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Introduction

» Metarouting, algebraic framework for routing protocol
» Models BGP systems (today’s de facto Internet routing)
with convergence guarantee
» Our contribution: Formalize fragment of Metarouting
theory in PVS
» Heavy and interesting use of PVS theory interpretation:
mapping and declaration
» Our goal: extend PVS specification logic with
metarouting theory
» Enable network operator to design BGP system in PVS

» Free network operator from the tedious low-level and
trivial theory consistency checking
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Background: Internet Routing and Metarouting



Internet Routing

v

Internet, network of Autonomous Systems (AS)
administrated by Internet Service Provider (ISP)

v

Routing Protocol computes reachability information

» Given a destination, an router forwards the packet to its
immediate neighbor along the best path

v

Internet routing is a combination of Internal Gateway
Protocol (IGP) and External Gateway Protocol (EGP)

» ISP runs its own IGP within an AS
» EGP enables routing across AS administration borders

v

A correct routing protocol must converge!



Policy based Border Gateway Protocol (BGP)

» BGP: the de facto Internet routing
» BGP is policy based

» ISP can influence route decision for economical or
performance reasons

» Import policies select routes to accept

» Export policies decide routes to be advertised

» BGP is NOT ideal: No convergence guarantee

» Oscillation, convergence delay, and in the worst case:
BGP will not converge at all



Metarouting
Timothy G. Griffin and Joao Luis Sobrinho, SIGCOMM'05

» Algebraic framework for modeling BGP systems with
convergence guarantee

» Abstract routing algebra, mathematical model for
routing

» Base algebras, atomic building blocks

» Lexical product for route selection, composition operator

» ldentify and prove sufficient conditions for protocol
convergence: Isotonicity and Monotonicity



Metarouting: Abstract Routing Algebra
AA= (X, X,L,0,0,¢)

sorts X (paths), £ (links)

opns =: X X X — bool (preference relation)
@ : L x £ — X (label application function)
O :subset of L (origination set)
¢ : X (prohibited path)



Metarouting: Abstract Routing Algebra
AA=(X,=,L,6,0,¢)

sorts X (paths), £ (links)

opns =: X X X — bool (preference relation)
@ : L x £ — X (label application function)
O :subset of L (origination set)
¢ : X (prohibited path)

axioms Vyey_ (50 & 2 ¢ (Maximality)

Vier 1®&¢ =¢ (Absorption)
VierVacy a 2 1@ a  (Monotonicity)
VietVaper a« 2B = I@a 1D B (lsotonicity)



Metarouting: Abstract Routing Algebra
AA=(X,=,L,6,0,¢)

sorts X (paths), £ (links)

opns =: X X X — bool (preference relation)
@ : L x £ — X (label application function)
O :subset of L (origination set)
¢ : X (prohibited path)

axioms Vyey_ (50 & 2 ¢ (Maximality)

Vier 1®&¢ =¢ (Absorption)
VierVacy a 2 1@ a  (Monotonicity)
VietVaper a« 2B = I@a 1D B (lsotonicity)

» Maximality and absorption describe prohibited path
» Isotonicity and monotonicity guarantee Convergence!
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Basic Approach



Overview of PVS theories
Abstract Routing Algebra

Atomic Routing Composition
Algebra Instancs Operators

» A: uninterpreted source theory routeAlgebra
» [;: interpreted theory instantiated from A
» O;: PVS theory taking routing algebra theories as
parameters
10



Abstract Routing Algebra in PVS

routeAlgebra: THEORY
BEGIN

sig: TYPE+
label: TYPE+

11



Abstract Routing Algebra in PVS

routeAlgebra: THEORY
BEGIN

sig: TYPE+

label: TYPE+

injected : [label — bool]

org: TYPE = {/: label | injected(/)}

prohibitPath: sig

labelApply: [label, sig — sig]

prefRel: [sig, sig — bool]

eqRel(s1, sp: sig): bool = prefRel(s;, s») A prefRel(sy, s1)
mono(/: label, s: sig): bool = prefRel(s, labelApply(/, s))

11



Abstract Routing Algebra in PVS

routeAlgebra: THEORY
BEGIN

sig: TYPE+
label: TYPE+
injected : [label — bool]
org: TYPE = {/: label | injected(/)}
prohibitPath: sig
labelApply: [label, sig — sig]
prefRel: [sig, sig — bool]
eqRel(s1, sp: sig): bool = prefRel(s;, s») A prefRel(sy, s1)
mono(/: label, s: sig): bool = prefRel(s, labelApply(/, s))
pref_complete: AXIOM

YV (x, y: sig): prefRel(x, y) V prefRel(y, x)
absorption: AXIOM

V (I: label): labelApply(/, prohibitPath) = prohibitPath
maximality: AXIOM V (s: sig): prefRel(s, prohibitPath)
monotonicity: AXIOM V (/: label, s: sig): mono(/, s)
isotonicity: AXIOM

YV (s1, s2: sig)(/: label):

prefRel(s;, s) =
prefRel(labelApply(/, s1), labelApply(/, s2))
11

END routeAlgebra



Compositional Routing Algebra
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Base Algebra for Shortest Path Routing

PVS mapping: Abstract Algebra routeAlgebra — Base Algebra addA

» PVS mapping makes instantiations of uninterpreted types

sig « upto(m+1)
label <« upto(n)
prohibitPath <+ m—+1
labelApply <« APPLY
prefRel <« PREF

