
AUTOMATED FORMAL ANALYSIS OF INTERNET

ROUTING CONFIGURATIONS

Anduo Wang
A DISSERTATION

in
Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

2013

Boon Thau Loo
Associate Professor,

Computer and Information Science
Supervisor of Dissertation

Andre Scedrov
Professor,

Computer and Information Science
Co-Supervisor of Dissertation

Val Tannen
Professor, Computer and Information Science

Graduate Group Chairperson

Dissertation Committee

Oleg Sokolsky (Chair), Research Associate Professor, Computer and Information

Science

Rajeev Alur, Zisman Family Professor, Computer and Information Science

Jennifer Rexford, Gordon Y.S.Wu Professor, Computer Science, Princeton

University

Jonathan M. Smith, Olga and Alberico Pompa Professor, Computer and

Information Science

Carolyn L. Talcott, Computer Science Laboratory, SRI International

AUTOMATED FORMAL ANALYSIS OF INTERNET ROUTING

CONFIGURATIONS

COPYRIGHT

2013

Anduo Wang

Dedicated to Wuxi, my hometown.

iii

Acknowledgments

My vague thought of leading an entertaining and useful life started when I was

an undergraduate at Tianjin University, the former Pei-yang University funded in

1895, China’s first modern University, a copycat of its western peers (or ancestors)

in an (failed) attempt of restoring the nation’s glory. With this thought, I enrolled

in the master program of Tsinghua University, now the nation’s leading institution,

first funded in 1911 as a preparatory school for students sent by the government

to study in the United States. At Tsinghua, my vague thought took in the form of

an attempt of starting the academic career — an application for Penn’s graduate

program. Thus I began my journey of a PhD student at Penn six years ago.

These six years turned out to be very hard. The six-years-hard work will be

summarized in the rest of this thesis, this section, however, is reserved for those

people whom I am so fortunate to have met over the years. Many thanks go to

these people who support me and keep me going towards the PhD degree, those

who foster my career and open my eyes to the exciting academic world. Indeed,

working with them have already became the most entertaining and useful part of

my life.

First, I want to thank Prof. Oleg Sokolsky and Prof. Boon Thau Loo, for both

of whom, I can never fully express my gratitude. Oleg, with open-minded, strong-

willed, and above all, kind and generous support, effectively brought me to Penn,

guided me through my first year, and later chaired my WPEII exam, thesis defense.

iv

Boon, whom I’m as fortunate to have as my major advisor in the next five year, has

shaped my interdisciplinary PhD work. His appreciation for a broad spectrum of

problems (e.g. bridging theory and system research in general) will continue to

influence my research in future years. It will take even longer for me to “absorb”

his other influence, e.g. his disciplined but agile, determined but kind personality.

Only by then will I be able to view Boon a role model. I was once overwhelmed

by Boon’s art of advisory so much that I almost lost hope in pursuing faculty posi-

tions. Fortunately, I recovered a bit in the past year, and have been in the midst of

“deciphering” and “internalizing” his masterful working style ever since.

Next, I want to thank Prof. Andre Scedrov, Dr. Carolyn Talcott, and Prof. Jen-

nifer Rexford. Andre has been my major advisor since the end of my second year.

From the very beginning, Andre impressed me with the depth and width of his

research, and excited me of how much one could achieve over the years.1 An-

dre brought me a new circle of cool theory researchers, including Carolyn, who

was later my mentor at SRI in the past three years. Carolyn, together with Boon,

molded the second half of this thesis. In addition to this, Carolyn marked the turn-

ing point of my research in the sense that, with Carolyn, I gradually picked up the

“collaboration skills”. I believe this is partly because she is so smart that even my

awkward communication skill at that time did not stop an effective collaboration,

which further entailed improved communication. On the other hand, Jennifer,

the open-minded sharp system researcher, helped carve the first half of my the-

sis. Though experts of different domains, like Andre, both Jennifer and Carolyn

are the perfect examples of combining big-picture and low-level details, activeness

and experience. Jennifer also offered brilliant, detailed and in-depth comments on

my job search.

I also want to thank my other committee members from Penn: Prof. Rajeev
1By the way, since the train ride from Baltimore to Philadelphia where he found us students a

great place in a seemingly full train, I am totally convinced of every suggestion Andre made about
public transportation and anything else.

v

Alur and Prof. Jonathan M. Smith. Rajeev’s comments on the importance of rigor

will remind me for the rest of my career that every small piece of technical detail re-

veals the researcher’s understanding of the problem and the depth of the adopted

approach. On the other hand, Jonathan’s lecture on scoping and framing the prob-

lem, and involving junior students comes at such a high level that reminds me of

the ultimate goal of research.

In addition, I want to thank post-doc researchers at Penn: Alexander Gurney,

Limin Jia, and Vivek Nigam. Through close collaboration with them, I observe the

same quality of discipline and rigor, which is also the goal I set for my own post-

doc job. Besides, Alex has an unusual understanding and interests of computer sci-

ence ranging from the hard-core networking system to the theoretical type system.

He is also a kind mentor one could rely on for general research instruction. Limin is

smart, sharp and open-minded lady with expertise in programming language and

verification. Her patience and hands-on help leaded to the major breakthrough for

my PhD study and thesis work. Without her help, my thesis will not reach its cur-

rent rigor and depth. In addition to tremendous help in research, she also offered

personal advices. Vivek is an happy, easy-going fellow with deep understanding

of the most fundamental part of computer science — logic. I admire Limin and

Vivek for their research depth as well as their very different personalities. I cannot

feel more lucky to have the chance to closely work with them.

At computer science lab, SRI, I want to thank Dr. Mark-Oliver Stehr, Dr. Miny-

oung Kim for being my orientation host, Dr. Steven Eker for his patient help on

Maude, Ms. Lori Truitt for her kind administrative help, Dr. Natarajan Shankar for

holding the coolest “Crazy idea session”, Sam Owre for his suggestions on Maude

and PVS tool, Dr. Bruno Dutertre for bringing us interns to the lunch of great

meal and chat, Dr. Patrick Lincoln for his great home party, Phillip Porras for his

illustrative introduction of the emerging software-defined networks.

My special thanks to fellow Penn students: Huang Liang, Peng Li, Wenchao

vi

Zhou, and Changbin Liu. Huang and Peng gave me invaluable advices in my first

year. Wenchao and Changbin both helped me a lot on research projects. Wenchao

also offered valuable comments on my WPEII exam, dissertation, and job search.

My special thanks also goes to fellow student interns and office mates at SRI: Leila

Jalali (2011), Gabriel Gelman, and Dongting Yu (2012). Leila offered to drive me to

work, and we enjoyed chats on painting and Chinese thinker Confucius. Dongting

and I took advantage of the great Chinese foods around SRI, and aside from food, I

learned of operational networks form him. Besides, I want to thank fellow students

I worked closely with, including, Yifei Yuan, Xianglong Han, Jinyan Cao, Yiqing

Ren, and Salar Moarref. Many thanks to other friends, including but not limited to:

Mengmeng Liu, Zhuowei Bao, Shiv Muthukumar, Yang Li, Shaohui Wang, Zhihao

Jiang, Mingchen Zhao, Santosh Nagarakatte, Dong Lin, Alwyn Goodloe, and Tao

Tao.

My research was funded in part by the following funding agencies and sources:

NSF CAREER CNS-0845552, AFOSR Young Investigator Award, AFOSR MURI

grant FA9550-08-1-0352, and the NSF ITR-1138996 ExCAPE Expeditions Project.

Last but not least, I want to thank my parents, Xicheng Wang and Dongzhen

Zhang. In the past six years, I have witnessed the weakness and strength of the

genes you folks have passed on to me. I want to thank you for their gift, and I am

proud to tell that with the helps of all the people at Penn, SRI, and others, in my

purpose of the following thesis, I was closer than ever in making the best out of

my parents’ genes.

vii

ABSTRACT

AUTOMATED FORMAL ANALYSIS OF INTERNET ROUTING

CONFIGURATIONS

Anduo Wang

Boon Thau Loo
Andre Scedrov

Today’s Internet interdomain routing protocol, the Border Gateway Protocol

(BGP), is increasingly complicated and fragile due to policy misconfigurations by

individual autonomous systems (ASes). To create provably correct networks, the

past twenty years have witnessed, among many other efforts, advances in formal

network modeling, system verification and testing, and point solutions for net-

work management by formal reasoning. On the conceptual side, the formal mod-

els usually abstract away low-level details, specifying what are the correct func-

tionalities but not how to achieve them. On the practical side, system verification

of existing networked systems is generally hard, and system testing or simulation

provide limited formal guarantees. This is known as a long standing challenge in

network practice — formal reasoning is decoupled from actual implementation.

This thesis seeks to bridge formal reasoning and actual network implemen-

tation in the setting of the Border Gateway Protocol (BGP), by developing the

Formally Verifiable Routing (FVR) toolkit that combines formal methods and pro-

gramming language techniques. Starting from the formal model, FVR automates

verification of routing models and the synthesis of faithful implementations that

carries the correctness property. Conversely, starting from large real-world BGP

systems with arbitrary policy configurations, FVR automates the analysis of In-

ternet routing configurations, and also includes a novel network reduction tech-

nique that scales up existing techniques for automated analysis. By developing

the above formal theories and tools, this thesis aims to help network operators to

create and manage BGP systems with correctness guarantee.

viii

Contents

Contents x

1 Introduction 1

1.1 Motivation . 2

1.2 Research Challenges . 3

1.3 Contributions . 5

2 Background: BGP Anomalies and Formal Models 8

2.1 Background on BGP . 8

2.2 BGP Models . 12

2.2.1 Stable Path Problem . 13

2.2.2 Routing Algebra . 15

2.3 Taxonomy of BGP Anomalies . 20

2.3.1 eBGP Anomaly: Policy Conflicts Across ASes 21

2.3.2 iBGP Anomaly: Inconsistent Policies 22

2.3.3 IGP-iBGP Anomaly . 24

3 Overview 26

4 Verifying Formal Models 29

4.1 Unified Policy Specification . 30

4.1.1 Extending Routing Algebra . 32

ix

4.1.2 Converting Policy Guidelines to Algebra 33

4.1.3 Converting SPP Instances to Algebra 33

4.2 Automated Safety Analysis . 35

4.2.1 Strict Monotonicity Implies Safety 36

4.2.2 Converting Policies to Yices Constraints 37

4.2.3 Yices Examples . 39

4.3 Evaluation . 43

4.3.1 Pinpoint iBGP Configuration Errors 43

4.3.2 eBGP Gadget Analysis . 45

4.4 Summary . 45

5 Synthesizing Faithful Implementations 46

5.1 Background: Declarative Networking 47

5.2 Generating Faithful NDlog Implementation 51

5.3 Correctness of NDlog implementation 54

5.4 Evaluation . 57

5.4.1 Convergence Time vs. Network Size 59

5.4.2 Pinpoint iBGP Configuration Errors 61

5.4.3 eBGP Gadget Analysis . 62

5.4.4 Alternative Routing Mechanism 63

5.5 Summary . 65

6 Verifying Actual Routing Systems 66

6.1 Detect Anomalies in Policy Configurations 67

6.1.1 A Maude Library for BGP Systems 68

6.1.2 Specifying BGP Instance . 81

6.1.3 Detecting Anomalies . 88

6.2 Verifying Declarative Networks . 91

6.2.1 Path-vector Protocol in Declarative Network 92

x

6.2.2 Verifying Path-Vector Protocol 95

6.2.3 Soft-state, Events and Network Dynamics 97

6.2.4 Alternative Routing Mechanisms: Distance-Vector 100

6.3 Evaluation . 105

6.4 Summary . 107

7 Scalability Techniques for Analysis 108

7.1 Network Reduction . 109

7.1.1 Formal Model for Reduction . 109

7.1.2 Network Reduction . 113

7.2 Properties of Network Reduction . 119

7.2.1 Duality: Relating Duplicate and Complementary Reduction . 119

7.2.2 Soundness . 120

7.2.3 Local Completeness . 121

7.2.4 Confluence . 122

7.3 Evaluation . 124

7.3.1 Network Generation . 125

7.3.2 Reduction Performance . 127

7.3.3 Observations and Implications 134

7.4 Summary . 135

8 Conclusion 136

8.1 Summary . 136

8.2 Future Directions . 137

8.2.1 Software-Defined Network . 137

8.2.2 Formal Synthesis for Software-Defined Networks 138

A Appendix 141

A.1 Inconsistent Policy Configuration . 141

xi

A.2 Properties of Network Reduction . 142

A.2.1 Duality . 142

A.2.2 Soundness . 142

Bibliography 147

xii

List of Tables

2.1 Key attributes in BGP route selection . 11

2.2 Operations on Path Attribute in BGP Route Selection 12

2.3 Operations on Path Attribute When sender originates route 13

4.1 Spectrum of policy configurations . 31

5.1 Algebra and NDlog Mapping. 51

6.1 Overview and Interpretation of Maude Library . 69

6.2 Summary of BGP analysis in Maude. In the first row, each entry shows the simulation

time in milliseconds. In the second row, for each entry, the first value denotes exhaus-

tive search time in milliseconds, the second denotes number of states explored, and the

third on whether our tool determines the instances to be safe (“Yes”) or unsafe (“No”). 106

7.1 Summary of results across various input topologies. Averages across multiple

runs are presented. 128

xiii

List of Figures

2.1 Overview of BGP system . 9

2.2 Policy-based routing process . 10

2.3 The path digraph for Disagree has a cycle . 15

2.4 Export policy for Gao-Rexford guideline. The bold line indicates a route to des-

tination d, with an associated route signature. Each unidirectional link between

nodes u and v has a link label. 19

2.5 Disagree Gadget . 21

2.6 Cyclic Route Preference Causes Oscillation . 23

2.7 IGP-BGP Inconsistency. 25

3.1 Policy-based routing process . 26

4.1 FVR Architecture: static analysis. 29

4.2 iBGP configuration instance . 34

5.1 FVR Architecture: Implementation-based Analysis. 46

5.2 Convergence time (seconds) for BGP against longest customer-provider chain. 58

5.3 Average per-node bandwidth utilization (MBps) for iBGP with gadget. 58

5.4 Average per-node bandwidth utilization (MBps) for HLP. 58

6.1 FVR Architecture: Dynamic Analysis. 67

6.2 Network Dynamics . 104

7.1 FVR Architecture: Network Reduction. 108

xiv

7.2 The network configuration of Disagee . 111

7.3 The path digraph for Disagee . 111

7.4 The EPD notation for the Disagree configuration. 114

7.5 Nodes u, v are merged by duplicate reduction if they agree on how to route to

destination d through their neighbors x, y, . . . , z: For any path pi, qj , u, v agree

on their preference. 115

7.6 Nodes u, v are merged by complementary reduction if their neighbors x, y, . . . , z

agree on how to route to destination d through them: After merging, the route

preference for any path pi, qj are set according to the consensus among x, y, . . . , z.116

7.7 Application of complementary and duplicate reduction to border and internal

routers, respectively. 117

7.8 One-step reduction of complementary nodes 3, 4 118

7.9 Two-steps reduction: when internal nodes have consensus on how to rank

paths from border gateway nodes, all the border gateway nodes can be reduced

into one. 118

7.10 If u and v are neither duplicate nor complementary, merging them can create a

cycle. 122

7.11 The EPD in (a) either rewrites to (b) or (c) depending on the order of two com-

plementary reductions (u, v or v, w) . 124

7.12 Duplicate/complementary reductions do not commute 124

7.13 Route reflector example: clients are border routers 126

7.14 Route reflector with POP . 126

7.15 EPD Generation time as number of nodes increases for the Cisco-Synthetic

topologies . 130

7.16 Reduction time as number of nodes increases for the Cisco-Synthetic topologies 131

7.17 Reduction rate as number of nodes increases for the Cisco-Synthetic topologies. 132

xv

7.18 In a Cisco-Synthetic network, duplicate reduction (left) merges core (triangles),

internal routers (ovals) and retains the border gateway nodes (highlighted squares)

post-reduction; Complementary reduction (right) merges core, border gateway

routers and retains internal nodes (highlighted ovals). 134

A.1 A policy configuration, known to suffer oscillation due to inconsistent config-

uration (cyclic preference arcs) within a single node. 141

A.2 Relate duplicate and complementary reduction 142

A.3 Lemma 2: Case (a.2) and (b) None of Nfrom are on a cycle; Case (c.1) Some of

Nfrom and u, v are in the cycle, and at least one of those in Nfrom is in Γ−(u) and

Γ−(v); Case(c.2) Same as (c.1) except that no nodes in Nfrom are both in Γ−(u)

and Γ−(v). 143

A.4 Proof sketch of Lemma 3: Case 1 (left) and Case 2.1 (right). 145

A.5 Proof sketch of Lemma 3: Case 3. 145

A.6 Proof sketch of Lemma 4, Case 1 (left), and Case 2 (right). 146

xvi

Chapter 1

Introduction

Today’s Internet is a network of networks, the constituting networks under a single

administrative domain are called domains. To exchange reachability information

across and within the domains, the Internet runs a single inter-domain routing

protocol, called the Border Gateway Protocol (BGP). BGP allows each domain to

independently configure its BGP policy to influence routing for economical rea-

sons. As a result, the system-wide behavior of the Internet is determined by the

implementation of the BGP protocol, as well as how each network domain con-

figures its BGP routing policies. Given a BGP network (or BGP system), we refer

to its network topology, routing mechanisms (e.g. how the BGP nodes exchange

reachability information), and BGP routing policies as configurations (we use BGP

configurations, policy configurations, Internet routing configurations interchange-

ably); and broadly refer to any of the non-converging BGP behaviors as routing

anomalies (or BGP anomalies, anomalies).

Several studies such as [36, 42, 44] have shown that BGP mis-configurations

result in routing anomalies including route oscillation, delayed convergence, or in

severe cases, prolonged periods of network disruptions. These routing anomalies

incur serious performance disruptions and router overhead. In response, the net-

1

Chapter 1. Introduction

working community has proposed several BGP extensions [59, 72, 74], alternative

Internet architectures [69], and policy configuration guidelines (or “safety guide-

lines”) that help the network operator to achieve global convergence if universally

adopted [18, 19]. Despite all these efforts, BGP policy-based routing configurations

have become a main source for routing anomalies ranging from the frquent route

oscillation to the less common but more sever Internet outage. Indeed BGP config-

urations has been recognized Internet’s most complicated and fragile components,

and are the focus of this thesis.

1.1 Motivation

To build a more reliable, predictable, and secure network, the last twenty years

have witnessed great efforts in modeling, static reasoning and dynamic anomaly

detection for BGP configurations. These efforts include formal network modeling,

system verification and testing, and point solutions through formal reasoning.

On the conceptual side, abstract formal models of BGP allow researchers to

explore how local policies affect BGP stability [25, 66, 30, 67, 70, 16, 28, 33, 21,

20, 17, 73]. Algebraic models such as routing algebra are used to formalize rout-

ing protocols with convergence guarantees. Combinatorial models such as stable

path problem enable researchers to study the dynamic behavior of BGP and identify

policy guidelines that, if universally adopted by ISPs, could ensure global conver-

gence [19, 18, 23, 14, 22, 64, 13, 63]. However, these formal models usually abstract

away low-level details, specifying only some correct functionalities but not how to

achieve them. The correct-by-construction approach of routing algebra also leaves

out useful semantics, which cannot be expressed algebraically.

Concurrently, on the practical side, several diagnosis tools for anomalies are

developed, ranging from static configuration checker and model checking tools, to

runtime debugging tools of deployed systems. Static checking tools include rcc [50],

2

1.2. Research Challenges

which statically checks “potential” configurations for possible faults. Model check-

ing tools use a collection of algorithmic techniques for checking temporal proper-

ties of system instances based on exhaustive state space exploration. Recent ad-

vances in model checking detect anomalies in network protocol systems by im-

posing constraints on network implementations. Other model-checking tools for

BGP anomalies include [34, 11, 56]. In addition, several practical software tools

and testing platforms have been proposed to facilitate the verification of existing

networked systems, such as runtime verification platform [15, 32] Pip [61]), which

provides mechanisms for checking at runtime that a system does not violate ex-

pected properties. However, system verification of existing networked systems is

generally hard, and system testing or simulation provide limited formal guaran-

tees.

There are also hybrid approaches — point solutions such as BGP configuration

guidelines [18, 19], extensions [59, 72, 74], alternative Internet architectures [69].

However, the development of such guidelines and architectures requires deep un-

derstanding and insights, relying on the reasoning process that is often manual,

tedious, and error prone. Worse, once developed, to make the approach effective,

universal deployment is also required, incurring additional overhead.

This is known as a long standing challenge in network practice — the formal

reasoning process is decoupled from the actual implementation.

1.2 Research Challenges

This thesis aims to address the long standing challenge — the decoupling of formal

reasoning and actual implementation. To achieve this in the setting of BGP routing

configuration, we must address the following challenges.

• Automation. Abstract BGP models enable researchers to explore how local

3

Chapter 1. Introduction

policies affect BGP stability [25, 66, 30, 67, 70, 16, 28, 33, 21, 20, 17, 73]. How-

ever the reasoning process is a tedious and manual one, based on large num-

ber of low-level variables. To lower the bar of adoption of these model-based

reasoning tools, and to free network operators to better focus on high-level

network-wide properties, we need tool support that automates the reasoning

process.

• Generating property-preserving implementation. The formal models usu-

ally abstract away low-level details, specifying what are the correct function-

alities but not how to achieve them. To enforce the formal reasoning result

on actual implementation, a solution is to compile a verified formal model

into executable implementation.

• Applicability. Existing correct-by-construction formal models allow us to

verify formal models and generate correctness-preserving implementations.

However, these models do not capture all “well-behaved” policy configura-

tions since they rely on sufficient correctness conditions that rule out some

“correct” yet semantically useful policy configurations. The static verifica-

tion output is also restrictive. To better address actual policy configurations,

we need more general formal models and analysis techniques that provide

more informative analysis output.

• Scalability. Finally, due to the size of the Internet, and the NP-hard nature

of the global convergence property — the general problem of analyzing BGP

systems are hard. State-based analysis (e.g. model checking) will likely suf-

fer an exponential blow-up as network size increases. Therefore, we need

networking-theory that exploits the redundancy in policy configuration to

scale up existing analysis.

4

1.3. Contributions

1.3 Contributions

In bridging formal reasoning and the actual implementation for BGP systems, in

this thesis I designed and implemented Formally Verifiable Routing (FVR) toolkit.

Its methods and tools can be broadly classified into two categories.

First, to verify formal models and synthesize faithful implementations, FVR

frees network operators from manual analysis and lower the bar of applying for-

mal tools, and enforces the formal reasoning result in the actual distributed routing-

protocol implementation. Thus FVR addresses the research challenges automation

and generating implementation, and the specific contributions are:

C1. Verifying a routing policy using a SMT solver [80, 81]. I map various pol-

icy configuration models into logical constraints; and formulated verification

of routing convergence property as a constraint solving problem solvable

in existing SMT-solvers — the policy configurations constraints are checked

against convergence conditions drawn from previous work [67].

C2. Verifying a routing policy with a theorem prover [82, 79]. In addition to SMT

solving, I formalize in theorem prover the algebraic routing policy model that

allows construction of compound policy configurations from atomic ones. By

using the theorem prover’s (e.g. PVS) abstract data-types, I develop a suite of

verified atomic component algebras, based on which network operators can

compose compound policy configurations with correctness guarantees.

C3. Convert formal policy model into NDlog programs [81, 80]. NDlog is a dat-

alog like language for specifying declarative networking. I develop logical

formulations for both policy models (routing algebra and SPP formalism)

and NDlog programs, based on which the formal model is mapped into a

logically equivalent NDlog program. I also prove the translation is sound

and implemented it for the BGP protocol.

5

Chapter 1. Introduction

Second, FVR automates formal analysis of actual Internet routing systems, in-

cluding the policy configurations and the routing mechanisms. FVR also mitigates

the inherent state explosion problem in exhaustive search based formal analysis

by including a network reduction technique that scales up analysis. Central to net-

work reduction is a rewriting calculus that reduces input network size prior to

analysis. Thus FVR addresses the research challenges of Applicability and Scala-

bility, and the specific contributions are:

C4. Extract the formal model [85]. I design a formal model in Maude that cap-

tures a BGP system’s dynamic behavior given its topology and policy con-

figurations. The dynamic representation is essentially a transition system of

concurrently updating network objects — the routers and routing messages. I

also implement a Maude library that automatically extracts the formal model

for a BGP system.

C5. Dynamic analysis on formal model [85, 84]. I develop a Maude library that

automatically catches conflicting policy configurations in the formal model.

This is achieved by detecting route oscillations in the dynamic routing system

updates by utilizing Maude’s high-performance exhaustive search capability.

C6. Verifying routing protocols in NDlog programs [76, 83]. The core of reason-

ing about NDlog program is to encode the semantics of NDlog— a variant of

datalog — in logical statements recognizable in PVS. To achieve this, I de-

velop a mapping that compiles NDlog program into logically equivalent PVS

recursive definitions, hence lowering the barrier to using theorem provers for

verifying NDlog routing protocols.

C7. Network Reduction [84, 77]. I develop two reduction rules that transform

policy configurations by only requiring neighboring routing information. The

transformation proceeds by repeatedly merging network node pairs and the

6

1.3. Contributions

relevant portion of configurations in the rest of the network. I prove that the

rewriting rules are sound with regarding to the network property being ana-

lyzed. I also prove that they are symmetric to each other, and study how the

order of node merging affects the reduction result.

C8. Case studies and evaluation [84, 78]. I develop a prototype of network re-

duction in Maude, evaluated it on a variety of network configurations (e.g.

full mesh, route reflectors, confederations) on network topologies ranging

from the AS-level CAIDA to router-level Rocketfuel dataset [68, 4]. The ex-

periments show that network reduction enables us to analyze networks up

to 500 nodes that are otherwise not tractable, while incurring only a small

overhead.

7

Chapter 2

Background: BGP Anomalies and

Formal Models

This chapter, we provide brief background information on today’s Internet and the

BGP routing protocol. We review two formal BGP models that our analysis adopts.

We also present a taxonomy of BGP anomalies, including safety, the standard prop-

erty for BGP convergence across ASes; acyclic preference, the property for ensuring

a consistent configuration within an AS; and IGP-iBGP consistency, the property for

avoiding intra-AS oscillation. This taxonomy of anomalies form the problem space

our methods and tools aim to address.

2.1 Background on BGP

Today’s Internet has grown from a collection of loosely cooperated networks, called

the Autonomous Systems (AS) (or domains), each of which is typically owned and

administered by an independent entity such as an Internet Server Provider (ISP).

To exchange inter-Autonomous System (or inter-domain) network reachability in-

formation, a single routing protocol called the Border Gateway Protocol or BGP [6,

8

2.1. Background on BGP

60, 5, 71] is used. As shown in Figure 2.1, BGP exchanges the routing informa-

tion across ASes using external BGP (eBGP), while distributes those external ones

within each AS using internal BGP (iBGP).

Figure 2.1: Overview of BGP system

Note that unlike the intra-domain routing protocols used solely within an AS,

BGP adds routing policy policy, which is used by AS administrator to overwrite

the shortest-path behavior. While this policy expressiveness contributes to BGP’s

popularity since it enables the ASes to express their own economic purposes, it also

introduces routing anomalies ranging from route oscillations, slow convergence, to

routing inconsistency [24, 26].

Since the internal routers do not communicate directly with routers outside

their own AS, but through the border gateway routers, to maintain a consistent

routing view within an AS, the original BGP protocol requires each AS to form a

full-mesh BGP sessions among border gateway routers and internal routers. This

full-mesh requirement does not scale up well. As an alternative to full-mesh, route

reflectors are proposed. Route reflectors [5] are routers that serve a special role,

9

Chapter 2. Background: BGP Anomalies and Formal Models

Figure 2.2: Policy-based routing process

they collate and distribute route advertisements on behalf of other internal routers

called their clients.

In both eBGP and iBGP sessions, an individual BGP speaker (i.e. a network

node that supports BGP protocol) exchanges route information (i.e. routing adver-

tisements) with its neighbor using a path-vector protocol. Every BGP route is en-

dowed with attributes that describe it. From the point of view of each BGP speaker,

the policy-based BGP routing process, shown in Figure 2.2, in the following three

steps: (1) Upon receiving a route advertisement, a BGP speaker may choose to

accept or ignore the advertisement based on its import policy. Import policy in-

cludes filters which are used to deny certain routes. If the route is accepted, the

BGP speaker may also tweak the path attributes associated with the route, and

the stores it as a possible routing candidate in its routing table; (2) For each desti-

nation, the BGP speaker selects among all candidate routes one single best route

based on their attribute values according to its local routing policy; (3) After the

route selection process, if a new best route is selected, it may be re-advertised to

the BGP speaker’s neighbors according to its export policy. An example export pol-

icy is a filter which forbids re-advertisement of routes to certain neighbors if the

BGP speaker is unwilling to carry traffic.

The determination of all the three kinds of policies is up to the network oper-

ator: BGP allows considerable flexibility. Conflicting policies, within or between

10

2.1. Background on BGP

Stage BGP route selection step

eBGP
1. Highest LOC PREF
2. Lowest AS path length
3. Lowest origin type

iBGP
4. Lowest MED (with same NEXT-HOP AS)
5. Closest exit point (lowest IGP cost)
6. Lowest router ID (break tie)

Table 2.1: Key attributes in BGP route selection

ASes, are the cause of protocol oscillation, as the protocol struggles and fails to

satisfy all policies at once.

In general, administrators implement the policies by configuring the path at-

tributes associated with each route. These path attributes are summarized in Ta-

ble 2.1. We also characterize these by whether they are primarily associated with

eBGP- or iBGP-level routing decisions. In the second step of BGP policy-based

routing, i.e., route selection step, the BGP speaker selects the single best route by

comparing the attributes of its current available routes (for a given destination)

with the new route, and then decides whether the new route is selected and pro-

moted to be the best route. The attributes are listed in the order in which they

are compared during route selection: if the routes are tied at any stage, then BGP

proceeds to consider the next attribute on the list.

The most important attribute in eBGP route selection is local preference (LOC PREF).

