Formalizing Metarouting in PVS

Anduo Wang Boon Thau Loo

University of Pennsylvania

AFM 09 June 27 2009, Grenoble, France

- Metarouting, algebraic framework for routing protocol
 - Models BGP systems (today's de facto Internet routing) with convergence guarantee
- Our contribution: Formalize fragment of Metarouting theory in PVS
 - Heavy and interesting use of PVS theory interpretation: mapping and declaration
- Our goal: extend PVS specification logic with metarouting theory
 - Enable network operator to design BGP system in PVS
 - Free network operator from the tedious low-level and trivial theory consistency checking

Outline

Introduction

Background: Internet Routing and Metarouting

Basic Approach

Compositional Routing Algebra

A Concrete Example

Background: Internet Routing and Metarouting

Basic Approach

Compositional Routing Algebra

A Concrete Example

Internet Routing

- Internet, network of Autonomous Systems (AS) administrated by Internet Service Provider (ISP)
- Routing Protocol computes reachability information
 - Given a destination, an router forwards the packet to its immediate neighbor along the best path
- Internet routing is a combination of Internal Gateway Protocol (IGP) and External Gateway Protocol (EGP)
 - ► ISP runs its own IGP within an AS
 - ▶ EGP enables routing across AS administration borders
- A correct routing protocol must converge!

Policy based Border Gateway Protocol (BGP)

- ▶ BGP: the de facto Internet routing
- BGP is policy based
 - ISP can influence route decision for economical or performance reasons
 - Import policies select routes to accept
 - Export policies decide routes to be advertised
- ▶ BGP is NOT ideal: No convergence guarantee
 - Oscillation, convergence delay, and in the worst case: BGP will not converge at all

Metarouting Timothy G. Griffin and Joao Luis Sobrinho, SIGCOMM'05

- ► Algebraic framework for modeling BGP systems with convergence guarantee
 - Abstract routing algebra, mathematical model for routing
 - Base algebras, atomic building blocks
 - Lexical product for route selection, composition operator
- Identify and prove sufficient conditions for protocol convergence: Isotonicity and Monotonicity

Metarouting: Abstract Routing Algebra

$$A: A = \langle \Sigma, \preceq, \mathcal{L}, \oplus, \mathcal{O}, \phi \rangle$$

```
\begin{array}{l} \mathsf{sorts} \ \ \Sigma \ (\mathsf{paths}), \ \mathcal{L} \ (\mathsf{links}) \\ \mathsf{opns} \ \ \preceq : \ \Sigma \times \Sigma \to \mathit{bool} \ (\mathsf{preference} \ \mathsf{relation}) \\ \oplus : \ \mathcal{L} \times \Sigma \to \Sigma \ (\mathsf{label} \ \mathsf{application} \ \mathsf{function}) \\ \mathcal{O} : \mathit{subset} \quad \mathit{of} \quad \mathcal{L} \ (\mathsf{origination} \ \mathsf{set}) \\ \phi : \ \Sigma \ (\mathsf{prohibited} \ \mathsf{path}) \end{array}
```

Metarouting: Abstract Routing Algebra

$$A: A = \langle \Sigma, \preceq, \mathcal{L}, \oplus, \mathcal{O}, \phi \rangle$$

```
sorts \Sigma (paths), \mathcal{L} (links)
    opns \prec: \Sigma \times \Sigma \to bool (preference relation)
               \oplus: \mathcal{L} \times \Sigma \to \Sigma (label application function)
               \mathcal{O}: subset of \mathcal{L} (origination set)
               \phi:\Sigma (prohibited path)
axioms \forall_{\alpha \in \Sigma - \{\phi\}} \quad \alpha \leq \phi \quad (Maximality)
               \forall_{I \in \mathcal{L}} \quad I \oplus \phi = \phi \quad (Absorption)
               \forall_{I \in \mathcal{L}} \forall_{\alpha \in \Sigma} \quad \alpha \leq I \oplus \alpha \quad (Monotonicity)
               \forall_{I \in \mathcal{L}} \forall_{\alpha.\beta \in \Sigma} \quad \alpha \leq \beta \implies I \oplus \alpha \leq I \oplus \beta \quad (Isotonicity)
```

Metarouting: Abstract Routing Algebra

$$A: A = \langle \Sigma, \preceq, \mathcal{L}, \oplus, \mathcal{O}, \phi \rangle$$

```
sorts \Sigma (paths), \mathcal{L} (links)
opns \preceq: \Sigma \times \Sigma \to bool (preference relation)
\oplus: \mathcal{L} \times \Sigma \to \Sigma (label application function)
\mathcal{O}: subset \quad of \quad \mathcal{L} (origination set)
\phi: \Sigma (prohibited path)
axioms \forall_{\alpha \in \Sigma - \{\phi\}} \quad \alpha \preceq \phi \quad (Maximality)
\forall_{I \in \mathcal{L}} \quad I \oplus \phi = \phi \quad (Absorption)
\forall_{I \in \mathcal{L}} \forall_{\alpha \in \Sigma} \quad \alpha \preceq I \oplus \alpha \quad (Monotonicity)
\forall_{I \in \mathcal{L}} \forall_{\alpha,\beta \in \Sigma} \quad \alpha \preceq \beta \Longrightarrow I \oplus \alpha \preceq I \oplus \beta \quad (Isotonicity)
```

- Maximality and absorption describe prohibited path
- Isotonicity and monotonicity guarantee Convergence!

