Declarative Toolkit for Rapid Network Protocol Simulation and Experimentation

Shivkumar C. Muthukumarǎ, Xiaozhou Li, Changbin Liu, Joseph B. Kopens, Mihai Opreǎ, Boon Thau Loo

* University of Pennsylvania, * Drexel University

http://netdb.cis.upenn.edu/rapidnet/

Introduction

- **RapidNet Toolkit**
 - A development toolkit for rapid network simulation, prototyping, and experimentation
 - Integrates a declarative networking engine with the ns-3 simulator
 - Develop high-level specifications of network protocols, compiled into ns-3 code for simulation and testbed experimentation

- **Motivation**
 - Proliferation of new protocol designs
 - One-size-fits-all protocol does not exist
 - Variability in network connectivity, wireless channels, mobility
 - Wide range of traffic patterns
 - Lack of systematic tools to study protocols under a variety of mobility and traffic settings

Overview of RapidNet

- **Developer Feedback**
- **Simulation Results**

Declarative Networking

- **Declarative Networking**
 - Use a database query language to express declarative specifications of network protocols
 - Declarative specifications are executed by distributed query engine (Click execution model) to implement network protocols

Protocols at Demonstration

- **Reactive**
 - DSR (Dynamic Source Routing) (10 rules)
- **Proactive**
 - LS (Link State) (6 rules)
 - HSL (Hybrid Sighted Link State) routing (14 rules)
- **DTN (Delay Tolerant Networks)**
 - Epidemic Routing (15 rules)
- **Wireless Neighbor Discovery**
- **Chord Distributed Hash Table**

Example Specifications

All-pairs reachability protocol

- R1 reachable(@S,D) → link(@S,D)
- R2 reachable(@S,D) → link(@S,Z), reachable(@Z,D)

Link-state flooding

- LS1 Isln(@S,S,N,C,S,TTL): periodic(@S,T), link(@S,N,C), TTL>pow(2,K)*Te, TTL>pow(2,K), range(S,K)

Hazy-sighted link-state flooding

- HSLs1 Isln(@S,S,N,C,S,TTL): periodic(@S,T), link(@S,N,C), TTL>pow(2,K)*Te, TTL>pow(2,K), range(S,K)
- HSLs2 Isln(@S,S,N,C,Z,K): link(@S,N,C,W), link(@Z,M,C), K>0, M=W

Ongoing Research

- **Policy-based Adaptive MANETs**
 - Hybrid link-state
 - HSLS: incurs low bandwidth overhead, scales better
 - LS: quick convergence, perform better in stable network
 - AA: link availability

- **Recent Publications**
 - Declarative Policy-based Adaptive MANET Routing.
 - Hybrid Proactive-Epidemic
 - Verifiable Networking
 - Dynamic Network Composition

Recent Publications

- Declarative Network Verification
 - 11th International Symposium on Practical Aspects of Declarative Languages (PADL 2009)

Visualization

Visualization of ns-3 traces obtained from declarative networking executions within RapidNet

Copyright

2009)