This is a value set by each router on routes it receives, according to (arbitrary)

rules established by the network operator. If two routes have the same local pref-

erence, then the next tiebreaking attribute is the AS path length—the number of

ASes through which this route passes—followed by the ‘origin’ code. The next

step is to use the multi-exit discriminator (MED) attribute, the most important at-

tribute in iBGP route selection, which says which individual link is preferred, out

of the many links between this AS and a given neighbor. If that was not enough to

determine a single best route, BGP breaks ties by examining the shortest-path dis-

11

Chapter 2. Background: BGP Anomalies and Formal Models

Table 2.2: Operations on Path Attribute in BGP Route Selection

Path attribute Receive from (before selection) Send to (after selection)

1 LOCAL PREF
External (NA): Set by local policy External: NA
Internal (LOCAL PREF) : Unchanged Internal: Unchanged

2 AS PATH
External (P): Unchanged External: Append local AS

to P
Internal (P): Unchanged Internal: Unchanged

4 MED
External (MED/NA): Unchanged External: MED (local-set)

/NA
Internal (NA): Unchanged Internal : NA

5 NEXT HOP
External (NEXT HOP): Unchanged External: Set self
Internal (NEXT HOP): Unchanged Internal: Unchanged

tance to the relevant border router. Finally, if all else fails, it uses the value of each

router’s unique identifier. This final step is meant to ensure that all possible routes

can be placed in a total order, with no two routes being equivalent in preference.

Finally, we summarize the operations on path attributes in Table 2.2 and Table

2.3. For example, for attribute LOCAL PREF, import policy is specified in the first

row of Table 2.2 and 2.3. If a router receives a new path from external nodes, then

set LOCAL PREF according to its local policy, otherwise unchanged; When a router

advertises a new path to a neighbor, if it is sent to an external node, then removes

LOCAL PREF and sets its value to NA (because normally, AS would not like to expose

their local policy to neighbor ASes), otherwise unchanged. Finally, when a router

receives a path originated from an internal neighbor or advertises a path that it

originates, always leaves LOCAL PREF unspecified, i.e. sets its value to NA.

2.2 BGP Models

Routing anomalies are caused by routing misconfigurations. To represent the rout-

ing configurations for diagnosis, this thesis utilizes two formal models: stable path

12

2.2. BGP Models

Table 2.3: Operations on Path Attribute When sender originates route

Path attribute Before Send to

1 LOCAL PREF External: NA
Internal: NA

2 AS PATH External: Set local AS
Internal: Empty path

4 MED External: MED (local-set)
Internal : NA

5 NEXT HOP External: Set self
Internal: Set self

problem (SPP) and routing algebra. For each model, we present a sufficient correct-

ness condition that ensures protocol convergence (devoid of anomaly).

2.2.1 Stable Path Problem

Stable Paths Problem (SPP) [24] is a well-known formalism for BGP policy configu-

ration, where the entire configuration instance is modeled in terms of the router-

level topology and each router’s policy-induced route preferences. SPP is a well-

established combinatorial model of BGP configurations that captures the outcomes

of routing policy—which paths are preferred over which other paths, at each router—

while avoiding the need for detailed modeling of the BGP decision process in all

its complexity.

Specifically, SPP models routing policy as an combinatorial structure: an in-

stance of the SPP G is a tuple (V,E, d, P,Λ), where V and E are network nodes

and arcs respectively, d is the specific destination node 1, P is the set of permitted

(usable) paths available for each node to reach d, and Λ is the ranking functions for

each node. For each node v, λv is its ranking function, mapping its routes to nat-

ural numbers (ranks), and P v are its permitted paths, the set of available paths to

reach o. A path assignment is a function π that maps each network node v ∈ V to a
1Assuming the Internet is symmetric, we can study its routing behavior by studying routing to

a single destination.

13

Chapter 2. Background: BGP Anomalies and Formal Models

path π(v) ∈ P v. A path assignment is stable if each node u selects a path π(u) which

is (1) the highest ranked path among its permitted paths, and (2) is consistent with

the path chosen by the next-hop node. Consistency requires if π(u) = (uv)P then

for the next-hop node v, we must have π(v) = P . A solution to the SPP is a stable

path assignment.

For a given SPP instance G as above, and a node i in V , write P i for the subset

of P consisting of paths from i to d. In this thesis, we will use the symbol ‘◦’ for

concatenation of arcs and paths. If (i, j) is an arc in E, and p is a path from j to d,

then their concatenation (i, j) ◦ p is a path from i to d. Similarly, if p is a path from

i to j, and q is a path from k to l, and (j, k) is an arc in E, then the concatenation is

p ◦ (j, k) ◦ q or just p ◦ q.

One major benefit of SPP formalism is that researchers have identified and

proved various sufficient conditions for BGP convergence [67, 24]. In this the-

sis, we adopt the sufficient safety condition based on a structure called the path

digraph [67] . For a SPP instance (V,E, d, P,Λ), its path digraph is defined as fol-

lows:

Definition 1. Let G = (V,E, d, P,Λ) be an SPP instance. The path digraph is a graph

whose nodes are the elements of P , and where there is an arc (p, q) from p to q if either of

these two cases holds:

• If q = r ◦ p for some path r, there is a ‘transmission arc’.

• If p and q are two paths in P i and λ(p) is smaller than λ(q) (i.e. p ranks higher and

is more preferred), there is a ‘preference arc’.

If the digraph is acyclic then the SPP is safe, that is, the SPP instance has a

unique stable solution, which can be found by iteration from any starting state. We

will call an SPP instance cyclic (or acyclic) if its path digraph is cyclic (or acyclic).

14

2.2. BGP Models

For example, disagree gadget which exhibits divergence behavior, has a cyclic path

digraph, as shown in Figure 2.3

Figure 2.3: The path digraph for Disagree has a cycle

Route preference and Route selection In addition to the above ranking function

Λ, we review two useful alternative notions: route preference relation ≺ and route

selection function σ. Consider two paths p and q.

Conveniently, use p ≺ q to denote that p is preferred over q, i.e. if λ(p) ranks

higher λ(q). Similarly, use σ({p, q}) = p to denote that among two routes {p, q}, p is

the best and selected. Note that, among the three notions, route selection function

σ is most general: it applies to a set of paths; besides, it does not imposes a total

ordering (ranking) among a router’s permitted paths.

2.2.2 Routing Algebra

Routing algebra[67] is an abstract structure that describes how BGP speakers cal-

culate route preferences. An abstract routing algebra is a tuple 〈Σ,�,L,⊕,O〉.

• Path signatures Σ: It contains signatures for paths, which describe relevant

attributes of the paths so that routes can be ranked. In particular, there is a

special element φ in Σ, representing the signature for prohibited paths.

• Path preference relation �: It is a total order relation over the elements of

Σ and is used by the routing protocol algorithm to select the most desirable

15

Chapter 2. Background: BGP Anomalies and Formal Models

path. To capture the property that prohibited paths are never selected, for

any signature α that is not φ, α ≺ φ.

• Link attributes L: It is a set of labels describing attributes of links between

immediate neighbors.

• Path concatenation ⊕: It is the concatenation function that takes a label and

a signature and returns a signature. The purpose of ⊕ is for ASes to calculate

the attributes of a new route received from its neighbor based on the link it

comes from and the attributes of the received route.

• Initial path signatures O: It is a subset of Σ called origination that represents

signatures associated with initial routes, which are the paths containing only

one node.

An important properties of a routing algebra is monotonicity, which ensures that

as a path grows longer, it does not become more preferred. Formally:

Monotonicity: ∀l ∈ L,∀s ∈ Σ, s � l ⊕ s
Monotonicity ensures that a path uv ◦ Pv, where uv is a link from u to v, and

Pv is a route from v to the destination, should be less preferred than the path Pv.

In the definitions above, s represents the signature of Pv and l is the label for uv.

Notice that uv◦Pv and Pv are actually routes for different source nodes u and v. In a

real protocol implementation, each AS only has a local view of its routing policies;

which means that neither u nor v need to compare the preference between these

two routes. However, convergence is a global property concerning routing policies

at all nodes; and therefore, the route preference relation � is a total function for all

routes in the entire system. The monotonicity property on the global routing policy

will impact the convergence of the system as a whole.

Complex policies can be represented as compositions of simpler policies [25].

For example, ASes often rank routes based on multiple attributes (e.g., the next-

16

2.2. BGP Models

hop AS, the path length, and so on) in a series of “tie-breaking” steps. This is

naturally captured by the lexical product operator, where A⊗ B denotes the lexical

product of algebras A = 〈ΣA,�A,LA,⊕A〉 and B = 〈ΣB,�B,LB,⊕B〉. Each link

label in the resulting algebra is a pair, consisting of the labels for uv in A and B.

Similarly, each signature for a path P is a pair composed of signatures from A and

B. The concatenation function is the pairwise concatenation of the labels and sig-

natures. The preference relation is also pairwise in lexical order: the first compo-

nents are compared using �A, if equal then the second components are compared

using �B. For instance, the widest shortest hop-count policy is the lexical product

of a policy that prefers higher bandwidths with a policy that prefers shorter paths.

Example: Shortest Hop Count As a first example to show the mappings between

the abstract algebra and a concrete policy, we consider shortest hop count policy.

In this policy, routes with fewer hop counts are preferred.

• Link labels and path signatures. Since each node’s immediate neighbor is

one hop away, each link’s attribute is set to 1: L = {1}, whereas Σ is the

set of natural numbers, which describes the hop count of a path. ∞ is the

signature for prohibited path, i.e. all paths with cost ∞ are excluded from

consideration.

• Preference relations. To select paths of fewest hop count, the less than equal

(≤) relation on natural numbers is used as �.

• Concatenation. To compute the hop counts of paths, ⊕ is the plus (+) func-

tion on natural numbers for summing up the cost of a link and an existing

path.

• Initial path signatures The hop count of a path containing one node is 0.

17

Chapter 2. Background: BGP Anomalies and Formal Models

Example: Gao-Rexford Guideline As a second example, we illustrate the use of

algebra to specify policy guideline. We consider the well-known Gao-Rexford pol-

icy guideline. Gao-Rexford guideline is based on the three types of business rela-

tionships between neighboring ASes: peers, customers, and providers. The policy

guideline captures the constraint that an AS prefers routes through its customers

over routes through peers or providers (called “guideline A” in [19]).2

Links and paths are distinguished based on their attributes, mapping naturally

to label set L, and signature set Σ, respectively. Consequently, the representation

of the policy guideline in algebra is straightforward:

• Link labels and path signatures. Routes are classified based on the business

relationship between neighboring ASes. Routes received from a customer,

provider, or peer are classified with path signatures C, P, and R, respectively.

In addition, the signature φ explicitly denotes all prohibited routes. There-

fore, Σ = {C,P,R, φ}. Likewise, labels c/p/r denote three classes of links to

customers, providers, and peers, and L = {c, p, r}.

• Preference relations. Each AS prefers routes via customers over those via

providers or peers, which is straightforwardly encoded as C ≺ P and C ≺

R. To have a total ordering on the signatures, we must define a preference

relation between provider (P) and peer (R) routes. Using P = R implies

that an AS can decide which routes are preferred based on other tie-breaking

methods. So, our encoding uses the following three constraints: C ≺ P ,

C ≺ R, and P = R.

• Concatenation. The signature of a new route depends only on the node’s

relationship with its neighbor, as captured by the link label; for example p ⊕

C = P , p ⊕ R = P , and p ⊕ P = P . However, an AS does not export routes

2A router is motivated to obey this guideline because it got paid by the customers.

18

2.2. BGP Models

learned from one peer or provider to other peers and providers, as illustrated

in Figure 2.4. The figure shows a node u deciding whether to export (to its

neighbor v) a route to destination d. Figure 2.4(a) shows that u is a provider

of v, making uv a provider link and vu a customer link. Node u can export

customer routes (C) to v, but any peer (R) and provider (P) routes are filtered.

• Initial path signatures The initial signature of a route is determined by the

business relationship between the two end routers: it is set to c/p/r if the

route is from a customer, peer, or provider.

v u
p

c
d

C

Allowed paths

v u
r

r
d

C

v u
c

p
d

C/P/R

(a) exports only customer routes to provider

(b) exports only customer routes to peer

(c) exports all routes to customer

v u
p

c
d

P/R

Prohibited paths

v u
r

r
d

P/R

Figure 2.4: Export policy for Gao-Rexford guideline. The bold line indicates a
route to destination d, with an associated route signature. Each unidirectional link
between nodes u and v has a link label.

Note that in algebra, route filtering is expressed by generating a prohibited path

(φ). For import policies, if v decides not to import a path of signature s from u, we

can encode this import policy as l ⊕ s = φ where l is the label for link vu. Our

example policy involves export filtering. An export filter at node u can be modeled

as an import filter at the receiving node v. The export filters in Figure 2.4(a) can

be represented by c ⊕ P = φ and c ⊕ R = φ, where the customer v filters any

routes that u learned from its own peers or providers. The complete definition of

the concatenation operator is:

19

Chapter 2. Background: BGP Anomalies and Formal Models

⊕ C R P

c C φ φ

r R φ φ

p P P P

Similar algebraic encodings have been presented in prior work [66], but our

illustration here serves to highlight a shortcoming of existing algebraic represen-

tations. To address this limitation, we propose extension to the original algebraic,

and we will revisit this example in Chapter 4.1.2.

Finally, the lexical product [25] can then be used to compose multiple policies,

for instance, combining the Gao-Rexford guideline with a policy that excludes par-

ticular paths by AS.

2.3 Taxonomy of BGP Anomalies

In this thesis, we identify three families of routing oscillation anomalies and the

routing attributes involved in oscillation.

• In eBGP anomalies, routing policy conflicts occur at an inter-AS level. The

typical causing attribute is LOC PREF, because it is set arbitrarily at each AS,

independently of any other.

• iBGP anomalies are limited to a single AS, and associated with MED. Due to

a quirk in the decision procedure, it is possible for there to be three routes

p, q, and r such that p is preferred to q, q to r, and r to p. The router will be

unable to settle on a single choice, if there is feedback where its actions cause

the visibility of those three routes to change.

• iBGP-IGP anomalies result from inconsistency between the semantics of

route reflectors, and particular IGP distance values.

20

2.3. Taxonomy of BGP Anomalies

2.3.1 eBGP Anomaly: Policy Conflicts Across ASes

Policy conflicts across ASes are caused by the tension between (1) autonomy re-

quirement that each router sets its policy independent of its neighbor; (2) the rout-

ing tree that the BGP system converges to, imposes dependency between the rout-

ing choice (policy) of neighboring routers. Given a group of connected ASes and

the corresponding routing policies, for destination d, a routing tree is a spanning

tree rooted at d such that each router’s selected route is given by the path from the

root to the router node.

When the routers are from different ASes, their routing policies can be set in

an arbitrary way such that no unique policy compliant routing tree can be formed.

We call this scenario policy conflicts across ASes.

n0

n1 n2 [n2 n1 n0]
[n2 n0]

[n1 n2 n0]
[n1 n0]

Figure 2.5: Disagree Gadget

For example, consider an eBGP system called the Disagree “gadget”, whose

network topology is shown in Figure 2.5. The available routes for each node are

listed besides the corresponding node. The order in which the paths are listed il-

lustrates each node’s routing policy: Nodes prefer higher ranked routes, e.g. node

n1 prefers route [n1 n2 n0] over [n1 n0]. Disagree has two stable path assign-

ment solutions: ([n1 n2 n0], [n2 n0]) and ([n2 n1 n0], [n1 n0]). How-

ever, Disagree is not guaranteed to converge because there exists an execution trace

where route assignments keep oscillating. Consider the execution where node n1

and n2 update and exchange routing messages in a synchronized manner, and

21

Chapter 2. Background: BGP Anomalies and Formal Models

their network states oscillate between two unstable path assignments ([n1 n0])

([n2 n0]) and ([n1 n2 n0] [n2 n1 n0]) forever.

The related eBGP correctness property we consider is safety [67, 26]. The progress

of the BGP algorithm towards a solution depends on the timing of messages and

other non-deterministic factors: we want to ensure that every execution schedule

will result in a routing solution being found, regardless of the asynchronous nature

of the protocol. The final state is characterized by stability, meaning that no future

messages will affect which best paths are selected by each router.

Definition: A BGP instance is safe, if under all possible executions, it converges

to a stable state, where the best routes selected by all the routers form a policy-

compliant routing tree.

2.3.2 iBGP Anomaly: Inconsistent Policies

An unfortunate outcome of the BGP decision procedure is a corner case with the

‘MED’ attribute, where not all route preferences can be modeled by a total binary

relation. This is because, with MED, one can have three routes p, q and r where p

is preferred over q, q over r, and r over p, all at the same router: the preferences

are cyclic. This phenomenon is associated with a specific family of protocol oscil-

lations.

Consider the scenario in Figure 2.6: The routing policies of the instance are set

by the following route selection functions:

σiBGP ({AB,AC}) = σigp({AB,AC}) = AC (2.1)

σiBGP ({AB,ADE}) = σigp({AB,ADE}) = AB (2.2)

σiBGP ({AC,ADE}) = σmed({AC,ADE}) = ADE (2.3)

σiBGP ({AB, AC,ADE}) = σigp({AB, σigp({AC,ADE})}) (2.4)

= σigp({AB,ADE}) = AB (2.5)

22

2.3. Taxonomy of BGP Anomalies

AS 1

A D

B C E

AS 10 AS 6

AS 100 10.0.0.0/8

1

5 4 12

(10) (1) (0)

Figure 2.6: Cyclic Route Preference Causes Oscillation

Here the function σiBGP is inconsistent in lines (1) and (5). It prefersAC when given

both AB and AC, but if it learns about ADE as well, its best route switches to AB,

rather than sticking with AC or adopting the new ADE.

The cyclic nature of the preferences in this example is revealed from the first

three lines: (1) says AC is better than AB, (2) says AB is better than ADE, but (3)

says ADE is better than AC. The inconsistency arises from the fact that different

attributes are being used to establish the preferences: MED in (3) overrides IGP

distance.

We will now formalize this idea by showing that an inconsistent σiBGP function

always leads to such a ‘cycle’. Conversely, if σiBGP is consistent then its preferences

can be implemented by a ≺ relation.

Given a selection function σ, derive a binary relation ≺ by p ≺ q if and only

if p = σ({p, q}) 6= q. This relation is called cyclic if there are paths p1 through pn

where

p1 ≺ p2 ≺ p3 ≺ · · · ≺ pn ≺ p1.

Otherwise, it is acyclic.

23

Chapter 2. Background: BGP Anomalies and Formal Models

2.3.3 IGP-iBGP Anomaly

While BGP can choose the correct egress point in an AS, for each destination, estab-

lishment of the intra-AS path to that border router is the responsibility of another

protocol (an interior gateway protocol or IGP). Problems can occur if the iBGP

configuration does not match the distance values used in the IGP [73, 17].

Consider the scenario in Figure 2.7. The iBGP instance consists of four nodes:

the dashed lines denote the BGP links, the solid lines the IGP links, and the num-

bers along the IGP links denote the link costs. The IGP links carry traffic, whereas

the iBGP links exist in order to propagate routing information, so that the IGP can

select the correct border router as the egress point for each packet.

The nodes RR1 and RR2 are ‘route reflectors’, and the nodes C1 and C2 are

clients of RR1 and RR2 respectively. This means that they will always choose a

route through their local reflector, if possible. However, IGP route decisions are

based on minimizing the sum of link weights: so for C1 to reach RR1, the actual

path taken will be C1C2RR1 with a total cost of 2. Similarly, C2 will try to reach

RR2 by using the path C2C1RR2.

The interaction between the IGP forwarding and the BGP routing policy results

in a forwarding loop. Packets fromC1 to an external destination will be routed first

to C2, on the assumption that this is the best way to reach RR1. But C2 is trying to

reach RR2 instead, and so it forwards the data to C1. The end result is that the data

never gets to either reflector, and does not reach its destination.

24

2.3. Taxonomy of BGP Anomalies

Figure 2.7: IGP-BGP Inconsistency.

25

Chapter 3

Overview

We have reviewed the algebraic and combinatorial models for BGP systems, and

located three sources of anomalies (Chapter 2.3). This chapter presents the overview

of Formally Verifiable Routing (FVR) — the toolkit and its underlying theories that

address these anomalies with these models.

Figure 3.1: Policy-based routing process

As shown in Figure 3.1, the overall goal is to bridge formal reasoning (left)

and the actual implementations (right) in the setting of BGP systems. The formal

reasoning can be carried out in either an inductive theorem prover, a fully auto-

26

Chapter 3. Overview

matic SMT solver, or the Maude analyzer that combines both; The actual systems

consist of the implementation of the protocol and the policy configurations. What

bridges them are the middle boxes: In the center, the formal model box consisting of

routing algebra and combinatorial model of SPP, plays a central role. The top mid-

dle declarative network specification box is the key programming language technique

that enables program synthesis and actual system verification. Finally, the bottom

network reduction box is the scalability technique.

More specifically, starting from the formal model, we designed and imple-

mented Formally safe routing (FSR) toolkit [80] that automates verification of

routing models (arc 4, Chapter 5) and synthesizes faithful implementations (arc

5) that carry the correctness property [1, 80, 81, 82]. Reversely, starting from the

large real-world BGP systems with arbitrary policy configurations, we designed

and implemented the two component tool-kits [84, 78, 77] for detecting anomalies

in larger BGP systems: the reasoning engine that automates the analysis of Inter-

net routing configurations (arc 6), and the scalability component that implements

a novel scalability technique for analysis (arc 7).

The rest of the thesis will describe in details the four key enabling techniques

outlined as follows.

• Verifying formal network models. (arc 4) Chapter 4 shows the automatic

verification of BGP policies that are expressible in the routing algebra model.

The verification is achieved by constraint solving using Yices SMT-solver.

• Generating faithful implementations from verified models. (arc 5) Chap-

ter 5 shows, given a verified routing algebra model, how to convert it into a

network datalog (NDlog) program, which can be further compiled into actual

distributed implementation with the existing declarative networking engine.

Correctness proof of the generated NDlog programs are checked through in-

ductive reasoning using the PVS theorem prover.

27

Chapter 3. Overview

• Verifying actual routing systems. (arc 6) Chapter 6 presents the verifica-

tion of actual network systems beyond those expressible in routing algebra

models. We develop a more general BGP model in the formal tool Maude

with exhaustive-search based analysis functions. This Maude extension al-

lows us to analyze BGP systems with arbitrary policies that are not captured

for correctness-by-construction models. The dynamic analysis functions also

provide more informative analysis output in the form of a trace that demon-

strates routing anomalies.

• Scalability techniques for analysis. (arc 7) Chapter 7 presents a configuration

rewriting calculus that transforms network configurations while preserving

routing properties. We proved the correctness properties and demonstrate its

effectiveness by evaluation on real-world networks. Our evaluation results

show that reduction effectively scales up analysis by incurring low overhead.

Reduction also uncovers redundancy in network configurations.

28

Chapter 4

Verifying Formal Models

This chapter presents FVR’s ability to verify routing configurations that can be

expressed in the routing algebra model. These include general policy guidelines

and concrete BGP instances. Hence FVR’s automatic analysis serves two impor-

tant communities: For researchers, FVR automates important parts of the design

process and provides a common framework for describing, evaluating, and com-

paring new safety guidelines. For network operators, FVR automates the static

analysis of internal router (iBGP) and border gateway (eBGP) configurations for

detecting safety violations.

Figure 4.1: FVR Architecture: static analysis.

29

Chapter 4. Verifying Formal Models

As shown in Figure 4.1, given a policy configurations, FVR uses routing alge-

bra model as the representation for analysis, and automates the analysis through

constraint solving in SMT solver. These two main enabling technologies are as

follows.

• Policy configuration as algebra: We first extend routing algebra [25, 66], en-

abling researchers and network operators to express policy configurations in

the abstract algebraic form. These configurations can be anything from high-

level policy guidelines (e.g., proposed constraints that a researcher wants to

study) or a completely specified policy instance (e.g., an iBGP configuration

or a multi-AS network that an operator wants to analyze). Router configu-

ration files can be automatically translated into the algebraic representation,

easing the adoption of FVR.

• Safety analysis: We then automate the reasoning process of routing algebra

by formulate the safety analysis as a constraint satisfaction problem, solvable

with existing SMT (Satisfiability Modulo Theories) solver [86]. Specifically,

we use Yices solver to determine whether it is possible to jointly satisfy the

policy configuration and the safety requirement of strict monotonicity (the left-

most top input in Figure 4.1, drawn from previous work [66]). If all con-

straints can be satisfied, the routing system is provably safe; otherwise, the

solver outputs the smallest subset of the constraints that are not satisfiable to

aid in identifying the problem and fine-tuning the configuration.

4.1 Unified Policy Specification

FVR statically checks policy configurations for routing anomalies, and support a

wide range of policy configurations inputs: ranging from high-level guidelines to

specific instances, as summarized in Table 4.1. For example, the shortest hop-count

30

4.1. Unified Policy Specification

Policy Topology Preferences Filters
Hop-count General Specific None

Gao-Rexford General Constrained Constrained
IGP-cost Specific Specific Constrained

SPP instance Specific Specific Specific

Table 4.1: Spectrum of policy configurations

routing policy does not specify the network topology but completely specifies the

path preferences; in contrast, the Gao-Rexford guideline merely constrains the pref-

erences and filters based on business relationships. In other settings, a researcher

may analyze specific BGP “gadgets” that violate a proposed safety guideline; sim-

ilarly, network operators may verify the safety of their network configuration.

In these settings, the topology, preferences, and permitted paths are much more

concrete, and can be expressed naturally as instances of the Stable Paths Problem

(SPP) [24].

While the existing algebra describe routing policies in terms of the network

arcs, described in Chapter 2.2.2, it is not sufficient for specifying policies in terms

of the distributed policies on network nodes. For example, the concatenation op-

erator ⊕ that expresses the combined results of route filtering at adjacent network

nodes, does not indicate which node performs which route filtering—the import-

ing node, the exporting node, or a combination of the two. Such distinction is also

crucial in distributed implementation which is also node-based (Chapter 5). To

bridge this gap, in this section, we extend the original routing algebra by splitting

the original concatenation operator ⊕ into three operators: separate operators for

import filtering ⊕I , export filtering ⊕E , and the basic concatenation ⊕P .

Using the extended routing algebra, we first show how to specify typical pol-

icy guidelines. In the second half of this section, we propose an automatic way to

specify policy configuration instances, given its SPP representation: we describe

how to translate SPP instances to an algebraic representation. Together, these ex-

31

Chapter 4. Verifying Formal Models

tensions enable FVR to automatically analyze safety for a wide range of policy

configurations.

4.1.1 Extending Routing Algebra

The routing algebra in Chapter 2.2.2 does not distinguish whether routes are fil-

tered during export or import—an important distinction when generating dis-

tributed protocol implementations. To specify the two filters separately, we replace

the original ⊕ operator with three concatenation functions for export (⊕E) and im-

port (⊕I) filtering, and a simple concatenation function for route generation ⊕P . The

result of l ⊕E s is either E (export), or F (filtered). For example, if node u does

not export routes with signature s to node v, we can encode the export filter as

l ⊕E s = F , where the label of link uv is l; otherwise l ⊕E s = E. The result of

l ⊕I s is either I (import) or F (filtered). For example, if u does not import a path

with signature s from w, we can encode this import filter as l ⊕I s = F where l is

the label for link wu; otherwise l⊕I s = I . Whenever an incoming route advertise-

ment is received, the import filter (⊕I) is first applied. If accepted, a new route is

generated (⊕P), and exported after filtering (⊕E). 1

In general, for safety analysis, we need to combine the import and export filters

into a single concatenation operator (⊕). At a high level, this is as simple as assign-

ing the signature φ (for prohibited paths) to any path filtered by either the import

or the export policy. However, for a path vu ◦ Pud, the import filter at v depends

on the label l of the link vu, but the export filter at u depends on the label l̄ of the

reverse link uv. We can generate ⊕ as follow: for each label l and signature s, if

l̄ ⊕E s = F or l ⊕I s = F , then l ⊕ s = φ; otherwise l ⊕ s = l ⊕P s.

1A similar extension that distinguishes between import and export labels was proposed in [70].
Their approach is equivalent to ours, for the purpose of safety analysis. We chose ours because it
provides a straightforward translation to declarative networking implementations.

32

4.1. Unified Policy Specification

4.1.2 Converting Policy Guidelines to Algebra

In the Gao-Rexford guideline example, neighboring ASes have a bilateral business

relationship, leading to link labels of p̄ = c, c̄ = p, and r̄ = r and the combined ⊕

table shown earlier in Chapter 2.2.2.

Revisiting the Gao-Rexford example from Chapter 2.2.2, the three concatena-

tion operators ⊕I , ⊕P , and ⊕E are defined as follows:

⊕I C P R ⊕P C P R ⊕E C P R

c I I I c C C C c E F F

r I I I r R R R r E F F

p I I I p P P P p E E E

Each row of the leftmost (rightmost) table corresponds to one import (export)

policy in Figure 2.4, from top to bottom; for example, in the rightmost table, the

first row exports only customers routes to a provider. Since there are no import

restrictions, the leftmost table has I for all its entries. The center table shows the

⊕P operator, where new routes have their signatures (C, R, and P) set according

to the labels (c, r, and p) respectively.

In addition to the above guideline example, our algebra extensions can be used

to specify a variety of import and export filter guideline. For example, if the sig-

nature includes the entire AS path, we can easily specify an import (export) policy

that disallows routes that traverse a particular AS, by expressing⊕E (⊕I) to output

F values whenever a route passes through a particular AS.

4.1.3 Converting SPP Instances to Algebra

Researchers and network operators often want to analyze concrete policy config-

urations to explore small “gadgets” that violate a policy guideline or verify a real

network configuration is safe. And we use such “gadgets” as example configura-

tions to show how to represent policy instances in algebra.

33

Chapter 4. Verifying Formal Models

d

a
b

e f

c
(aber2)
(adr1)

(cadr1)
(cfr3)

(bcfr3)
(ber2)

r1 r2 r3
(r1)

(daber2)
(dacfr3)

(r2)
(ebadr1)
(ebcfr3)

(r3)
(fcber2)
(fcadr1)

10
10

10
5

5 5

Figure 4.2: iBGP configuration instance

We assumed that each “gadgets” is given in terms of its SPP representation. A

SPP instance consists of a topology, where each node has a ranked list of “permit-

ted paths” that it could learn from its neighbors, as described in Chapter 2.2.1. We

propose a general process to convert an arbitrary SPP instance into algebra form.

