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ABSTRACT
This paper presents SCALANYTICS, a declarative platform that sup-
ports high-performance application layer analysis of network traf-
fic. SCALANYTICS uses (1) stateful network packet processing
techniques for extracting application-layer data from network pack-
ets, (2) a declarative rule-based language called ANALOG for com-
pactly specifying analysis pipelines from reusable modules, and (3)
a task-stealing architecture for processing network packets at high
throughput within these pipelines, by leveraging multi-core pro-
cessing capabilities in a load-balanced manner without the need
for explicit performance profiling. We have developed a prototype
of SCALANYTICS that enhances a declarative networking engine
with support for ANALOG and various stateful components, inte-
grated with a parallel task-stealing execution model. We evalu-
ate our SCALANYTICS prototype on a wide range of pipelines for
analyzing SMTP and SIP traffic, and for detecting malicious traf-
fic flows. Our evaluation on a 16-core machine demonstrate that
SCALANYTICS achieves up to 11.4× improvement in throughput
compared with the best uniprocessor implementation. Moreover,
SCALANYTICS outperforms the Bro intrusion detection system by
an order of magnitude when used for analyzing SMTP traffic.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network monitoring; D.3.2 [Programming Languages]:
Language Classifications—Concurrent, distributed, and parallel
languages, Constraint and logic languages, Data-flow languages;
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming

Keywords
Applications of parallel and distributed computing; Data-intensive
computing; Programming languages and environments

1. INTRODUCTION
As networked applications become increasingly complex and het-

erogeneous, there is an increasing need for extensibility at the data
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plane, in order to carry out sophisticated operations such as traf-
fic flow management, traffic filtering, and content-based network-
ing. Central to several of these operations is the ability to perform
content-based analysis of network traffic, in order to determine how
traffic should be shaped, transformed, or filtered. These analysis
tasks are often times compute and memory intensive, since multi-
ple packets need to be buffered and correlated in order to extract
application-layer semantics. If deployed at routers, such analysis
can potentially slow down packet forwarding, which needs to oc-
cur at “line-speed”.

In order to speed up packet processing, one promising direction
is the use of multicore machines in software-based routers [9, 27].
While these solutions scale as the number of cores/machines in-
creases, they suffer from three limitations: (1) the lack of program-
ming tools to rapidly customize different forms of traffic analysis
specific to individual applications, (2) require explicit performance
profiling to determine how the packet processing workload should
be partitioned across cores, or (3) are not capable of performing
complex operations beyond stateless per-packet processing, such
as basic IP routing and packet encryption. To address these limi-
tations, we present SCALANYTICS (stands for Scalable Analytics),
a software-based traffic analysis platform deployed at the network
layer, that aims to provide high-performance analysis of packets,
capable of extracting and assembling application-layer information
from individual packets for analysis.

SCALANYTICS makes the following contributions:

• Component-based stateful processing. SCALANYTICS uses a
component-based dataflow architecture [11] that allows for rapid
assembly of packet processing functionalities from components
into dataflow pipelines that perform tasks such as assembling
packets into application-layer content, operations such as aggre-
gating traffic statistics, or deep-packet inspections into specific
application traffic.

• Declarative configuration language. SCALANYTICS uses a declar-
ative rule-based language called ANALOG for compactly speci-
fying pipelines that are assembled from existing packet process-
ing components. SCALANYTICS extends prior declarative net-
working [12] languages with constructs for modularization and
components, interoperability with legacy code, and runtime sup-
port for parallelism. To illustrate the flexibility of ANALOG,
we provide four example pipelines: (1) analyzing SMTP mes-
sage content using regular expression, (2) analyzing SMTP mes-
sage content using a machine-learning based spam filter [19],
(3) tracking VoIP (SIP [20] protocol) sessions, and (4) detecting
Denial of Service (DoS) attack [13], using support vector ma-
chines [5] on actual datasets [8]. These pipelines require only 7,
7, 7, and 5 ANALOG rules respectively, and reuse some common
components shared across these pipelines.



• High-performance fine-grained parallelization. In order to
execute these pipelines efficiently, SCALANYTICS provides fine-
grained parallelism at the level of individual components within
the pipelines. This is achieved through the use of a threading
library based on the task-stealing model [18], that achieves both
automatic load-balancing and high throughput processing. In
addition to stateless per-packet processing (e.g. packet routing,
IPSec etc.), SCALANYTICS can analyze the semantics of stateful
protocols (e.g. SIP) with high degrees of parallelism. To ensure
correct packet ordering in the presence of parallel processing,
SCALANYTICS allows packets to be ordered based on its spec-
ified context attribute, defined in terms of application specific
semantics (for instance, SIP session is uniquely identified by its
call ID).

• Implementation and evaluation. We have developed a proto-
type of SCALANYTICS, by enhancing an open-source declarative
networking engine [17] with the task-stealing model of paral-
lelism and support for various stateful processing components.
Using pipelines compactly expressed in ANALOG, we demon-
strate the use of SCALANYTICS for performing high-throughput
analysis of SMTP, SIP, and detection of malicious flows. In data
intensive workloads such as SMTP and SIP, we achieve up to
11.4× speedup on a 16-core machine and a throughput of 1.89
Gbps for analyzing SMTP emails. SCALANYTICS incurs low
per-packet latency ranging from 0.1 ms to 2.3 ms. Even under a
heavy workload that saturates the system with significant queue-
ing delays, SCALANYTICS’s per-packet latency ranges from 0.5
ms to 6.0 ms. We further compared with the Bro Intrusion Detec-
tion System (IDS) [14], and observe an order of magnitude per-
formance improvement for SCALANYTICS in analyzing SMTP
traffic.

2. DATAFLOW ARCHITECTURE
Figure 1 shows the architecture of SCALANYTICS. The sys-

tem is deployed at core routers, capturing IP packets for analysis
as they arrive. In a typical deployment, SCALANYTICS is used
as a non-intrusive network monitoring tool through a network tap.
SCALANYTICS can also be deployed inline for making decisions
on packet forwarding/filtering and packet transformation.

A network operator provides a ANALOG program that speci-
fies a linear pipeline of components, where each component cor-
responds to a specific stage in the analysis pipelines. Each compo-
nent can be implemented from scratch or as wrappers over existing
libraries. Multiple ANALOG programs corresponding to different
analysis pipelines can be installed at the same time. As input to
each pipeline, SCALANYTICS accepts events that could either be
external, e.g. packet capture from the network, or internal, e.g.
local periodic events. The events are queued and scheduled by
the platform thread, which generates a continuous stream of tu-
ples from the incoming events and inserts them into the pipelines
for execution. In this paper, we refer to events processed within the
pipeline as tuples.

The SCALANYTICS utilizes a token-based scheduling mecha-
nism, whereby each incoming tuple is assigned a token number
by the token-dispenser, and then scheduled for running within the
dataflow pipeline. Each pipeline has its own token dispenser. At
any time, only a pre-specified number of tokens are allocated for
each pipeline, hence limiting the number of in-flight tuples in the
pipeline.

