1 is used as the value of prohibited path. This is directly
defined using PVS mapping of abstract algebra routeAlgebra
in the following IMPORTING clause:
IMPORTING

routeAlgebra{{sig := SIG,
label := LABEL,
prohibitPath := m + 1,
labelApply(l:LABEL, s:SIG)

:= APPLY(l,s),
prefRel(s1, s2: SIG)

:= PREF (s1, s2)}}
Recall that a routing algebra consists of a set of signatures
sig, labels label, preference relations prefRel over sig-
natures, and label application functions labelApply. Here,
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Figure 1: Overview of PVS Theories

theory addA imports the uninterpreted abstract algebra the-
ory routeAlgebra, and makes the following instantia-
tions:

sig ← upto(m + 1)
label ← upto(n)

prohibitPath ← m + 1

labelApply ← APPLY

prefRel ← PREF

The corresponding instances of routeAlgebra axioms
defining the semantics of routing algebra are proof obliga-
tions called type correctness conditions (TCCs). For exam-
ple, monotonicity axiom is instantiated and denoted by the
following automatically generated TCC:
IMP_A_monotonicity_TCC1: OBLIGATION

FORALL (l: LABEL, s: SIG): mono(l, s)

All of the TCCs are automatically discharged by either the
default TCC proof strategy or high-level strategy grind.

So far, we have established the encoding of shortest path
algebra in PVS by providing mappings for uninterpreted types
in the source theory routeAlgebra into the target the-
ory (interpreting) addA. We observe that even in this simple
example, PVS significantly reduces manual effort ensuring
consistency, generating proof obligations and enabling the
user to focus on high-level mapping for shortest path rout-
ing.

Customer-Provider and Peer-Peer Relationship.
We provide another example of base/atomic algebra cpA(n)

that captures the policy guideline regarding the economic re-
lationship between ASes. Customer-Provider and Peer-Peer
relationships between ASes are prevalent in today’s Internet.
A common policy guideline to help BGP convergence is to
always prefer customer-routes to peers or providers routes.

More specifically, in the algebra cpA = 〈Σ,�,L,⊕,O, φ〉,
the signature set can take three values C/R/P , represent-
ing customer/peer/provider routes respectively (i.e. routes

advertised by a node’s customer, peer, or provider). Ac-
cordingly, labels can take values c/r/p, representing cus-
tomer/peer/provider link (i.e. links to customer/peer/provider).

The preference relation over signatures is given by: C �
R, R � P, C � P . Intuitively this relation means, a
customer route is always preferred over a peer and provider
route, and a peer route is preferred over a provider route.
The intuition is that each ISP enforces the policy to reduce
the use of provider routes, while maximizing availability and
use of its customer routes.

The complete definition of the label application operation
⊕ is given by the following table:

⊕ C R P
c C C C
r R R R
p P P P

For example the first line c⊕ (C/R/P ) = C can be read as
a customer/peer/provider path extended by a customer link
results in a customer path, hence has the highest priority of
all available paths.

For simplicity, rename labels and signatures as follows:
c ← 1, r ← 2, p ← 3 and C ← 1, R ← 2, P ← 3. This
renaming enables the preference relation to be expressed as
normal ≤ over natural number. Similar to the algebra for
shortest path, cpA can be encoded using PVS mapping as
follows:
cpA: THEORY

BEGIN
SIG: TYPE = x: posnat | x<=3
LABEL: TYPE = x: posnat | x<=3
APPLY (l: LABEL, s: SIG): SIG = l
IMPORTING
routeAlgebra{{sig := SIG,

label := LABEL,
labelApply(l:LABEL, s:SIG)

:= APPLY (l,s),
prohibitPath := c+1}}

END cpA
As in the case of shortest paths, all the TCCs enforcing

routing algebra axioms (for example, monotonicity) are au-
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tomatically discharged. This is consistent with the intuition
that customer-provider policy does help BGP convergence.