As an illustrative example, Figure 4.2 as presented in [16], shows an gadgets

that captures the internal BGP (iBGP) configuration, where the squares (a, b, and

c) are route reflectors and the circles (d, e, and f) are egress nodes that each have an

externally-learned route (r1, r2, and r3) to the destination. The solid lines denote

iBGP sessions (labeled with its IGP cost) and dotted lines denote additional (IGP)

links. Each node has an ordered list of permitted paths, ranked from most to least

preferred; for instance, node a prefers the route aber2 over adr1.

To convert an SPP instance to an algebraic representation, we need an auto-

matic way to construct the equivalent link labels, path signatures, preference rela-

tions, and concatenation operator. [33] has shown a formal translation of SPP to

routing algebra . While the goal of our translation is the same as theirs, the algebra

we use is of a slightly different form. At a high level, we assign a unique label to

each link, and a unique signature to each path. Then, we convert the ranking of

permitted paths into a series of preference relations, and define the concatenation

function to connect the permitted paths and exclude any filtered routes.

Using the SPP instance in Figure 4.2 as an example:

34

4.2. Automated Safety Analysis

Labels and signatures. Since a concrete configuration does not have any meaningful

classification of links and routes, we assign each link uv a unique label constant luv,

and each permitted path p = un · · ·u0 a unique signature rp. In our iBGP example,

the label set L is {lab, lac, lad, lba, lbc, lbe, lca, lcb, lcf , lda, leb, lfc}, and the signature set Σ

is {r1, r2, r3, raber2, radr1, rbcfr3, rber2, rcadr1, rcfr3, rdaber2, rdacfr3, rebadr1, rebcfr3, rfcber2,

rfcadr1}.

Preference relations. Each node has a ranked list of permitted paths, of the form

r1, r2, ...rn. We translate this list into the equivalent pairwise preferences: r1 ≺

r2, r2 ≺ r3, ...rn−1 ≺ rn. For instance, at node a, raber2 ≺ radr1. The preference

relation is defined as the collection of preference relations at each node.

Concatenation. The⊕ operator constrains the relationship between label and signa-

ture constants. In particular, for any permitted path ruvp at node u, ruvp = luv ⊕ rvp;

for instance, raber2 = lab⊕rber2. Any other paths are disallowed by assigning the sig-

nature φ; for instance, lcb ⊕ rber2 = φ because path cber2 is not listed as a permitted

path.

Using the above process, we have also encoded various eBGP gadgets [24] in

algebra as SPP instances.

4.2 Automated Safety Analysis

Given any algebra, FVR fully automates the process of safety analysis, relieving

users from the manual and error-prone process of proving safety for each new al-

gebra. The key insight is that the safety analysis can be translated automatically

into integer constraints checkable by a standard SMT solver. Applying our tech-

nique of encoding SPP instances using algebra (Section 4.1.3), FVR can check safety

for both high-level policy guidelines and concrete configurations. After a brief re-

view of safety analysis based on routing algebra, we explain how to generate the

35

Chapter 4. Verifying Formal Models

integer constraints and present three examples that illustrate the conversion pro-

cess and resulting safety analysis.

4.2.1 Strict Monotonicity Implies Safety

FVR uses the safety requirement of strict monotonicity, in order to automatically

check that a given policy configuration converges. This is an important property

of a routing algebra, which ensures that a path does not become more preferred as

it grows longer. Formally:

Monotonicity: s � l ⊕ s, ∀l ∈ L,∀s ∈ Σ

Monotonicity ensures that a path Pv from v to the destination is not less preferred

than a longer path uv ◦ Pv, where uv is a link from u to v. In the definitions above,

s represents the signature of Pv and l is the label for uv.

FVR uses the stricter form of monotonicity, where l and l⊕ s cannot be equally

preferred, defined as follows:

Strict Monotonicity: s ≺ l ⊕ s, ∀l ∈ L,∀s ∈ Σ

Sobrinho has proved the following theorem [66].

Theorem 2. If the routing algebra is strictly monotonic, then the path-vector protocol

converges.

Theorem 2 reduces the convergence analysis of protocols to modeling the rout-

ing policies in a routing algebra, and proving that the algebra is strictly monotonic.

Note that strict monotonicity is a sufficient, not necessary condition. Hence, there

are safe systems that cannot be specified as a strictly monotonic algebra. Conse-

quently, FVR will report these systems as unsafe (i.e. false positives). However,

this sufficient condition is still very useful in practice to analyze the safety of BGP

systems.

Note that the strict monotonicity is actually the most general condition known

that guarantees safety regardless of the network topology. This enables researchers

36

4.2. Automated Safety Analysis

and network operators using FVR to benefit from this theoretical result by provid-

ing automated tool support.

4.2.2 Converting Policies to Yices Constraints

Policy configurations expressed in routing algebra have a natural representation

as integer constraints. Path signatures can be mapped to integers, and path pref-

erences can be expressed as comparisons (≤) between these integers. By defini-

tion [66], the preference relation � needs to be a total relations, and ≤ is indeed a

total order. This mapping is also complete because we can always map the signa-

tures onto the integer domain, when the � is a total order. Strict monotonicity im-

poses additional constraints on the preference relation, also naturally captured by

comparing integers. This observation allows FVR to leverage SMT solvers, which

determine whether a set of constraints (i.e., first-order logic formulas) are satisfi-

able based on a set of theories (e.g., integer theory). Translating from algebraic

input to SMT constraints is straightforward, making this approach preferable to

other alternatives (e.g., SAT solvers) that would require greater effort to generate

encoding.

In addition, an SMT solver produces valuable output, beyond the basic “yes/no”

answer. If the constraints can be satisfied, the solver returns a concrete instance

(example) that satisfies all of the constraints. For instance, we consider the simple

constraint x < 2 when x is an integer. An SMT solver can prove that there exists a

value instantiating x that makes x < 2 true, and returns x = 1 as an example. If the

constraints cannot be satisfied, the solver returns the smallest subset of constraints

that are not satisfiable—an invaluable aid in identifying the problematic parts of

the policy configuration. In our FVR implementation, we utilize the Yices [86] SMT

solver, although the technique we present here can be applied to SMT solvers in

general. Our technique generalizes to other SMT solvers well because our encod-

37

Chapter 4. Verifying Formal Models

ing only requires the basic integer theory which is readily included in most SMT

solvers.

Input to SMT solver: Given a policy configuration written in routing algebra, FVR

generates integer constraints for safety analysis recognizable by the solver. FVR

generates two kinds of constraints based on the sufficient conditions required for

safety in Section 4.2.1: (1) route preference constraints based on � relation (2)

strictly monotonic constraints based on ⊕ function. FVR automatically generates

these integer comparison constraints, allowing us to leverage Yices built-in inte-

ger support for enforcing total ordering. More concretely, we generate constraints

from the algebraic specification via the following three steps:

• Step 1: For each signature, we define a variable of the type positive integer.

• Step 2: For each s1 � s2 in the specification, we generate a constraint s1 ≤ s2.

Since signatures are integers, the ≤ relation imposes a total ordering.

• Step 3: For any signature s and s′, and label l, for each definition of s′ = l⊕ s

in the specification, a constraint s < s′ is generated. This constraint enforces

strict monotonicity. To check for (non-strict) monotonicity, we could generate

s ≤ s′ instead.

SMT solver output: The conjunctions of all constraints are checked by Yices for

satisfiability. If Yices returns sat, an assignment of integers to variables (signa-

tures) exists that satisfies all of the constraints. This means that the algebra is

strictly monotonic, and by Theorem 2, any path-vector protocol that implements

the policy configurations converges.

On the other hand, if Yices returns unsat, specific input constraints that form

an unsatisfiable core are provided. Unsatisfiable core (or unsat core) is a minimal set

of inputs constraints that cannot be conjunctively satisfied. It is often significantly

smaller than the set of input constraints.

38

4.2. Automated Safety Analysis

Given the natural mapping of the original input specifications in algebra and

Yices constraints, one can easily identify the preference relation for each violating

constraint. The user can use these violating preferences as hints to identify (and

fix) specific problematic parts of the policy configuration. Note that, there can

be multiple unsatisfiable cores (i.e. many configuration conflicts), and Yices only

outputs one of them at each invocation. To fix all the configuration problems, the

user can attempt removing all unsatisfiable cores one by one in an iterative fashion.

Policy compositions: The lexical product (Chapter 2.2.2) of a monotonic algebra

and a strict monotonic algebra is strictly monotonic [25]. For policy configurations

in the form of a lexical product over algebras, safety analysis can be performed

by analyzing each algebra separately. Consider the lexical product A ⊗ B of two

algebras A, B. Analysis starts from algebra A, and if it is strictly monotonic, the

composed policy is safe. If A is monotonic, then B is checked. If B is strictly

monotonic, then the composed algebra is safe, otherwise it is deemed unsafe. If A

is not even monotonic, then the composed policy is deemed unsafe.

4.2.3 Yices Examples

We present several examples to demonstrate the three-step process of generating

Yices constraints from algebraic input and the analysis process.

Shortest Hop-Count: We start with the simplest example using shortest hop-

count. The algebraic specification of this policy is presented in Chapter 2.2.2. We

show the Yices encoding of the constraints below:

(define-type Sig (subtype (n::nat) (> n 0)))

(assert (forall (s::Sig) (< s s+1)))

39

Chapter 4. Verifying Formal Models

The first line declares a type (Sig) for signatures, which is the subset of positive

integers. Yices provides the built-in type nat for integers. Yices uses prefix syntax,

so n > 0 is encoded as (> n 0). Step 1 and 2 are omitted since the signatures are

already integers, and the preference relation � is already specified using ≤.

The second line corresponds to step 3, and encodes the strict monotone con-

straint. assert is the keyword to tell Yices to insert this constraint into the logical

context to be checked for satisfiability. Since the domain of the signatures is infi-

nite, we cannot enumerate all strict-monotonicity constraints; instead, we univer-

sally quantify using forall over all signatures.

As expected, Yices returns sat for this policy.

Gao-Rexford Guideline A: Our second example analyzes the safety of Gao-Rexford

guideline A, with the routing algebra presented earlier in Section 2.2.2. The con-

straints are expressed in Yices as:

(define-type Sig (subtype (n::nat) (> n 0)))

(define C::Sig) (define P::Sig) (define R::Sig)

;; preference relations

(assert (< C R)) (assert (< C P)) (assert (= R P))

;; strict monotonicity

(assert (< C C)) (assert (< C R)) (assert (< C P))

(assert (< R P)) (assert (< P P))

The first four statements define the three classes of signatures—customer (C),

provider (P), and peer (R)—as positive integers (step 1). The next three constraints

correspond to step 2, encoding the route preference constraints of C < R, C <

P and R = P . The next five constraints correspond to entries in the combined

concatenation operator in Section 2.2.2 after omitting constraints in the form S < φ,

which are already ensured to be true because any signature is strictly preferred

40

4.2. Automated Safety Analysis

over the signature for prohibited path φ by definition. This corresponds to step 3,

which encodes strict monotonicity of the algebra.

Interestingly, Yices returns unsat for the above input, indicating that the al-

gebra is not strictly monotonic. One of the violating constraints is resulted from

c ⊕ C = C, which states that a customer route that is sent from a customer link

is still a customer route. This is a known property of the Gao-Rexford guideline,

which requires an additional constraint on acyclicity in the customer-provider re-

lationship for safety.

Another approach to guaranteeing safety in

Gao-Rexford is to use another algebra that is strictly monotonic as the tie breaker,

in the event of a tie between two equally preferred route classes (e.g., provider and

peer, or routes from same classes). As an example of policy composition, we first

use Yices to prove that the algebra encoding guideline A is monotonic (s � l ⊕ s

∀l ∈ L,∀s ∈ Σ), and then compose guideline A with a strictly monotonic algebra

such as shortest hop-count; the resulting protocol converges.

To perform the above analysis, we modify the strict monotonicity constraints

in the above Yices encoding to check for monotonicity constraints. This requires

changing each < to ≤, e.g. (assert (<= C C)), etc. When we check the con-

straints, Yices returns sat, and provides a possible instantiation C=1, P=2, R=2.

In addition to guideline A, we have applied FVR to analyze a number of guide-

lines including Gao-Rexford guideline B [19] and also guidelines that ensure safe

backup routing [18].

Internal BGP Configuration Instance: As our final example, we use FVR to ana-

lyze the six-node iBGP configuration in Figure 4.2, using our technique for encod-

ing SPP instances in algebra (Section 4.1.3). In Section 7.3, we present our expe-

riences analyzing a larger network based on the Rocketfuel [68] dataset, and also

the analysis of well-known eBGP gadgets.

41

Chapter 4. Verifying Formal Models

We use the same three-step process to generate solver constraints. First, each

permitted path in the SPP instance is mapped to an integer variable. Second, a

constraint is generated for each route preference, derived from the per-node rank-

ings in SPP. Finally, for each entry of the concatenation function, we generate a

strict monotonic constraint as described in step 3. All in all, eighteen constraints

are generated.

The number of constraints depends on the number of permitted paths which,

in turn, depends on the network topology. In contrast, the previous two examples

are independent of the network topology. These differences reflect the broad ap-

plicability of FVR, in analyzing policy configurations that range from partially to

fully specified (see Table 4.1).

For these input constraints, Yices returns unsat, meaning that the algebra vio-

lates strict monotonicity. In fact, this iBGP system is known to be unsafe [16].

However, given eighteen constraints, pinpointing the problem manually is quite

difficult. For larger networks with even more constraints, manual analysis be-

comes even harder. Fortunately, Yices can generate the minimal set of constraints

(unsat core) that cannot be satisfied. More details on pinpointing configuration

problems with unsat core are in Section 5.4.2.

Here, the unsat core includes the rankings of nodes a, b and c’s and strict mono-

tonicity constraints involving available routes of those nodes, but does not include

constraints for the route preferences of node d, e, and f. This leads to the conclusion

that there are potential problems with the configurations of the route reflectors a,

b, and c. In fact, each reflector prefers other reflector’s client over its own, which

causes an oscillation [16].

Once the problem is identified, the network operator can change the network

settings such as topology, so that the route preferences of nodes a, b, and c are

changed, and use FVR to analyze the safety of the new configuration. As vali-

42

4.3. Evaluation

dation, we rerun Yices with a modified configuration that does not include the

preference cycle among the reflector nodes, and the solver returns sat.

Soundness of SPP Safety Analysis For an SPP instance, each AS only knows

the preference relation among the routes that are in its own routing table, and the

policy configurations do not enforce any order among routes that originate from

different nodes. However, the safety analysis of the routing algebra requires a

total ordering of all routes. The output of sat means that there exists one strictly

monotonic algebra that extends the route preference relation specified in policy

configurations to be a total order. Applying Theorem 2 directly, we know that a

protocol that implements this extended algebra is safe. We argue that a protocol

that implements the extended algebra has exactly the same behavior as a protocol

that implements the original policy configurations where the preference relation

is only a partial order. The reason is that additional preferences in the extended

relation describes preferences between routes that have different sources, which

are not relevant to the route selection process in practice anyway; and therefore

will not affect the protocol behavior.

4.3 Evaluation

We present several case studies of using FVR to automatically generate a proof of

safety or pinpointing configuration problems of both policy guidelines and specific

instances.

4.3.1 Pinpoint iBGP Configuration Errors

We emulate a scenario where a network operator uses our FVR toolkit to study the

safety properties of an existing iBGP network configuration. As the input topol-

ogy, we utilize the intra domain topology (with inferred link weights) of AS 1755

43

Chapter 4. Verifying Formal Models

from the Rocketfuel [68] dataset, which contains 87 routers and 322 links. Pairwise

IGP costs are computed a priori based on the shortest paths. The iBGP reflector-

client topology is synthetically configured as a 6-level hierarchy with 53 reflectors.

Given the above input topology, on all 87 routers, and have each router within

the AS compute the best route to a remote destination outside the AS, under the

condition that several egress routers are aware of external routes to this particular

destination. At each router, the route preference is based on the IGP cost from the

router to the egress routers, i.e., the route with the lowest IGP cost is selected. This

policy is similarly configured using routing algebra. The algebraic representation

of the SPP instance of the network is extracted and analyzed for safety.

In the absence of real router configurations, we extract the per-node rankings

from NDlog implementation runs as follows. We execute the GPV protocol in ND-

log on all 87 routers, and populate the permitted paths of each router based on its

incoming route advertisements. These permitted paths are then sorted based on

IGP costs described above, to generate per-node rankings. FVR directly translates

these per-node rankings expressed in algebra into constraints used by our SMT

solver to perform safety analysis.

In total, the extracted SPP instance contains 259 constraints generated for strict

monotonicity, and 292 constraints for per-node rankings. On a quad-core machine

in our testbed, the SMT solver returns unsat within 100 ms, and reports a minimal

unsatisfiable core consisting of six constraints. Interestingly, these six constraints

not only form a dispute wheel, but are also directly attributed to the routers in the

embedded gadget that we deliberately introduced earlier. This provides a “hint”

for network operators to fix the configuration error starting from the errant con-

straints.

44

4.4. Summary

4.3.2 eBGP Gadget Analysis

FVR’s applicability extends beyond high-level guidelines and iBGP configurations.

We briefly summarize our experiences of using FVR to analyze well-known eBGP

gadgets: GOODGADGET, BADGADGET and DISAGREE [24]. These experiments

highlight the use of NDlog implementations generated from NDlog implementa-

tions of SPP instances.

The input algebra for these three gadgets are SPP instances described in Sec-

tion 4.1.3, where the algebra is used to encode per-node permitted paths and rank-

ings. Our analysis results are as expected: GOODGADGET is safe, while BADGAD-

GET and DISAGREE are unsafe. These results match the manual proofs in prior

work [24], but are obtained automatically by our solver.

4.4 Summary

This chapter present FVR’s ability to automate the verification of a wide range of

routing configurations that can be expressed in routing algebra model. These in-

clude high-level guidelines to specific router configurations. We show that routing

algebra has a natural translation to both integer constraints (to perform safety anal-

ysis with SMT solvers). We also preformed extensive experiments with realistic

topologies and policies, showing that by SMT solving, FVR can detect problems in

an AS’s iBGP configuration, prove sufficient conditions for BGP safety.

45

Chapter 5

Synthesizing Faithful

Implementations

Once the routing algebra is verified (Chapter 4), FVR compiles it into a provably-

correct emulated implementation, as shown in Figure 5.1. The resulting imple-

mentation can be used for further empirical study prior to actual deployment. We

also prove that the generated implementation is faithful to the algebra.

Figure 5.1: FVR Architecture: Implementation-based Analysis.

The basic idea is to synthesize a provably-correct implementations of safe in-

46

5.1. Background: Declarative Networking

ter domain routing by unifying research in routing algebras [25, 66] with recent

advances in declarative networking [39, 38, 41, 40, 53, 48] . Specifically, given the

verified configuration’s algebra form and a formal description of the path-vector

mechanism, FVR maps it to a Network Datalog (NDlog) specification, which is then

executed using the RapidNet declarative networking engine [2, 49], thus FVR au-

tomatically generate a distributed routing-protocol implementation that matches

the policy configuration—avoiding the time-consuming and error-prone task of

manually creating an implementation.

5.1 Background: Declarative Networking

FVR uses a declarative networking language called Network Datalog (NDlog) as

an intermediary language to bridge the gap between the abstract routing algebra

and efficient distributed implementations. Our choice of NDlog is motivated by

the following. First, the declarative features of NDlog allows for straightforward

translation from the algebra to NDlog programs. Second, NDlog enables a variety

of routing protocols and overlay networks to be specified in a natural and concise

manner. In fact, NDlog specifications are orders of magnitude less code than imper-

ative implementations. For example, traditional routing protocols such as the path

vector and distance-vector protocols can be expressed in a few lines of code [41],

and a more complex protocol such as the Chord distributed hash table can be ex-

pressed in 47 lines. This makes possible a clean and concise proof (via logical

inductions) of the correctness of the generated NDlog programs with regard to the

algebra. The compact specifications also makes it easy to incorporate alternative

routing mechanisms to the basic path-vector protocol, as we will later demonstrate

in our evaluation section. Finally, when compiled and executed, these declarative

protocols perform efficiently relative to imperative implementations [39].

In FVR prototype, we use the open-source RapidNet [2] declarative network-

47

Chapter 5. Synthesizing Faithful Implementations

ing engine as a basis for executing NDlog programs. NDlog programs are compiled

by RapidNet into distributed execution plans that are based on the Click [35] exe-

cution model. Our generated NDlog implementation is composed of two compo-

nents: one implements the routing mechanisms, the other implements the routing

policies. FVR provides a built-in module implementing the path-vector mecha-

nism, which we discuss in detail in Section 5.1. The component implementing

policies is directly translated from the algebra. In Section 5.2, we show how FVR

translates the algebra into NDlog programs.

Generalized Path Vector Mechanism FVR takes as input, a generalized path-vector

protocol, as its default routing mechanism. The NDlog implementation is shown

below, and for the rest of this thesis we refer to it as the GPV program. GPV im-

plements a path-vector protocol that computes the most preferred path based on a

routing algebra.

NDlog is a distributed variant of Datalog. An NDlog program is composed

of several rules. Each rule has the form p :- q1, q2, ..., qn., which can be

read informally as “q1 and q2 and ... and qn implies p”. Here, p is the head

of the rule, and q1, q2,...,qn is a list of predicates that constitutes the body of the

rule. A rule is triggered (evaluated) once all the body predicate values (tuples) are

generated. Once triggered, the head tuple is generated. Rule execution is done

in a continuous, long-running fashion using a distributed query processor, where

rule head tuples are continuously updated (inserted or deleted) in an incremental

fashion [45] as the body tuples are updated.

//GPV program

gpvRecv sig(@U,SNew,PNew) :- msg(@U,V,D,S,P),

PNew=f_concatPath(U,P), V=f_head(P),

SNew=f_concatSig(L,S), label(@U,V,L),

f_import(L,S)=true.

48

5.1. Background: Declarative Networking

gpvStore route(@U,D,S,P) :- sig(@U,S,P), D=f_last(P).

gpvSelect localOpt(@U,D,a_pref<S>,P) :- route(@U,D,S,P).

gpvSend msg(@N,U,D,S,P) :- localOpt(@U,D,S,P),

label(@U,N,L), f_export(L,S)=true.

In NDlog, the names of predicates, function symbols, and constants begin with

a lower-case letter, while variable names begin with an upper-case letter. Similar

to most implementations of Datalog, NDlog includes a limited set of function calls

beginning with “f ”, and user-defined arithmetic functions beginning with “a ”.

These functions include boolean predicates, arithmetic computations, and simple

list operations.

The above program manipulates the following tuples. label(@U,V,L)1 tuples,

where each tuple represents an edge from the node itself (U) to one of its neigh-

bors (V) of attribute L. A set of computed routes, stored as sig(@U,S,P) tuples at

each source node U, where S and P are the signature and path of the route respec-

tively. Route advertisement messages exchanged among nodes are represented by

msg(@U,V,D,S,P) tuples. Each tuple denotes a message that is sent by node V to

U, and the advertised route is for destination D with path P and signature S. We

provide a high-level description of the above program, broken down by rules:

• Receiving routes. Rule gpvRecv is triggered upon receiving a route adver-

tisement (msg tuple) from a neighboring node. Based on the route advertise-

ment, the rule generates a new route with a new path PNew and a new signa-

ture SNew. The f concatSig implements the simple concatenation function

⊕P , while the function f import(L,S), implements the import filter ⊕I in

algebra. It evaluates to true if and only if L⊕IS= I .
1NDlog supports a location specifier, expressed with “@” symbol followed by an attribute. This

attribute is used to denote the source location of the corresponding tuple. For example, label
tuples are stored based on the value of the U attribute.

49

Chapter 5. Synthesizing Faithful Implementations

• Storing routes. Rule gpvStore builds a route table at each node, which

stores all the candidate routes to the destination, by using the information in

its locally maintained sig table.

• Selecting routes. Rule gpvSelect computes the optimal route (represented

as localOpt tuples) based on the route table. The user-defined aggregate

function a pref computes the optimal route by using the route preference

function f pref (as its comparison function), which implements the � rela-

tion in algebra.

• Sending routes. Rule gpvSend propagates new routes to neighbors. When-

ever a node’s local optimal routes localOpt(@U,D,S,P) to destination D is

updated, the updated route is re-advertised to all neighbors N. Similar to im-

port policies, we use the f export function to filter out routes: rule gpvSend

only generates a message if the route is not filtered by the export policy.

f export(L,S) implements ⊕E , and it returns true if and only if L⊕ES= E.

GPV provides a template for users to plug in customize policy configurations.

One of the advantages of using NDlog is its ease of incorporating routing poli-

cies in algebraic form with routing mechanisms (e.g. GPV). Signature generation

is achieved by performing a predicate unification of labels and signatures recur-

sively in NDlog rules, and applying the appropriate function (f concatSig) for

generating new signatures. The recursive signature generation (from other signa-

tures) is encoded in only 4 rules in NDlog. Import and export filters are simply

boolean functions (f export, f import) in rule bodies which are triggered when

true. While it is certainly possible to use an imperative language instead, NDlog

provides the right balance of features in terms of compact specifications, ease of

proofs and translation from algebra.

50

5.2. Generating Faithful NDlog Implementation

Algebra NDlog Predicates / functions
� f pref

⊕P f concatSig

⊕I f import

⊕E f export

Table 5.1: Algebra and NDlog Mapping.

5.2 Generating Faithful NDlog Implementation

Table 5.1 summaries the correspondence between definitions in algebra, and the

function names in the generated NDlog programs. We use the extended algebra in-

troduced in Section 4.1.1, which distinguishes between simple concatenation func-

tion ⊕P , import filter ⊕I , and export filter ⊕E . Functions f pref, f concatSig,

f import, and f export are directly generated from input routing algebra as fol-

lows:

• Step 1. For each s1 � s2 in the specification, add a statement to f pref(S1,S2)

that returns true if S1= s1 and S2= s2.

• Step 2. For any signature s and s′, and label l, for each definition of s′ = l⊕P s

in the specification, generate a statement in f concatSig(L,S) that returns

s′ if L= l and S= s.

• Step 3. For any signature s and label l, if l ⊕E s = F , generate a statement

in f export(L,S) that returns false if L= l and S= s. Similarly define

f import(L,S) for import filter ⊕I .

To deploy the NDlog implementation on a concrete topology, each router takes

additional configuration information automatically generated from the topology:

• Step 4. For each link in the input topology, generate a corresponding label

tuple (assigned a value from the set L). A sig tuple is also generated for

51

Chapter 5. Synthesizing Faithful Implementations

each one-hop path to the destination. Signatures associated with these one-

hop paths are typically known as the origination set [25], a subset of Σ defined

as part of the input algebra.

Note that the above steps can be generated on a per-node basis, based on each

node’s input algebra. If the algebra directly uses functions and relations that ND-

log has built-in support (e.g. integer arithmetic), then steps 1 to 3 can simply use

NDlog’s built-in functions.

Policy Composition: If the network designers choose to use the compositional fea-

ture of the routing algebra, the compositional operators can be straightforwardly

mapped to NDlog templates as well. In particular, the lexical product of two pol-

icy algebras can also be concisely represented in NDlog by encoding the labels and

signatures as a pair, and customizing the f pref comparator function to check the

first attribute, and then the second attribute in the case of a tie-breaker.

NDlog Examples We present examples to demonstrate the process of generating

NDlog programs from input algebra.

Shortest Hop-Count: For shortest hop-count, the label for each link is 1, so for a

node u, for each of u’s neighbor v, FVR generates a tuple label(@u,v,1). If u has

a direct link to the destination d, then a tuple sig(@u,1,[ud]) is defined. This

completes Step 4.

Next the concatenation and preference function are generated (Step 1 and 2).

The concatenation function is defined as integer addition, and the preference rela-

tion is integer ≤ relation.

#def_func f_concatSig(L,S) { return L+S }

#def_func f_pref(S1,S2) { return S1 <= S2 }

Finally, the shortest hop-count policy does not have any import or export filter-

ing, so they are the constant true function (Step 3).

52

5.2. Generating Faithful NDlog Implementation

#def_func f_export(L,S) { return true }

#def_func f_import(L,S) { return true }

Gao-Rexford Guideline A:

Based on the network topology, for a node u, FVR generates a label(@u,v,ch)

tuple for each of its neighbor v, and ch is ‘c’ if v is u’s customer; ‘p’, if v is u’s

provider; and ‘r’, if v is u’s peer. Similarly, for each initial route of length 1,

sig(@u,ch,[ud]) is defined and ch is ‘C’ if the link ud is a customer link; ‘P ’,

if ud is a provider link; and ‘R’, if ud is a peer link. This corresponds to Step 4.

Next, in Step 1 and 2, definitions for functions implementing ⊕P and � are

generated as follows.

#def_func f_concatSig(L,S) {

if (L==’c’) && (S==’C’) return ’C’

if (L==’c’) && (S==’P’) return ’C’

if (L==’c’) && (S==’R’) return ’C’

if (L==’p’) && (S==’C’) return ’P’

.... }

#def_func f_pref(S1,S2) {

return (S1==’C’ && S2==’R’) || // C < R

(S1==’C’ && S2==’P’) // C < P }

f concatSig returns the signature S based on the link L, as defined by the ear-

lier input algebra c ⊕P ∗ = C, p ⊕P ∗ = P , r ⊕P ∗ = R, where ∗ stands in for

any signature C, P , or R. For each entry in ⊕P , FVR generates an if clause, and

we omit the rest of the definitions. f pref returns true if S1 is a customer route

(C). This forces a customer route to be preferred over a peer/provider routes (R

and P respectively). This is a direct translation from the earlier input algebra for

Gao-Rexford, namely C ≺ P and C ≺ R.