Background: Internet Routing and Metarouting

Basic Approach

Compositional Routing Algebra

A Concrete Example

Overview of PVS theories

- ► A: uninterpreted source theory routeAlgebra
- ► I_i: interpreted theory instantiated from A
- ► O_i: PVS theory taking routing algebra theories as parameters

Abstract Routing Algebra in PVS

routeAlgebra: THEORY BEGIN

sig: TYPE+ label: TYPE+

Abstract Routing Algebra in PVS

```
routeAlgebra: THEORY BEGIN sig: TYPE+ label: TYPE+ injected: [label \rightarrow bool] org: TYPE = {I: label | injected(I)} prohibitPath: sig labelApply: [label, sig \rightarrow sig] prefRel: [sig, sig \rightarrow bool] eqRel(s_1, s_2: sig): bool = prefRel(s_1, s_2) \land prefRel(s_2, s_1) mono(I: label, s: sig): bool = prefRel(s, labelApply(I, s)
```

Abstract Routing Algebra in PVS

```
routeAlgebra: THEORY
 BEGIN
  sig: TYPE+
  label: TYPE+
  injected: [label \rightarrow bool]
  org: TYPE = \{l: label \mid injected(l)\}
  prohibitPath: sig
  labelApply: [label, sig \rightarrow sig]
  prefRel: [sig, sig \rightarrow bool]
  eqRel(s_1, s_2: sig): bool = prefRel(s_1, s_2) \land prefRel(s_2, s_1)
  mono(I: label, s: sig): bool = prefRel(s, labelApply(I, s))
  pref_complete: AXIOM
    \forall (x, y: sig): prefRel(x, y) \lor prefRel(y, x)
  absorption: AXIOM
    \forall (1: label): labelApply(1, prohibitPath) = prohibitPath
  maximality: AXIOM \forall (s: sig): prefRel(s, prohibitPath)
  monotonicity: AXIOM \forall (1: label, s: sig): mono(1, s)
  isotonicity: AXIOM
    \forall (s_1, s_2: sig)(l: label):
       prefRel(s_1, s_2) \Rightarrow
        prefRel(labelApply(I, s_1), labelApply(I, s_2))
 END routeAlgebra
```

Background: Internet Routing and Metarouting

Basic Approach

Compositional Routing Algebra

A Concrete Example

Base Algebra for Shortest Path Routing

 ${\sf PVS \ mapping: \ Abstract \ Algebra \ routeAlgebra \rightarrow Base \ Algebra \ addA}$

► PVS mapping makes instantiations of uninterpreted types

```
\begin{array}{rcl} \text{sig} & \leftarrow & \text{upto}(\texttt{m}+1) \\ & \text{label} & \leftarrow & \text{upto}(\texttt{n}) \\ \\ \text{prohibitPath} & \leftarrow & \texttt{m}+1 \\ \\ & \text{labelApply} & \leftarrow & \text{APPLY} \\ \\ & \text{prefRel} & \leftarrow & \text{PREF} \end{array}
```

► PVS mapping generates instances of routeAlgebra axioms as Type Correctness Conditions (*TCCs*)

```
IMP_A_monotonicity_TCC1: OBLIGATION
   FORALL (1: LABEL, s: SIG): mono(1, s)
```

Shortest Path Routing in PVS

Source Theory: Abstract Algebra routeAlgebra Interpreted Theory: Base Algebra addA

```
addA: THEORY
 BEGIN
  n: posnat
  m: posnat
  redundant: posnat
  N_{-}M: AXIOM n < m
  LABEL: TYPE = upto(n)
  SIG: TYPE = upto(m+1)
  PREF(s_1, s_2: SIG): bool = (s_1 \le s_2)
  APPLY(I: LABEL, s: SIG): SIG =
       IF (l + s < m + 1)
         THEN (l+s)
       ELSE (m+1)
       ENDIF
  IMPORTING routeAlgebra
                  \{\{\text{sig} := \text{SIG}, \text{label} := \text{LABEL}, \text{prohibitPath} := m+1, \}
                     labelApply(I: LABEL, s: SIG) := APPLY(I, s),
                     prefRel(s_1, s_2: SIG) := (s_1 \le s_2)\}
 END addA
```

Base Algebra for Provider-Customer, Peer-Peer Guideline

- ► For economical reasons, ISP reduces use of provider routes, and maximizes availability of customer routes
- ▶ $\Sigma(path)$: C/R/P (customer/peer/provider path)
- $ightharpoonup \mathcal{L}(link)$: c/r/p (customer/peer/provider link)
- ► ⊕ (label application):