Once tuples are assigned a token number, they are then pro-
cessed within the dataflow pipeline. The first stage in the pipeline

is an input component. All components are executed using a task-
stealing framework (Section 2.2). As input tuples traverse each
component at every processing stage, output tuples are generated
and buffered for processing in the next component. Based on the
ordering semantics of each component, each buffered tuple ready
for processing is designated a ready task, and enqueued into task
queues. Each task queue is assigned to a task stealing thread run-
ning on a processing core, which dequeues the task from its as-
signed task queue for processing. In a multicore system, these
threads can run in parallel, hence allowing multiple tuples to be
processed in parallel within the pipelines. This enables concurrent
processing within each component (for different incoming tuples),
or processing stages within a pipeline to run in parallel.

In the event of overload due to high traffic load, incoming pack-
ets are dropped by the packet capture thread. However, once a
packet is accepted into the event queue, SCALANYTICS ensures
that this packet will be processed by the system.

At the final stage of the pipeline, output action tuples are gen-
erated and are used to perform specific actions, including (1) ship-
ping the tuples into another pipeline (at the same or remote node)
for further processing, (2) redirecting tuples to a router controller
for making traffic management decisions (e.g. rate limit or block a
particular flow), (3) materializing into tables as traffic statistics, or
(4) raising alarms for the user.

2.1 Dataflow Pipeline
Figure 2 shows an example dataflow pipeline that illustrates the

execution model of SCALANYTICS. Each dataflow pipeline con-
sists of several components connected in a linear chain. Briefly, this
pipeline receives packets from the network (Packet Capture), as-
sembles packets into complete IP packets and TCP segments (IP
Assembler and TCP Assembler, filters out packets related to emails
(by recognizing the SMTP protocol from the packet payloads using
the Protocol Detector component), assembles complete emails
(SMTP Processor), before finally filtering out emails that match a
given regular expression (Regex Matcher).

Each SCALANYTICS pipeline can be specified as a ANALOG
program (described in Section 3). SCALANYTICS compiles the
program into a pipeline, which is installed into the runtime sys-
tem. To support different forms of serial and parallel execution,
SCALANYTICS has three types of components:

• Serial. Packets are processed in strict FIFO order. This is typ-
ically done for operations where total order is essential. For in-
stance, in our example, Packet Capture is a serial component,
since the initial stream of packets obtained from the network
should be first processed in the order in which they arrive.

• Parallel. Incoming packets to a parallel component can be pro-
cessed by multiple concurrent threads in a manner where order-
ing does not matter. For instance, once SMTP messages are as-
sembled, regular expression matches on individual email mes-
sages can be parallelized, and the order in which these emails are
processed is not essential. IP Assembler and Regex Match
are parallel components.

• Parallel context-ordered. These components are processed in
a partial order. A context-key is specified, in which all packets
that have the same key should be processed in an order based
on their arrival into the system. However, the ordering of packet
processing for packets with different keys is not required. For
instance, when assembling email messages from TCP segments,
messages have to be assembled in partial order (based on TCP
flows). Likewise, TCP Assembler processes incoming packets
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Figure 2: A SCALANYTICS pipeline for SMTP analysis. Parallel components have double lines, and context-ordered component
additionally have their context-keys shown in (...).

belonging to the same flow in the order of their arrival, but the or-
dering of packets across flows is not enforced. TCP Assembler,
Protocol Detector, and SMTP Processor are parallel context-
ordered components. Note that flow ID is not the only form
of context-key supported by SCALANYTICS. As we will later
show in our examples, other forms of context-keys are easily
supported, e.g. the call ID for a VoIP session.

SMTP pipeline details. Given the above component types, we
describe the SMTP pipeline in greater detail. This SMTP pipeline
assembles SMTP emails from IP packets, and then filters out emails
whose content matches a specified regular expression. The pipeline
receives a stream of incoming IP packets that are captured via the
Packet Capture component. Since the incoming IP packets may
be fragmented, they are sent to the IP Assembler component for
assembling the packets. This component is stateful, since previous
packet fragments must be kept in-memory at the component until
assembled.

After IP assembly, the packets are filtered based on their protocol
types (TCP or UDP). Further processing is done to the TCP stream
to assemble TCP segments based on the TCP sequence numbers
in the incoming packets. The TCP Assembler component is also
stateful and context ordered based on flow ID. This means that the
TCP messages with the same flow ID are processed serially and
each unique flow is processed in parallel. The flow ID is extracted
from a 4-tuple consisting of source and destination IP addresses
and port numbers.

Each assembled TCP flow (consisting of TCP segments in the
form of tuples) is then sent to the Protocol Detector compo-
nent, which is stateful and context ordered by flow ID as its context
key. The detection component monitors the flow and tries to de-
tect its application layer protocol. For example, the detection com-
ponent looks for the initial handshake of the SMTP protocol and
marks the flow as SMTP if handshake is detected. All the subse-
quent TCP segments in the SMTP flow would bypass the detector
and be marked as SMTP segments.



The detected SMTP segments are sent to the SMTP Processor
component for message assembly, which is stateful with the flow
ID as its context key. The SMTP component tracks the state ma-
chine of the active SMTP session. When the data portion of the
email is detected, it assembles the complete email message, which
may arrive in several TCP segments.

The assembled message is then sent to a parallel regular expres-
sion matcher component to look for patterns in the emails. Regex
matcher is a stateless component. If there is a match, a positive
result is generated. All of the above components are decoupled and
run in parallel with respect to each other. This allows flexibility
to insert compatible components in between any two components.
e.g. an IP filter can be inserted between IP assembler and
TCP assembler components to process packets which are des-
tined to specific destination address and port number.

Note that in all of the above components, they can be extracted
from existing libraries, rather than be implemented from scratch.
We will describe in Section 4 more details on the extraction pro-
cess. Once extracted into pipeline components, pipeline can be
constructed using ANALOG specifications.

2.2 Parallel Execution
SCALANYTICS aims to minimize latency when the system is un-

der light load and maximize the throughput when the system is un-
der heavy load. To achieve this goal, SCALANYTICS uses a task
stealing [18, 10] framework to enable adaptive fine-grained paral-
lel processing of individual components within each pipeline.

Figure 3 shows an example SMTP pipeline similar to the one de-
scribed in Section 2.1. Here, all emails that match the given regular
expression are stored in a serial Logger component. For ease of
exposition, we defer the discussion on context ordered components
to Section 2.4, and focus on serial and parallel components here.
Token-based task scheduling. SCALANYTICS utilizes token-based
task scheduling mechanism as follows. Each pipeline is assigned
its own token dispenser component (that is situated just outside the
pipeline), as shown in Figure 3. All incoming tuples are first as-
signed a monotonically increasing token number by its token dis-
penser component before entering pipeline. Tuples outputted from
each component retain the token number of the tuple that triggers
its generation. If multiple output tuples are generated from a single
input tuple (possibly from multiple rules within one component),
these tuples will be processed as a single batch with a common
token number. Conversely, if one output tuple is generated from
multiple input tuples (a common occurrence when doing applica-
tion level data assembly), the tuple will be tagged with the token
number of the final input tuple that generates this output. In ad-
dition, for each input tuple that comes before the final input tuple,
a dummy tuple is generated with the corresponding token number
of the input tuple. This ensures that the next component sees to-
kens in increasing order. Hence, token numbers do not disappear.
These dummy tokens add minimal processing overhead since each
subsequent component simply passes them along.