53

Chapter 5. Synthesizing Faithful Implementations

Finally, import and export functions are generated based on the filters ⊕I and

⊕E . Since guideline A does not specify import filters, f import is the constant

function that always returns true. The export function returns true if the route is

not filtered (l ⊕E s = E); false if the route is filtered (l ⊕E s = F).

#def_func f_import(L,S) { return true }

#def_func f_export(L,S) {

if (L==’c’ && S==’P’) return false

if (L==’c’ && S==’R’) return false

if (L==’r’ && S==’P’) return false

if (L==’r’ && S==’R’) return false

return true }

SPP Instances: Since SPP imposes explicit rankings, the f pref function would

compare signatures for a given source/destination pair. Based on per-node rank-

ings of paths, f pref(S1,S2) will return true if S1 is preferred over S2, and false

otherwise. To speed up the comparison process, one possible optimization (en-

hancement to step 2) is to store the per-node rankings in an ordered table for fast

retrieval. Similarly, for export filters, one can maintain a table of permitted paths

to be exported, and the f export simply checks that a particular path is in the

permitted export list, before it is exported. Import filters can be implemented sim-

ilarly.

5.3 Correctness of NDlog implementation

In order to apply Theorem 2 and show that the NDlog implementation of a strictly

monotonic algebra converges, we need to show the correctness of the NDlog im-

plementation. The correctness depends on two conditions: first, the NDlog pro-

gram correctly implements the path-vector protocol, and second, the NDlog pro-

gram correctly implements the input algebra. Prior work has experimentally val-

54

5.3. Correctness of NDlog implementation

idated [39] and formally proved [76] the correctness of an NDlog implementation

of the path-vector protocol. We will revisit the verification of declarative network

in Section 6.2. In addition, [52] has formally proved correct NDlog’s operational

semantics. We hence focus on the second condition.

We introduce several notations to set up our proofs. We define ι to be a function

that maps the set of links in the network topology to the set of labels in L. Given a

concrete network topology, ι is the correct assignment of labels to links, i.e. ι(uv) =

l if the label of link uv is l. The function σ0 maps initial routes (route of length 1)

to their signatures. σ0 is the correct signature assignments to initial routes. Given

a destination d, σ0([ud]) = s if the signature of route [ud] is s.

Given ι, σ0 and an algebra A, function σι,σ0,A maps each route to its signature.

When it is clear from the context, we omit the subscripts, and write σ.

σ(p) =

σ0(p) p = [ud]

ι(uv)⊕ σ(p′) p = uv ◦ p′

Finally we define a function nd(t) that returns the NDlog term that represents

t. A key aspect is to prove that NDlog computes the signatures for routes correctly,

formally:

Theorem 3 (Correctness of NDlog translation). Given any path p, if

sig(nd(u),nd(s),nd(p)) is generated by prog, and s 6= φ, then s = σ(p).

Proof of correctness To prove Theorem 3, we make a few assumptions. First, ι

and the complement of the label operation l̄ has the property that the label assigned

to a link vu is the complement of the link assigned to uv.

(Property A): ι(uv) = ι(vu).

For example, in the Gao-Rexford guideline, the reverse direction of a customer link

is a provider link.

55

Chapter 5. Synthesizing Faithful Implementations

We also assume that generated functions and predicates faithfully implement

the algebraic specifications, which are formally stated below.

(Property B):

• f export(nd(l),nd(s)) = true iff l ⊕E s = E.

• f import(nd(l),nd(s)) = true iff l ⊕I s = I .

• f concatSig(nd(l),nd(s)) = nd(s′) iff l ⊕P s = s′.

• f pref(nd(s1),nd(s2)) = true iff s1 � s2.

• label(@nd(u),nd(v),nd(l)) :- . is in prog iff ι(uv) = l. sig(@nd(u),nd(s),nd(p))

:- . is in prog iff σ0(p) = s.

Given an algebra A, and a network topology represented by ι and σ0, let prog

be the NDlog program that is translated from A, and ι and σ0.

We first prove the following lemma (containing two parts i and ii), which state

that the generated signature tuples are correct; and that if a route update message

is generated, then the route’s signature is correctly computed, and the export poli-

cies have been applied:

Lemma 4.

(i) Given any path p, if sig(nd(u),nd(s),nd(p)) is generated by prog, and s 6= φ, then

s = σ(p).

(ii) Given any path p, if msg(nd(u),nd(v),nd(d),nd(s), nd(p)) is generated by prog, and

s 6= φ, then s = σ(p), and ι(vu)⊕E s = E.

Proof (sketch): By induction of the length of p.

We abbreviate nd(t) to t when it is clear from the context that NDlog represen-

tation of t is required.

56

5.4. Evaluation

In the base case, the length of p is 1. We know that σ(p) = σ0(p) and by our

assumptions (Property B), we know that if sig(u,s,p) is generated by prog, then

s = σ0(p). So part (i) holds.

By examining the GPV program, msg(n,u,d,s,p) tuple is only generated when

gpvExport is applied. So we know that s = σ(p) (s and p comes from the sig tu-

ple), and that f export(l,s) = true and label(u,n,l) is true. Use Property B

again, we know that l ⊕E s = E, and ι(un) = l, so part (ii) holds.

In the inductive case, to prove part (i), we examine the gpvSig rule. The

new path and signature is generated from the tuple msg(u,v,d,s,p). Using in-

duction hypotheses, we know that s = σ(p), and ι(vu) ⊕E s = E. If a new

sig(u,snew,pnew) is generated, then it must be the case that f import(l,s) =

I where l = ι(uv). Using property A, we know that ι(uv) = ι(vu). By examining

the way we generate ⊕ from ⊕p, ⊕E and ⊕I , we know that snew = ι(uv) ⊕ σ(p),

which is equal to σ(pnew) (Property B). We can prove part (ii) in similar ways as

we prove part (i) in the base case.

Lemma 4 implies Theorem 3.

5.4 Evaluation

We present several case studies of using FVR: (1) empirically evaluating protocol

dynamics and temporal properties that cannot be easily checked in formal analysis,

and (2) deploying and evaluating alternative routing mechanisms.

In all cases, the inputs required to our tool for analysis and experimentation

are the routing mechanism, input policies (specified in the form of algebra), and a

network topology (synthetically generated or obtained from either CAIDA [9] or

Rocketfuel [68]).

Evaluation environment. FVR provides an interface for users to specify policy con-

figurations using algebraic specifications, which are compiled into NDlog programs.

57

Chapter 5. Synthesizing Faithful Implementations

 0

 5

 10

 15

 20

 25

 30

 35

 40

 4 6 8 10 12 14 16
C

o
n
v
e
rg

e
n
c
e
 T

im
e
 (

s
e
c
o
n
d
s
)

Longest Customer-Provider Chain

CAIDA-Sim
CAIDA-Testbed

Theoretic Worst Case

Figure 5.2: Convergence time (seconds) for BGP against longest customer-provider
chain.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.1 0.2 0.3 0.4

A
v
e
ra

g
e
 B

a
n
d
w

id
th

 (
M

B
p
s
)

Time (seconds)

NoGadget
Gadget

Figure 5.3: Average per-node bandwidth utilization (MBps) for iBGP with gadget.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4

A
v
e
ra

g
e
 B

a
n
d
w

id
th

 (
M

B
p
s
)

Time (seconds)

PV
HLP

HLP-CH

Figure 5.4: Average per-node bandwidth utilization (MBps) for HLP.

58

5.4. Evaluation

FVR uses the RapidNet [2, 49] declarative networking engine to compile the ND-

log programs into applications (with an execution model similar to Click [35]) ex-

ecutable in ns-3 [51], an emerging discrete event-driven simulator similar to the

popular ns-2. Like its predecessor, ns-3 emulates all layers of the network stack,

supporting configurable loss, packet queuing, and network topology models. It

also allows for a simulation mode, enabling a comprehensive examination under

various network topologies and conditions, as well as an deployment mode where

different hosts in a testbed environment execute the deployed system over a real

network. The ability to run the same application in these two modes enables us

to execute each NDlog program at scale in simulation and in an actual implemen-

tation running on a testbed, providing two avenues for augmenting the formal

analysis.

5.4.1 Convergence Time vs. Network Size

Our first case study presents a scenario where a researcher empirically evaluates

policy guidelines using the distributed NDlog implementation automatically gen-

erated from the algebraic specifications. To ensure strict monotonicity, we com-

pose the basic Gao-Rexford guideline A policy with the shortest hop-count as the

tie-breaker (using algebra’s composition operator). The researcher has already an-

alyzed the composed policy for its safety properties using Yices, but would like

to measure the convergence time with respect to the depth of the AS hierarchy. A

prior study [63] proved that, the worst case upper-bound of the convergence time

for Gao-Rexford guideline is 2 × (d + 1) phases (rounds of route advertisements),

where d is the length of the longest customer-provider chain. The researcher can

use the implementation that FVR generates from GPV (Section 5.1), and policy con-

figurations. We present our results using RapidNet’s simulation and deployment

modes.

59

Chapter 5. Synthesizing Faithful Implementations

Simulation Mode Our first experiment is carried out in RapidNet’s simulation

mode. As our input topologies, we utilize the AS-level network graph (with an-

notated customer-provider relationships) provided in the CAIDA dataset [9]. The

simulation is performed in a quad-core machine with Intel Xeon 2.33GHz CPUs

and 4GB memory running Linux 2.6. In the simulation setup, all links have 100

Mbps in bandwidth and 10 ms latency.

To fit the simulation into memory and use a similar network size for our sub-

sequent testbed evaluation, we extract sub-graphs from CAIDA’s global network

topology as follows: we remove all stub ASes2, randomly select an AS R as the root,

and then extract the AS hierarchy (transitively) provided by the AS. We choose 14

such sub-graphs with the length of the longest customer-provider chains ranging

from 3-16. For each sub-graph, we executed the GPV protocol with guideline A,

and measured the convergence time (from start of protocol until all nodes have

computed routes to all destinations).

Figure 5.2 (CAIDA-Sim) shows the protocol convergence time as the length of

the longest provider-customer chain increases. As a basis of comparison, we plot

the theoretical worst-case convergence time [63]. Our protocol mechanism is con-

figured to batch and propagate routes every second, a feature easily achieved us-

ing NDlog’s time-based predicates [40]. For instance, given the longest customer-

provider chain of 10, the execution should converge within at most 2 × (10 + 1)

phases, namely 22 seconds. We make the following two observations from our

simulation results. First, the convergence time increases linearly with the length of

the longest customer-provider chain, validating the trend shown in the prior the-

oretical results. Second, we observe that, in practice, the protocol converges faster

than the theoretical worst case. Upon further investigation based on execution

logs, we realize the faster convergence is because customers at the “leaves” of the

customer-provider tree typically have multiple paths to the root providers and can

2The pruned topology contains 5220 ASes and 23101 links.

60

5.4. Evaluation

leverage peer-to-peer links, and hence rarely require the full depth to propagate

routes.

Deployment mode Our second experiment validates our simulation results us-

ing RapidNet’s deployment mode. Here, we utilize 32 quad-core machines with a

similar hardware/software configuration as our simulation experiment. The ma-

chines are connected using high-speed Gigabit Ethernet. We run up to 5 Rapid-

Net instances per machine, and configure the neighbor links among RapidNet in-

stances to be consistent with the earlier CAIDA setup in simulation. As before, we

set the propagation period to 1 second.

Figure 5.2 (CAIDA-Testbed) shows that the convergence time obtained in the

testbed closely mirrors that of our earlier simulation results. Our tool can switch

between simulation and deployment based evaluation easily. Simulation and de-

ployment modes of RapidNet uses the same compiled code base, with a config-

uration flag indicating running the network stack in simulation or using actual

sockets. In the rest of this section, we primarily present results obtained in the

simulation mode.

All in all, our first set of experiments based on the Gao-Rexford guideline is en-

couraging. Not only are we able to use Yices to check the guideline for safety, we

are able to (with minimal effort) generate distributed implementations that pro-

vide additional performance insights using actual Internet topologies.

5.4.2 Pinpoint iBGP Configuration Errors

We emulate a scenario where a network operator uses our FVR toolkit to study the

safety properties of an existing iBGP network configuration. As the input topology,

we utilize the intra-domain topology (with inferred link weights) of AS 1755 from

the Rocketfuel [68] dataset, which contains 87 routers and 322 links. Pairwise IGP

61

Chapter 5. Synthesizing Faithful Implementations

costs are computed a priori based on the shortest paths. The iBGP reflector-client

topology is synthetically configured as a 6-level hierarchy with 53 reflectors.

Given the above input topology, we execute a GPV protocol on all 87 routers,

and have each router within the AS compute the best route to a remote destina-

tion outside the AS, under the condition that several egress routers are aware of

external routes to this particular destination. At each router, the route preference

is based on the IGP cost from the router to the egress routers, i.e., the route with

the lowest IGP cost is selected. This policy is similarly configured using routing

algebra, and compiled into NDlog implementations.

To experiment with FVR’s ability to detect configuration errors, we embed a

gadget similar to Figure 4.2 into the iBGP topology. This embedding is achieved

by selecting three neighboring routers from the graph and setting their IGP cost to

the egress routers the same as those in Figure 4.2. One goal of our experiment is to

see whether our tool can detect this unsafe gadget embedded in a larger network

instance.

Experimentation: Upon fixing the configuration errors, we experimentally evalu-

ated both iBGP configurations implemented using NDlog. Similar to the earlier

CAIDA experiments, all the links are set to 100 Mbps bandwidth, 10 ms latency,

and up to 3ms jitter. Figure 5.3 shows our comparison of average per-node band-

width utilization over time for the iBGP protocol with and without the embedded

gadget (shown as Gadget and NoGadget after the fix). Compared with Gadget, we

observe a 91% decrease in communication overhead, and 82% decrease in conver-

gence time in NoGadget.

5.4.3 eBGP Gadget Analysis

FVR’s applicability extends beyond high-level guidelines and iBGP configurations.

We briefly summarize our experiences of using FVR to analyze well-known eBGP

62

5.4. Evaluation

gadgets: GOODGADGET, BADGADGET and DISAGREE [24]. These experiments

highlight the use of NDlog implementations generated from NDlog implementa-

tions of SPP instances.

Experimentation We further experimentally evaluate the gadgets using the au-

tomatically generated NDlog implementation. In all cases, we provide an input

topology, which contains one or more gadgets on a subset of the nodes. For GOODGAD-

GET, as the number of gadgets increases, both the convergence time and commu-

nication cost increase. The increase is due to route re-computation, which occurs

when a previously computed best path is overwritten by a longer path with a

higher local preference. Nevertheless, all GOODGADGET scenarios converge as

expected. On the other hand, the BADGADGET execution never converges—the

protocol continued to transmit a high rate of update messages indefinitely. For

DISAGREE, a gadget that can temporarily oscillate between two stable states be-

fore eventually converging, the protocols takes a longer time to converge as the

percentage of conflicting links increases3.

5.4.4 Alternative Routing Mechanism

While we have adopted GPV as the default mechanism, given that FVR is an exten-

sible framework, other routing mechanisms can also be used, as long as they are

implemented in NDlog. In our final case study, we demonstrate how researchers

can supply FVR with a different routing mechanisms to study their impact on con-

vergence behavior. We consider the Hybrid Link-State and Path-Vector (HLP) [69]

protocol that has been proposed as an enhancement to the path-vector protocol.

HLP capitalizes on the assumption that the ASes running BGP can be partitioned

into domains that form a customer-provider hierarchy. HLP uses the regular link-

3A conflicting link is a link where the two adjacent nodes always prefer to route through each
other.

63

Chapter 5. Synthesizing Faithful Implementations

state protocol within each customer-provider hierarchy, and a path-vector protocol

(called Fragment Path-Vector, where paths that are internal to the hierarchy are hid-

den) across different hierarchies. We implement HLP in NDlog by using just 10

rules (11 rules if we also specify that internal paths are hidden).

We configure the network topology as a 10-domain network. Each domain is

a 20-node acyclic hierarchical structure rooted by a top provider, where each node

(with the exception of the top provider) has 1 or 2 providers. We configure the

topology and policies within a domain based on the Gao-Rexford guideline A.

Link latencies within one domain are set to 10 ms. In addition, there are a total of

p84 cross-domain links throughout the network; these links are configured to have

50 ms latency. In all cases, links are set to have a bandwidth of 100 Mbps. For cost

hiding, we set 5 as the threshold.

Figure 5.4 shows the bandwidth utilization of HLP over time, with and without

cost hiding (shown as HLP-CH and HLP, respectively). As a basis of comparison,

we execute the path-vector protocol (shown as PV). We note that as expected, HLP

converges faster than PV, requiring 0.35 seconds compared to 0.4 seconds for PV.

Moreover, the per-node communication cost for HLP and PV is 1.09 MB and 1.75

MB, respectively. HLP-CH further reduces the communication cost to 0.59 MB per

node.

Beside HLP, other possibilities include multi-path routing protocols, and neighbor-

specific BGP mechanisms, which typically require further customization to user-

defined functions, for instance, propagating the top-k paths instead of the current

best. Such comparisons are tremendously useful for researchers to study the full

design space in both policies and mechanisms.

64

5.5. Summary

5.5 Summary

This chapter presents FVR’s ability to generate provably-correct implementation

from the verified algebraic representation of routing policy. We show that routing

algebra has a very natural translation to declarative networking programs. By gen-

erating the actual distributed implementation, FVR has combined safety analysis

and experiments with the protocol implementations to pinpoint configuration er-

rors and gain insights into the performance of the generated implementation. This

allows research on inter-domain routing to leverage mature technologies, such as

SMT solvers and RapidNet, to automate complex and error-prone tasks for re-

searchers and practitioners alike.

65

Chapter 6

Verifying Actual Routing Systems

The routing algebra we verified enable us to synthesize provably-correct routing

configurations, as shown in the previous chapter. However, the model, due to its

correctness-by-construction nature is too restricted and does not capture all correct

and useful configurations in real world. For example, routing algebra assumes

total ordering of all available routes in the BGP network system, which may not be

available in a actual configuration (shown in Figure 2.6). Moreover, when dealing

with iBGP-eBGP interaction, routing algebra can only specify the BGP networks

where all the component iBGPs are configured in the same way, due to the inherent

limitation in the semantics of lexical product [25]. On the other hand, the dynamic

behavior of the BGP system also depends on the underlying routing mechanism —

path vector protocol. Thus, to reason about an actual routing system, it is necessary

to be able to verify arbitrary routing configuration and the path vector routing

protocol.

This chapter presents BGPVerif ’s ability to detect routing anomalies in actual

configurations, and verify routing mechanism. As shown in Figure 6.1, based on

the combinatorial SPP model, FVR includes Maude library [7, 43] that automati-

cally detects routing anomalies in policy configurations; Simultaneously, FVR uti-

66

6.1. Detect Anomalies in Policy Configurations

Figure 6.1: FVR Architecture: Dynamic Analysis.

lizes theorem prover to verify the routing mechanism implemented in declarative

networks.

6.1 Detect Anomalies in Policy Configurations

Background: Rewriting Logic and Maude Rewriting logic [46] is a logical for-

malism that is based on two simple ideas: states of a system can be represented

as elements of an algebraic data type, and the behavior of a system can be given

by transitions between states described by rewrite rules. By algebraic data type, we

mean a set whose elements are constructed from atomic elements by application

of constructors. Functions on data types are defined by equations that allow one to

compute the result of applying the function. A rewrite rule has the form t⇒ t′ if c

where t and t′ are patterns (terms possibly containing variables) and c is a condi-

tion (a boolean term). Such a rule applies to a system state s if t can be matched

to a part of s by supplying the right values for the variables, and if the condition

c holds when supplied with those values. In this case the rule can be applied by

replacing the part of s matching t by t′ using the matching values for variables in

t′.

67

Chapter 6. Verifying Actual Routing Systems

Maude [7] is a language and tool based on rewriting logic. Maude provides a

high performance rewriting engine featuring matching modulo associativity, com-

mutativity, and identity axioms; and search and model-checking capabilities. Given

a specification S of a concurrent system, Maude can execute this specification and

allows one to observe possible behaviors of the system. One can also use the search

functionality of Maude to check if a state meeting a given condition can be reached

during the system’s execution. Furthermore, one can model-check S to check if a

temporal property is satisfied, and if not, Maude will produce a counter exam-

ple. Maude also supports object-oriented specifications that enable the modeling

of distributed systems as a multiset of objects that are loosely coupled by message

passing. As a result, Maude is particularly amenable to the specification and anal-

ysis of network routing protocols. We choose Maude because: (1) It comes with

a full-fledged automated tool support for analyzing distributed system [8, 54, 12].

Based on Maude’s object-oriented specification language and underlying rewrit-

ing logic, we encode in Maude the BGP protocol as a transition system driven by

rewriting rules. Consequently, we can use the high-performance rewriting engine

provided by Maude to analyze BGP instances automatically.

6.1.1 A Maude Library for BGP Systems

This section presents our Maude library for analyzing BGP instances. This library

provides specification of the protocol dynamics that are common to BGP instances,

and defines a routing policy template in terms of the Stable Path Problem (SPP) so

that network designers can customize it to analyze a specific instance. Our library

also provides support for detecting route oscillation.

Our library is organized into a hierarchy of Maude modules. Table 6.1 presents

the correspondence between concepts in BGP protocols and the Maude code. We

first show how our library represents a single network state of BGP system (Sec-

68

6.1. Detect Anomalies in Policy Configurations

BGP system Maude interpretation
Network nodes (Router) objects
Routing messages Terms of type Msg
Global Network Multiset of router objects and terms rep-

resenting messages
Protocol dynamics Local rewriting rules
Global network behaviors Concurrent rewrites using local rules
Route oscillation support A Logger object recording the histories

of route assignments and rewriting rules
updating the Logger object

Table 6.1: Overview and Interpretation of Maude Library

tion 6.1.1). Then we explain how to capture the dynamic behavior of a local BGP

router using rewrite rules. In doing so, the global network behaviors can be viewed

as concurrent applications of the local rewriting rules (Section 6.1.1). Finally, we

discuss the component in the library that detects route oscillation (Section 6.1.1).

Network State Maude provides a built-in sort Configuration for the global

state of a concurrent object-based system. In our library, we model BGP system

state by defining two sub-sorts of Configuration: Msg and Network. Msg is the

type for routing messages, and Network the type for the collection network nodes.

To construct the Network Configuration from the constituting network nodes,

we further introduce sort Node. Node is a sub-sort of Object, and is the type of

each network node (routers) in the BGP system.

sorts Msg Network .

subsorts Network Msg < Configuration .

sort Node .

subsort Node < Object .

A network state is represented by a multiset of network nodes (routers) and

routing messages used by routers to exchange routing information. Given the

69

Chapter 6. Verifying Actual Routing Systems

above sorts, we can represent a BGP system state by a multiset of routing messages

terms (of sort Msg) and network nodes objects (terms of sort Node). To distinguish

a network node object from other Maude objects, we introduce a special Cid (class

identifier) called Router. With Router Cid, we introduce the constructor of a net-

work node (router) object. In Maude, op is the keyword defining constructors:

op Router : Oid .

op [_:_|_,_,_] : Oid Router RoutingTable BestPath Nb -> Node .

The constructor [: | , ,] takes five arguments: The first two are a unique iden-

tifier (of sort Oid) and a class identifier (the Cid constant Router). The Oid denotes

the node’s unique name in the network, the class identifier denotes the class type

of the node. The last three arguments are object attributes: routing table (of sort

RoutingTable), best path (of sort BestPath), and neighboring table (of sort Nb).

Given the argument terms, a router object term (of sort Node) is constructed. Next

we discuss a Node object’s three attributes.

RoutingTable and BestPath attributes. At a given state, the routing table and

best path attributes store node v’s available paths P v to reach destination 0, and

its current best path that ranks the highest among P v respectively. They are con-

structed as follows:

op routingTable:_ : List{Path} -> RoutingTable .

op bestPath:_ : Path -> BestPath.

The sort Path and its constructors are defined as follows:

sort Path .

op emptyPath : -> Path [ctor] .

op source:_,dest:_,pv:(_),metric:_ :

Oid Oid ListOid Metric -> Path .

70

6.1. Detect Anomalies in Policy Configurations

There are two ways to construct a term of sort Path: a path is either an empty path

(emptyPath), or a path from a source node (Oid) to a destination node (Oid) via

a path vector (the list of intermediary nodes denoted by List{Oid}) at some cost

of sort Metric. Sort Metric specify how paths are measured and compared. For

example, a path metric in the SPP formalism is its rank defined in Λ. We interpret

the metrics over Maude’s built-in natural numbers sort Nat:

sort Metric .

subsorts Nat < Metric .

Neighbor attribute. A node’s neighboring table holds its list of link information to

reach its direct neighbors:

sort Neighbor .

op mkNeigh(_,_) : Oid Metric -> Neighbor.

Here the constructor mkNeigh(,) takes two arguments: the direct neighbor’s

identifier, and the cost (Metric) to reach this neighbor.

Example node object. Based on the above definition, each network node is then rep-

resented by a Maude object, whose attributes consist of its routing table, best path

and neighboring table. We omit the detailed Maude sort definitions, but provide

an example encoding of the network node n1 in Disagree gadget show in Figure 2.5

as follows.

[n1 : router |

routingTable: (source: n1,dest: n0,pv:(n1 n0),metric: 2),

bestPath: (source: n1,dest: n0,pv:(n1 n0),metric: 2),

nb: (mkNeigh(n0,2) mkNeigh(n2,1))]

The constructor for a node is [: | , ,]. The first two elements (n1:router)

specify the node’s id n1, and its object class router. The next three elements

are the attributes. At a given state, the routing table attribute constructed from

routingTable: contains n1’s current available routes. Each routing table entry

71

Chapter 6. Verifying Actual Routing Systems

stores the routing information for one particular next-hop. Here, the routing ta-

ble attribute only contains one entry (source: n1, dest: n0, pv:(n1 n0),

metric: 2). This route is specified by its source (source: n1), destination

(dest: n0), the path vector that contains the list of nodes along the path (pv:

(n1 n0)), and the cost of the route (metric: 2). This route is also used for the

best path attribute, constructed from bestPath: , which contains n1’s current best

path. The last attribute is the neighbor table, constructed from nb: . To extract a

node’s local neighbor table from the network topology, we further introduce an op-

erator mkNeigh. The first argument of mkNeigh is the identifier of the neighboring

node, and the second argument the metric associated with the link to that node.

Node n1 has two neighbors, node n0, the cost to which is 2 (mkNeigh(n0,2)); and

node n2, the cost to which is 1 (mkNeigh(n2,1)).

Besides Router objects, the second part of a network state are routing messages

in the network. Typically, network nodes exchange routing information by sending

each other routing messages carrying newly-learned routing paths. In our library,

it is specified as follows:

op sendPacket(_,_,_,_,_) : Oid Oid Oid Metric ListOid -> Msg

The first two Oid arguments denotes the sender’s Oid and the receiver’s Oid re-

spectively. The rest of the arguments specify the destination Oid, metrics of the

advertised path, and the path-vector (the list of network nodes along the path) of

the routing path the message carries.

For example, in the disagree gadget, the initial routing message sent by node n1

to its neighbors n2 carrying its direct path to n0 are is: sendPacket(n1,n2,n0,2,n1

n0).

Protocol Dynamics We now show how to specify network system dynamics in

Maude. By modeling a BGP system as a concurrent system consisting of router

72

6.1. Detect Anomalies in Policy Configurations

objects (and the routing messages), to specify the global BGP evolution, we only

need to specify the local rewrite rules governing the state transition of each BGP

router.

A BGP node’s dynamics can be captured by various equivalent state transitions.

To reduce search space in analysis, we adopt a one-state transition: for each BGP

node N, when it receives routing messages from a neighbor S, N computes the new

path from the received message, updates N’s routing table and re-selects best path

accordingly, and finally sends out routing messages carrying its new best path

information if a different best path is selected. This state transition is encoded as a

single rewrite rule of the following form:

rl [route-update] :

sendPacket(S, N, D, C, PV)

[N : router | routingTable: RT, bestPath: Pb, nb: NB]

=>

if (case 1) then best path re-selects (promotion)

else (if (case 2) then best path remains same

else (if (case 3) then best path re-selection (withdraw)

else error processing

fi) fi) fi.

Here, r1 is the identifier of this rule, and route-update is the name of this rule.

Rule r1 is fired when the left-hand side is matched; that is, when a node N consists

of routingTable RT, bestPath Pb, and neighboring table NB receives a route adver-

tisement message from neighbor S. The result of applying the rule is shown on the

right-hand side: the routing message is consumed, and attributes of router N are

updated. Based on the result of the re-selected bestPath attribute, there are three

different cases for N to update its state as specified in the three branches. Next, we

explain these three cases.

Best path promotion. In any case, node N needs to first compute the new path

73

Chapter 6. Verifying Actual Routing Systems

based on its neighbor S’s message asserting that S can reach D via a path PV. We

define a function newPath that takes a routing message and the neighbor table

as arguments, and returns the new path by first prepending N to the path an-

nounced by S, setting the new path attribute according to the local ranking func-

tion lookUpRank, and then imposing the import policy by modifying the path met-

ric according to BGP routing policy configuration (import function). Here import

and lookUpRank are unspecified routing policy functions. Together with export

that we will introduce shortly, they constitute our library’s specification interface

for defining BGP routing policy. To specify a particular BGP instance’s routing pol-

icy, the user only needs to specify import, lookUpRank and export accordingly.

The first branch (case 1) is specified below. The newly computed path is com-

pared with the current bestPath Pb, if the new one is preferred over the old value

Pb, the bestPath attribute will be updated to this new path. Furthermore, if the

export policy allows, the new best path value will be re-advertised to all of N’s

neighbors by sending them routing messages.

if getDest(newPath(sendPacket(S,N,D,C,PV),NB))==getDest(Pb) and

prefer?(newPath(sendPacket(S,N,D,C,PV),NB),Pb)==true

then

([N : router |

routingTable: updatedRT(newPath(sendPacket(S,N,D,C,PV),NB),RT),

bestPath: newPath(sendPacket(S,N,D,C,PV),NB),

nb: NB]

multiCast(NB, export(newPath(sendPacket(S,N,D,C,PV),NB))))

Here the new state of N is obtained by updating the old routingTable attribute

RT (updateRT function), and updating the bestPath attribute by setting it to the

new value of bestPath. The updateRT function recursively checks the routing

table, and for each next-hop entry, it either inserts the new path (newPath(...))

if no available route is presented; or replaces the old value with the new path.