» PVS mapping generates instances of routeAlgebra axioms
as Type Correctness Conditions ( TCCs)
IMP_A_monotonicity_TCC1: OBLIGATION

FORALL (1: LABEL, s: SIG): mono(l, s)
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Shortest Path Routing in PVS

Source Theory: Abstract Algebra routeAlgebra
Interpreted Theory: Base Algebra addA

addA: THEORY
BEGIN

n: posnat
m: posnat
redundant: posnat
N-M: AXIOM n < m
LABEL: TYPE = upto(n)
SIG: TYPE = upto(m+1)
PREF(s;, sp: SIG): bool = (s1 < )
APPLY(/: LABEL, s: SIG): SIG =
IF (I+s5 < m+1)
THEN (/+s)

ELSE (m+1)
ENDIF

IMPORTING routeAlgebra
{{sig := SIG, label := LABEL, prohibitPath := m+1,
labelApply(/: LABEL, s: SIG) := APPLY(/, s),
prefRel(s;, sp: SIG) := (s1 < sp)}}

END addA 14



Base Algebra for Provider-Customer, Peer-Peer
Guideline

» For economical reasons, ISP reduces use of provider
routes, and maximizes availability of customer routes

v

v

v

v

Y (path): C/R/P (customer/peer/provider path)

L(link): ¢/ r/p (customer/peer/provider link)

@ (label application):
& e R P
c C C C
r R R R
p P P P
=< (preference relation): C< R, R=<P, C=XP
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Provider-Customer, Peer-Peer Guideline in PVS

For simplicity, rename labels and signatures:
c—1lr—2p—3andC—1R—2P«3

IpA: THEORY
BEGIN

SIG: TYPE = upto(3)
LABEL: TYPE = upto(3)

IMPORTING routeAlgebra
{{sig := SIG, label := LABEL,
labelApply(/: LABEL, s: SIG) := |/,
prefRel(s;, s: SIG) := (s1 < s),}}

END IpA
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Lexical Product ® and Route Selection

» Lexicographic comparison models route selection

» Most important attribute of each route is compared first,
if no decision is reached, the next attribute is considered

» Lexical Product A® B built from existing algebras: A, B

» Models a routing protocol with multiple attributes
» More important attributes are handled by A, and the less
important by B

17



Lexical Product A® B in PVS

PVS declaration and mapping ensures resulting algebra A® B is a
valid routing algebra, i.e. ® is closed under abstract routing algebra

lexProduct[A: THEORY routeAlgebra, B: THEORY routeAlgebra]: THEORY
BEGIN

SIG: TYPE = [A.sig, B.sig]
LABEL: TYPE = [A.label, B.label}

APPLY(/: LABEL, s: SIG): SIG =
(A.labelApply(/‘1, s¢1), B.labelApply(/‘2, s¢2))
PREF(s;, sp: SIG): bool =
A.prefRel(s; ‘1, s1) V
(A.eqRel(s;1 ‘1, s21) A B.prefRel(s; ‘2, s°2))
IMPORTING routeAlgebra
{{sig := SIG, label := LABEL,
labelApply(/: LABEL, s: SIG) := APPLY(/, s),
prefRel(s;, s»: SIG) := PREF(si, s)}}
END lexProduct
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A Concrete Example
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A Concrete BGP system

» Route paths are measured in terms of customer-provider
relationship and distance cost
» Customer-Provider Peer-Peer guideline must be enforced
» Once customer-provider policy is satisfied, ISP wants
least-cost (shortest) paths

» Decompose this BGP system into two sub-components

» Sub-component A for customer-provider guideline

» Sub-component B for shortest-path

» Check the sub-component A first, and only use B to
break tie
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Simple BGP system in PVS
Top Level Algebra: BGPsystem

simpleBGP: THEORY
BEGIN

IMPORTING Algebralnstance, lexProduct
BGPsystem: THEORY = lexProduct[Az, Bg}
END simpleBGP
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Simple BGP system in PVS
Sub-Component Algebras: A,, B,

Algebralnstance: THEORY
BEGIN

IMPORTING addA{{n := 16, m := 16}}
IMPORTING IpA{{c := 3}}

Az: THEORY =
routeAlgebra
{{sig = IpA.SIG, label = IpA.LABEL,
labelApply(/: 1pA.LABEL, s: lpA.SIG) = [+ s, prohibitPath = 4,
prefRel(s;, sp: int) = (s; < s)}}

B,: THEORY =
routeAlgebra
{{sig = addA.SIG, label = addA.LABEL,
labelApply(/: addA.LABEL, s: addA.SIG) = mod(/ +s, 16),
prohibitPath = 17,
prefRel(s;, s: addA.SIG) = (s1 < s)}}

END Algebralnstance
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Conclusion, Recap

» Our contribution: Formalize fragment of Metarouting
theory in PVS
» Heavy and interesting use of PVS theory interpretation:
mapping and declaration
» Our goal: extend PVS specification logic with
metarouting theory
» Enable network operator to design BGP system in PVS
» Free network operator from the tedious low-level and
trivial theory consistency checking
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Future Work
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Future Work

» Provide full support for modeling complex BGP systems
via metarouting
» Encode more base algebras and composition operators
presented in recent metarouting development
» Relaxed algebra for BGP systems with non-monotonic
attributes
» MULTI-EXIT-DISCRIMINATOR (MED) expresses
router's preference regarding which neighbor to use
» NON monotonic attribute: a < b,b < c,c < a
» Routers in an AS cannot express a monotonic ranking
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Thank you!

Questions?
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