The token dispenser implements flow control, by allowing only a
limited number of in-flight tokens in the pipeline. There is a mem-
ory vs. speedup tradeoff in the number of tokens allowed. Having
more tokens potentially increases the degree of parallelism, since
in-flight tuples can be processed by multiple cores simultaneously.
However, this comes at the expense of requiring larger buffer sizes.

Once tuples are assigned tokens, they enter the pipeline for pro-
cessing. These tuples are processed within components as tasks.
Each task is hence associated with a component and a set of tuples
for execution. Once a tuple is ready for processing within a compo-
nent, it is inserted into one of the task queues for execution. Each

task queue is assigned to a task stealing thread, which can process
any task on its designated queue. Once a task is executed, any
output tuples generated from the component are reinserted into the
input buffer for the next component. When these tuples are again
ready for execution (for instance, in a serial or parallel context-
ordered component, they are next in line for processing based on
token numbers), they are placed into a task queue for execution in
the next component

Serial components process tuples in strict FIFO order based on
token numbers. Since tuples can arrive out of order when a par-
allel component precedes a serial component, an input buffer is
used internally at the beginning of each serial component, to ensure
that tuples are processed in-order. This requires each component to
maintain the token number for the last tuple processed (lastToken),
and only allow the next tuple whose token number is one larger
than lastToken to be processed. Once a tuple is ready for process-
ing within a component (i.e. reaches the head of the input queue),
it is then inserted into one of the task queues for execution. On
the other hand, since Parallel components have no ordering con-
straints, they can process tuples in completely parallel fashion. As
a result, no input buffer is necessary. Tuples arriving at the parallel
component are directly inserted into task queue for execution and
are never deferred.

2.3 Task Stealing
SCALANYTICS provides dynamic load balancing through the use

of a task stealing architecture [18], also known as work stealing [10].
A task stealing framework achieves parallelism by using multiple
cores at the same time. Each core on a multicore machine can run
one or more task stealing thread with hyper-threading. Each task
stealing thread is assigned a task queue, where tasks can be de-
queued in any order by the thread for processing.

In SCALANYTICS, a task is denoted by the processing of a tuple
(or group of tuples with the same token number) within a compo-
nent. Whenever a tuple is ready for processing, it is inserted into
one of the task queues. By default, the task is inserted into the
task queue of the currently executing thread, in order to minimize
CPU cache misses. A thread that has completed a task can then
dequeue from its corresponding task queue. However, if a thread is
idle and has no outstanding tasks, it can steal tasks designated for
other threads that are currently busy, hence achieving dynamic load
balancing. This is unlike other prior approaches used in scaling
software-based routers, which either utilize a static partitioning ap-
proach [9], or require pre-creation of multiple component instances
based on performance profiling [27].

In SCALANYTICS, task stealing is particularly useful when not
all flows are arriving at the same rate. For instance, when the rate
of SIP messages is higher than SMTP messages, SCALANYTICS’s
use of task stealing would naturally adapt to use more threads for
processing SIP components. A task stealing thread (referred to as
thread below) is responsible for executing tasks (in this case, tuples
or sets of tuples designated for each component to be processed).
Each thread attempts to steal tasks from another randomly chosen
thread (the victim) when there are no pending tasks in its local task
queue. An unsuccessful attempt to steal, in case of an empty victim
task queue, leads the thread to back off for a predetermined amount
of time and try again. A point to be noted is that components do not
map to any particular thread. However, SCALANYTICS optimizes
CPU cache locality, by using the same thread whenever possible to
process the same tuple across components. This vastly reduces the
cache-misses (associated with transfer/stealing of a task to another
core) as most tuples would be recycled into being processed by the
next component on the same core. A task is transferred only when
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Figure 3: SCALANYTICS’s pipeline architecture showing task stealing in action.

a thread is busy processing a component and some idle thread is
able to steal that task.

2.4 Enforcing Context-Order
Figure 4 shows the internals of a parallel context-ordered com-

ponent. Unlike an unordered parallel component, all tuples within
this component have to be processed in a partially ordered fashion
based on user-specified context key(s). The context keys can be
specified when defining each component in ANALOG (Section 3).

An Input Buffer is required here, in order to process event tu-
ples in FIFO order based on their token numbers. A key difference
here compared with the serial component is the use of context keys,
where tuples from the Input Buffer are further divided into sub-
buffers, one for each key. To ensure correct ordering within each
sub-buffer, a Context Designator is used to classify incoming tuples
based on their context keys, and then insert them into their respec-
tive sub-buffers. Note that a tuple may have multiple context keys,
in which case, it will be placed in multiple buffers, and dequeued
for processing when it reaches the front in all its buffers. Once a tu-
ple is ready for processing, it will be inserted into the task queue, at
which point, its corresponding ANALOG execution rules becomes
eligible for execution by one of the task stealing threads.

In order to ensure that outgoing tuples (corresponding to the
same context key) are processed in order of their token numbers,
at any point in time, only the topmost outgoing tuple from each
sub-buffer is inserted into task queues. Upon executing this tuple,
the next tuple from the same sub-buffer is inserted into the task
queues for execution.

3. ANALOG LANGUAGE
Each pipeline component in SCALANYTICS is specified using

the ANALOG language. We extend this language based on prior
work on declarative networking [12]. Declarative networking en-
ables specification of networking protocols as a set of queries in a
high-level language, primarily based on Datalog [16]. A Datalog
program is a set of rules, which are of the form q :- p1, p2,
...., pn. Here, q is the head of the rule and p1, p2, ....,
pn is a set of literals that constitute the body of the rule. Literals
are either predicates (e.g. relations or streaming tuples) with at-
tributes or boolean expressions that involve function symbols (e.g.
arithmetic) applied to attributes. A Datalog program is said to be

recursive if a cycle exists through any predicate, i.e. predicate ap-
pearing in a rule’s body appears in the head of the same rule. Body
predicates are evaluated in a left-to-right order. Like prior declara-
tive networking languages, we adopt the use of a location specifier
attribute @ that is used to denote the location (physical network ad-
dress) of each tuple. Though not an emphasis in this paper, location
specifiers will make distributed extensions natural to realize in fu-
ture, hence further improving the scalability of our system.

3.1 Components
Our ANALOG language extends traditional Datalog by allowing

the specification of a processing pipeline as a linear chain of com-
ponents. These components are executed in parallel to each other
by the run-time, thus exhibiting pipelined parallelism. A compo-
nent is essentially a set of rules, and its syntax is as follows:
component comp-name(type, context_keys(pA1(k1, ..., kn), ...,

pNn(k1, ...,kn))) {
rA qA :- pA1, pA2, ..., pAn.
rB qB :- pB1, pB2, ..., pBn.
..
}

The component specification is labeled by the keyword component,
followed by the component name, comp-name. In the component
specification, type can be serial, parallel or
parallel_context_ordered. context_keys(...) specifies
the context-keys for parallel context ordered components.