74

6.1. Detect Anomalies in Policy Configurations

To complete the state transition, for all N’s neighbors, routing messages carrying

the new path are generated by multiCast function. To impose the export routing

policy, before sending the new best path, export is applied to the new path to filter

out the routes which are intended to be hidden from neighbors. Similar to import,

export is to be instantiated by the user when analyzing a particular BGP instance.

If the export routing policy prohibits the new path to be announced, export will

transform it to emptyPath, which multiCast will not generate any message.

Best path remains the same. In the second branch (case 2), a new path newPath(...)

is computed from the received message as before. However, the new path is no bet-

ter than the current bestPath Pb. But the next-hop node of the new path and Pb are

different, implying that the new path is just an alternative path 1 for N to reach the

destination. As a result, the current bestPath value Pb is unchanged, and only

the routingTable will be updated with this alternative path (newPath(...)). No

routing messages will be generated:

if getDest(newPath(sendPacket(S,N,D,C,PV),NB))==getDest(Pb) and

getNext(newPath(sendPacket(S,N,D,C,PV),NB))=/=getNext(Pb) and

prefer?(Pb,newPath(sendPacket(S,N,D,C,PV),NB))==true

then

[N : router |

routingTable: updateRT(newPath(sendPacket(S,N,D,C,PV),NB),RT),

bestPath: Pb,

nb: NB]

Best path withdraw. The same as in the second branch, in case 3, the newly com-

puted path newPath(...) is worse than the current bestPath Pb, but it is now

routed through the same next-hop S as current bestPath Pb. The fact that S now

sends a less preferred path indicates that the previous learned route Pb is no longer

1Different next-hop implies the route is learned from a different neighbor.

75

Chapter 6. Verifying Actual Routing Systems

available at S. Therefore, we need to withdraw Pb by dropping Pb from routing ta-

ble, shown as follows:

if getDest(newPath(sendPacket(S,N,D,C,PV),NB))==getDest(Pb) and

getNext(newPath(sendPacket(S,N,D,C,PV),NB))==getNext(Pb) and

prefer?(Pb, newPath(sendPacket(S,N,D,C,PV),NB))==true

then

([N : router |

routingTable: updateRT(newPath(sendPacket(S,N,D,C,PV),NB),RT),

newBest(newPath(sendPacket(S,N,D,C,PV),NB),

updateRT(newPath(sendPacket(S,N,D,C,PV),NB),RT)),

nb: NB]

multiCast(NB,export(newBest(newPath(sendPacket(S,N,D,C,PV),NB),

updateRT(newPath(sendPacket(S,N,D,C,PV),NB),

RT))))

Here, updateRT replaces (therefore removes) the outdated Pb with the new

path

(newPath(...)), and newBest function re-computes the best path from newPath(...)

and the remaining paths in routing table. As in case 1, to complete the state tran-

sition, the newly selected best path is sent to its neighbors by multiCast(...).

Auxiliary Functions. In the following code snippet, we show the auxiliary functions

used in computing new network state. To compute a new path, concat is defined

as follows:

op concat : Oid Oid Oid Metric ListOid ListNeighbor -> Path .

eq concat(S, N, D, C, PV, NB)

= (source: N, dest: D, pv:(N PV), metric: lookUpRank (N PV)) .

eq is a Maude keyword preceding equation definitions. Here the new path of N’s

to reach D is simply by prepending N to PV: N PV. And the metric of (N PV) is de-

termined by N’s routing policy, i.e., route ranking λN implemented by function

76

6.1. Detect Anomalies in Policy Configurations

lookUpRank. The definition of this function is specific to each BGP configuration

instance, and is an interface between the protocol dynamics and the routing poli-

cies. We will revisit the specification of specific BGP instance’s routing policies by

lookUpRank in appendix 6.1.2.

Given the newly computed route, to update a node’s routing table, we use

updateRT as follows:

op updateRT : Path ListPath -> ListPath .

eq updateRT (P, nil) = (P) .

eq updateRT (P, (P’ RT)) =

if ((getDest (P) == getDest (P’)) and

(getNext (P) == getNext (P’)))

then (P RT)

else (P’ updateRT (P, RT)) fi .

Note that, updateRT ensures that the routing table always keeps exactly one path

from one particular next-hop neighbor.

Finally, if the best path attribute of the node changes, we use multiCast to

generate routing messages:

op multiCast : ListNeighbor Path -> Configuration .

eq multiCast((NBentry NB’), (source: S, dest: D, pv:(PV), metric: C))

= sendPacket (S, getOid(NBentry), D, C, (PV))

multiCast (NB’, (source: S, dest: D, pv:(PV), metric: C)) .

For each neighbor NBentry in N’s neighboring table, multiCast recursively gener-

ates the routing message sendPacket(S,getOid(NBentry),D,C,(PV)). getOid

is an auxiliary-function that extracts the neighbor NBentry’s Oid.

Route Oscillation Detection Support Our library also provides extra definitions

to help detect route oscillation. Our method is based on the observation that if

route oscillation occurs during network system evolution, there is at least one path

77

Chapter 6. Verifying Actual Routing Systems

assignment (at a given state for a BGP system, we define the path assignment to be

the collection of best paths currently selected by all network nodes) that is visited

twice. Therefore, we use the following simple heuristic: we maintain a record of

all path assignments for all visited states in BGP execution, and check for recur-

ring path assignment. Note that a path assignment (best path attribute of router

object) only constitutes a sub-set of the entire system state (the router objects at-

tributes and routing messages), consequently our heuristic based on this partial

system state can have false positives: our analysis may report a false route oscil-

lation when two states are identical only in path assignments, but not the entire

system states. Nevertheless, our heuristic is sound and is still helpful in detect-

ing all potential route oscillation: when route oscillation occurs, a recurring path

assignment state must occur.

More concretely, in our Maude library, we create a global logger object to keep

track of the history of path assignments. For each snapshot of the network state,

i.e. whenever a network node makes a local state transition and updates its best

path attribute, the logger object is synchronized to create a new path assignment

entry that corresponds to the updated best path. We then provide a function that

checks for recurring entries in the list of visited path assignments, which can be

used directly in Maude’s exhaustive search to detect route oscillation.

Logger object. The logger object consists of only one attribute: a history (list) of

path assignments, each entry of which corresponds to the list of best paths for all

nodes in the network at a given state. The Maude code for defining the logger

object is shown below.

sort Logger .

op Logger : -> Cid .

op {_:_|_} : Oid Cid AttributeSet -> Logger .

78

6.1. Detect Anomalies in Policy Configurations

op history:_ : List{PathAssignment} -> Attribute .

op {_} : List{BP} -> PathAssignment .

sort BP .

op [_] : List{Oid} -> BP .

The first three lines declares a special Logger object, and the constructor of the Log-

ger, which takes three arguments, the first one is the identifier for the logger, simi-

lar to the identifiers for the router objects; the second argument is the class identi-

fier of logger object; and the last one is the attribute of the logger. The next two lines

declare the only attribute of Logger, which is a list (history) of PathAssignment

elements, each of which denotes one path assignment in the network at a given

state. A path assignment is a list of best path selected by each node in the network.

The last two lines defines each entry in one path assignment, which is simply the

best path for some network node: i.e. the list of nodes in the best path.

By utilizing above definitions, the global logger is represented by an object pa

of Logger class which has one attribute history. At a given state, this attribute

contains a list (history) of path assignments, each entry of which contains the snap-

shot of the network’s collection of best paths in a visited state. An example logger

object for the disagree gadget is the following:

{pa : Logger | history: ({[n1 n2 n0] [n2 n0]}

{[n1 n2 n0] [n2 n1 n0]}

{[n1 n2 n0] [n2 n0]}

{[n1 n0] [n2 n0]})}

The above logger records four snapshots of the Disagree’s best paths. For example,

the first path assignment {[n1 n2 n0] [n2 n0]} denotes the network latest state

where node 1’s best path to 0 is [n1 n2 n0] and node 2’s best path is [n2 n0].

And line 4 {[n2 n0] [n2 n0]} records Disagree’s path assignment at its initial

79

Chapter 6. Verifying Actual Routing Systems

(oldest) state. Note that, this object content actually exhibits route oscillation (line

1 and line 3) described in Section 6.1.1.

Synchronized logging. To log all path assignment changes, we only need to

slightly modify the single rewrite rule for route update, such that whenever the

rule is fired to apply local state transition for some node, the global object pa is

synchronized and its path assignment is updated to reflect changes in the local

node’s best path attribute, shown as follows:

rl [route-update-logging] :

sendPacket(S, N, D, C, PV)

[N : router | routingTable: RT, bestPath: Pb, nb: NB]

{ pa : Logger | history: HIS }

=>

*** first branch: bestPath re-selects (promotion)

if ... then ...

{ pa : Logger | history:

historyAppend(updateAt(index(N),

[getPV(newPath(sendPacket(S,N,D,C,PV),NB))],

head(HIS)),HIS)})

else ... fi .

On the left-hand side, two objects: a router N and the global logger pa are matched

to trigger the transition. As described in 6.1.1, in the first branch of route update

where the node’s best path attribute is set to newPath(...), the logger pa updates

its path assignment attribute as follows: First, it creates a new path assignment

entry to record newPath(...) by function updateAt(...). Then, the new en-

try updateAt(...) is inserted into the list of previous path assignments HIS by

function historyAppend. Here, the new path assignment entry updateAt(...) is

computed by updating the latest path assignment entry head(HIS)with newPath(...).

The rest of branches 2 and 3 are modified similarly.

80

6.1. Detect Anomalies in Policy Configurations

Route oscillation detection. A network state is now a multiset of router objects,

routing messages, and one global logger object. The function detectCycle detects

re-curring path assignments, as follows:

eq detectCycle([N : router | routingTable: RT,

bestPath: Pb,nb: NB] cf)

= detectCycle (cf) .

eq detectCycle(message cf) = detectCycle (cf) .

eq detectCycle({ pa : Logger | history: HIS } cf)

= containCycle? (HIS) .

The first two equations ignore router objects and routing messages in the net-

work state, and the last equation examines logger pa by function containCycle?

to check for recurring path assignment entries in HIS. We will revisit the use of

detectCycle to search for route oscillation in Section 6.1.3.

6.1.2 Specifying BGP Instance

Given a BGP instance with its network topology and routing policies, we show how

to specify the instance as a SPP in our library. We discuss examples for both eBGP

and iBGP.

eBGP instance An eBGP instance can be directly modeled by an SPP instance

S = (G, o, P,Λ): G, o specifies the instance’s network topology, and P,Λ specifies

the resulting per-node route ranking function after applying the eBGP instance’s

routing policies. Our library provides Maude definitions for each SPP element.

Network topology.

The network topology G, o is represented by three constants: n0, top-Nodes,

top-BGP:

op n0 : Oid .

op top-Nodes : -> ListOid .

81

Chapter 6. Verifying Actual Routing Systems

op top-BGP : -> Topology .

n0 is the specific destination o, top-Nodes the set of network nodes, and top-BGP

the set of BGP links. Our library has pre-defined sort Topology to capture that a

network topology is a set of labeled network links:

sorts Link Topology .

op (_,_:_) : Oid Oid Metric -> Link .

subsort Link < Topology .

op __ : Topology Topology -> Topology .

The first line of Maude code declares Topology and Link; The second line says

a Link is constructed from its two end nodes, and the associated metric. The last

two lines specify how Topology is constructed: a topology is either a single link,

or recursively constructed from existing topologies.

Our Maude library automatically generates an eBGP instance’s initial state based

on its topology:

op gadget : -> Configuration .

eq gadget = init-config (top-Nodes, top-BGP) .

By using above Maude library, an eBGP instance’s initial network state is gen-

erated from its network topology, which is represented by a list of network nodes

and links. Our library declares two constants top-Nodes and top-BGP to repre-

sent network nodes and links. For example, to specify the topology of the Disagree

gadget, the user defines top-Nodes, top-BGP as follows:

eq top-Nodes = n1 n2 .

eq top-BGP = (n1,n0 : 2) (n1,n2 : 1) (n2,n1 : 1) (n2,n0 : 2) .

Here, n0 is the identifier of the destination node (o). Each link is associated

with its cost. Based on the value of top-Nodes and top-BGP that are input by the

82

6.1. Detect Anomalies in Policy Configurations

user, our library automatically generates Disagree’s initial state by init-config

function:

eq gadget = init-config (top-Nodes, top-BGP) .

The resulting gadget is a network state which consists of the two network

router objects n1,n2, the four initial routing messages, and the initial logger pa,

as shown in Section 6.1.3. In this initial state, the three attributes of each network

node – the routing table and best-path and neighbor tables are computed as fol-

lows: init-config parses the BGP links in network topology (top-BGP), for each

link (ni,nj : M), a new routing table entry for nj with cost M is created, and if

nj == n0, then set ni’s best path to the one-hop direct path ni n0, and its rout-

ing tables containing this one-hop direct route; otherwise if there is no direct link

from ni to n0, set ni’s best path and the routing table to emptyPath. Initial routing

messages and logger pa are computed in a similar manner.

Routing policy. The route ranking function Λ and permitted paths P are the result

of applying three BGP policies functions: import, export and lookUpRank. As

we have discussed in Section 6.1.1, import,export,lookUpRank are three user-

defined functions that serve as the specification interface for routing policies.

Functions import and lookUpRank are used to compute new routing paths

from a neighbor’s routing message: import filters out un-wanted paths, and lookUpRank

assigns a rank to the remaining permitted paths. Note that the metric value lookUpRank

(N PV) assigned by lookUpRank also determines the route’s preference in route

selection. export is used to filter out routes the router would like to hide.

As an example, the policy functions for Disagree are defined as follows.

eq export (P) = P . eq import (P) = P .

eq lookUpRank (n1 n2 n0) = 1 . eq lookUpRank (n1 n0) = 2 .

eq lookUpRank (n2 n1 n0) = 1 . eq lookUpRank (n2 n0) = 2 .

83

Chapter 6. Verifying Actual Routing Systems

The first line says Disagree does not employ additional import/export policies.

Whereas the second and third line asserts that Disagree’s two nodes prefers routes

through each other: For example the second line encodes node n1’s ranking policy

that it prefers path (n1 n2 n0) (with higher rank 1) through n2 over the direct

path (n1 n0) (rank 2).

iBGP Instance The main differences between an iBGP and eBGP instances are:

(1) iBGP network topology distinguishes between internal routers and gateway

routers. Gateway routers runs eBGP to exchange routing information with (gate-

way routers of) other ISPs, while simultaneously running iBGP to exchange the

external routing information with internal routers in the AS. (2) iBGP routing pol-

icy utilizes a separate IGP protocol to select best route. Internal to an AS, the ISP

uses its own IGP protocol to compute shortest paths among all routers. The short-

est path distance between internal routers and gateway routers are used in iBGP

route selection: iBGP policy requires the internal routers to pick routes with short-

est distance to its gateway router.

As a result, iBGP requires encoding two types of topologies: a signaling topol-

ogy for gateway routers and internal routers to exchange routes within the AS, and

a physical topology on which the IGP protocol is running. Further, an additional

destination router denoting the special SPP destination o is added as an external

router which is connected with all gateway routers. In our library, we implement

and run separately in Maude an IGP protocol (for computing all-pairs shortest

paths) and pass the resulting shortest path distances to iBGP protocol.

An iBGP configuration instance C = (GP , GS, X) is defined by its physical

topology GP , signaling topology GS , and gateway (egress) BGP nodes X . GP rep-

resents the underlying network topology that runs a separate IGP protocol, there-

fore we also callGP the IGP topology. GS represents the network topology that runs

iBGP. The iBGP links in GS can be partitioned into three classes over,down,up: an

84

6.1. Detect Anomalies in Policy Configurations

over iBGP link represents a vanilla iBGP link, a down iBGP link represents a iBGP

session from a iBGP reflector2 node to its client, and an up link represents that from

a client to its reflector server. X represents the gateway (egress) BGP nodes from

which external routes (routes to destinations outside the AS) are learned.

While the eBGP instance is usually given in the form of SPP, we need one ad-

ditional translation [27] to transform iBGP instance into SPP. Because we are in-

terested in the behavior of an iBGP instance C = (GP , GS, X) in distributing ex-

ternal routing information learned from iBGP gateway routers, we define an iBGP

instance’s corresponding SPP representation S = (G, o, P,Λ) as follows: o is an

additional network node outside the iBGP instance, and it represents the external

common destination;G is the signaling topologyGs with the additional node o and

(non-BGP) links between o and egress nodes X ; Λ is the function that computes

IGP-distance. This is because, within an AS, for a common external destination o,

all routes’ AS-level metrics are same, as a result, a route can uses its IGP-distance

alone to decide its rank.

To automate an iBGP instance specification in Maude, for each iBGP instance

C = (GP , GS, X), we provide additional Maude definitions to generate its SPP

reorientation (G, o, P,Λ). We describe network topology G, o and routing policy Λ

respectively.

Network topology. Similar to eBGP, iBGP network topology G, o is represented by

constants top-BGP, nd. Rather than asking the user to manually input top-BGP

as in eBGP instance, our library generates top-BGP from iBGP signaling topology

as follows:

op top-iBGP-signal : -> Topology .

ops top-Nodes top-Xset : -> ListOid .

eq top-BGP = addExternal (top-iBGP-signal, top-Xset, nd) .

2To solve scalability problem in full-mesh iBGP configuration, some iBGP nodes are elected to
be route reflectors that act as focal point in iBGP sessions: the reflectors form a smaller full-mesh,
and the rest of the nodes become their clients.

85

Chapter 6. Verifying Actual Routing Systems

top-iBGP-signal, top-Xset stores the iBGP instance’s signaling topology

GS and egress nodes X . Note that, while the metric of each link in an eBGP net-

work topology represents the associated link cost (e.g. the IGP distance between

the two nodes), the metric of link in signaling topology denotes its class: over, up,

or down. So our library further includes three metric constants:

ops up down over : -> Metric .

addExternal is a function that takes the external destination nd, egress nodes

top-Xset as input, and generates the network topology top-BGP by adding to the

signaling topology top-iBGP-signal additional links between each egress node

in X and external destination o:

op addExternal : Topology ListOid Oid -> Topology .

eq addExternal(top, (X Xset), D) =

addExternal (top, Xset, D) (X,D : 1) .

eq addExternal (top, nil, D) = top .

The resulting top-BGP is then used to initialize network state as in eBGP in-

stance.

Based on the above library support, to specify the network topology of iBGP in-

stance, the user only need to specify GP , X by customizing constants top-Nodes,

top-iBGP-signal, top-Xset. For example, to specify a 6-node iBGP instance [16],

we write:

eq top-Nodes = n0 n1 n2 n3 n4 n5 .

eq top-Xset = n3 n4 n5 .

eq top-iBGP-signal =

(n0,n1 : over) (n0,n2 : over) (n0,n3 : down)

(n1,n0 : over) (n1,n2 : over) (n1,n4 : down)

(n2,n0 : over) (n2,n1 : over) (n2,n5 : down)

(n3,n0 : up) (n4,n1 : up) (n5,n2 : up) .

86

6.1. Detect Anomalies in Policy Configurations

Routing policy

Like eBGP instance, routing policy Λ is given by customizing import, export,

and lookUpRank. But unlike eBGP instance where lookUpRank simply assigns

each path its rank, iBGP routing policy is more complex.

An iBGP policy consists of two parts: First, a valid iBGP path consists of a set

of (can be empty) up links, which is followed by zero or one over link followed by

a set (can be empty) of down links. Second, for routes with same AS-level attribute,

a node always prefers routes with lower IGP distance, i.e., routes with shorter

distance to a egress node.

The first policy is achieved by imposing an export policy at each node, such

that only routing updates from a client will be exported to all neighbors. In Maude

library, this is achieved by defining export in the iBGP module as follows:

*** for routes learned from internal nodes

*** only allow routing path of the form:

*** ... up ... up (over) down down ...

eq export ((source: S, dest: D, pv:(S N N’ PV), metric: C)) =

if (getLinkMetric (S,N,top-iBGP) == over and

getLinkMetric (N,N’,top-iBGP) == over)

then emptyPath

else (source: S, dest: D, pv:(S N N’ PV), metric: C) fi .

*** for routes learned from egress nodes, do nothing

eq export ((source: S, dest: D, pv:(S N), metric: C)) =

(source: S, dest: D, pv:(S N), metric: C) .

The second iBGP policy is achieved by set a path’s rank to its IGP distance:

eq lookUpRank (PV) =

computeIGP (head (PV), last(front(PV)), top-IGP) .

Here head(PV) is the source of the path PV, and last(front(PV)) is the egress

node head(PV) used to reach destination last(PV). And top-IGP is the underly-

87

Chapter 6. Verifying Actual Routing Systems

ing IGP topology. The function computeIGP computes the IGP distance between

the source and the egress node according to the underlying IGP topology. In our

Maude library, we implement computeIGP by implementing a separate IGP pro-

tocol called shortest-path protocol. In shortest-path protocol, the IGP distance be-

tween two nodes is the cost of the shortest path between them.

Based on the above library support, to specify iBGP lookUpRank, the user only

needs to specify the underlying IGP topology GP by providing proper definition

of top-IGP. For example, to specify the 6-node iBGP instance, we write:

eq top-IGP =

(n0,n3 : 10) (n0,n4 : 5) (n1,n4 : 10)

(n1,n5 : 5) (n2,n5 : 10) (n2,n3 : 5) .

Here the link metric 5,10 specifies the IGP distance between neighboring nodes.

6.1.3 Detecting Anomalies

To analyze BGP instances, our library allows us to (1) execute the Maude specifica-

tion to simulate possible execution runs; and (2) exhaustively search all execution

runs to detect route oscillation.

Network Simulation Network initialization.

For any analysis, we need to first generate a BGP instance’s initial network

state. For a given BGP instance, we have shown how to generate its initial state

gadget from its network topology and routing policy, as described in section 6.1.2.

For example, the initial state generated for Disagree is as follows:

{pa : Logger | history:{[n1 n0] [n2 n0]}}

[n1 : router | routingTable: (source: n1, dest: n0,

pv:(n1 n0), metric: 2),

bestPath: (source: n1, dest: n0,

pv:(n1 n0), metric: 2),

88

6.1. Detect Anomalies in Policy Configurations

nb: (mkNeigh(n0,2) mkNeigh(n2,1))]

[n2 : router | ...]

sendPacket(n1,n0,n0,n2,n1 n0) sendPacket(n1,n2,n0,n2,n1 n0)

sendPacket(n2,n0,n0,n2,n2 n0) sendPacket(n2,n1,n0,n2,n2 n0)

This state consists of Disagree’s initial logger object pa that holds the initial path

assignment [n1 n0] [n2 n0], two router objects n1,n2, and four initial routing

messages.

Execution.

Unlike many formal specification paradigms used in static network analysis,

a Maude specification is executable. To explore one possible execution run from

a given initial state gadget, we can directly use Maude’s rewrite and frewrite

(fair rewriting) commands. For example, we could tell Maude to execute the Dis-

agree gadget with the following command: frew gadget . This command termi-

nates and returns the following final state:

{pa : Logger |

history: ({[n1 n0] [n2 n1 n0]} ... {[n1 n0] [n2 n0]})}

[n1 : router |...

bestPath: (source: n1,dest: n0,pv:(n1 n0),metric: 2), ...]

[n2 : router |...

bestPath: (source: n2,dest: n0,pv:(n2 n1 n0),metric: 1),...]

Note that this final state corresponds to one of the stable path assignments of Dis-

agree described in Section 1, where node n1 sets its best path to [n1 n0], and node

n2 sets its best path to [n2 n1 n0].

On the other hand, with the rew command which employs a different rewriting

strategy, divergence scenario is simulated and route oscillation is observed in the

simulation. This is because frewrite employs a depth-first position-fair rewriting

strategy, while rewrite employs a left-most, outer-most strategy that coincides

with the execution trace that leads to divergence.

89

Chapter 6. Verifying Actual Routing Systems

Route Oscillation Detection While Maude commands frew/rew explore a small

portion of possible runs of the instance, the search command allows us to exhaus-

tively explore the entire execution space. To exhaustively search BGP execution

for route oscillation, we only need to first input the BGP instance’s network topol-

ogy and routing policy to generate the corresponding initial state, as described in

Section 6.1.2; and then use the search command to automatically search for oscil-

lation. For example, for Disagree, we run:

search [1] gadget =>+ X such that detectCycle(X) = true .

Here, gadget is Disagree’s initial state, and =>+ X tells Maude to search for any

reachable network state X such that at that state, the logger pa contains recur-

ring path assignment (detectCycle(X)=true). search command exhaustively

explores Disagree runs and returns with the first Disagree state that exhibits oscil-

lation:

{pa : Logger | history: ({[n1 n2 n0] [n2 n0]}

{[n1 n2 n0] [n2 n1 n0]}

{[n1 n2 n0] [n2 n0]}

{[n1 n0] [n2 n0]})}

[n1 : router |...] [n2 : router |...] ...

Here, the resulting path assignment content in pa exhibits an oscillation (line 1,

line 3).

In general, Maude allows us to exhaustively search for violation of a safety

property P by running the following command:

search initialNetwork =>+ X:Configuration such that P(X) == false.

which tells Maude to exhaustively search for a network state X that violates P along

all possible execution traces from the initial state initialNetwork. If Maude re-

turns with No solution, we can conclude property P holds for all execution traces.

90

6.2. Verifying Declarative Networks

6.2 Verifying Declarative Networks

To prove the correct of declarative implementation, and analyzing alternative rout-

ing mechanisms such as HLP, FVR further provides formal analysis support to ver-

ify declarative network. This chapter presents FVR’s ability to maps declarative

network programs [76] automatically into logical axioms that can be directly used

in existing theorem provers to validate protocol correctness. FVR is a significant

improvement compared to existing use case of theorem proving which typically

require several man-months to construct the system specifications.

FVR takes as input NDlog program specifications of the routing mechanisms

protocol. Since most theorem provers leverage type information, FVR further in-

cludes a Type Schema with the NDlog program specifications. This is not unlike a

database-like schema storing the attribute types of all network state being used. In

order to carry out the formal verification process, the NDlog programs and schema

information are automatically compiled into formal specifications recognizable by

a standard theorem prover (e.g. PVS [62], Coq [3]) using the axiom generator. At

the same time, the protocol designer specifies high-level invariant properties of

the protocol to be checked via two mechanisms: invariants can be written directly

as theorems into the theorem prover, or expressed as NDlog rules which are then

automatically translated into theorems using the axiom generator. The first ap-

proach increases the expressiveness of invariant properties, where one can reason

with invariants that can be only expressible in higher order logic. The second ap-

proach has restricted expressiveness based on NDlog’s use of Datalog, but has the

added advantage that the same properties expressed in NDlog can be verified by

both theorem prover and at run-time.

To illustrate the verification process, we step through the path-vector protocol

example, used in BGP networks. For ease of exposition, we defer the treatment

91

Chapter 6. Verifying Actual Routing Systems

of soft-state derivations and events to Section 6.2.3, focusing instead on traditional

hard-state data (with infinite lifetimes) that are valid until explicitly deleted.

6.2.1 Path-vector Protocol in Declarative Network

We present an example NDlog program that implements the path-vector proto-

col [57], a standard textbook route protocol used for computing paths between

any two nodes in the network.

p1 path(@S,D,P,C):- link(@S,D,C),P=f_init(S,D).

p2 path(@S,D,P,C):- link(@S,Z,C1), path(@Z,D,P2,C2),C=C1+C2,

P=f_concatPath(Z,P2), f_inPath(P2,S)=false.

p3 bestPathCost(@S,D,min<C>):-path(@S,D,P,C).

p4 bestPath(@S,D,P,C):- bestPathCost(@S,D,C), path(@S,D,P,C).

Query bestPath(@S,D,P,C).

The program takes as input link(@S,D,C) tuples, where each tuple corre-

sponds to a copy of an entry in the neighbor table, and represents an edge from

the node itself (S) to one of its neighbors (D) of cost c. NDlog supports a location

specifier in each predicate, expressed with @ symbol followed by an attribute. This

attribute is used to denote the source location of each corresponding tuple. For

example, link tuples are stored based on the value of the S field.

Rules p1-p2 recursively derive path(@S,D,P,C) tuples, where each tuple rep-

resents the fact that the path from S to D is via the path P with a cost of C. Rule

p1 computes one-hop reachability trivially given the neighbor set of S stored in

link(@S,D,C). Rule P2 computes transitive reachability as follows: if there exists

a link from S to Z with cost C1, and Z knows about a shortest path P2 to D with cost

C2, then transitively, S can reach D via the path f concatPath(Z,P2) with cost

C1+C2. Note that p1-p2 also utilizes two list manipulation functions to maintain

path vector p: f init(S,D) initializes a path vector with two elements S and D,

while f concatPath(Z,P2) pre-pends Z to path vector P2.

92

6.2. Verifying Declarative Networks

Rules p3-p4 take as input hop tuples generated by rules p1-p2, and then derive

the hop along the path with the minimal cost for each source/destination pair.

The output of the program is the set of bestPathHop(@S,D,Z,C) tuples, where

each tuple stores the next hop Z along the shortest path from S to D. To prevent

computing paths with cycles, an extra predicate f inPath(P, S) = false is used

in rule p2, where the function f inPath(P, S) returns true if node S is in the path

vector P.

The execution model of declarative networks is based on a distributed vari-

ant of the standard evaluation technique for Datalog programs that is commonly

known as semi-naı̈ve (SN) evaluation [37], with modifications to enable pipelined

asynchronous evaluation suited to a distributed setting. Reference [37] provides

details on the implementation and execution model of declarative networking.

For the purposes of formal verification, we do not consider the location spec-

ifiers within the proof. This does not affect the program in terms of the set of

eventual facts being generated but does affect the notion of data distribution. Our

extended technical report [75] elaborate this issue in greater detail.