4.2 Lexical Product and Route Selection
This section presents development of lexical product ⊗,

a composition operator that enables construction of routing
algebra from atomic algebra described in section 4.1. It is
particularly useful in modeling route selection in BGP sys-
tem where multiple attributes are involved.

Consider product algebras A ⊗ B constructed from two
route algebra A, B, where the parameter theories A and B
model two attributes a and b respectively. First define the
signature and label of A ⊗ B as product of that from A and
B in PVS as:
lexProduct[A, B: THEORY routeAlgebra]: THEORY

BEGIN
SIG: TYPE = [A.sig, B.sig]
LABEL: TYPE = [A.label, B.label]
...
END lexProduct

Here the first component of signature/label comes from A
and the second component comes from B. And a natural in-
terpretation of label application function over path and label
is given by the following product in PVS:
APPLY(l:LABEL,s:SIG):SIG =
(A.labelApply(l‘1,s‘1),B.labelApply(l‘2,s‘2))
Here the two components invoke the corresponding label ap-
plication functions defined in theory A and B respectively.

Next consider the preference relation over A ⊗ B that in
PVS as follows:
PREF(s1,s2:SIG):bool =
A.prefRel(s1‘1, s2‘1) OR
(A.eqRel(s1‘1,s2‘1) AND B.prefRel(s1‘2,s2‘2))
The above definition is particularly interesting because it

models the route selection process in BGP system. This
preference relation reads as: a path with two attributes a
and b represented by signature s1 is considered better than
a path denoted by s2 given one of the two following condi-
tions: (1) first component s1‘1 of s1 is better than the first
component s2‘1 of s2, as defined in algebra A; or (2) if the
first component of s1 and s2 are equally good, but s1 is
better than s2 with respect to the second component, as de-
scribed in algebra B. This lexicographic comparison captures
the route selection process, which is a major part for any
BGP system with multiple attributes. Intuitively, in selecting
a route towards a given destination, the router compares all
its possible paths towards that destination by going through
a comparison list, checking one attribute at a time, selecting
the best path based on attributes ordering. The router goes
down the list and compares the next attribute only if the at-
tributes seen in previous steps are equally good.

As before, we can now instantiate route algebra theories
and corresponding sets of axioms as follows:
IMPORTING

routeAlgebra{{sig := SIG,
label := LABEL,
labelApply(l:LABEL,s:SIG)

:= APPLY(l,s),
prefRel(s1, s2: SIG)

:= PREF(s1, s2)}}
Again, PVS automatically generate and prove all the type
checking conditions.

4.3 A Concrete First Example
This section presents an concrete example routing pro-

tocol algebra built from metarouting atomic algebras and
composition operators developed in previous sections. We
demonstrate the ease of applying abstract metarouting the-
ory to concrete example algebra in PVS. In particular, we
highlight the intuitive networking interpretation in practice.

Consider a simple BGP system where the route paths are
measured in terms of customer-provider relationship and dis-
tance cost. For all possible routes reaching a given desti-
nation, a route path going through customers and peers is
preferred to path going through providers; and a route go
through peers is preferred to those through providers. Once
this customer-provider policy is enforced, the ISP is con-
cerned with distance cost with respect to each path. For the
same types of paths, the ISP will choose the shortest path
with lowest cost.