To ensure deterministic behavior, we constrain the ANALOG lan-
guage specification to only allow pipelines that can be represented
as a linear chain of components. This technique is logically similar
to stratification restrictions (e.g. on the use of negation operator) in
Datalog [15], where the next component is not executed until the
previous component has completed its execution.

Within each component, a set of rules is executed to a fixpoint,
upon the arrival of an input tuple that triggers the execution of the
component. Typically, a component is triggered for execution only
if the incoming tuple matches the body predicates in one of the
rules. The execution of one of these rules may generate new tu-
ples that will trigger other rules within a component. A fixpoint
is reached when no new facts are derived locally, at which point,
all output tuples are batched, tagged with the token number of the
initial input tuple, and sent to the next component for further pro-
cessing. If a newly derived or an input tuple does not invoke any
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rule within a component, it is simply used as an output tuple of the
component without any rule executions.

3.2 Example Pipeline in ANALOG
To better illustrate ANALOG language, we provide an example

program of three components that corresponds to the pipeline in
Figure 2.The compete ANALOG program is shown in Appendix A.
In our example, ANALOG is used as a wrapper for gluing together
various components. Within each component, user-defined func-
tions are used to invoke external libraries implementing various
processing capabilities (Section 4). These components are con-
nected into a linear chain, since the output of one component is
used as input to the next component.

component tcp_protocol_detector(parallel_context_order,
context_keys(tcp_stream(5))) {

det1 detected_tcp_protocol(@N, PKT, SRC_IP, DST_IP,
FLOW_ID, TCP_MESSAGE, PROTOCOL) :-

tcp_stream(@N, PKT, SRC_IP,
DST_IP, FLOW_ID, TCP_MESSAGE),

PROTOCOL = f_processTCPDetector(TCP_MESSAGE, FLOW_ID).

det2 smtp_segment(@N, PKT, SRC_IP, DST_IP,
FLOW_ID, TCP_MESSAGE) :-

detected_tcp_protocol(@N, PKT, SRC_IP, DST_IP,
FLOW_ID, TCP_MESSAGE, PROTOCOL),

PROTOCOL = "SMTP".
}

component smtp_processor(parallel_context_order,
context_keys(smtp_segment(5))) {

smtp1 smtp_mail(@N, PKT, SRC_IP, DST_IP, FLOW_ID, MAIL) :-
smtp_segment(@N, PKT, SRC_IP, DST_IP,

FLOW_ID, TCP_MESSAGE),
MAIL = f_processSMTPSegment(TCP_MESSAGE, FLOW_ID),
MAIL != "".

}

component regex_match(parallel) {
regex1 positive_match(@N, PKT, SRC_IP, DST_IP,

FLOW_ID, MAIL, MATCH) :-
smtp_mail(@N, PKT, SRC_IP, DST_IP, FLOW_ID, MAIL),
MATCH = f_match(MAIL, "hello"),
MATCH = "true".

}

tcp_protocol_detector and smtp_processor are parallel

context-ordered components, since they are both declared to be of
type parallel_context_order. The context_keys parameter
is only applicable to parallel context-ordered components. Both
components are parameterized by context_keys(tcp_stream(5))
and context_keys(smtp_segment(5)) , which means that they
use the 5th attribute (FLOW_ID)1 of their respective tcp_stream
and smtp_segment input tuples as their context key.

Hence, tuples carrying packets (PKT) with different FLOW_ID
are allowed to be assembled and processed in parallel. Compo-
nent regex_match on the other hand is a parallel component.
The tcp_protocol_detector component is triggered upon the
arrival of an input tcp_stream tuple. Each input tuple carries the
assembled TCP payload as its TCP_MESSAGE attribute as well as the
FLOW_ID attribute. Upon its arrival, rule det1 is triggered, which
then results in the invocation of a protocol detection module im-
plemented by the f_processTCPDetector function call (which
returns a PROTOCOL type, e.g. “SMTP” or “SIP”).

The firing of det1 results in the generation of a
detected_tcp_protocol tuple, which is then used to execute
rule det2. The rule det2 checks if the PROTOCOL is "SMTP"
and generates smtp_segment tuple if true. Since the resulting
smtp_segment tuple does not occur in any rule body, a fixpoint
is reached, and this tuple is added to the list of output tuples to
be sent to the next component. When there are no tuples pending
evaluation in any rules within the component, a local fixpoint is
reached, and all outgoing tuples are batched and sent to the next
component in the pipeline.

The output tuple tcp_segment is then used as input to the next
component, which in this case, is the smtp_processor compo-
nent (rule smtp1). The smtp_processor component generates a
smtp_mail tuple if a mail is successfully assembled. This is then
used as input to the regex_match component, which generates a
positive_match tuple if MAIL matches the given regular expres-
sion string.

91The FLOW_ID attribute is a concatenation of the source and
destination IP addresses and port numbers, and used to uniquely
identify a TCP or SMTP session.



4. IMPLEMENTATION AND USE CASES
We have developed a prototype of SCALANYTICS using the open-

source RapidNet declarative networking engine [17], which pro-
vides support for Click-like dataflows [11] and a Datalog compiler.
We have enhanced the Datalog compiler to support the ANALOG
language, and implemented several dataflow pipelines in SCALANYT-
ICS from ANALOG specifications.

We enhanced RapidNet’s runtime engine to support the new ar-
chitecture described in Section 2. The new execution model is de-
signed and implemented to enable local fixed-point computation
(i.e. rules are executed till no new facts are derived) within a com-
ponent before the derived tuples are batched together and sent to
the next component in pipeline. The runtime engine is enhanced
through task stealing framework (i.e. the task queues and task
stealing threads) described in Section 2.2 using Intel’s Threading
Building Blocks (TBB) library [18]. Using TBB as a basis, we are
able to implement SCALANYTICS’s serial and parallel components.
To enable parallel context-ordered components, we implemented a
new feature called context-filter. Briefly, the context-filter allows
us to create sub-buffers (Figure 4) keyed using context key. This
ensures strict ordering of tuples that share the same context key but
allows parallel processing of tuples across multiple contexts.

In the rest of this section, we briefly present four example dataflow
pipelines that highlight different uses of SCALANYTICS. In all
cases, these pipelines are assembled from reusable components that
are implemented from existing legacy code.

4.1 SMTP Analysis Pipeline
In our first use case, we implemented the SMTP analysis pipeline

as shown in Figure 2. The detailed specification of the pipeline
in ANALOG is in Appendix A. The entire pipeline requires only
7 rules in 6 components (including the initial Packet Capture).
The IP Assembler and TCP Assembler components are adapted
from libnids [26] source code, which in itself is derived from the
Linux kernel’s TCP/IP stack code.

For the purpose of this project, libnids code is unusable directly
as it is designed for single threaded use. The libnid’s IP and TCP
stacks are decoupled from each other and made thread-safe by adding
locks to their internal tables. The locks are added to protect the
lookup and insertion of stateful structures in hash tables (e.g. flow
table). The context-filter extensions to TBB guarantees safe ac-
cess to these structures based on TCP flow ID, and thus no fine-
grained locks are added. Also, we have made modifications to
hashing scheme used by TCP stack so as to map client to server and
server to client packets to the same hash bucket. This change al-
lows us to use a single, unique flow ID for identifying TCP packets
flowing in either direction. Our changes enable libnids’s IP stack
to run in completely parallel and the TCP stack to run in parallel
context-ordered mode. It takes us just a couple of days to make
these changes to the code.