Axiom Generation: From NDlog rules to PVS Axioms The first step in FVR

declarative network verification involves the automatic generation of PVS formaliza-

tion (or axioms) directly from NDlog rules. Based on the proof-theoretic semantics

of Datalog [65], there is a natural and automatic mapping from NDlog rules to PVS

axioms.3 Before showing the actual PVS encoding for the path-vector protocol, it is

informative to understand the proof-theoretic semantics of p1 and p2 as inference

rules used in proof system:

The inference rule p1 expresses the logical statement ∀(S,D, P, C).link(S,D,C)∧

P = finit(S,D) =⇒ path(S,D, P, C)

3The equivalence of NDlog’s proof-theoretic semantics and operational semantics guarantees
that FVR is sound in the sense that, the correctness property established by FVR corresponds pre-
cisely to the operational semantics of NDlog execution.

93

Chapter 6. Verifying Actual Routing Systems

Rule p2 is slightly more complex as some attribute variables do not appear in

the resulting head. The general technique to express these variables is in terms of

existential quantification. Accordingly, rule p2 expresses the logical statement that

∀(S,D, P, C).∃(C1, C2, Z, P2).link(S,Z, C1)∧ bestPath(Z,D, P2, C2)∧C = C1 +C2∧

P = fconcatPath(Z, P2) =⇒ path(S,D, P, C)

From the above logical statements, FVR generates the following axioms:

path_generate: AXIOM

FORALL (S,D,Z:Node)(C:Metric)(P:Path):(link(S,D,C) AND P=f_init(S,D)) OR

((EXISTS (P2:Path)(C1,C2:Metric):(link(S,Z,C1) AND bestPath(Z,D,P2,C2)

AND C=C1+C2 AND P=f_concatPath(Z,P2))) =>path(S,D,P,C)

path_close: AXIOM

FORALL (S,D,Z:Node)(C:Metric)(P):path(S,D,P,C)=>

((link(S,D,C) AND P=f_init(S,D)) OR (EXISTS (Z:Node)(P,P2:Path)

(C1,C2:Metric): (link(S,Z,C1) AND bestPath(Z,D,P2,C2) AND C=C1+C2

AND P=f_concatPath(Z,P2))))

The first path generate axiom is generated in a straightforward manner from

rules p1 and p2, where the logical OR indicates that path facts can be generated

from either rule. The path close axiom indicates that the path tuple is the small-

est set derived by the two rules, ensuring that these axioms automatically gener-

ated in FVR correctly reflected the minimal model of NDlog semantics. The list

manipulation functions f concatPath and f init are predefined from PVS prim-

itive types.

PVS provides inductive definitions that allows the two axioms above to be writ-

ten in a more concise and logically equivalent form:

path(S,D,(P: Path),C): INDUCTIVE bool =

(link(S,D,C) AND P=f_init(S,D) AND Z=D) OR (EXISTS (C1,C2:Metric)

(Z2:Node) (P2:Path): link(S,Z,C1) AND path(Z,D,P2,C2) AND

C=C1+C2 AND P=f_concatPath(S,P2) AND f_inPath(S,P2)=FALSE)

94

6.2. Verifying Declarative Networks

The universal quantifiers over the attributes to path (i.e. S,D,Z...) are implic-

itly embedding and existential quantifiers such as C1 and C2 are explicitly stated.

FVR axiom generator always produces this inductive definition, and employs the

axiom form only in the presence of mutual dependencies among the head predi-

cates which makes PVS inductive definition impossible. Also note that the use of

f inPath(S,P2)=FALSE constraint prevents loops in path.

Accordingly, NDlog rules p3-p4 are automatically compiled into PVS formal-

ization in a similar way:

bestPathCost(S,D,min_C): INDUCTIVE bool =

(EXISTS (P:Path): path(S,D,P,min_C)) AND (FORALL (C2:Metric):

(EXISTS (P2:Path): path(S,D,P2,C2)) => min_C<=C2)

bestPath(S,D,P,C):INDUCTIVE bool =

bestPathCost(S,D,C) AND path(S,D,P,C)

In addition to the above PVS encoding for NDlog rules, type definitions are pro-

duced automatically from the database schema information. For instance, given a

database schema definition for link(src:string, dst:string, metric:integer)

the corresponding PVS type declaration is link:[Node,Node,Metric -> bool]

where Node is declared as a string type and Metric as an integer type.

6.2.2 Verifying Path-Vector Protocol

The next step involves proving actual properties in PVS. Properties are expressed

as PVS theorems and serve as starting points (or goals) in the proof construction pro-

cess. We illustrate this process by verifying the route optimality property in the

path-vector protocol expressed in the following PVS bestPathStrong theorem:

bestPathStrong: THEOREM

FORALL (S,D:Node) (C:Metric) (P:Path): bestPath(S,D,P,C) =>

NOT (EXISTS (C2:Metric) (P2:Path): path(S,D,P2,C2) AND C2<C)

95

Chapter 6. Verifying Actual Routing Systems

The above theorem specifies that for a given bestPath(S,D,P,C) from S to D, P

is the optimal path, i.e. there does not exist another path P2 from S to D with lower

cost C2.

Given the above theorem, one can then utilize PVS to carry out the proof pro-

cess. PVS performs the proof in a goal-directed fashion, in this case, starting from

the bestPathStrong goal, and then recursively reducing it to sub-goals until all

sub-goals are trivially true. PVS has approximately 100 built-in proof strategies,

of which 20 are usually sufficient to automate a majority of the proof effort. We

display the straw-man proof process that does not utilize any user-defined proof

strategies specific to declarative network beyond PVS’s built-in proof commands:

("" (skosimp*) (expand bestPath) (prop) (expand bestPathCost)

(prop) (skosimp*) (inst -2 C2!1) (grind))

The proof script reflects the interactive proof process in PVS directed by the

user, where PVS takes care of all low level proof details and allows the user to con-

centrate on high-level proof strategies. Without going into details of each PVS com-

mand, we provide a high-level intuition of each step. The first command skosimp*

performs repeated skolemization that removes universal quantifiers S,D,C and P

in the theorem. Skolemization is generally the first proof step to try in proving

any universal quantified theorems. The subsequent two expand commands are

used to unfold the earlier inductive definition shown in 6.2.1, each followed by

prop that performs proportional simplification. Then skosimp* is employed to re-

move universal quantifiers and inst to instantiate the existential quantified vari-

able with proper instance (C2!1) . The rest of the proof is complete by using PVS’s

grind command which performs skolemization, heuristic instantiation, proposi-

tional simplification and decision procedures for linear arithmetic and equality.

Once the above proof script is supplied, PVS requires only fraction of a second

to carry out the actual proof. When the proof is completed, it covers all instances

96

6.2. Verifying Declarative Networks

of the network. This is in contrast to model checking, which explores only specific

network instances. In addition to proving the route optimality property of the

declarative path-vector protocol, we have proved properties such as the potential

cycles in the protocol if the cycle check (enforced using the f inPath function) is

removed.

The straw-man proof process here is restricted to PVS’s built-in proof com-

mands, and does not utilize any user-defined proof strategies that exploits domain-

specific information. As a result, the proof requires an expert in declarative net-

work and theorem proving. Given that our target users are network designers, the

proof process should ideally be automated. In reference [75], we discuss the po-

tential of using domain-specific PVS strategies tailored to declarative networking

to support the proof construction.

6.2.3 Soft-state, Events and Network Dynamics

Up to this point, we have limited our verification to a subset of the complete NDlog

language by omitting the treatment of soft-state tuples (i.e. predicates). This simpli-

fication enables us to generate axioms recognizable by a theorem prover directly

from NDlog programs without having to worry about the semantics of time and

data expiration. In practice, soft-state data and events are central in network proto-

cols, and adopted in many declarative network implementations. In the rest of this

section, we will introduce the soft-state model in declarative networking, describe

how rules with soft-state predicates (referred as soft-state rules) can be verified in

a similar fashion, by first rewriting soft-state rules into logically equivalent rules

with only hard-state predicates (i.e.hard-state rules).

Soft-state Model in Declarative Networking Declarative networking incorpo-

rates support for soft-state [58] derivations commonly used in networks. In the soft

state storage model, all data (input and derivations) has an explicit “time to live”

97

Chapter 6. Verifying Actual Routing Systems

(TTL) or lifetime, and all expired tuples must be explicitly reinserted with their

latest values and a new TTL or they are deleted.

To support soft-state, an additional language feature is added to the NDlog lan-

guage, in the form of a materialize declaration at the beginning of each ND-

log program that specifies the TTL of predicates. For example, the expression

materialized(link,10,keys(1,2)) specifies that the link tuple is stored at a

table with primary key set to the first and second attributes (denoted by keys(1,2)

and that each link tuple has a lifetime of 10 seconds4. If the TTL is set to infinity,

the predicate will be treated as hard-state.

The soft-state storage semantics are as follows. When a tuple is derived, if there

exists another tuple with the same primary key but differs on other attributes, an

update occurs, in which the new tuple replaces the previous one. On the other

hand, if the two tuples are identical, a refresh occurs, in which the existing tuple is

extended by its TTL.

For a given predicate, in the absence of any materialize declaration, it is

treated as an event predicate with lifetime set to zero. Since events are not stored,

they are primarily used to trigger other rules or in response to network events.

Reference [37] provides more details on how soft-state storage model and events

are implemented within a declarative networking engine.

Soft-state to Hard-state Rewrite in FVR The rule rewrite consists of two steps.

First, all soft-state predicates of the form p(...) where “...” refer to predi-

cate arguments, are translated into an equivalent hard-state predicate of the form

p(...,Tc,Tl), where the additional attributes Tc and Tl denote the creation time

and lifetime of each tuple p respectively. This initial rewrite step makes explicit the

creation time and lifetime by adopting Tc, Tl in each soft-state predicate. Event

4Following the conventions of the P2 declarative networking system, attribute 0 is reserved for
the predicate name.

98

6.2. Verifying Declarative Networks

predicates are rewritten in a similar fashion. However, Tl is omitted since events

have zero lifetime by definition.

After the first step, additional constraints reflecting soft-state semantics are

added to ensure that all soft-state facts only process with other facts valid within

the same window period of time, as expressed in terms of constraints over Tc and

Tl. Consider soft-state rules of the form, e : −e1, s1, s2, ..., sn. This rule triggered

by input event e1 with creation time Tce1, takes as input both the triggering event

and several soft-state predicates s1, s2, ..., sn, and generates a event. The rewritten

equivalent hard-state rules is of the form:

e(..., T ce1) : −e1(..., T ce1), s1(..., T cs1, T ls1), s2(..., T cs2, T ls2), ..., sn(..., T csn, T lsn),

. T cs1 < Tce1 ≤ Tcs1 + tls1, ..., T csn < Tce1 ≤ Tcsn + T lsn.

Since the event e1 directly triggers the derivation of e, the creation time of the

derived event e is set to be the same as that of the input e1 (i.e. Tce1). An additional

n constraints Tcsi < Tce1 ≤ Tcsi + T lsi are added to ensure that only soft-states si

with valid time interval [Tcsi, T csi + T lsi] that always overlaps with Tce1 are used

to generate e.

Another possible class of soft-state rules are of the form, e : −s1, s2, ..., sn, where

an event e is generated by sets of soft-states. The main difference compared to the

previous soft-state rule is the lack of a triggering event. The rewritten hard-state

rule is of the form:

e(..., T c) : −s1(..., T cs1, T ls1), s2(..., T cs2, T ls2), ..., sn(..., T csn, T lsn), T c = max < Tcs1,

. T cs2, ..., T csn >, Tcs1 < Tc ≤ Tcs1 + tls1, ..., T csn < Tc ≤ Tcsn + T lsn.

Note that Tc is set to themax of all possible creation times of the input soft-state

predicates (since the derived fact is true only when all the input facts are present).

The same rewrite process applies to rules that derive soft-state predicates s in-

stead of events e. The main difference is an additional Tl attribute to s in the

rewritten rule. This Tl attribute is set to the to the declared lifetime in correspond-

ing table for s (indicated in the materialize statement).

99

Chapter 6. Verifying Actual Routing Systems

6.2.4 Alternative Routing Mechanisms: Distance-Vector

In this section, we illustrate the capability of FVR in reasoning about eventual se-

mantics of protocols in dynamic networks. We base our illustration on the verifica-

tion of the distance-vector protocol, commonly used for computing shortest routes

in a network.

Distance Vector Protocol Specification in NDlog The following soft-state NDlog

program implements the distance-vector protocol, computing best paths with least

cost:

materialize(hop,10,keys(1,2,3)).

materialize(bestHop,10,keys(1,2)).

materialize(bestHopCost,10,keys(1,2)).

dv1 hop(@S,D,D,C) :- link(@S,D,C).

dv2 hop(@S,D,Z,C) :- hopMsg(@S,D,Z,C).

dv3 bestHopCost(@S,D,min<C>) :- hop(@S,D,Z,C).

dv4 bestHop(@S,D,Z,C) :- bestHopCost(@S,D,C), hop(@S,D,Z,C).

dv5 hopMsg(@N,D,S,C1+C2):-periodic(@S,5),bestHop(@S,D,Z,C1),link(@S,N,C2).

Query bestHop(@S,D,Z,C)

This program derives soft-state predicates hop, bestHop, and bestHopCost

with TTL of 10 seconds, and an event predicate hopMsg, and takes as input link

tuples which represents dynamic network topology and is implemented by some

periodic neighbor maintenance mechanism.

First, rules dv1-dv2 derive hop(@S,D,Z,C) tuples, where Z denotes the next

hop (instead of the entire path) along the path from S to D. Second, the proto-

col is driven by the periodic generation of hopMsg(@S,D,Z,C) in rule dv5, where

each node S advertises its knowledge of all possible best hops table (bestHop) to

all its neighbors. Note that bidirectional connectivity and cost is assumed. Each

node receives the advertisements as hopMsg events (rule dv2) which it then stores

100

6.2. Verifying Declarative Networks

locally in its hop table. Finally, Rules dv3-dv4 compute the best hop for each

source/destination pair in a similar fashion as the earlier path-vector protocol.

Unlike the path-vector protocol presented in Section 6.2.1, the distance-vector

protocol computes only the next hop along the best path, and hence does not store

the entire path between any two nodes.

Soft-state Rewrite and Automated Axiom Generation The following NDlog rules

dv1-dv6 shows the equivalent hard-state rules after applying the soft-state rewrite

process described in Section 6.2.3.

dv1 hop(@S,D,D,C,Tc,10) :- link(@S,D,C,Tc,10).

dv2 hop(@S,D,Z,C,Tc,10) :- hopMsg(@Z,D,W,C2,Tc2), Tc=Tc2+5, C=C2+1.

dv3 bestHopCost(@S,D,min<C>,Tc,10) :- hop(@S,D,D,C,Tc,10).

dv4 bestHop(@S,D,Z,C,Tc,10) :- bestHopCost(@S,D,C,Tc,10),

hop(@S,D,Z,C,Tc1,10), Tc1<Tc<=Tc1+10.

dv5 hopMsg(@N,D,Z,C,Tc) :- periodic_dv(@S,5,Tc), bestHop(@S,D,Z,C,Tc1,10),

link(@S,N,C,Tc2,10), Tc2<Tc<=Tc2+10, Tc1<Tc<=Tc1+10.

dv6 periodic_dv(@S,5,Tc) :- periodic_dv(@S,5,Tc2), Tc=Tc2+5

Query bestHop(@S,D,Z,C,Tc,Tl)

Rules dv1-dv5 are the corresponding hard-state rewrites, and dv6 emulates the

behavior of periodic streams employed in dv5, as described in Section 6.2.3. We

introduce an extra constraint Tc=Tc2+5 in rule dv2. This condition is required so

that causality of rule execution is preserved within one interval: resulting hopMsg

events generated within one periodic interval derives hop facts used in the next

period internal and not vice versa. We note that this addition constraint is au-

tomatically added: required only in cases when rules depend on each other in a

cyclical fashion (e.g. hop derived in dv1-dv2, hopMsg in dv5, and bestHop in dv4),

a dependency that can be detected via static check.

Based on this rewritten program, the automatically generated PVS axioms are

as follows:

101

Chapter 6. Verifying Actual Routing Systems

hopMsg(S,D,Z,C,Tc): INDUCTIVE bool =

(EXISTS (Tc2,T3:Time): bestHop (S,D,Z,C,Tc2,10) AND periodic(S,5,Tc)

AND link(S,D,Tc3,10) AND Tc2<Tc<=Tc2+10 AND Tc3<Tc<=Tc3+10 AND C=1)

hop(S,D,Z,C,Tc,Tl): INDUCTIVE bool =

(link(S,D,Tc,10) AND Z=D AND Tl=10 AND C=1) OR (EXISTS (C2:Metric)

hopMsg(S,D,Z,C2,Tc2) AND C=C2+1 AND Tl=10 AND Tc=Tc2+5)

bestHopCost(S,D,MIN_C,Tc,Tl): INDUCTIVE bool =

(EXISTS (Z:Node): hop(S,D,Z,MIN_C,Tc) AND Tl=10) AND

(FORALL (C:Metric): (EXISTS (Z:Node): hop(S,D,Z,C,Tc,10))=>MIN_C<=C)

bestHop_refresh: AXIOM

FORALL (S,D,Z:Node) (C:Metric) (Tc:Time): bestHopCost(S,D,C,Tc,10)

AND hop(S,D,Z,C,Tc,10)=>bestHop(S,D,Z,C,Tc,10)

bestHop_close: AXIOM

FORALL (S,D,Z:Node) (C:Metric) (Tc:Time): bestHop(S,D,Z,C,Tc,10)

=> (bestHopCost(S,D,C,Tc,10) AND hop(S,D,Z,C,Tc,10))

periodic_dv(S,I,Tc): INDUCTIVE bool =

EXISTS (Tc2:Time): periodic_dv(S,I,Tc2) AND Tc=Tc2+5 AND I=5

Recall automatic axiom generation process in Section 6.2.1, PVS axioms would

be explicitly used in face of mutual dependencies between rules (that derive bestHop,

hop, and hopMsg). To break the dependency, we therefore specify dv4 with two ax-

ioms bestHop refresh and bestHop close.

Eventual Convergence Proof in a Stable Network The lack of knowledge of the

entire path in the distance-vector protocol comes at the expense of potential up-

date loops in the presence of link updates. This is a well-known limitation of the

distance-vector protocol, commonly known as the count-to-infinity problem.

Our verification is performed on a 4-node network instance as shown in Fig-

ure 6.2. Note that this instance represents a loop consisting of three nodes (a, b, and

c) that can reach the rest part of the network via a fourth node d, and the results of

this verification apply to any arbitrary network that contains such a loop. For ease

102

6.2. Verifying Declarative Networks

of exposition we do not consider computation of link tuple here and supply this

network instance using the following PVS inductive definition, where each clause

connected by logical operator OR represents a link between two nodes:

link(S,D,C,Tc,Tl): INDUCTIVE bool =

((S=a AND D=b AND C=1 AND Tl=10 AND (EXISTS (i:posnat): Tc=5*i)) OR

((S=b AND D=c AND C=1 AND Tl=10 AND (EXISTS (i:posnat): Tc=5*i)) OR

...

((S=a AND D=d AND C=1 AND Tl=10 AND (EXISTS (i:posnat): Tc=5*i))

Network convergence is expressed using the following theorem:

bestHopCost_converge: THEOREM

EXISTS (j:posnat): FORALL (S,D:Node)(C:Metric)(i:posnat): (i>j)

=> bestHopCost(S,D,C,5*i,10) = bestHopCost(S,D,C,5*j,10)

Given an input network, the distance-vector protocol requires a number of

rounds of communication among all nodes, for route advertisements (in the form

of hopMsg) to be propagated in the network. In the above theorem, the existen-

tial quantified variable j denotes the initial number of periodic intervals (set to

be at least the network diameter) required to propagate all route advertisements.

The theorem states that for any arbitrary time i after j, the value of bestHopCost

always converges (i.e. no longer changes).

Count-to-Infinity Analysis in a Dynamic Network In the final FVR example,

we demonstrate the capability of FVR to prove the presence of the count-to-infinity

problem in the distance-vector protocol. This is a well-studied limitation where

the protocol potentially diverges (i.e. not reach steady state) in the presence of link

failures.

Before showing the actual proofs, we provide a textbook example [57] that

clearly demonstrates the problem intuitively. Revisiting the network in Figure 6.2,

103

Chapter 6. Verifying Actual Routing Systems

Figure 6.2: Network Dynamics

when link(a,d) fails, node a would advertises this information to its immediate

neighbors b and c. However, despite the fact that d is no longer reachable from

either a b or c, based on information that c can reach d in two hops, b would con-

clude that it can reach d in three hops. Node c makes a similar conclusion. In

the next round of updates, node a learns that b and c can reach d in three hops,

and updates its distance to d as four accordingly. This cycle continues indefinitely,

resulting in the count-to-infinity problem.

The proof requires a network scenario that results in a count-to-infinity prob-

lem. Using the example described above, we supply this network dynamics using

the following PVS inductive definition:

link (S,D,C,Tc): INDUCTIVE bool =

((S=a AND D=b AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc<100)) OR

((S=b AND D=a AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc<100)) OR

...

((S=a AND D=d AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc<100)) OR

((S=d AND D=a AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc<100)) OR

((S=a AND D=b AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc>=100)) OR

((S=b AND D=a AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc>=100)) OR

...

((S=c AND D=b AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc>=100)) OR

((S=b AND D=c AND C=1 AND (EXISTS (i:posnat): Tc=5*i) AND Tc>=100))

The definition indicates that the link(a,d) and link(d,a) facts are only present

104

6.3. Evaluation

before time 100, denoting that a link failure between nodes a and d happens at time

100. The count-to-infinity theorem is expressed as follows:

bestHop_increase_to_infinity: THEOREM

FORALL (a,b,d:Node)(t:Time)(c:Metric):(t>100 AND bestHop(a,d,b,c,t,10))=>

(EXISTS (t’:Time)(c’:Metric):(t’>t AND c’>c AND bestHop(a,d,b,c’,t’,10)))

The theorem above states that if the distance vector protocol diverges, the best

hop from a to d will increase indefinitely over time, a symptom of the count-to-

infinity problem. In reference [10], we have the complete proof of this theorem, as

well as addition theorems that further verify the presence of the count-to-infinity

problem. Interestingly, we have been able to prove a stronger PVS theorem spe-

cific to a three-node network cycle: ∀b, d, a, c, t.(∃i.t = i × 5 ∧ t > 100) =⇒

(bestHop(b, d, a, c, t, 10) =⇒ bestHop(b, d, a, c + 2, t + 10, 10)), which expresses

the precise pattern that the value of cost argument increases by 2 at every two

update intervals of 10 seconds.

We further verify that a well-known solution to this problem, known as the

split-horizon solution can avoid any two-node cycle, and show that this solution is

insufficient for fixing the count-to-infinity problem in a three-node cycle. Refer to

our extended technical report [75] for more details.

6.3 Evaluation

We have analyzed well-known eBGP instances, including good gadget, bad gad-

get, disagree [24]. In addition, we analyze two iBGP configuration instances: a

9-node iBGP gadget [16] that is known to oscillate, and a 25-node configuration

randomly extracted from the Rocketfuel [68] dataset. Rocketfuel is a well-known

dataset on actual iBGP configurations that are made available to the networking

community. Given that an ISP has complete knowledge of its internal router con-

105

Chapter 6. Verifying Actual Routing Systems

Disagree Bad Good 9-node
iBGP

25-node
iBGP

Simulation 2 NA 4 20 31
Exhaustive 2,10 181,641 10997,37692 20063,52264 723827,177483
Safe? No No Yes No No

Table 6.2: Summary of BGP analysis in Maude. In the first row, each entry shows the simulation
time in milliseconds. In the second row, for each entry, the first value denotes exhaustive search
time in milliseconds, the second denotes number of states explored, and the third on whether our
tool determines the instances to be safe (“Yes”) or unsafe (“No”).

figurations, the Rocketfuel experiment presents a practical use case for using our

tool to check an actual BGP configuration instance for safety.

For each BGP instance, we simulate its possible executions using rewriting

commands (Simulation), and check for route oscillation using exhaustive search

(Exhaustive). We summarize our analysis results are as follows:

We have carried out these analysis on a laptop with 1.9 GB memory and 2.40GHz

dual-cores running Debian 5.0.6. The version of Maude is Maude 2.4. While route

oscillation detection explores the entire state space of the instance execution, the

analysis time for rewriting based execution are measured for only one possible

terminating execution (that converges to a stable path assignment).

Here we summarize findings from our case studies. Single-trace simulation

is helpful in finding permanent routing oscillation. When simulating the execute

trace that diverges, Maude does not terminate (e.g., in executing Bad gadget 5).

However, simulation can miss temporary oscillations which are only manifested

on a particular executing trace. When Maude terminates, single-trace simulation

time increases when network size grows. On the other hand, exhaustive search

always provides a solid safety proof. For instances of similar network size, the

search time for a safe instance (good) is considerably longer than that of an unsafe

instance (bad). For instances of different sizes, as network size grows, exhaustive

5Bad gadget always diverges and does not have any stable path assignment, therefore, when we
simulate bad gadget with rewriting, Maude does not terminate, and we do not record the statistics.

106

6.4. Summary

search time grows exponentially. Nevertheless, even for the 25-node scenario, ex-

haustive search can be completed in 12 minutes. As future work, we are going to

scale our analysis technique to larger networks.

6.4 Summary

In this chapter, we present FVR’s ability to verify actual BGP systems. We first

developed a Maude library for detecting routing anomalies in a policy configura-

tion. To use the library, users provide specifications of the network topology and

routing policies. The dynamic behavior of the resulting BGP system can then be

analyzed automatically by Maude. To validate this approach, we performed safety

analysis of well-known BGP instances and actual routing configurations.

Second, we use theorem prover PVS to verify BGP routing mechanism. We

take as input declarative networking specifications written in the Network Datalog

(NDlog) query language, and maps that automatically into logical axioms that can

be directly used in PVS to validate correctness. FVR is a significant improvement

compared to existing use case of theorem proving which typically require several

man-months to construct the system specifications. To validate the use of PVS, we

present case studies of verifying various properties, including routing optimality

and eventual properties in dynamic settings.

107

Chapter 7

Scalability Techniques for Analysis

In Chapter 6, we have shown FVR automatically detects anomalies in policy con-

figurations via Maude’s exhaustive search capability. Unfortunately, this approach

works only for small instances due to the state explosion problem. To address this

limitation, this chapter presents a novel scalability technique called network re-

duction that transform policy configurations into smaller and simpler forms while

preserving safety property (arc 7), as shown in Figure 7.1.

Figure 7.1: FVR Architecture: Network Reduction.

In network reduction, we provide two types of reduction rules that transform

policy configurations by merging duplicate and complementary router configura-

108

7.1. Network Reduction

tions to simplify analysis. We show that the reductions are sound, dual of each

other and are locally complete. The reductions are also computationally attractive,

requiring only local configuration information and modification.

We have developed a prototype of network reduction and demonstrated that it

enables significant savings in analysis time due the the use of reduction. We eval-

uated the effectiveness of the reduction technique analysis on routing configura-

tions ranging from synthetic networks to sampled CAIDA and Rocketfuel dataset,

using the Maude-based safety analysis (Chapter 6) as reasoning engine. Our exper-

imental results show that network reduction enables us to perform safety analysis

efficiently, often completing the analysis on large networks that would otherwise

not be possible to study within reasonable time.

In addition to making possible safety analysis on large networks that would

otherwise not complete within reasonable time, network reduction is also a useful

tool for discovering possible redundancies in BGP systems.

7.1 Network Reduction

7.1.1 Formal Model for Reduction

We first present the formal model used for performing reduction and analysis.

The central data structure, called the Enhanced Path Digraph (EPD), is a compact

representation of two configuration aspects of a BGP system: the topology of how

routers are connected, and for each router, the export, import, and route preference

policies.

The policy configuration problem can be understood independently of the means

for calculating routes—the BGP path-vector mechanism as implemented by the

various router vendors. Policy conflicts exist independently from the details of

109

Chapter 7. Scalability Techniques for Analysis

how messages are exchanged and local data structures are updated. So the EPD

model abstracts away the mechanism, and focuses on the policy itself.

Enhanced path digraph (EPD) is an extension of the path digraph structure [67],

tuned to enable us to conveniently express and perform reduction. As we will see

in Section 7.2, through this modification, EPD allows us to prove the correctness of

reduction in a much more intuitive and concise way reasoning directly with path

digraph in our prior work [84].

Definition 5 (Path digraph). Let (V,E) be a directed graph and let d be a designated

‘destination’ node in V . A path digraph instance on (V,E, d) is given by (P,Ev, Ep),

where P is a set of paths in (V,E) terminating at d, and Ev and Ep are binary relations on

P fulfilling the following properties:

C1. (p, q) is in Ev if and only if p is a prefix of q.

C2. If p and q have different origin nodes, then (p, q) is not in Ep.

C3. The restriction of Ep to any set of paths having the same origin node is a strict linear

order.

The relationsEv andEp are called the transmission and preference relations respectively.

We may also write Ep as ‘≺’, where p ≺ q means that p is strictly preferred to

q. The ‘path digraph’ structure, then, is the derived graph where the nodes are the

elements of P and the arcs are Ev∪Ep. For example, Figure 7.2 shows a network of

three nodes 0, 1 and 2, where 0 is the particular destination. The paths are shown

alongside their origin nodes, in preference order (so 1 prefers path 120 over 10);

any path not shown is not permitted. The path digraph is shown in Figure 7.3,

where dashed arcs correspond to prefers arcs, and solid arcs for transmission arcs.

We can define a notion of ‘stable solution’ corresponding to the endpoint of the

route computation process.

110

7.1. Network Reduction

Figure 7.2: The network configuration of Disagee

Figure 7.3: The path digraph for Disagee

Definition 6. A stable solution to a path digraph (P,Ev, Ep) is a subset S of P that

contains the empty path εd from d to itself, and such that any other path q is in S if and

only if

C1. there is some p in S such that (p, q) is in Ev, and

C2. there is no p′ in S such that (p′, q) is in Ep.

In general, there may be zero, one, or many stable solutions. If there is no stable

solution then the routing protocol will certainly oscillate; if there are more than

one, then it might oscillate (depending on details of the path-vector mechanism).

If, however, there is exactly one stable solution, then the protocol will necessarily

converge to it [67, 29]. A sufficient condition for this is that the path digraph be

acyclic.