In the top level, this BGP system can be decomposed into
two sub-components: customer-provider component and the
shortest path component developed in section 4.1. Because
the customer-provider relationship has higher-priority over
the distance cost attribute, it can be naturally implemented
by construction using lexical product, as shown in the fol-
lowing PVS code:
firstExample: THEORY
BEGIN
IMPORTING AlgebraInstance, lexProduct
firstAlgebra: THEORY = lexProduct[A2,B2]
END firstExample

Here firstAlgebra is defined to be the concrete algebra
modeling this BGP system. It is constructed from customer-
provider component algebra A2 and shortest path algebra B2
by applying lexical product, where A2 and B2 are defined in
the imported theory AlgebraInstance. First, we show
the definition of A2 that enforces ISP customer-provider pol-
icy simply as an instance of cpA, where the uninterpreted
constant c is mapped to 3.
AlgebraInstance: THEORY
BEGIN
IMPORTING cpA{{ c := 3 }}
A2:THEORY =
routeAlgebra{{

sig = cpA.SIG,
label = cpA.LABEL,
labelApply(l:cpA.LABEL,s:cpA.SIG)

= mod(l+s,c),
prohibitPath = c + 1,
prefRel(s1,s2:cpA.SIG) = (s1<=s2)}}

...
END AlgebraInstance

Likewise, concrete algebra B2 for shortest path can be de-
fined in terms of addA as follows:
IMPORTING addA{{n:= 16, m:=16}}
B2:THEORY =

routeAlgebra{{
sig = addA.SIG,
label = addA.LABEL,
labelApply(l:int,s:int) = l+s,
prohibitPath=16,prefRel(s1,s2:int)

=(s1<=s2)}}
Where uninterpreted bounds on signature/labels m/n in addA
are mapped to 16, which is the actual value used in distance
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vector protocol practice. Finally, by type checking, PVS
automatically figures out all type correctness conditions to
ensure consistency. All of the TCCs are discharged with
default/high-level proof procedure in one step. This ensures
the BGP system we derived from atomic algebras addA,
cpA by using composition operator ⊗ are indeed a valid
routing algebra that is guaranteed to converge.

In summary, we observe that by incorporating metarout-
ing abstract theory, a non-specialized standard proof assis-
tant like PVS, can be used to specify a specific routing pro-
tocol instance with great ease. And the routing algebra se-
mantics is enforced by proof obligations (TCCs) automati-
cally generated in PVS, all of which can be discharged by
either PVS default TCC proof strategy or high-level strategy
grind in one step!

5. FUTURE WORK

Figure 2: Classification of BGP algebras

A straightforward application of the specification tech-
nique we explored in this paper is to construct incrementally
in PVS the routing algebraic model for complicated BGP
systems by using the base algebra blocks and composition
operators we developed in this paper, and the resulting al-
gebraic model checked in PVS is then used as part of de-
sign document to derive the real BGP implementation. To
achieve full set support for the modeling of BGP system via
metarouting, we plan to encode in PVS more base routing
algebras, such as TAG which is critical in the modeling of
complicated routing policies, and more composition opera-
tors, such as scoped product, which models a BGP system
running in and between administrative regions (i.e. the be-
havior of BGP protocol across AS boarder).

Furthermore, we conceive a more ambitious (adventur-
ous) use of PVS to aid the verification of BGP system con-
vergence using a relaxed algebra model. As depicted in Fig-
ure 2, we label the set of atomic metarouting algebras with
type A and denote them with the inner ring. We then ob-
served that all metarouting algebras that can be composed
from type A algebras by composition satisfy monotonicity
by definition and therefore fall into type B algebras repre-
sented by the middle ring. Sobrinho’s original paper [9]
showed that monotonicity is a sufficient (not necessary) con-

dition for BGP system convergence. There are known BGP
systems that converge but violate monotonicity, and this re-
veals existence of type C algebras modeling the set of con-
verging BGP systems that are not monotonic. By relax-
ing the monotonicity property, we would like to explore the
modeling and reasoning of type C systems that fall outside
Monotonic type B Algebra (the middle ring) but are equally
good with respect to convergence. Taking this basic ap-
proach one step further, instead of starting from the alge-
bra model, we would like to develop in PVS an algebraic
representation of a given BGP system that falls outside the
scope of current metarouting algebra, and with the aid of
PVS proof engine, decide if that corresponding BGP system
falls into type C and converges or type D that does not con-
verge.
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