The SMTP Processor component is adapted from the SMTP
analysis code from Bro IDS [14, 1]. It outputs each assembled
email on observing end of DATA for each SMTP session. The as-
sembled email will be used by Regex Matcher to search for the
given regular expression.

All in all, it takes us a few days to port existing legacy imple-
mentations into components usable by our SMTP analysis pipeline.
Note that this is a one-time effort, as these components are reusable
for other pipelines.

4.2 SMTP Spam Detector Pipeline
In our second use case, we improved upon the basic SMTP anal-

ysis pipeline shown above. Rather than do a generic regular expres-
sion match on the email body, we instead added a spam detector

module that allows us to filter out unwanted emails. Figure 5 shows
the entire pipeline. We reuse earlier components for assembling
SMTP messages from incoming traffic. The assembled emails are
then classified into spam or regular emails, using a Naïve Bayes
Text Classifier component. This pipeline requires only 7 rules
in 6 components.

Naïve Bayes classification is a well-known machine learning al-
gorithm for performing efficient text classification [19]. The clas-
sifier is first trained offline, in our case, using pre-existing emails
that have previously been identified as spams. Our Naïve Bayes
Text Classifier is a generic implementation of the naïve Bayes
classification algorithm tailored for text input. The component first
tokenizes each incoming text document into individual words. Each
input word is then tagged with a number indicating its probability
of being a keyword for spam data. This probability is derived from
the offline training phase. The classifier then computes a final value
from all the input word probabilities, to make a final decision on
whether the input text is classified as spam.

Note that this component is implemented in a generic fashion,
and can be reused for any other forms of text classification that uses
the naïve Bayes classification technique. It is also embarrassingly
parallel, meaning that one can implement the classifier as a parallel
component within SCALANYTICS.

4.3 SIP Analysis Pipeline
Our third use case is a pipeline that performs VoIP traffic anal-

ysis. Figure 6 shows a pipeline that implements an interception
of VoIP traffic by monitoring setup and tear-down of VoIP calls
based on Session Initiation Protocol. This pipeline reuses the IP
Assembler component used in our previous example. The entire
pipeline requires 7 rules in 5 components. The detailed ANALOG
pipeline specification is provided in Appendix B.

In the pipeline, SIP protocol processing is composed of SIP
Parser and SIP Transaction Processor components. The SIP
Parser component parses the header of each SIP call to extract out
relevant information from the call, such as the CallID. This infor-
mation is then used by the SIP Transaction Processor com-
ponent to track the state of the SIP call. This is a stateful compo-
nent, since it needs to maintain the state machine corresponding to
the SIP session. These two components are extracted from exist-
ing implementations of the GNU oSIP library [2], which provides
interface for controlling SIP based sessions.

Once the setup or tear-down of a SIP session is detected, this
information can be used by other components for further process-
ing. For example, we can add a filter (either by CallID or user) to
identify VoIP data streams of interests, and then record the VoIP
data stream of these selected calls using a RTP stream interceptor
component.

4.4 DoS Attack Detection Pipeline
Our last use case implements a Denial of Service (DoS) attack

detection [13] using support vector machines (SVM) [5], a popular
algorithm used in machine learning for data classification. Figure 7
shows the pipeline, which reuses earlier components for packet
capture, IP and TCP assembly. The Feature Extractor com-
ponent extracts out features for each assembled TCP flow, which
are then used by the SVM Classifier to detect potentially ma-
licious flows that exhibit DoS behavior. The complete ANALOG
specification (in Appendix C) contains 5 rules in 4 components.

The SVM Classifier is implemented using libsvm [5], a pub-
licly available SVM implementation. It is written as a component
that can be used for other types of traffic analysis beyond our use
case. The classifier is first trained using existing traces, a subset
of which are tagged as malicious. The classifier depends on fea-
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Figure 5: SMTP Spam Detector pipeline
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Figure 6: SIP call traffic interception pipeline. Tasks queues and task stealing threads are omitted for brevity.

tures extracted from each TCP flow for determining whether the
flow is malicious. This is achieved using the Feature Extractor
component that maintains features useful for separating malicious
from normal TCP flows, such as connection duration, bytes/pack-
ets transferred, number of connections in the recent 1 minute to
this same port number or IP address. Note that the last feature re-
quires maintaining a global ordered list of TCP connections that is
updated by all threads, which potentially limits the scalability of
Feature Extractor component. We will revisit this issue in 5.2

5. EVALUATION
We perform an experimental evaluation to study SCALANYT-

ICS’s performance characteristics in extracting fine-grained paral-
lelism. We also validate its capability to correctly implement the
packet processing functionality specified in the ANALOG programs.

Our experiments are carried out on a HP ProLiant BL420c ma-
chine, that has dual-socket processors. Each processor is an Intel
Xeon E5-2450 with 8 cores. In total, the machine has 16 cores, and
with hyper-threading support on each core. Each core has a 2 MB
L2 cache, and each processor includes a 20 MB L3 cache. The total
memory size is 24 GB.

5.1 Experimental Setup
Given 16 cores and support for hyper-threading, all experiments

are carried out with up to 32 threads. All experimental results are
averaged across 5 runs. Our experiments consist of benchmarking
the 4 pipelines described in Section 4.

• SMTP analysis (Section 4.1). As input to this pipeline, we use
a packet trace that contains transmission traffic of 50,000 emails
with an average size of 150 KB. In this experiment, we assemble
and match emails with a simple regular expression, and validate
that SCALANYTICS is able to filter out all such emails. This
experiment allows us to explore system’s throughput when the
workload is composed of large packets. (SMTP)

• SMTP Spam Detector (Section 4.2). In this experiment, the
input data contains of SMTP traffic traces generated by replay-
ing emails from the SpamAssassin dataset [23]. This dataset in-
cludes 2155 (3160) emails tagged as spam (non-spam). Each
email averages 6.7KB in size. By comparing directly to the orig-
inal tagged dataset, we observe that our spam detector achieves
high accuracy with only 0.3% false positive rate and 4.7% false
negative rate in classifying SpamAssassin dataset. (SPAM)

• SIP analysis (Section 4.3). As input, we use a trace file that
contains 100,000 SIP sessions, which is generated using SIPp
traffic generator [21]. Our analysis pipeline is able to correctly
recognize the setup and tear-down of all SIP sessions, decode

and record related information, including duration and URI of
each session. (SIP)

• DoS attack detection (Section 4.4). Our final experiment in-
volves the DoS attack traffic. The SVM model used in the pipeline
is trained offline using DARPA intrusion detection dataset [8],
which contains traces that have been tagged with one of 155 dif-
ferent DoS attacks. We use 5 weeks of traffic traces consist-
ing of 825K TCP connections for training purposes. To validate
the model and pipeline, we instantiate the model into the SVM
Classifier component, and inject 2 weeks of traffic traces into
the pipeline. The 2 weeks of traces contain 810K connections, of
which 371K are tagged as malicious. Our DoS detection pipeline
achieves 95.85% accuracy on 371 thousand attack connections
and 99.75% accuracy on 439 thousand non-attack connections.
Note the false-positive rate is only 0.25%, which makes the sys-
tem very useful for deployment in practice. (DOS)

For each pipeline, we execute two load scenarios. Under the
heavy load scenario, we replay a PCAP file to generate the maxi-
mum amount of traffic that can be handled by our pipelines. This
saturates our pipelines, maximizes the queueing delays between
components, and allows us to explore the limits of our system in
terms of its throughput and speedup. Under the light load scenario,
we rate limit our input traces at 5 Mbps. This allows us to measure
response time when the system is not experiencing heavy queueing
delays. The response time is hence dominated by just the process-
ing overhead of each component.