Theorem 7. If a path digraph has no cycle (that is, the transitive closure of Ev ∪ Ep is

irreflexive) then it has a unique stable solution.

111

Chapter 7. Scalability Techniques for Analysis

Proof. See [31].

The property of a path digraph having a unique stable solution implies that

the configuration is both safe and robust [19, 14, 22, 64]. Informally, a routing con-

figuration is safe if any fair execution sequence for the path-vector protocol must

eventually result in convergence of the routing state. It is robust if it remains safe

even after removing some subset of the nodes and arcs in the graph.

The transmission relation Ev forms an arborescence rooted at εd. It therefore

contains, implicitly, data about the connectivity of the original graph. The ex-

tended structure, which we now define, makes that information more explicit.

Definition 8 (Extended path digraph (EPD)). If (P,Ev, Ep) is a path digraph on (V,E, d)

then the extended path digraph is (P,Ev, Ep, s), where s is the function from P \ {εd}

to V that maps each path to its origin node.

An EPD may be represented diagramatically by grouping the paths in P ac-

cording to s, as in Figure 7.4. Here, and in the rest of this thesis, paths in P are

represented by square boxes, nodes in V by ovals, preference arcs by dashed ar-

rows and transmission arcs by solid arrows.

We will also use the following notation, for an EPD instance (P,Ev, Ep, s) on a

graph (V,E, d):

• Pu is the set {p ∈ P | s(p) = u}.

• Concatenation of arcs and paths is denoted by ‘◦’.

• Γ+(u) = {v ∈ V | (u, v) ∈ E} and Γ−(u) = {v ∈ V | (v, u) ∈ E}.

We call elements of Γ+(u) the downstream neighbors of u, and elements of Γ−(u)

the upstream neighbors of u. We will also use the notation Γ+(u, v) to mean the

union of Γ+(u) and Γ+(v), and similarly for Γ−(u, v).

112

7.1. Network Reduction

In general, a cycle in an EPD must involve more than one node in V , since the

preference arcs alone do not contain cycles. That is, this paper does not consider

inconsistent preference relations within a single node. More details are in Ap-

pendix A.1. Moreover, since the transmission arcs form a tree, the EPD cannot be

cyclic unless there is a cycle in (V,E). That is, regardless of the routing preferences,

convergence is guaranteed for any network that has no cycles.

7.1.2 Network Reduction

This section presents a rewriting calculus for policy-based routing systems, based

on the idea of reducing a given network to one which is smaller, but has the same

safety property. We define two specific rules, called duplicate and complementary

reduction, for merging two router nodes in an EPD. Both of these are purely local,

meaning that the operations only require examination of the relevant nodes and

their immediate neighbors. In the following, assume we are working with a given

EPD instance G = (P,Ev, Ep, s) on a graph (V,E, d).

Definitions To ease the discussion of these reductions, we first introduce three

auxiliary notions: ‘consistent node’, ‘node rewrite’, and ‘strongly adjacent’. We

say two nodes are consistent if their configurations do not form a cycle in the EPD

representation, formalized as follows:

Definition 9 (Consistent nodes). Given a policy configuration’s EPD (P,Ev, Ep, s) on

the network graph (V,E, d), nodes u and v in V are consistent if there is no cycle in the

EPD which consists only of paths p for which s(p) ∈ {u, v}.

An example of nodes violating consistency is in Figure 7.4: nodes 1 and 2 are

not consistent since there is a cycle of paths (120, 10, 210 and 20) that only involves

these two nodes. This conflicting configuration causes route oscillation behavior.

Such examples of consistency violation, where two nodes have a policy conflict,

113

Chapter 7. Scalability Techniques for Analysis

should not be eliminated during reduction, in order for the problem to be detected

in the final analysis. A consistency check is hence a precondition for reduction.

Figure 7.4: The EPD notation for the Disagree configuration.

Definition 10 (Strongly adjacent). Two nodes u and v in V are strongly adjacent if for

every path in Pu, either v does not appear, or it appears as the next node following u; and

likewise for Pv.

Strong adjacency implies that two nodes are either immediate neighbors, or

one does not route to destination through the other. It is also a precondition for

reduction.

Definition 11 (Node rewrite). The procedure to rewrite node u to v is as follows: Rewrite

the path p ∈ Pu in u to p′ ∈ Pv in v by: If p = u ◦ w ◦ r, and w 6= v, then rewrite p to

w ◦ r; If p = u ◦ v ◦ r, then rewrite p to r; For all other cases, abort rewrite. Rewrite the

preference among Pu to that among Pv by: Rewrite preference arc (p, q) to (p′, q′), where p

rewrites to p′ and q to q′.

The global rewrite on the EPD is straightforward, once the two nodes have been

merged. All paths in P are rewritten according to the procedure of Definition 11, as

is the transmission relation Ev. Write p[u, v 7→ w] for a path p where all occurrences

of u or v are replaced with w, eliding any ‘ww’ subpath. The preferences at the new

node w are determined by the specific reduction procedure; for any other node t,

114

7.1. Network Reduction

the new path preferences on Pt are obtained as follows. For a path p, let p̂ denote

the path that is minimal according to Ep among {q ∈ Pt | q[u, v 7→ w] = p}. Then

the written Ep on t is {(p̂, q̂) | (p, q) ∈ Ep}: that is, a path ‘inherits’ the relative

preference of the highest ranked path in its preimage.

Duplicate Reduction

Definition 12 (Duplicate condition). Suppose that u and v are two consistent and

strongly adjacent nodes. Then v is a duplicate of u, if after rewriting v to u, the fol-

lowing conditions hold: (1) v’s path P ′v is equivalent to (or a subset of) the u’s paths Pu; (2)

For every preference arc (p, q) in v, there exists (p′, q′) in u.

Figure 7.5: Nodes u, v are merged by duplicate reduction if they agree on how to
route to destination d through their neighbors x, y, . . . , z: For any path pi, qj , u, v
agree on their preference.

The duplicate precondition ensures two nodes agree on the paths and their

preference to reach the destination. The duplicate ‘redundancy’ of u and b is char-

acterized in terms of the neighbors through which they route to destination d.

The general duplicate reduction process is shown in Figure 7.5, where u and v

are merged into one node u. One can view the local change as merging the paths

of v into u, and this operation can be done consistently since they have the same

routing preference.

115

Chapter 7. Scalability Techniques for Analysis

Complementary Reduction In contrast to duplicate reduction, complementary

reduction captures the redundancy observed from the point of the view of the

neighbors of u and v. The intuition is that if all the neighbors route to destinations

through u and v in a consistent way, then u and v can be combined into one node

without changing the routing behavior of these neighbors. This is formalized as

follows.

Definition 13 (Complementary Condition). Two consistent and strongly adjacent nodes

u and v are complementary if, for any paths p and q in Pu ∪ Pv, and any nodes x and y

which are immediately downstream from u and v, the preference (x ◦ p, x ◦ q) is in Ep if

and only if (y ◦ p, y ◦ q) is in Ep.

Figure 7.6: Nodes u, v are merged by complementary reduction if their neighbors
x, y, . . . , z agree on how to route to destination d through them: After merging,
the route preference for any path pi, qj are set according to the consensus among
x, y, . . . , z.

The general complementary reduction process is illustrated in Figure 7.6 where

nodes u and v, whose neighbors x, y, . . . , z agree upon routes through them, are

merged into one node. The merging is more subtle than the duplicate one: (1)

The merged node w’s paths combine those from u and v, i.e. Pw is the union of Pu

and Pv; (2) The route preferences for the new node w are partly determined by the

116

7.1. Network Reduction

consensus of preferences of their neighbors (in cases where the preference could

not be derived from either u or v). That is, if u has path p (and not q) and v has path

q (and not p) then we set p to be preferred over q in w if and only if all upstream

neighbors x agree that x ◦ p is preferred over x ◦ q.

Example Consider the configuration in Figure 7.7, Here, there is an AS with three

border routers (3, 7 and 4) and two internal routers (4 and 6), as well as three ex-

ternal router nodes (1, 2, and the destination 0). The nodes 3 and 4 are comple-

mentary because their downstream neighbors (the internal nodes 5 and 6) agree

on the preference among paths to 0. After merging them, the new node is again

complementary to node 7. Following a second complementary reduction step, the

two internal nodes are both duplicate, and can also be eliminated.

Figure 7.7: Application of complementary and duplicate reduction to border and
internal routers, respectively.

Another example configuration is in Figure 7.8 (left), it consists of an AS con-

sists of 5 nodes 3,7,4 (border gateway routers) and 5,6 (internal routers), two ex-

ternal nodes 1,2, and the destination 0. Nodes 3,4 are complementary because

their downstream neighbors (i.e. internal nodes 5,6) agree upon the preference

among paths to 0. Therefore 3,4 can be merged. On the other hand, node 7 is

not complementary with 3 nor 4 because 5,6 have different preferences: while 5

prefers paths from 7 over that from 4, 6 prefers otherwise.

117

Chapter 7. Scalability Techniques for Analysis

Figure 7.8: One-step reduction of complementary nodes 3, 4

Figure 7.9: Two-steps reduction: when internal nodes have consensus on how to
rank paths from border gateway nodes, all the border gateway nodes can be re-
duced into one.

In a configuration with same topology but different route preference, as shown

in Figure 7.9 (left), all 3,4,7 are complementary nodes and can be reduced to

one in two steps, because 5,6 agree upon the same route preference. Note that,

after merging all border gateway routers, we are left with two internal routers

that are duplicate. This is due to the dual nature of duplicate and complementary

reduction, which we will revisit in details in Section 7.2.

118

7.2. Properties of Network Reduction

7.2 Properties of Network Reduction

This section establishes the three properties of network reduction: (1) The duality

property reveals that duplicate and complementary reduction are symmetric; (2)

The soundness property enables us to use the reduced configuration to study the

original one; (3) The local completeness property shows that reduction can be done

efficiently just by examining only “local configuration” — the two nodes and their

immediate neighbors, and that duplicate and complementary reductions form a

complete repertoire of such “local” methods; and (4) The confluence property re-

veals the role of merging order in reduction. In this section we present the defini-

tions and proof sketches. Our complete proofs are available in Appendix A.2.

Assume in the rest of the section that we are working with a given EPD in-

stance G = (P,Ev, Ep, s) on a graph (V,E, d), where u and v are two reducible

(duplicate or complementary) nodes. Write Nup for the upstream neighbors of u

and v, through which they route to d, and Ndown for the downstream neighbors

which route to the destination through u and v. Let G′ be an instance to which G

reduces by duplicate or complementary reductions.

7.2.1 Duality: Relating Duplicate and Complementary

Reduction

Theorem 14. a. If all the nodes in Nfrom can be merged into one node by (multiple steps

of) complementary reductions, then u and v must be duplicate. b. If all the nodes in Nto

can be merged into one node by (multiple steps of) duplicate reductions, then u and v must

be complementary.

Proof. Proof by definitions. The complete proof and its graph illustration are in

Appendix A.2.

The duality theorem reveals the symmetry between duplicate and complemen-

119

Chapter 7. Scalability Techniques for Analysis

tary reduction, as prefigured in Section 7.1.2 (where the border routers were com-

plementary but the internal, downstream routers were duplicate). It also implies

that if two nodes’ upstream (or downstream) neighbors can be reduced into one

node in our calculus, then these two nodes themselves can be further merged into

one.

7.2.2 Soundness

The main soundness result is that the reduced policy configuration has the same

safety and robustness properties as the original one, and so we can use the reduced

one to analyze the original.

Theorem 15. If G′ is safe then G is safe; and if G′ experiences route oscillation, then in

running G, there exists at least one execution trace that exhibits route oscillation.

According to Theorem 2, we only need to prove that the rewriting process pre-

serves the presence or absence of cycles in the configuration’s EPD representation,

as follows:

Lemma 1. The path digraph of G is acyclic if and only if the path digraph of G′ is acyclic.

Proof. For duplicate reduction, we prove rewriting preserves cyclicity by construct-

ing a cycle in G′ for any cycle c in G. The duplicate rewrite from G to G′ is defined

by merging duplicate nodes u and v, and the proof proceeds by case analysis of

whether any of the paths originating from u or v are on c. We prove rewriting pre-

serves acyclicity via the contrapositive: if G′ is cyclic then G is cyclic, which is also

proved by construction.

For complementary reduction, the proof is similar thanks to the EPD formal-

ization and the dual nature of the two rules.

We only provide a proof sketch here, the complete proof and its graph illustra-

tion are in Appendix A.2.2.

120

7.2. Properties of Network Reduction

7.2.3 Local Completeness

We first formalize the notion of “local reduction” and “local safety”, and then

prove that duplicate and complementary reductions are locally complete with re-

gard to preserving the presence or absence of EPD cycles. Intuitively, a reduction

rule applied to nodes u and v is “local”, if it only requires information from u, v

and their immediate neighbors (Γ−(u, v) and Γ+(u, v)) in order to test the reduction

precondition, and generate the configuration of the merged node.

Let Nrest stand for the nodes in V which are not within one hop of u or v. We

introduce a binary relation ∼u,v on EPDs, capturing the idea that they only differ

on the configuration of Nrest, by G ∼u,v G′ if and only if the following hold:

1. G and G′ are on graphs having the same set of nodes.

2. They have the same path configuration for u and v: so Pu = P ′u, Pv = P ′v, with

the same preference arcs; and they have the same set of transmission arcs to

and from u or v.

3. A preference arc (y ◦ p, y ◦ q) is in Ep if and only if it is in E ′p, for any y in

Γ+(u, v), and any p and q in Pu ∪ Pv.

Definition 16 (Local Safety). A network reduction rule on G by merging u and v is

locally safe, if it also preserves safety for any G′ with G′ ∼u,v G.

Theorem 17 (Local Completeness). If a network reduction rule that rewrites G by

merging u and v is locally safe, then it must be either duplicate or complementary reduc-

tion.

Proof. We use proof by contradiction to establish that if u and v are neither dupli-

cate nor complementary, then the reduction rule that merges them is not locally

safe. That is, there is some acyclic EPD G, where application of the merge results

in G′ being cyclic, but G ∼u,v G′.

By assumption, G is acyclic, so in particular u and v are not on a cycle (see the left

121

Chapter 7. Scalability Techniques for Analysis

of Figure 7.10). Consider an EPD where there is a series of transmission arcs from

a downstream neighbor of v to an upstream neighbor of u (illustrated from y2 to

x1). Merging u and v creates a cycle, shown in the right of Figure 7.10.

Figure 7.10: If u and v are neither duplicate nor complementary, merging them can
create a cycle.

Note that, while duplicate and complementary reduction are locally complete,

we do not exclude the existence of other safety preserving reduction that requires

checking policy configuration beyond u, v and their neighbors. That is, we do not

exclude less efficient algorithms for simplifying networks.

7.2.4 Confluence

This section discusses confluence properties of the reductions: we first prove du-

plicate reduction is confluent but complementary reduction is not.

Theorem 18. [Duplicate reduction is confluent] If, for a set of nodes V , any pair of nodes

u and v in V are duplicate, then V can be merged into one single node by multiple steps of

duplicate reduction, regardless of the reduction order.

Proof. By induction on the size of V .

The base case. |V | = 2 is trivial.

The induction step. For |V | = k + 1 > 2. Consider two nodes u and v in V , which

by assumption are duplicate. By merging them into a new node z, we can rewrite

122

7.2. Properties of Network Reduction

V to V ′ = W ∪ {z} where W = V \ {u, v}. By the induction hypothesis that any k

pair-wise duplicate nodes can be merged into one node, it is sufficient to prove that

V reduces to one node by showing that V ′ is pair-wise duplicate, since |V ′| = k. By

definition, in V ′, the subset W is pair-wise duplicate, so we only need to show that

z is duplicate with any w in W . Since u and v are duplicate with w, it must be the

case that z and w satisfy at least the duplicate conditions. Since Pz = Pu ∪ Pv, and

by the pair-wise duplicate definition we know that paths in Pu and Pw, in Pv and

Pw, and in Pu and Pv always form a unique total ordering. That is, for any three

paths p ∈ Pu, q ∈ Pv, and r ∈ Pw, we know how to set the preferences between any

two of them. Then there must be be a unique ordering between the three of them,

and so all paths from Pu ∪ Pv ∪ Pw are totally ordered.

On the other hand, complementary reductions are not confluent, counter-example

is shown Figure 7.11(a). Nodes u, v and w have the same set of downstream neigh-

bors. For example, node u has two paths p2 and p3, and there is some down-

stream preference p2 ≺ p3. All downstream neighbors have consensus on pref-

erence among paths from u and v (p2 ≺ p1 ≺ p3), and among paths from v and w

(p2 ≺ p1 ≺ p4). However, there is no consistent ranking for paths from u and w,

since some nodes prefer p3 over p4, and others prefer the reverse. While comple-

mentary reduction can be applied to either u and v (as in Figure 7.11(b)), or u and

w (as in Figure 7.11(c)), a further reduction step is not possible.

Finally, we show that duplicate reduction does not commute with complemen-

tary reduction, by exhibiting a counterexample. Consider the EPD in Figure 7.12,

where nodes u and v are duplicate, and v and w are complementary. If u and v are

merged into z through duplicate reduction, then this z is not reducible with w, due

to the lack of consensus on paths p3 and p4 among downstream neighbors.

123

Chapter 7. Scalability Techniques for Analysis

Figure 7.11: The EPD in (a) either rewrites to (b) or (c) depending on the order of
two complementary reductions (u, v or v, w)

Figure 7.12: Duplicate/complementary reductions do not commute

7.3 Evaluation

We have implemented a prototype of network reduction using Maude. With the

prototype, we demonstrate that network reduction is applicable on various net-

works, can be done efficiently at low overhead, and enables analysis of BGP con-

figurations that cannot otherwise be completed. Moreover, by comparing BGP

systems before and after reduction, we not only validate our reduction theory, but

also gain insights into redundancy and conflicts in network configurations. We

primarily selected Maude due to its existing libraries [85, 84] for modeling BGP

systems and performing safety analysis [85].

124

7.3. Evaluation

7.3.1 Network Generation

We present evaluation on a variety of networks ranging from synthetic networks

including configurations of Cisco guidelines [87], and random network topologies

generated using GT-ITM, to actual network topologies including CAIDA inter-AS

level topologies [4], and Rocketfuel router-level ISP topologies [68]. All experi-

ments are carried out on an Intel Xeon 2.33GHz CPU with 4GB memory, running

Linux 2.6.

Reduction on Synthetic Networks We evaluate network configurations that span

multiple ASes, consisting of both iBGP and eBGP configurations. We first develop

a model of a BGP system [60] in Maude, which consists of several ASes and routers

running the path-vector protocol, and exchanging routes based on their import,

export, and route selection policies. In particular, both the Cisco-Synthetic and GT-

ITM network policies are realized by the local preference and AS path attributes for

route selection, and import/export filtering for route exchange. In addition, we

develop Maude functions that generates the EPD model from a BGP system in

terms of topology and configuration attributes [60].

Cisco-Synthetic Network. To evaluate network reduction on well-designed, highly

structural policy configurations proposed by Cisco, we construct various synthetic

topologies combining full-mesh and reflection configurations according to these

guidelines [87].

An full mesh topology is simply a complete graph of the routers. Our reduc-

tion theory will collapse all of these routers into a single node, so long as they

implement the same policy. In route reflector configuration, the network graph is

partitioned into a set of clusters. Inter-cluster communication is done by special

routers configured as ‘reflectors’; other routers within a cluster are clients of the

local reflector(s). As depicted in Figure 7.13, the reflectors form a full-mesh core

graph, while the clients are only connected to their reflectors. However, the clus-

125

Chapter 7. Scalability Techniques for Analysis

Figure 7.13: Route reflector example: clients are border routers

ters can be interconnected by either a reflector or a client, and our experiment

includes both. Our experiments also include configurations with multiple redun-

dant reflectors in a single cluster, as shown in Figure 7.14.

Figure 7.14: Route reflector with POP

To understand how reduction helps in detecting route oscillation due to pol-

icy misconfigurations, we embed in the network three small substructures or gad-

gets [26]: namely the Good, Bad and Disagree gadgets that correspond to safe, per-

manent, and transient oscillation behaviors. These gadgets are embedded within

the transit ASes by configuration of the local preference attributes. There are also

several stub ASes, set up with full-mesh or reflection topologies (described below),

and employing a policy that prefers paths with fewer AS hops. (To break tie, an

older route is preferred over a newly generated one.)

GT-ITM networks. As an alternative dataset, we generate transit-stub topologies

using the GT-ITM topology generator [47]. Each transit-stub topology is param-

126

7.3. Evaluation

eterized by the number of transit domains, nodes within a transit domain, stubs

per transit nodes, and finally, nodes per stub. We increase the network size by in-

creasing all of these parameters. We configure routing policies as follows: transit

ASes are willing to carry all traffic, while each stub AS carries traffic only for itself.

Given the randomness of GT-ITM topology generation, this dataset are less struc-

tured compared to the earlier Cisco-Synthetic topologies, resulting in increased

variance in our results.

Reduction on Actual Topologies . We evaluate the effectiveness of our reduction

techniques on actual Internet topologies, obtained from the CAIDA Inter-AS level

topologies [4] and the Rocketfuel router-level ISP topologies [68]. In the CAIDA

and Rocketfuel dataset, we sample1 the dataset to derive network of sizes up to

185 and 128 respectively. For all the topology samples, we insert the same policy

configurations as our earlier Cisco-Synthetic and GT-ITM setups. We observe that

the reduction rate was high, achieving a rate of 75% and 69% on average respec-

tively. This suggests that in practice, there is significant configuration redundancy

in actual configurations, observable even for a sample of the network.

7.3.2 Reduction Performance

Table 7.1 summarizes the performance overhead of network reduction and analy-

sis on the two classes of input topologies for various network sizes. Cisco-Good-22

refers to a 22-node Cisco-Synthetic topology embedded with Good Gadgets. The

columns shown refer to:

• EPD Generation. Time to generate a EPD model from the input BGP configura-

tion.
1Our experimental dataset was limited by the physical memory constraints of storing the entire

EPD in memory. As future work, we plan to explore out-of-core implementations or the use of
multiple machines for executing a single reduction.

127

Chapter 7. Scalability Techniques for Analysis

Input Topology EPD
Time
(ms)

Reduction
Time
(ms)

Reduction
Time (ms,
Dup)

Reduction
Rate

Reduction
Rate
(Dup)

Analysis
Time
(ms)

Cisco-Good-22 3 74 22 68% 63% 429043
Cisco-Good-48 113 863 124 85% 84% 429043
Cisco-Good-87 5299 5665 649 92% 92% 429043

Cisco-Good-104 26567 10341 1814 93% 93% 429043
Cisco-Good-140 983300 32562 1814 95% 94% 429043

Cisco-Bad-22 5 96 23 69% 68% 80224
Cisco-Bad-49 112 935 119 86% 86% 80224
Cisco-Bad-87 5204 6075 465 92% 92% 80224

Cisco-Bad-104 25449 11258 725 93% 93% 80224
Cisco-Bad-121 177421 19741 1111 94% 94% 80224

Cisco-Disagree-23 2 30 14 78% 80% 184
Cisco-Disagree-53 40 352 73 90% 90% 184
Cisco-Disagree-70 182 901 164 93% 92% 184

Cisco-Disagree-103 3951 3641 469 95% 95% 184
Cisco-Disagree-122 20792 6430 810 96% 96% 184

GT-ITM-12 1 6 2 82% 81% 1
GT-ITM-38 7 24 9 94% 94% 1
GT-ITM-77 57 2279 68 95% 95% 1
GT-ITM-80 71 5241 84 90% 90% 2

GT-ITM-118 350 583143 455 86% 91% 2

Table 7.1: Summary of results across various input topologies. Averages across
multiple runs are presented.

• Reduction Time. Reduction time required to generate the reduced EPD from the

corresponding input EPD. Both reduction rules are applied, duplicate followed

by complementary.

• Reduction Time (Dup). Same as above, except that complementary reduction

is not applied. The difference allows us to compare the marginal overhead of

applying complementary reduction.

• Reduction Rate. Percentage of redundant nodes that are reduced. For example,

68% for Cisco-Good-22 means that the reduced EPD is only 1-68% = 32% of the

original network size.

128

7.3. Evaluation

• Reduction Rate (Dup). Rate of reduction achieved by only merging duplicate

nodes.

• Reduced Analysis. Time required to run the safety analysis, using our Maude

analyzer (Section 6) on the reduced EPD after reduction.

EPD Generation and Reduction. The overhead of reduction includes the time

required to generate the EPD representation of the policy configuration, and the

overhead of doing the reduction itself. Due to space constraints, we will show

performance graphs (derived from Table 7.1) for the the Cisco-Synthetic networks,

but discuss conclusions drawn from both input topology classes.

Figure 7.16 shows the EPD generation time (left) and reduction time (right) as

the number of nodes increases. We observe that the execution times are polynomial

(cubic/quadratic) with respect to network size. While the complexity bounds are

not ideal for scaling up, we note that the absolute numbers are easily within the

realm of practicality. For instance, on a single commodity PC, EPD and reduction

using our unoptimized Maude code requires only 16 minutes and 32 seconds (or

18 seconds with duplicate only reduction) respectively, for a network of 140 nodes

(Cisco-Good-140). While the EPD generation time dominates, this cost is amortized

across both reduction and analysis, since the subsequent analysis essentially uses

the same EPD representation.

In Cisco-Synthetic networks, the reduction overhead is dominated by the EPD

generation time. Note however that EPD generation is amortized across both re-

duction and analysis, since the subsequent analysis essentially uses the same EPD

representation. However, in GT-ITM networks, we observe that the actual reduc-

tion dominates over EPD generation, suggesting that a nosier (more randomize)

configuration increases reduction overhead. Among Cisco-Synthetic networks, we

observe that reduction times are increased on denser topologies with full meshes

within an AS, as compared to ASes that use route reflectors internally.

129

Chapter 7. Scalability Techniques for Analysis

20 40 60 80 100 120
Average Node Number

1

10

100

1000

10000

100000
Av

er
ag

e
EP

D
Ge

ne
ra

tio
n

Ti
m

e(
m

s)

Good Gadget

Bad Gadget

Disagree Gadget

Figure 7.15: EPD Generation time as number of nodes increases for the Cisco-
Synthetic topologies

Reduction rate. Table 7.1 shows that reduction is very effective at reducing the

size of the EPDs. In some cases, as the network sizes increases, the reduction can

reduce the original EPD by 95%. Figure 7.17 shows the reduction rates on the

Cisco-Synthetic networks. For networks beyond 40 nodes, the reduction rate is

above 80% and relatively stable. The effectiveness of reduction can be attributed to

the highly structured natures of these topologies, where the resulting reduced EPD

is often identical to the original embedded gadgets themselves. Another source of

irreducibility is if the BGP decision procedure falls through to attributes we do not

analyze.

The trends observed in GT-ITM are largely similar, though we note that since

these topologies are randomly generated, the reduction times and rates have higher

130

7.3. Evaluation

20 40 60 80 100 120
Average Node Number

1

10

100

1000

10000
Av

er
ag

e
Re

du
ct

io
n

Ti
m

e
(m

s)

Good Gadget

Bad Gadget

Disagree Gadget

Figure 7.16: Reduction time as number of nodes increases for the Cisco-Synthetic
topologies

variance across experimental runs. In Cisco-Synthetic networks, the reduction rate

exhibits smaller variance due to its regular structure. In general, when a network

becomes more hierarchical, (from GT-ITM to Cisco, from full-mesh to reflection),

reduction rate improves due to increased redundancies. Moreover, the reduction

overhead is relatively smaller (compared with the growth of network size). All in

all, our results imply that a well structured hierarchical network configuration is

easier to analyze in terms of reduction times. They are also more likely to result in

safer configurations that do not oscillate.

Duplicate vs Complementary. As we noted in Section 7.1.2, the complementary

condition is more complex. Our experimental results summarized in Table 7.1

131

Chapter 7. Scalability Techniques for Analysis

20 40 60 80 100 120
Average Node Number

0

20

40

60

80

100

Av
er

ag
e

Re
du

ct
io

n
Ra

te
 (%

)

Good Gadget

Bad Gadget

Disagree Gadget

Figure 7.17: Reduction rate as number of nodes increases for the Cisco-Synthetic
topologies.

validate that the overall reduction time tends to be dominated by complementary

reduction. While duplicate reduction only requires two nodes to agree upon what

they learned from their neighbors, complementary requires all the neighbors of

the two nodes to agree upon what are learnt from them. In addition, the marginal

benefit of performing complementary reduction on top of duplicate reduction is

often small. For instance, Cisco-Good-22 results in a 63% reduction compared to the

original EPD when only duplicate reduction is used, and 68% (i.e. an additional

5%) with both forms. While complementary reduction is less effective, we note

that in almost all cases, the EPD is further reduced by the reduction. Moreover, as

noted in Section 7.3.3, both forms of reduction allow us to shed light into the policy

configurations themselves.

132

7.3. Evaluation

Analysis time. To understand the benefits of performing safety analysis on the

reduced EPDs, we run analysis on the original EPD, as well as the reduced EPD.

The analysis is achieved by exhaustive search over all executions of the BGP sys-

tem using Maude [85]. Oscillation is detected if the same best route is selected

multiple times during protocol execution. Overall, we observe that after reduc-

tion, we are able to detect the same route oscillation pattern found in the original

network. While the original pre-reduction EPDs did not terminate within minutes,

all the post-reduction EPDs completed successfully, while requiring significantly

less time and state exploration. The Cisco-Synthetic topologies with Good Gadget

requires the longest analysis time, since these are safe instances, and hence require

enumerating all possible states before completing the analysis. In the case of un-

safe instances, the analysis time was quicker and terminated whenever an unsafe

execution trace was obtained.

In the GT-ITM networks, since they were less structured, not all of input topolo-

gies reduced to small gadgets (like the Cisco-Synthetic examples do) that can be an-

alyzed quickly. For instance, in GT-ITM-118, only 25% of the reduced EPDs were

analyzable, since the other reduced instances themselves still contain 20 nodes. We

note however that when these instances are analyzable, they are typically reduced

to small EPDs which can be analyzed quickly.