\oplus	C	R	Ρ
С	С	С	С
r	R	R	R
р	Ρ	Р	Ρ

 $ightharpoonup \leq$ (preference relation): $C \leq R$, $R \leq P$, $C \leq P$

Provider-Customer, Peer-Peer Guideline in PVS

```
For simplicity, rename labels and signatures:
c \leftarrow 1, r \leftarrow 2, p \leftarrow 3 \text{ and } C \leftarrow 1, R \leftarrow 2, P \leftarrow 3
lpA: THEORY
 BEGIN
  SIG: TYPE = upto(3)
  LABEL: TYPE = upto(3)
  IMPORTING routeAlgebra
                       \{\{\text{sig} := \text{SIG}, \text{label} := \text{LABEL}, \}
                       labelApply(/: LABEL, s: SIG) := /,
                       prefRel(s_1, s_2: SIG) := (s_1 \le s_2), \}
 END lpA
```

Lexical Product ⊗ and Route Selection

- Lexicographic comparison models route selection
 - Most important attribute of each route is compared first, if no decision is reached, the next attribute is considered
- ▶ Lexical Product $A \otimes B$ built from existing algebras: A, B
 - Models a routing protocol with multiple attributes
 - ► More important attributes are handled by *A*, and the less important by *B*

Lexical Product $A \otimes B$ in PVS

PVS declaration and mapping ensures resulting algebra $A \otimes B$ is a valid routing algebra, i.e. \otimes is closed under abstract routing algebra

```
lexProduct[A: THEORY routeAlgebra, B: THEORY routeAlgebra]: THEORY
 BEGIN
  SIG: TYPE = [A.sig, B.sig]
  LABEL: TYPE = [A.label, B.label]
  APPLY(I: LABEL, s: SIG): SIG =
       (A.labelApply(I'1, s'1), B.labelApply(I'2, s'2))
  PREF(s_1, s_2: SIG): bool =
       A.prefRel(s_1'1, s_2'1) \vee
        (A.eqRel(s_1'1, s_2'1) \land B.prefRel(s_1'2, s_2'2))
  IMPORTING routeAlgebra
                  \{\{\text{sig} := \text{SIG}, \text{label} := \text{LABEL}, \}
                     labelApply(I: LABEL, s: SIG) := APPLY(I, s),
                    prefRel(s_1, s_2: SIG) := PREF(s_1, s_2)\}
 END lexProduct
```

Background: Internet Routing and Metarouting

Basic Approach

Compositional Routing Algebra

A Concrete Example

A Concrete BGP system

- Route paths are measured in terms of customer-provider relationship and distance cost
 - Customer-Provider Peer-Peer guideline must be enforced
 - Once customer-provider policy is satisfied, ISP wants least-cost (shortest) paths
- Decompose this BGP system into two sub-components
 - ► Sub-component A for customer-provider guideline
 - ► Sub-component B for shortest-path
 - Check the sub-component A first, and only use B to break tie

Simple BGP system in PVS Top Level Algebra: *BGPsystem*

```
simpleBGP: THEORY
BEGIN

IMPORTING AlgebraInstance, lexProduct

BGPsystem: THEORY = lexProduct[A2, B2]

END simpleBGP
```

Simple BGP system in PVS Sub-Component Algebras: A_2 , B_2

```
AlgebraInstance: THEORY
 BEGIN
  IMPORTING addA{\{n := 16, m := 16\}}
  IMPORTING lpA\{\{c := 3\}\}
  A_2: THEORY =
         routeAlgebra
               \{\{\text{sig} = \text{lpA.SIG}, \text{label} = \text{lpA.LABEL}, \}
                 labelApply(l: lpA.LABEL, s: lpA.SIG) = l+s, prohibitPath = 4,
                 prefRel(s_1, s_2: int) = (s_1 \le s_2)\}
  B_2: THEORY =
         routeAlgebra
               {{sig = addA.SIG, label = addA.LABEL,
                 labelApply(l: addA.LABEL, s: addA.SIG) = mod(l+s, 16),
                 prohibitPath = 17,
                 \operatorname{prefRel}(s_1, s_2: \operatorname{addA.SIG}) = (s_1 \leq s_2) \} \}
```

END AlgebraInstance

Conclusion, Recap

- Our contribution: Formalize fragment of Metarouting theory in PVS
 - Heavy and interesting use of PVS theory interpretation: mapping and declaration
- Our goal: extend PVS specification logic with metarouting theory
 - Enable network operator to design BGP system in PVS
 - Free network operator from the tedious low-level and trivial theory consistency checking

Background: Internet Routing and Metarouting

Basic Approach

Compositional Routing Algebra

A Concrete Example

- Provide full support for modeling complex BGP systems via metarouting
 - ► Encode more base algebras and composition operators presented in recent metarouting development
- Relaxed algebra for BGP systems with non-monotonic attributes
 - MULTI-EXIT-DISCRIMINATOR (MED) expresses router's preference regarding which neighbor to use
 - ▶ NON monotonic attribute: $a \leq b, b \leq c, c \leq a$
 - Routers in an AS cannot express a monotonic ranking

Thank you!

Questions?