In all our experiments, we set the maximum number of in-flight
tokens for each pipeline to 1000. We observe that the throughput
does not increase significantly beyond 1000 tokens. In addition,
the system is able to maintain a reasonably small resident memory
footprint.

5.2 Speedup and Throughput
Figure 8 shows the speedup, and Figures 9-12 show the through-

put achieved for all pipelines, as the number of threads increases
from 1 to 32. Here, we subject all pipelines to the heavy load sce-
nario. The speedup is then compared with the best uniprocessor
implementation of each dataflow pipeline, without the added over-
head of TBBs. The error bars in Figures 9-12 show the standard
deviation obtained across 5 experimental runs.

We make the following observations. First, as the number of
threads increases (and hence more cores are utilized), the maxi-
mum speedup ranges from 9.0×-11.4× for SMTP, SPAM, and SIP.
We observe that linear speedup is not achievable, given that our
pipelines have serial as well as parallel context-ordered compo-
nents, and hence are not embarrassingly parallel. Nevertheless,
SCALANYTICS provides a significant speedup over the uniproces-
sor performance.
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Figure 7: DoS attack detection pipeline
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Figure 9: SMTP Analysis
Throughput (Mbps).
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Figure 10: Spam Filter
Throughput (Mbps).
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Figure 11: SIP Analysis
Throughput (Mbps).
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Figure 12: DoS Attack De-
tection Throughput (Mbps).
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Figure 8: Speedup

The maximum speedup (3.8×) obtained by DoS pales in com-
parison with that of other pipelines. This is because our Feature
Extractor component in the DoS pipeline maintains a global list
of all TCP connections within a specified time window. This list
is continuously updated for each incoming packet, hence slowing
down the entire pipeline.

Table 1 shows the performance statistics for each pipeline execu-
tion, under the setting where throughput is maximized for a given
number of threads. We observe that the throughput of SMTP is as
high as 1.89 Gbps (1474 emails per second). The resident mem-
ory footprint across all pipelines is below 310 MB, well within the
physical memory capacity of the machine. We further observe that
dynamic load balancing via task stealing is actively used by our
system. On average, between 15.4% and 35.5% of tasks are stolen
by idle threads.

To explore the limits of our system, we further experiment with
larger number of threads beyond 16 (number of cores). Our In-
tel processor supports hyper-threading, in which two simultaneous
execution threads can be maintained by each core sharing the same
execution resources. This allows two threads to essentially context-

switch “for free” without involving any heavy-weight kernel oper-
ations. In principle, this allows us to parallelize up to 32 threads.
We observe that hyper-threading is indeed useful at increasing sys-
tem throughput in all of our experiments, in particularly the SMTP
pipelines that are data-intensive. Pipelines such as SMTP benefit
more from hyper-threading, given that there is a larger likelihood
of L2 cache misses due to the larger payloads and emails assem-
bled. For example, at 28 threads, using the Intel VTune [3] profiler,
we observe that on average, the SMTP workload incurs 2×-2.5×
the number of L2 cache misses as compared to the other pipelines
that are processing smaller payloads.

When a L2 cache miss occurs, hyper-threading allows another
thread to execute a new task, while the previously executing thread
yields the processor to perform out-of-core memory operations.
However, beyond 28 threads, we observe that the use of hyper-
threading actually backfires due to spin lock contention on the TBB
queues by threads running on the same core. Note that such TBB
locking contention is not an issue when the number of threads is
the same as the number of cores, given that each TBB task stealer
owns its own processing core.
Bro comparison. As a basis for comparison, we compare our
SMTP analysis throughput against that of the Bro IDS [14]. This
allows us to sanity check that SCALANYTICS indeed can outper-
form an existing Bro deployment on a single core. We use Bro
2.0 [1], and its existing protocol decoder and SMTP module. We
configure Bro to use its existing regular expression pattern search
operation over the emails. The pattern search operation is simi-
lar to our SMTP pipeline. We observe that for the SMTP analysis
pipeline, Bro achieves a throughput of 140 Mbps (109 emails/s).
Compared to our highest throughput numbers (SMTP) in Table 1,
SCALANYTICS shows a 13.5× improvements in throughput over
Bro. We note that while one can naively scale Bro by running mul-
tiple independent instances on a single machine, this approach does
not easily support stateful analysis for any of our four applications,
since these Bro instances would not be coordinated.

5.3 Latency
Table 2 shows the average per-tuple latency for all pipelines. In

addition to the heavy load, we also contrast each pipeline execu-
tion to a light load scenario, as described in our experimental setup
(Section 5.1). In the table, Latency shows the per-tuple latency (in
ms), averaged across all tuples that traverse each pipeline.

We further broken down this latency number into the follow-



Pipeline Threads Speedup Throughput Packets/s Memory % TBB steal
SMTP 28 11.4 1892 Mbps (1474 emails/s) 6.2×104 310MB 15.4%
SPAM 28 11.0 347 Mbps (4842 emails/s) 1.2×105 255MB 20.2%

SIP 28 9.0 419 Mbps (19200 sessions/s) 1.2×105 204MB 24.8%
DoS 18 3.8 337 Mbps (1632 flows/s) 1.7×106 195MB 35.5%

Table 1: Summary of performance statistics for each pipeline execution with the number of threads where throughput is maximized.

Pipeline Workload Latency (ms) Queueing time (ms) Processing time (ms)

SMTP Heavy 6.036 5.227 0.809
Light 2.338 1.398 0.940

SPAM Heavy 5.000 3.320 1.680
Light 1.960 0.275 1.685

SIP Heavy 0.451 0.246 0.205
Light 0.236 0.022 0.214

DoS Heavy 0.520 0.425 0.095
Light 0.114 0.018 0.096

Table 2: Average per-tuple latency (ms) for each pipeline under the heavy and light load scenarios.

ing components: (1) Queueing corresponds to the time each tuple
spends in the input buffer of each component; and (2) Processing
is the actual time spent by each tuple within each component exe-
cution.

We observe that under the heavy load scenario, when SCALANYT-
ICS utilizes all cores at or close to 100% for maximum throughput,
each tuple incurs on average 0.5 to 6 ms latency across all pipelines.
As expected, queueing time dominates the overall latency. Under
the light load scenario where queueing time is not a factor, per-tuple
latency is modest, requiring only 0.1 to 2.3 ms. Each component
typically requires only a fraction of a millisecond to complete exe-
cution, demonstrating the overall efficiency of SCALANYTICS. We
further observe that for pipelines that are less data intensive (such
as SIP and DoS), the per-tuple latency is below 0.5 ms for both
heavy and light load scenario.

