A Declarative Perspective on Adaptive MANET Routing

Changbin Liu, Yun Mao, Mihai Oprea, Prithwish Basu, Boon Thau Loo
University of Pennsylvania, BBN Technologies

Motivations

- Variety of MANET routing protocols
 - Reactive (DSR, AODV)
 - Proactive (LS, OLSR, HSLS)
 - Epidemic
 - Hybrid (ZRP, SHARP)
- However, a one-size fits all MANET protocol
 DOES NOT exist:
 - Variability in network connectivity, wireless channels, mobility
 - Wide range of traffic patterns

Approach

Policy-driven hybrid protocols

- Generic set of policies (rules) for selecting and switching among different routing protocols due to network conditions
- Build adaptive MANET routing protocols from simpler components
- Declarative framework

Background

- Declarative Networking [Loo et. al., SIGCOMM'05]:
 - Use a database query language to express declarative specifications of networks
 - Declarative specifications are executed by distributed query engine (Click execution model) to implement network protocols

Why Declarative for MANETs?

- Compact representation of protocols
 - Orders of magnitude reduction in code size
 - Chord in 47 rules
 - MANET routing protocols in a few rules
- Easy customization for adaptive MANETs
 - Policy-driven hybrid protocols
 - Component-based routing

Network Datalog (NDlog) Example

 \rightarrow R1: reachable(@S,D) \leftarrow link(@S,D)

R2: reachable(@S,D) \leftarrow link(@S,Z), reachable(@Z,D)

If there is a link from S to D, then S can reach D".

reachable (@a,b) - "node a can reach node b"

- Input: link(@source, destination)
- Output: reachable(@source, destination)

Network Datalog (NDlog) Example

R1: $reachable(@S,D) \leftarrow link(@S,D)$

 \longrightarrow R2: reachable(@S,D) \leftarrow link(@S,Z), reachable(@Z,D)

"For all nodes S,D and Z,

If there is a link from S to Z, AND Z can reach D, then S can reach D".

- Input: link(@source, destination)
- Output: reachable(@source, destination)

Declarative MANET protocols

- Reactive
 - DSR (Dynamic Source Routing) (11 rules)
- Proactive
 - LS (Link State) (15 rules)
 - OLSR (Optimized Link State Routing) (15 + 19 rules)
 - HSLS (Hazy Sighted Link State routing) (15 rules)
- Epidemic
 - Summary Vector based (17 rules)

Validation of Declarative MANETs

- Declarative rules for MANETs executed by the **P2** declarative networking system
- Local cluster consisting of 8 nodes connected by high-speed network emulating up to 80 MANET nodes
- Emulate network dynamics by adding/deleting links during rule execution

Declarative MANETs exhibit expected scalability trends

Measurements on Real Wireless Testbed

Orbit wireless testbed at Rutgers University

■ 1 GhZ VIA Nehemiah, 64 KB cache 512 MB RAM

■ 802.11b ad-hoc mode

23 nodes

10 seconds

ent co-work with Rick Correa

Policy-driven Hybrid MANETs

Hybrid link-state protocol

- HSLS: incurs low bandwidth overhead, scales better
- LS: quick convergence, may perform better in stable network
- AA: link availability, percentage of time when link is up
- Based on AA, switch between LS and HSLS

```
#define THRES 0.5
s1 linkAvail(@M,AVG<AA>) :- lsu(@M,S,N,AA,Z,K).
s2 useHSLS(@M) :- linkAvail(@M,AA), AA<THRES. // unstable
s3 useLS(@M) :- linkAvail(@M,AA), AA>=THRES. // stable
```

Hybrid Proactive-Epidemic

- Refer to the paper for more details
- Declarative framework makes it easier to build policy-driven protocol and switch between protocols due to different policies

Component-based Routing

Parameterized flood component

- (1) What is being flooded (Payload); (2) Which nodes participate (Nbr);
 - (3) How far the flooded packet goes (TTL); (4) When flooding is initialized (Sched)

```
flood(@S,Payload,Nbr,TTL,Sched) {
  f1 floodMsg(@S,Payload,Nbr,TTL,Sched) :- //starting point
    flood(@S,Payload,Nbr,TTL,Sched),Sched(@S,TTL,0,T).

f2 floodMsg(@N,Payload,Nbr,TTL-1,Sched) :- // keep on flooding
    floodMsg(@M,Payload,Nbr,TTL,Sched),
    Nbr(@M,N,C),TTL>0,Sched(@M,TTL,T1,T). }
```

• More:

- Customize and reuse component: OLSR flooding
- Variety of components (neighbor discovery, path computations, etc.) to mix-and-match, e.g. epidemic floods of LSUs

Summary

- Declarative framework makes MANET protocol compact and easy to implement
- Declarative framework allows policy-driven hybrid
 MANETs and protocol switching to be easily expressed
- Components can be reused among different protocols and to build new protocols

Next Steps

• Additional evaluations:

 Evaluations on Orbit Wireless Testbed and PDAs, and in future, integrate with ns-2/3 simulator

• Adaptive MANETs:

- Implement policy-driven hybrid protocols
- Component-based routing

• Protocol reasoning:

Convergence and stability of adaptive MANETs

Thank you

•Q&A