
CIS-553/TCOM-512: Networked Systems

Project 1 Code Documentation

In this assignment, we will be using the emerging ns-3 discrete network simulator (www.nsnam.org) to

teach core principles of network routing protocol design and implementation. Your assignment is to extend

ns-3 to support efficient routing using link-state and distance-vector protocols. Your code MUST work on

speclab cluster.

The goal of this documentation is to provide you and your group with a starting point for understanding

portions of the ns-3 code relevant to this project. An important goal of this project is to provide you the

opportunity to read and understand a sizable piece of software and extend it. Hence, we have deliberately

not included all the details about the ns-3 code, particularly on specific APIs.

Please be aware that no amount of documentation can replace actual reading and running of the code itself.

So rather than spend hours digesting this document without looking at the code, make sure you treat this

document as a reference guide while you run the simulator and step through the control flow of various

interacting software modules. To get into the habit of working as a team, we encourage you to spend a day

or two to get your entire group together to try to understand the code as a team, and help each other out.

All questions regarding the ns-3 code must be posted on our newsgroup. Do not directly email the ns-3

mailing list (which the TAs are regularly monitoring).

1.0 Getting Started

The TAs developed a version of ns-3.9 release for this assignment. Instead of downloading from the ns3

website, please use the version provided by the TAs. Add this code into your group’s svn repository for

version control. Refer to the notes from our subversion lecture for commands that will add the code into

your group’s repository. Once the code is added, other team members can check out the code for

development.

2.0 Code Structure and Compilation

The entire ns-3 code has hundreds of thousands of lines of code. For the purpose of this project, we have

isolated all the code that you need to make/learn within the upenn-cis553 folder. If you are running low on

disk quota on the seas machines, you can choose to only check the upenn-cis553 folder into the repository.

There are extra credits that may require changing files outside this directory, but do not even think about

them until you get the regular credits working!!

If you are interested to learn about how our code interacts with the rest of ns-3, you should feel free to

investigate further. There are a few useful data structures of ns-3 that you will need to learn along the way.

2.1 Description of files

The upenn-cis553 folder contains the following files:

http://www.nsnam.org/

One of the important things to learn from this project is learning how to read and understand APIs within

the code, before filling in the actual implementation. We will not provide details of APIs here.

Understanding these APIs is part of your project. To help you understand each function, we have added

some comments (function headers).

The files you have to modify are:

 ns3proj1/upenn-cis553/ls-routing-protocol/ls-routing-protocol.cc: This file contains all the event

handles that you need to implement for handling incoming/outgoing route messages.

o For each incoming message, you have to implement the logic to handle the message, update

local routing tables, and send out outgoing messages.

o Periodic/triggered link-state updates should be transmitted and handed within this class.

o Once the routing table is computed, handles for forwarding messages should be implemented

here, i.e. given an incoming message, forward the message along the computed next hop to

the destination.

 ns3proj1/upenn-cis553/ls-routing-protocol/ls-message.cc. This file implements all the packet

formats used in the above file. To implement your link-state protocol, feel free to extend this file to add

new packet formats, for instance, “hello” packets for neighbor discovery, and “lsa” for link-state

advertisements.

Distance-vector has a similar set of files in the dv-routing-protocol directory. The functionality of route

computation and forwarding has to be implemented as well. We omit discussing this directory since it is

similar to that of link-state.

The test application that we provide:

 ns3proj1/upenn-cis553/test-app/test-app.cc: This is an example application that we have

provided to test your link-state or distance vector implementation. This application periodically

generates a small packet to be transmitted from any source to any destination nodes. Feel free to

modify test-app.cc to include your tests. Note that our actual tests during the demonstration may

be more stringent than our test-app.cc, which is mostly a sanity check for your implementation.

While debugging your code, it is advisable to modify our test-app.cc to do something simpler, for

instance, sending just one message from a fixed source to destination.

The inputs to your implementation include:

 ns3proj1/upenn-cis553/topologies: see section 4 on description of input topology. This is

essentially the input network to the ns-3 simulation.

 ns3proj1/upenn-cis553/scenarios: see section 5 on description of the scenario file. This is a step-

by-step scenario file that you can customize to start/stop a network, bring up/down links, output

network state, etc.

Main simulation code:

 ns3proj1/upenn-cis553/simulator-main.cc: This contains the main driver program for your

simulation. It takes as input the topology and scenario file, and executes the scenario. In the

process, commands from the scenario file are sent to ls-routing-protocol.cc and dv-routing-

protocol.cc, for instance, to generate a table dump, etc. Basically, our simulator-main handles

basic commands related to link/node topology changes, and redirect routing-related commands to

other modules. For instance, routing related commands are sent to ls-routing-protocol.cc and dv-

routing-protocol.cc, while test-case specific commands are sent to test-app.cc. This file also

generates optional outputs traces for animation. DO NOT MODIFY simulator-main.cc.