.

5.4 Summary of Results
Overall, our SCALANYTICS system is able to implement the

SMTP, SPAM, SIP and DoS detection pipelines efficiently. More-
over, SCALANYTICS is able to leverage up to 16 processing cores
to achieve speedup ranging from 9.0× to 11.4×. Large emails can
be processed within 6 ms even under heavy load, at a rate of 1474
emails per second (or 1.89 Gbps) on an inexpensive commodity
multi-core machine. Our SMTP analysis throughput outperforms
the Bro IDS by up to 13.5×. Spam filter assembles and classifies
incoming emails at a rate of 4842 emails per second (or 347 Mbps).
SIP traffic is similarly identified and analyzed at a rate of 19,200
SIP calls per second. In the DoS dataflow pipeline, 1632 TCP flows
are analyzed per second, and our SVM component exhibits high
accuracy on the DARPA dataset. In all our experiments, under the
light load scenarios, the per-tuple latency within the pipeline is less
than 2.3 ms, and the resident memory footprint of SCALANYTICS
is modest (reaching 310 MB for SMTP).

6. RELATED WORK
The component-based framework that SCALANYTICS uses is sim-

ilar to that of the approach taken by Click [11]. We have enhanced
Click’s dataflow framework to incorporate support for fine-grained
parallelism. Our ANALOG language has its root in declarative net-

working [12], which aims to provide a compact domain specific
language for implementing network routing protocols. We have
extended the original declarative networking language with con-
structs for specifying and gluing components, as well as invoking
existing libraries through the use of user-defined functions. More-
over, our task-stealing framework can be used for executing Dat-
alog programs in parallel, hence exploiting multicore processing
capabilities.

Multi-core software router platforms such as RouteBricks [9]
similarly leverage multiple processing cores within a cluster en-
vironment to scale up packet processing. However, these systems
are typically geared towards stateless processing, such as packet
forwarding, packet classification, IPSec etc. at the network layer,
and are ill-suited for sophisticated workloads such as SPAM and
SIP analysis. Pipeline-parallelism approaches taken by [27, 6] pro-
vide fine-grained parallelism when processing a packet. However,
these approaches require run-time system profiling and periodic
load-balancing across cores, which is expensive and also suscep-
tible to inaccuracy. Through our use of a task-stealing approach,
we are able to achieve dynamic load-balancing and fine-grained
parallelism without requiring explicit runtime profiling.

Prior work on multi-core Snort [7] are unable to support stateful
processing. Hence, these systems would not be able to support any
of our use cases. Gnort [24] uses GPUs for parallelizing packet
analysis. However, their approach is only suited for embarrass-
ingly parallel applications, e.g. pattern matching, and is not suited
for processing stateful flows. Moreover, the restricted execution
model of GPUs (which requires all cores to run the same instruc-
tions under the SIMD architecture) limits the flexibility of their
system in allowing different cores to perform different processing
tasks simultaneously. A recent work[25] uses a hybrid CPU/GPU
approach, where GPUs are again limited to embarrassingly parallel
pattern matching, while stateful operations are serialized on CPUs
on a per-flow basis. This approach lacks the flexibility provided
by SCALANYTICS, where pipelines involving a combination of se-
rial, embarrassingly parallel, and parallel context-ordered compo-
nents can be easily specified. The underlying system automatically
load-balances and parallelizes the pipelines, while respecting the
semantics of different component types.



Sommer et al. [22] proposed a parallelization strategy for Bro.
However, the evaluation of this system appears preliminary: most
of the results are presented in simulation, and the actual evaluation
is smaller in scale compared to our paper (both in scale and use
cases). In terms of the execution model, Sommer et al. does a
static partitioning of flows across threads, an approach that may
result in load imbalance across cores. Scalanytics avoids such load
imbalance issues through the use of the task stealing framework,
where each task represents an execution instance of a tuple within
a component

A key contribution of SCALANYTICS is to provide a program-
ming platform that allows us to assemble component modules out
of existing packet analysis platforms for parallel execution, as we
have demonstrated in Section 4. We note that intrusion detection
systems (IDS) such as Bro and Snort achieves only a subset of the
functionality provided by Scalanytics. SCALANYTICS enables traf-
fic analytics to be customized and parallelized, and has applications
beyond IDS, for instance, allowing machine-learning based classi-
fication of application-layer content at the network layer, perform-
ing spam email detection, measuring VoIP usage statistics so as to
customize traffic shaping policies, etc.

7. CONCLUSION
This paper presents the design and implementation of SCALANYT-

ICS, a scalable packet processing platform that supports (1) stateful
application-layer traffic analytics, (2) high degrees of configuration
through reusable components in a dataflow framework and a high-
level declarative configuration language, and (3) parallelism and
automatic load-balancing through the use of a task-stealing frame-
work integrated into a declarative networking engine. We have de-
veloped a prototype of SCALANYTICS, and our evaluations demon-
strate its scalability as well as functionality. As ongoing work, we
are enhancing our language and runtime system to enable directed
acyclic graphs beyond linear pipelines. We are integrating our sys-
tem with existing software-defined networking platforms such as
OpenFlow [4], so that the analysis output from SCALANYTICS can
be used to actuate flows in the network. We are also working to-
wards a distributed implementation that allows pipelines to be con-
structed across components running on different machines.
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APPENDIX
A. SMTP EXAMPLE IN ANALOG

/* Assemble IP Fragments
Takes as an input raw IP fragments and emits
assembled IP payload. */

component ip_assembler(parallel) {
ip1 ip_pkt(@N,PKT, IP_PKT, SRC_IP2,

DST_IP2, TRANSPORT_PROTOCOL) :-
input(@N, PKT, SRC_IP, DST_IP),
IP_PKT = f_processIpFrag(PKT),
TRANSPORT_PROTOCOL = f_getTransportProtocol(IP_PKT),
SRC_IP2 = f_getSrcIPAddr(IP_PKT, TRANSPORT_PROTOCOL),
DST_IP2 = f_getDstIPAddr(IP_PKT, TRANSPORT_PROTOCOL),
P = f_traffic(PKT, "input").

ip2 tcp_pkt(@N, PKT, IP_PKT, SRC_IP, DST_IP, FLOW_ID) :-
ip_pkt(@N, PKT, IP_PKT, SRC_IP,
DST_IP, TRANSPORT_PROTOCOL),
TRANSPORT_PROTOCOL == "TCP",
FLOW_ID = f_getTCPFlowId(SRC_IP, DST_IP). }

/* Assemble TCP payload.
Takes IP payload as input and emits assembled TCP messages. */

component tcp_process(parallel_context_order,
context_keys(tcp_pkt(6))) {

tcp1 tcp_stream(@N, PKT, SRC_IP,
DST_IP, FLOW_ID, TCP_MESSAGE) :-

tcp_pkt(@N, PKT, IP_PKT, SRC_IP, DST_IP, FLOW_ID),
TCP_MESSAGE = f_processTCP(IP_PKT). }

/* Detect TCP user protocol, e.g. SMTP. */
component tcp_protocol_detector(parallel_context_order,

context_keys(tcp_stream(5))) {
det1 detected_tcp_protocol(@N, PKT, SRC_IP, DST_IP,

FLOW_ID, TCP_MESSAGE, PROTOCOL) :-
tcp_stream(@N, PKT, SRC_IP, DST_IP, FLOW_ID, TCP_MESSAGE),
PROTOCOL = f_processTCPDetector(TCP_MESSAGE, FLOW_ID).

det2 smtp_segment(@N, PKT, SRC_IP, DST_IP, FLOW_ID, TCP_MESSAGE) :-
detected_tcp_protocol(@N, PKT, SRC_IP, DST_IP,
FLOW_ID, TCP_MESSAGE, PROTOCOL),
PROTOCOL == "SMTP". }

/* Process SMTP message.
Assemble e-mails from multiple SMTP segments. */

component smtp_processor(parallel_context_order,
context_keys(smtp_segment(5))) {

smtp1 smtp_mail(@N, PKT, SRC_IP, DST_IP, FLOW_ID, MAIL) :-
smtp_segment(@N, PKT, SRC_IP, DST_IP, FLOW_ID, TCP_MESSAGE),
MAIL = f_processSMTPSegment(TCP_MESSAGE, FLOW_ID),
MAIL != "". }

/* Match payload with a regular expression */
component regex_match(parallel) {
regex1 positive_match(@N, PKT, SRC_IP,

DST_IP, FLOW_ID, MAIL, MATCH) :-
smtp_mail(@N, PKT, SRC_IP, DST_IP, FLOW_ID, MAIL),
MATCH = f_match(MAIL, "hello"),
MATCH == "true". }

B. SIP EXAMPLE IN ANALOG

/* Assemble IP Fragments
Takes as an input raw IP fragments and emits
assembled IP payload. */

component ip_assembler(parallel) {
ip1 ip_pkt(@N, PKT, IP_PKT, SRC_IP2,

DST_IP2, TRANSPORT_PROTOCOL) :-
input(@N, PKT, SRC_IP, DST_IP),
IP_PKT = f_processIpFrag(PKT),
TRANSPORT_PROTOCOL =

f_getTransportProtocol(IP_PKT),
SRC_IP2 = f_getSrcIPAddr(IP_PKT,

TRANSPORT_PROTOCOL),
DST_IP2 = f_getDstIPAddr(IP_PKT,

TRANSPORT_PROTOCOL),

P = f_traffic(PKT, "input").
ip2 udp_pkt(@N, PKT, IP_PKT, SRC_IP, DST_IP, FLOW_ID) :-

ip_pkt(@N, PKT, IP_PKT, SRC_IP,
DST_IP, TRANSPORT_PROTOCOL),

TRANSPORT_PROTOCOL == "UDP",
FLOW_ID = f_getUDPFlowId(SRC_IP, DST_IP). }

/* Detect UDP user protocol, e.g. SIP */
component udp_protocol_detector(parallel) {
ud1 detected_udp_protocol(@N, PKT, IP_PKT, SRC_IP,

DST_IP, FLOW_ID, PROTOCOL) :-
udp_pkt(@N, PKT, IP_PKT, SRC_IP,

DST_IP, FLOW_ID),
PROTOCOL = f_processUDPDetector(IP_PKT).

ud2 sip_segment(@N, PKT, IP_PKT, SRC_IP,
DST_IP, FLOW_ID) :-
detected_udp_protocol(@N, PKT, IP_PKT, SRC_IP,

DST_IP, FLOW_ID, PROTOCOL),
PROTOCOL == "SIP". }

/* Parse the SIP payload and emit SIP event */
component sip_parse(parallel) {
s1 sip_event(@N, PKT, EVENT, FLOW_ID) :-

sip_segment(@N, PKT, IP_PKT, SRC_IP,
DST_IP, FLOW_ID),

EVENT = f_sipEventParse(IP_PKT).
s2 sip_event_callid(@N, PKT, EVENT, CALLID) :-

sip_event(@N, PKT, EVENT, FLOW_ID),
CALLID = f_sipcallid(EVENT).

}

/* Process the parsed SIP message */
component sip_process(parallel_context_order,

context_keys(sip_event_callid(4))) {
sip1 sip_session_event(@N, PKT, SESSION_EVENT, CALLID):-

sip_event_callid(@N, PKT, EVENT, CALLID),
SESSION_EVENT = f_sipEventProcess(EVENT). }

C. DOS EXAMPLE IN ANALOG

/* Assemble IP Fragments
Takes as an input raw IP fragments and emits
assembled IP payload. */

component ip_assemble(parallel) {
ip1 ip_pkt(@N, PKT, IP_PKT, SRC_IP2, DST_IP2, TRANSPORT_PROTOCOL) :-

input(@N, PKT, SRC_IP, DST_IP), IP_PKT := f_ProcessIpFrag(PKT),
TRANSPORT_PROTOCOL := f_GetTransportProtocol(IP_PKT),
SRC_IP2 := f_GetSrcIPAddr(IP_PKT, TRANSPORT_PROTOCOL),
DST_IP2 := f_GetDstIPAddr(IP_PKT, TRANSPORT_PROTOCOL),
P := f_Traffic(PKT, "input").

ip2 tcp_pkt(@N, PKT, IP_PKT, SRC_IP, DST_IP, FLOW_ID) :-
ip_pkt(@N, PKT, IP_PKT, SRC_IP, DST_IP, TRANSPORT_PROTOCOL),
TRANSPORT_PROTOCOL == "TCP",
FLOW_ID := f_GetTCPFlowId(SRC_IP, DST_IP). }

/* Assemble TCP payload.
Takes IP payload as input and emits assembled TCP messages. */

component tcp_process(serial_context_order,
context_keys(tcp_pkt(6))) {

tcp1 tcp_stream(@N, PKT, SRC_IP, DST_IP, FLOW_ID, TCP_MESSAGE) :-
tcp_pkt(@N, PKT, IP_PKT, SRC_IP, DST_IP, FLOW_ID),
TCP_MESSAGE := f_ProcessTCP(IP_PKT). }

/* Detect malicious TCP flows
Extract features and classify TCP flow using support vector machine*/

component tcp_ddos_detect(parallel) {
ddos1 tcp_stream_feature(@N, SRC_IP, DST_IP, FEATURE) :-

tcp_stream(@N, PKT, SRC_IP, DST_IP, FLOW_ID, TCP_MESSAGE),
FEATURE := f_GetTCPFeature(TCP_MESSAGE).

ddos2 tcp_stream_attack(@N, SRC_IPSTR, DST_IPSTR) :-
tcp_stream_feature(@N, SRC_IP, DST_IP, FEATURE),
ISATTACK := f_DetectAttack(FEATURE),
ISATTACK == "true", SRC_IPSTR := f_IPtoSTR(SRC_IP),
DST_IPSTR := f_IPtoSTR(DST_IP). }
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