2.2 Compilation

To compile the code, run “./waf” from the main ns3proj1 directory. Refer to the TA’s first lecture on ns-3

for details. Make sure you set up LD_LIBRARY_PATH correctly.

You should feel free to add new helper source files, for instance, creating your own classes for route

entries, neighbor entries, etc. Whenever you add a new file, you need to modify the wscript file within the

subdirectory where your new file resides. Failure to do this means that the new file may be excluded from

the build. For faster compilation, use “./waf –j 4” to enable parallel compilation on speclabs. Please do not

be greedy and increase 4 to a larger number, since that will slow down the speclabs machines and may not

speed up your compilation by much!

2.3. Running and interacting with the simulator

Now that you have successfully compiled your code, you can run the simulator as follows:

./build/debug/upenn-cis553/simulator-main --inet-topo=<topology-file> --scenario=<scenario-file> --

routing=<LS/DV/ANY/NS3> --anim-file=<animation-dump>

The compiled binaries are located in the build directory. Go to the main ns-3 directory, and run the

command above. To understand the commands above, run

“./build/debug/upenn-cis553/simulator-main --help”

The anim-file flag is optional, so feel free to leave it out. The animation software

(http://www.nsnam.org/wiki/index.php/NetAnim) cannot run on speclabs without installing extra libraries.

However, it is a useful debugging tool at your disposal, and you are free to compile and run the animation

software on your own linux desktop where you can compile the animation code yourself. Since we have

made the anim-file flag optional, you should omit this flag if you do not intend to use the animation

software. If you are using this flag, do note that the file may grow quickly as your simulation runs.

http://www.nsnam.org/wiki/index.php/NetAnim

3.0 Overall Architecture

For most part, you do not need to read any additional files beyond those in ns3proj1/upenn-cis553.

However for debugging purposes, it is important to understand the interactions of your code with other

parts of ns-3. We provide a high-level overview here.

The figure above shows layers 2-5 from the perspective of a single ns-3 node. At the link layer, each node

has multiple IP addresses and interfaces/device (See Section 4 for details). At the IP stack (layer 3), IP

packets are forwarded as follows:

 routeInput() receives a message from one of the devices. Your implementation has to determine the

next hop to be taken for this message and forward the message to the appropriate device or the local

host (if the destination is itself).

 routeOutput() takes messages that originated from the local node, and then performs a similar next-hop

forwarding or to the local host (if the destination is itself).

To understand how routeInput() and routeOutput() used, consult the OLSR code in src/routing/olsr. You do

not need to implement multicast for this project.

Note that all control messages used in link-state and distance-vector are sent via UDP protocol in layer 5 to

immediate neighbors. This is counter-intuitive at first, since these protocols are implemented in layer 3,

while UDP is a layer 4 service. However, this is a common practice to utilize the UDP protocol to bootstrap

the protocol itself, where UDP is initially used for communicating with direct neighbors within the same

subnet for exchanging control messages. However, once your routing protocol works, you should be able to

write an application that uses UDP sockets to send packets to a destination node that is multiple hops away.

4.0 Input Topology

Your simulation has to take in an initial input topology. Our topology uses the Inet topology format

(http://topology.eecs.umich.edu/inet/). Before describing the specifics of the topology, we first describe

conceptually what the topology looks like.

4.1 Point-to-point topology

The above figure shows an example point-to-point topology. Each node has a set of neighbors, one for each

of its interfaces/device. The figure above contains also subnets and masks, which you need not worry about

for this project. However, we included them in case you are interested to learn more.

In the topology file, we refer to nodes by node numbers, e.g. 0,1,2,…However, once the topology is

initialized, our simulator-main assigns to each node multiple IP addresses. The reason why each node

requires multiple IP addresses is that it participates in multiple subsets (which you need not worry about).

Our simulator-main will select one of the IP addresses as the unique identifier of the node (hint: look for

the m_mainAddress variable in the code). This identifier is what the node should advertise to its neighbors

for computing routes. For instance, if node 0 has IP addresses IP0,1, IP0,2, and IP0,3, IP0,1 is selected as the

unique identifier. We have also provided APIs that will map from the Inet node number to the

corresponding unique IP address (and vice versa). However, we have included this discussion here for your

own understanding should you be curious to learn how addressing works in a pt-to-pt network.

4.2 Generating the Inet Topology

To generate the topology, you have to run the topology generator located inside ns3proj1/inet-3.0. To run

the topology, use the following command: ./inet –n <Num>

The command will create a point-to-point topology with Num nodes.

For the actual demonstration, the TAs will be using our own manually generated topology, in addition to

running the topology generator. Feel free to also manually generate your own topology. To learn about the

Inet topology format, refer to the above website.

To see an example topology, refer to ns3proj1/upenn-cis553/topologies

http://topology.eecs.umich.edu/inet/

5.0 Scenario File

After the simulator has started the network, the scenario file is used to generate network events, such as

link failures, node additions/failures, sending messages, dump commands to display network state, etc.

We have provided an example scenario file at ns3proj1/upenn-cis553/scenarios/test.sce. This scenario file

contains most of the commands indicated below. Your goal is to read this scenario file and understand what

it is doing. For your own testing purposes, you probably should write your own (simpler) scenarios

initially, and feel free to add your own commands (for example, commands to dump link-state updates and

network statistics).

Most of the common commands have the following format: <Node Number> <Module Name>

<Command> <Arguments>:

 <Node Number> refers to a node in the simulator (from 0,1,2,…).

 <Module Name> refers to the protocol/module, e.g. LS, DV, or the application e.g. APP (test-

app.cc). Our simulator-main.cc will direct the command based on the module name to the

appropriate code that implements the command handles. (ls-routing-protocol.cc, dv-routing-

protocol.cc, or test-app.cc).

 <Command> is the command to be sent to the node, e.g. VERBOSE is to turn on debugging

messages, and PING is to send ping messages to another node.

 <Arguments> is any additional arguments required specific to the command.

For instance, the command “1 LS VERBOSE TRAFFIC ON” will result in node 1 turning on all the traffic

traces for the link-state protocol. “* LS VERBOSE TRAFFIC ON” will turn on the link-state traces for all

nodes.

Command Modules Remarks Example

VERBOSE <TYPE> <ON/OFF> LS, DV, APP Turn on debugging messages.

<TYPE>

1. TRAFFIC: Use this when data is

sent/received.

2. ERROR: Use this when error messages

are to be printed.

3. DEBUG: Use this to print debug logs.

4. STATUS: Use this to print status

messages.

5. ALL: Use this to switch all traces at

once.

Note: ERROR and STATUS verbose is ON by

default

1 LS VERBOSE TRAFFIC

ON

Switches on TRAFFIC

traces for node 1.

PING <NODE> <MESSAGE> LS, DV, APP Send PING to a node.

Note that for LS and DV modules, PING can

only be sent to immediate neighbors. We have

added this functionality as an example for

students to implement their neighbor discovery

for milestone 1.

On the other hand, the APP module PING is

multi-hop, which means the PING message

ought to be forwarded to the destination node

using the routing tables computed by LS or

DV.

1 LS PING 2 hi!

Node 1 sends PING request

to node 2 with a message:

“hi!”

You may also use “*”

wildcard with APP module:

1 APP PING * “hello!”

Node 1 sends PING to all

the nodes in the topology.

TRAFFIC <START/STOP> APP Start sending traffic towards a node. Traffic is

nothing but PING packets sent every 2

milliseconds.

1 APP TRAFFIC START *

Node 1 starts sending traffic

to all the nodes in the

topology.

NODELINKS <UP/DOWN>

<NODE NUMBER>

--- Bring up/down all links of a node. NODELINKS DOWN 1

Brings down all links on

node 1.

LINK <UP/DOWN> <NODE-

A> <NODE-B>

--- Brings up/down all links between NODE A

and NODE B

LINK DOWN 1 8

Bring down link(s) between

node 1 and 8.

LINK <UP/DOWN> <LINK

NUMBER>

--- Bring up/down a specific link as defined in

topology file.

LINK DOWN 6

Bring down 7th link defined

in topology file.

TIME <MILLISECONDS> --- Advance scenario file time before next

command.

TIME 100

Advance time by 100

milliseconds.

QUIT --- Quit Simulator

Note that the commands you need to implement for our actual demo are as follows:
Command Remarks Example

DUMP ROUTES Print out routing table 1 LS DUMP ROUTES

DUMP NEIGHBORS Print out neighbors 1 LS DUMP NEIGHBORS

There is a similar set of commands for DV (replace “LS” with “DV”).

5.2 Interactive Scenario Mode

In addition to using the scenario file, you can also enter the scenario commands interactively via the

keyboard. While the simulation is running, there is a command prompt that you can use to enter the

commands described above.