Overall, we observe that reduction is very effective at reducing the size of the

EPDs. In some cases, as the network sizes increases, the reduction can reduce

the original EPD by 95%. After reduction, we are able to detect the same route

oscillation pattern found in the original network. While the original pre-reduction

EPDs did not terminate within minutes, all the post-reduction EPDs completed

successfully, while requiring significantly less time and state exploration.

133

Chapter 7. Scalability Techniques for Analysis

Figure 7.18: In a Cisco-Synthetic network, duplicate reduction (left) merges core
(triangles), internal routers (ovals) and retains the border gateway nodes (high-
lighted squares) post-reduction; Complementary reduction (right) merges core,
border gateway routers and retains internal nodes (highlighted ovals).

7.3.3 Observations and Implications

In addition to performance benefits of feasible analysis, the process of reduction

allows us to gain new insights into policy configurations.

In Section 7.2, we prove that duplicate and complementary are dual concepts.

Figure 7.18 illustrates these effects, by comparing the EPDs before and after reduc-

tion, while only applying duplicate and complementary reductions respectively.

In these figures, triangles denote core network (transit) ASes (which includes the

embedded gadgets) in the Cisco-Synthetic networks, and transit AS nodes in GT-

ITM. Squares refer to reflectors in stub ASes, and all other nodes are drawn as

ovals. Nodes that remain after reduction are highlighted.

The duplicate reduction (left) removes some of the core network nodes, as well

as some internal nodes in stub networks (those which are not border routers) In

134

7.4. Summary

contrast, complementary reduction (right) removes an opposite family of nodes,

namely the border routers that connect each stub network to the core.

This duality reveals deeper insights into the role of redundancy in networks.

For core and iBGP internal nodes, duplicates arise because they are likely con-

figured to agree upon how to route to their neighboring BGP routers for a given

destination node. Such redundancies are typically eliminated by duplicate reduc-

tion. On the other hand, redundancies among border routers may be caused by

configuring one router as a backup for another, so that the internal nodes that

route through them view them in the same way. This falls into the definition of

complementary nodes.

7.4 Summary

We present network reduction, FVR’s scalability technique for efficiently analyz-

ing BGP configurations in a sound and automated fashion. Based on a unified EPD

(extended path digraph) model of policy configurations for both specification and

analysis, we develop two reduction rules that transform a policy configuration to

a smaller one by only local inspection. We proved that the two reduction rules

(duplicate and complementary) are dual to each other, and are sound and locally

complete with respect to the safety property. Our evaluation results not only show

the benefits of reduction by scaling up safety analysis of BGP systems, but also al-

low us to gain insights into structural redundancies among Internet routing policy

configurations.

135

Chapter 8

Conclusion

8.1 Summary

This thesis centers around the application of formal methods and programming

languages techniques that enable us to create network systems that are function-

ally correct, scalable, and easy to manage. In the setting of Border Gateway Pro-

tocol (BGP), the single de-facto inter-domain routing system, the control logic and

the “brain” that inter-connects the Internet, this thesis develops FVR, to bridge the

formal reasoning and the actual configurations.

FVR’s key enabling components and techniques are as follows.

• Verifying formal network models. To free the network operators from the

manual reasoning process, FVR automates analysis on network models, by

using existing formal tools.

• Generating faithful implementations from verified models. To enforce the

verified correctness properties in the actual implementations, FVR compiles

the verified model into property-preserving distributed implementations, by

leveraging recent advances in network programming framework.

• Verifying actual network systems. To go beyond network models, FVR

136

8.2. Future Directions

automatically analyzes real-world network systems, by combining formal

methods and network domain knowledge.

• Scalability techniques for analysis. To scale up formal analysis, FVR in-

cludes a novel scalability techniques – network reduction, by exploring the

networking problem space.

8.2 Future Directions

Building on my research experience in formal verification of today’s inter-domain

routing systems, an interesting future direction of research is to ease network man-

agement in software-defined networks (SDN) and virtual networks through the

use of formal synthesis.

In order to lower the barriers to innovation in the network, and to accommo-

date multi-tenants and the incremental deployments of new techniques, new net-

work techniques such as SDN and network virtualization are emerging. I envi-

sion that, these promising techniques, while still early in their stages, can benefit

from formal synthesis — a systematic way that shortens the development cycles of

new solutions, and guarantees formal correctness. In both scenarios for software-

defined network and virtual networks, a driving synthesis task is network migra-

tion.

8.2.1 Software-Defined Network

SDN aims for new solutions for future network architecture, leading to network

with flexibility (e.g. programmable), ease of management (e.g. reconfiguration, mi-

gration), rapid development (e.g. network virtualization), and multi-tenants (e.g.

network virtualization). The key enabling technique of SDN is to decouple control

137

Chapter 8. Conclusion

decision and actual forwarding — the large number of switches that perform for-

warding actions are configured by one (or multiple) separate logically centralized

controller through communication specified by the openflow protocol [55].

The killer application for SDN is network virtualization, a collection of promis-

ing techniques ranging from resource allocation to network slice/isolation, pro-

posed and deployed at different network layers. A common theme in network

virtualization is to allocate and map the physical network infrastructure (network

equipments) into virtual slices for end-to-end logical services. Hence, network

virtualization can be viewed as an effective way to accommodate multi-tenants,

granting them individual virtual slices on one single physical infrastructure.

8.2.2 Formal Synthesis for Software-Defined Networks

The new trends in software-defined networks, while directly impacting current

networking practice and research, also promise new opportunities for adopting

formal methods. The logical controller, which maintains a global view of the en-

tire network, is more amenable to formal methods in a distributed setting. More-

over, the openflow protocol, used by the controller and switches to communicate,

serves as a general abstraction for management and new applications deployment.

I envision that this “general abstraction layer” also provides the foundation for a

unified formal synthesis framework. I plan to develop a general formal synthesis

framework, and as proof of concept, to synthesize the control configurations that

realize a given high-level policy.

On the other, I envision that the multi-tenancy in virtual networks maps natu-

rally into compositional synthesis. The core of the methodology is to decompose

the multi-tenancy virtual network allocation/management task under “global” in-

frastructure constraints into (potentially overlapping) a collection of individual

synthesis tasks. Each individual synthesis task seeks to manage the virtual slice

138

8.2. Future Directions

for a particular tenant subjecting to the tenant’s “local” slice policy. These individ-

ual synthesis tasks, while solved in isolation with one another, when put together,

should also satisfy the global infrastructure constraints. Moreover, the modular-

ity nature of compositional synthesis also makes its application more flexible. For

example, the network operators may perform compositional synthesis for a partic-

ular tenant on a fraction of the network without affecting the rest of the tenants or

infrastructure.

Driving Task: Network Migration While targeting network management in software-

defined virtual networks, I plan to use network migration as the common driving

management task. Example network migration task includes moving a collection

of virtual node in virtual networks while conforming to the global infrastructure

constraints (e.g. substrate node capacity and link bandwidth), and updating a set

of configuration rules in software-defined networks while enforcing the high-level

security policy.

I choose network migration as the driving synthesis goal for two reasons: First,

network migration is an critical management to accommodate planned or unex-

pected changes; Second, there is a common theme in network migration that is

amenable to synthesis — figure out a “proper” ordering to perform a series of

atomic network updates. The ordering is crucial to maintain or satisfy network

constraints during all transient states in the migration. While software-defined vir-

tual networks ease each atomic updates, e.g. one move of virtual node, or update

of a single control rule, it is still an open question regarding the updating ordering.

To this end, I propose a formal synthesis approach that formulates migration as a

reachability problem from the initial network state to the target final one.

As a proof of concept, for configuration migration in software-defined net-

works, I will use model checkers to logically synthesize an update ordering that

preserves the high-level policy in all transient states. Moving forward, I will de-

139

Chapter 8. Conclusion

velop a compositional synthesis framework for migration in virtual networks. The

framework will enable network operators to manage various migration tasks in-

cluding (1) migrations that are restricted to a single network slice that does not

overlap with other slices, (2) migrations that occur in a slice that overlaps with

others, and (3) migrations that occur across network slices.

140

Appendix A

Appendix

A.1 Inconsistent Policy Configuration

Inconsistent policy preference within a node can occur, of the form p1 ≺ p2, · · · pk−1 ≺

pk, pi ≺ p1. Inconsistent policy preference at a single node can cause route oscilla-

tion and make the BGP system unsafe.

Figure A.1: A policy configuration, known to suffer oscillation due to inconsistent
configuration (cyclic preference arcs) within a single node.

An example unsafe configuration is shown on the left of Figure A.1, originally

presented in [21]. The right hand shows that its EPD contains a cycle, which is

illustrates the problematic preference configuration at node 1.

141

Appendix A. Appendix

The inconsistent policy preference is un-desirable and can be avoided by per-

forming local check within a node. Therefore, this paper focuses on unsafety

caused by conflicting policies across nodes and assumes the inconsistent policies

have been prevented.

A.2 Properties of Network Reduction

A.2.1 Duality

Theorem 19. a. If all the nodes in Nfrom can be merged into one node by (multiple steps

of) complementary reductions, then u and v must be duplicate. b. If all the nodes in Nto

can be merged into one node by (multiple steps of) duplicate reductions, then u and v must

be complementary.

Proof. Part a may be proved as shown in Figure A.2 (a). After all nodes in Nfrom

(left-most EPD) are merged to x (the middle EPD), nodes u and v are duplicate,

since they satisfy the criteria of Definition 12. Part b can be proved in the same

way.

Figure A.2: Relate duplicate and complementary reduction

A.2.2 Soundness

Our main soundness result is that the reductions preserve the presence or absence

of cycles in the EPD. From Theorem 7, this means that the reduced EPD has the

142

A.2. Properties of Network Reduction

same safety and robustness properties as the original. In the following, let G be

the original EPD, containing nodes u and v which are merged (by duplicate or

complementary reduction) to a single node w in the reduced EPD G′.

Figure A.3: Lemma 2: Case (a.2) and (b) None of Nfrom are on a cycle; Case (c.1)
Some of Nfrom and u, v are in the cycle, and at least one of those in Nfrom is in Γ−(u)
and Γ−(v); Case(c.2) Same as (c.1) except that no nodes in Nfrom are both in Γ−(u)
and Γ−(v).

Duplicate Reduction Preserves Cyclicity

Lemma 2. If G rewrites to G′ by duplicate reduction, then (1) G is cyclic implies G′ is

cyclic, and (2) G is acyclic implies G′ is acyclic.

Proof. For (1), we construct a cycle c′ in G′ for any cycle c in G. The duplicate

rewrite from G to G′ is defined on u,v and Nfrom, and the proof proceeds by case

analysis of whether any of these nodes are on c.

Case (a) None of the nodes in Nfrom are on c. Consider two sub-cases: (a.1) Nfrom =

∅when u and v have no common upstream neighbor. Regardless of whether u or v

is on c, a cycle c′ in G′ is constructed from c by the global rewrite c[u, v 7→ w]. (a.2)

Nfrom 6= ∅. We know u and v cannot be on c either, as then one of the upstream

nodes from Nfrom would be on c too. Merging u and v will not affect c, and c′ is

obtained by c[u, v 7→ w] (Figure A.3 (a)).

Case (b) Some of the nodes in Nfrom, but neither of u and v, are on c. As in case

(a.1), c′ can be constructed from c by c[u, v 7→ w].

143

Appendix A. Appendix

Case (c) A subset of Nfrom (call it X), and u and v, are on c. Consider two sub-

cases: (c.1) Some of Nfrom, u and v are on c, and at least one of those in Nfrom is an

upstream neighbor of both u and v. On the cycle, x must be the last element in X ,

shown in Figure A.3 (b). After merging u and v, they are replaced by w in c′. The

rest of the changes in c′ are obtained by c[u, v 7→ w]. Note that the presence of arcs

between u and v will not affect the result, represented by the line between u and v

in the figure. (c.2) Some of Nfrom, u and v are on c, and none of those in Nfrom are

upstream neighbors of both u and v. There must exist at least two nodes x and x′

in c, shown in Figure A.3 (c). After merging u and v, c is broken into two cycles.

Pick either for c′.

Part (2) is proved via the contrapositive: if G′ is cyclic then G is cyclic. The

proof is similar to that of (1): for any cycle c in G′, we construct a cycle c′ in G.

Consider the two cases:

Case (a) None of the nodes in Nfrom are on c. There are two sub-cases: (a.1) Nfrom =

∅. Regardless of whether w is on c, in the preimage, a cycle c′ must exist inGwhere

w replaces either u or v. (a.2) Nfrom 6= ∅. In this case, w cannot be on c. In the

preimage G, where w is split into u and v, the cycle is still present. (Note that we

only depict one possible splitting here.)

Case (b) Some x in Nfrom, but not w, is on c. The proof is similar to that of case (a.1).

Case (c) At least one x in Nfrom, and w, are on c. In the preimage, there are two

cycles, one through u and the other through v (but which are otherwise identical).

Complementary Reduction Preserves Cyclicity

Lemma 3. If G rewrites to G′ by complementary reduction, then G is cyclic implies G′ is

cyclic.

Proof. Proof by case analysis, for any cycle c in G, consider whether u, v are on it.

144

A.2. Properties of Network Reduction

Case (1) Neither u nor v is in the cycle. Merging u, v does not affect cycle, shown

on the left of Figure A.4.

Case (2) Either u or v is in the cycle. Then according to complementary reduction

definition, consider two sub-cases: (2.1) shown on the right of Figure A.4, if a

common downstream neighbor x of u, v is also on c, then after merging u, v, c

transforms to a new cycle c′ where u is replaced byw. (2.2) If none of u, v’s common

neighbor is on c, c′ can still be constructed similarly.

Case (3) Both u and v is in the cycle, as shown in Figure A.5. Regardless whether

some of u, v’s common downstream neighbor (the figure depicts the case where

such a common neighbor is x), after merging u, v, cycle c transforms to two cycles

in G′.

Figure A.4: Proof sketch of Lemma 3: Case 1 (left) and Case 2.1 (right).

Figure A.5: Proof sketch of Lemma 3: Case 3.

Lemma 4. If G rewrites to G′ by complementary reduction, then G is acyclic implies G′

is acyclic.

145

Appendix A. Appendix

Proof. Prove the dual statement: If G′ is cyclic, then G is also cyclic. Proof by case

analysis. For any c inG′, assumeG′ is obtained fromG by merging complementary

nodes u, v into w.

Case (1) If w is not on c, as shown in the left of Figure A.6. Obviously, reversing

the reduction by splitting w into u, v does not affect the cycle.

Case (2) If w is on the cycle of G′, as shown in Figure A.6. Then at least one of the

downstream neighbor x is also on c. Reversing the reduction by splitting u, v will

split c into two cycles in the original G.

Figure A.6: Proof sketch of Lemma 4, Case 1 (left), and Case 2 (right).

146

Bibliography

[1] FVR (Formally Verifiable Routing). http://netdb.cis.upenn.edu/

fvr/.

[2] RapidNet: A Declarative Toolkit for Rapid Network Simulation and Experi-

mentation. http://netdb.cis.upenn.edu/rapidnet/.

[3] The Coq Proof Assistant. http://coq.inria.fr.

[4] The IPv4 Routed /24 Topology Dataset. http://www.caida.org/data/

active/ipv4_routed_24_topology_dataset.xml.

[5] T. Bates, E. Chen, and R. Chandra. BGP Route Reflection: An Alternative to

Full Mesh Internal BGP (iBGP), RFC 4456, 2006.

[6] Matthew Caesar and Jennifer Rexford. BGP Routing Policies in ISP Networks.

In IEEE Network Magazine special issue on Interdomain Routing, 2005.

[7] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-

Oliet, José Meseguer, and Carolyn Talcott. All About Maude: A High-

Performance Logical Framework. Springer, 2007.

[8] G. Denker, J. Meseguer, and C. Talcott. Formal Specification and Analysis

of Active Networks and Communication Protocols: The Maude Experience.

DARPA Information Survivability Conference and Exposition,, 2000.

147

http://netdb.cis.upenn.edu/fvr/
http://netdb.cis.upenn.edu/fvr/
http://netdb.cis.upenn.edu/rapidnet/
http://coq.inria.fr
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml

Bibliography

[9] Xenofontas Dimitropoulos, Dmitri Krioukov, Marina Fomenkov, Bradley

Huffaker, Young Hyun, kc claffy, and George Riley. AS relationships: infer-

ence and validation. ACM SIGCOMM Computer Communication Review, 2007.

[10] DNV use cases for protocol verification. http://www.seas.upenn.edu/

˜anduo/dnv.html.

[11] Dawson Engler and Madanlal Musuvathi. Model-checking large network

protocol implementations. In USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI), 2004.

[12] Santiago Escobar, Catherine Meadows, and José Meseguer. Maude-NPA:

Cryptographic Protocol Analysis Modulo Equational Properties. In Founda-

tions of Security Analysis and Design V: FOSAD 2007/2008/2009 Tutorial Lectures,

pages 1–50, Berlin, Heidelberg, 2009. Springer-Verlag.

[13] Nick Feamster and Hari Balakrishnan. Towards a logic for wide-area Internet

routing. In Future Directions in Network Architecture (FDNA). ACM, 2003.

[14] Nick Feamster, Ramesh Johari, and Hari Balakrishnan. Implications of Au-

tonomy for the Expressiveness of Policy Routing. In Proceedings of ACM SIG-

COMM Conference on Data Communication, 2005.

[15] Anja Feldmann, Olaf Maennel, Z. Morley Mao, Arthur Berger, and Bruce

Maggs. Locating Internet routing instabilities. In Proceedings of ACM SIG-

COMM Conference on Data Communication, 2004.

[16] Ashley Flavel and Matthew Roughan. Stable and flexible iBGP. In Proceedings

of ACM SIGCOMM Conference on Data Communication, 2009.

[17] Ashley Flavel, Matthew Roughan, Nigel Bean, and Aman Shaikh. Where’s

Waldo? Practical Searches for Stability in iBGP. In Proc. International Confer-

ence on Network Protocols (ICNP), October 2008.

148

http://www.seas.upenn.edu/~anduo/dnv.html
http://www.seas.upenn.edu/~anduo/dnv.html

Bibliography

[18] Lixin Gao, Timothy G. Griffin, and Jennifer Rexford. Inherently Safe Backup

Routing with BGP. In Annual IEEE International Conference on Computer Com-

munications (INFOCOM), 2001.

[19] Lixin Gao and Jennifer Rexford. Stable Internet routing without global coor-

dination. In ACM SIGMETRICS, 2000.

[20] T. G. Griffin and G. Wilfong. A Safe Path Vector Protocol. In Annual IEEE

International Conference on Computer Communications (INFOCOM), 2000.

[21] Timothy Griffin and Gordon T. Wilfong. Analysis of the MED Oscillation

Problem in BGP. In IEEE International Conference on Network Protocols (ICNP),

2002.

[22] Timothy G. Griffin. The Stratified Shortest-Paths Problem. In COMSNETS,

2010.

[23] Timothy G. Griffin, Aaron Jaggard, and Vijay Ramachandran. Design Prin-

ciples of Policy Languages for Path Vector Protocols. In Proceedings of ACM

SIGCOMM Conference on Data Communication, 2003.

[24] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. The Stable Paths

Problem and Interdomain Routing. IEEE/ACM Transactions on Networking

(TON), 10:232–243, 2002.

[25] Timothy G. Griffin and Joao Luis Sobrinho. Metarouting. In Proceedings of

ACM SIGCOMM Conference on Data Communication, 2005.

[26] Timothy G. Griffin and Gordon Wilfong. An Analysis of BGP Convergence

Properties. In Proceedings of ACM SIGCOMM Conference on Data Communica-

tion, 1999.

149

Bibliography

[27] Timothy G. Griffin and Gordon Wilfong. On the Correctness of iBGP Config-

uration. In Proceedings of ACM SIGCOMM Conference on Data Communication,

2002.

[28] Alexander Gurney and Timothy G. Griffin. Neighbor-specific BGP: An alge-

braic exploration. In IEEE International Conference on Network Protocols (ICNP),

2010.

[29] Alexander J. T. Gurney. Construction and Verification of Routing Algebras. PhD

thesis. University of Cambridge, 2009.

[30] Alexander J. T. Gurney and Timothy G. Griffin. Lexicographic products in

metarouting. Network Protocols, IEEE International Conference on, 0:113–122,

2007.

[31] Alexander J. T. Gurney, Limin Jia, Anduo Wang, and Boon Thau Loo. Par-

tial Specification of Routing Configurations. In Workshop on Rigorous Protocol

Engineering (WRiPE), 2011.

[32] Andreas Haeberlen, Ioannis Avramopoulos, Jennifer Rexford, and Peter Dr-

uschel. NetReview: Detecting when interdomain routing goes wrong. In

USENIX Symposium on Networked Systems Design and Implementation (NSDI),

2009.

[33] Aaron D. Jaggard and Vijay Ramachandran. Relating two formal models of

path-vector routing. In Annual IEEE International Conference on Computer Com-

munications (INFOCOM), 2005.

[34] Charles Killian, James Anderson, Ranjit Jhala, and Amin Vahdat. Life, Death,

and the Critical Transition: Finding Liveness Bugs in Systems Code. In

USENIX Symposium on Networked Systems Design and Implementation (NSDI),

2007.

150

Bibliography

[35] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans

Kaashoek. The Click Modular Router. ACM TOCS, 18(3):263–297, 2000.

[36] Craig Labovitz, G.Robert Malan, and Farnam Jahanian. Internet Routing In-

stability. IEEE/ACM Transactions on Networking (TON), 1998.

[37] Boon Thau Loo. The Design and Implementation of Declarative Networks

(Ph.D. Dissertation). Technical Report UCB/EECS-2006-177, UC Berkeley,

2006.

[38] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion

Stoica. Declarative networking: language, execution and optimization. In Pro-

ceedings of the ACM SIGMOD Conference on Management of Data. ACM, 2006.

[39] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion

Stoica. Declarative Networking. In Communications of the ACM, 2009.

[40] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Tim-

othy Roscoe, and Ion Stoica. Implementing Declarative Overlays. In ACM

Symposium on Operating Systems Principles, 2005.

[41] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ramakrishnan.

Declarative Routing: Extensible Routing with Declarative Queries. In SIG-

COMM, 2005.

[42] Ratul Mahajan, David Wetherall, and Tom Anderson. Understanding BGP

misconfiguration. In Proceedings of ACM SIGCOMM Conference on Data Com-

munication, 2002.

[43] Maude. http://maude.cs.uiuc.edu/.

151

http://maude.cs.uiuc.edu/

Bibliography

[44] D. McPherson, V. Gill, D. Walton, and A. Retana. Border Gateway Protocol

(BGP) Persistent Route Oscillation Condition, RFC 3345, 2002.

[45] Mengmeng Liu, Nicholas Taylor, Wenchao Zhou, Zachary Ives, and Boon

Thau Loo. Recursive Computation of Regions and Connectivity in Networks.

In Proceedings of IEEE Conference on Data Engineering (ICDE), 2009.

[46] J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency.

Theoretical Computer Science, 96(1):73–155, 1992.

[47] Modeling Topology of Large Internetworks. http://www.cc.gatech.

edu/projects/gtitm/.

[48] Shivkumar C. Muthukumar, Xiaozhou Li, Changbin Liu, Joseph B. Kopena,

Mihai Oprea, Ricardo Correa, Boon Thau Loo, and Prithwish Basu.

RapidMesh: Declarative Toolkit for Rapid Experimentation of Wireless Mesh

Network. In WiNTECH, 2009.

[49] Shivkumar C. Muthukumar, Xiaozhou Li, Changbin Liu, Joseph B. Kopena,

Mihai Oprea, and Boon Thau Loo. Declarative Toolkit for Rapid Network

Protocol Simulation and Experimentation. In ACM SIGCOMM Conference on

Data Communication, Demonstration, 2009.

[50] N. Feamster and H. Balakrishnan. Detecting BGP Configuration Faults with

Static Analysis. In USENIX Symposium on Networked Systems Design and Im-

plementation (NSDI), 2005.

[51] Network Simulator 3. http://www.nsnam.org/.

[52] Vivek Nigam, Limin Jia, Boon Thau Loo, and Andre Scedrov. Maintaining

Distributed Logic Programs Incrementally. In ACM SIGPLAN Symposium on

Principles and Practice of Declarative Programming (PPDP), 2011.

152

http://www.cc.gatech.edu/projects/gtitm/
http://www.cc.gatech.edu/projects/gtitm/
http://www.nsnam.org/

Bibliography

[53] Vivek Nigam, Limin Jia, Boon Thau Loo, and Andrew Scedrov. Maintaining

Distributed Recursive Views Incremenetally. Technical Report MS-CIS-10-26,

CIS Dept. University of Pennsylvania, 2010.

[54] Peter Csaba Ölveczky and José Meseguer. Real-Time Maude: A Tool for Sim-

ulating and Analyzing Real-Time and Hybrid Systems. Electr. Notes Theor.

Comput. Sci., 36, 2000.

[55] OpenFlow. http://www.openflowswitch.org/.

[56] J. A. Navarro Perez, A. Rybalchenko, and A. Singh. Cardinality Abstrac-

tion for Declarative Networking Applications. In Computer Aided Verification

(CAV), 2009.

[57] Larry Peterson and Bruce Davie. Computer Networks: A Systems Approach,

Fourth Edition. Morgan-KaufMann, 2007.

[58] Suchitra Raman and Steven McCanne. A Model, Analysis, and Protocol

Framework for Soft State-Based Communication. In Proceedings of ACM SIG-

COMM Conference on Data Communication, pages 15–25, 1999.

[59] R. Raszuk, R. Fernando, K. Patel, D. McPherson, and K. Kumaki. Distribution

of diverse BGP paths. Internet-Draft, January 4, 2011.

[60] Y. Rekhter., T. Li., and S. Hares. A Border Gateway Protocol 4 (BGP-4), RFC

4271, 2006.

[61] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A.

Shah, and Amin Vahdat. Pip: Detecting the Unexpected in Distributed Sys-

tems. In USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2006.

153

http://www.openflowswitch.org/

Bibliography

[62] Sam Owre and S. Rajan and John M. Rushby and Natarajan Shankar and Man-

dayam K. Srivas. PVS: Combining Specification, Proof Checking, and Model

Checking. In Computer Aided Verification (CAV), 1996.

[63] Rahul Sami, Michael Schapira, and Aviv Zohar. Searching for Stability in

Interdomain Routing. In Annual IEEE International Conference on Computer

Communications (INFOCOM), 2009.

[64] Michael Schapira, Yaping Zhu, and Jennifer Rexford. Putting BGP on the

Right Path: A Case for Next-Hop Routing. In ACM SIGCOMM Hot Topics in

Networks, October 2010.

[65] Serge Abiteboul, et.al. Foundations of Databases. Addison-Wesley, 1995.

[66] João Luı́s Sobrinho. An Algebraic Theory of Dynamic Network Routing.

IEEE/ACM Transactions on Networking (TON), 13, October 2005.

[67] JoaoLuis Sobrinho. Network routing with path vector protocols: theory and

applications. In Proceedings of ACM SIGCOMM Conference on Data Communi-

cation, 2003.

[68] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring ISP topologies

with Rocketfuel. In Proceedings of ACM SIGCOMM Conference on Data Com-

munication, 2002.

[69] Lakshminarayanan Subramanian, Matthew Caesar, Cheng Tien Ee, Mark

Handley, Morley Mao, Scott Shenker, and Ion Stoica. HLP: A Next-generation

Interdomain Routing Protocol. In Proceedings of ACM SIGCOMM Conference

on Data Communication, 2005.

[70] Philip Taylor and Timothy Griffin. A Model of Configuration Languages for

Routing Protocols. In Workshop on Programmable Routers for Extensible Services

of Tomorrow (PRESTO), 2009.

154

Bibliography

[71] P. Traina, D. McPherson, and J. Scudder. Autonomous System Confederations

for BGP, RFC 5065, 2007.

[72] J. Uttaro, V. Van den Schrieck, P. Francois, R. Fragassi, A. Simpson, and P. Mo-

hapatra. Add paths guidelines. Internet-Draft, May 25, 2011.

[73] Mythili Vutukuru, Paul Valiant, Swastik Kopparty, and Hari Balakrishnan.

How to Construct a Correct and Scalable iBGP Configuration. In Annual IEEE

International Conference on Computer Communications (INFOCOM), Barcelona,

Spain, April 2006.

[74] D. Walton, D. Cook, A. Retana, and J. Scudder. BGP Persistent Route Oscilla-

tion Solution. Internet-Draft, March 14, 2011.

[75] Anduo Wang, Prithwish Basu, Boon Thau Loo, and Oleg Sokolsky. Declara-

tive Network Verification. University of Pennsylvania Department of Com-

puter and Information Science Technical Report No. MS-CIS-08-34, 2008.

[76] Anduo Wang, Prithwish Basu, Boon Thau Loo, and Oleg Sokolsky. Declar-

ative Network Verification. In International Symposium on Practical Aspects of

Declarative Languages (PADL), 2009.

[77] Anduo Wang, Alexander J. T. Gurney, Carolyn Talcott, Boon Thau Loo, and

Andre Scedrov. A Calculus of Policy-Based Routing Systems. In 31st An-

nual ACM SIGACT-SIGOPS Symposium on. Principles of Distributed Computing.,

2012. Brief announcement.

[78] Anduo Wang, Alexander J.T. Gurney, Xianglong Han, Jinyan Cao, Carolyn

Talcot, Boon Thau Loo, and Andre Scedrov. Reduction-based analysis of BGP

systems with BGPVerif. In ACM SIGCOMM Conference on Data Communica-

tion, Demonstration, 2012.

155

Bibliography

[79] Anduo Wang, Limin Jia, Changbin Liu, Boon Thau Loo, Oleg Sokolsky, and

Prithwish Basu. Formally Verifiable Networking. In ACM Workshop on Hot

Topics in Networks (HotNets-VIII), 2009.

[80] Anduo Wang, Limin Jia, Wenchao Zhou, Yiqing Ren, Boon Thau Loo, Jen-

nifer Rexford, Vivek Nigam, Andre Scedrov, and Carolyn Talcott. FSR: For-

mal Analysis and Implementation Toolkit for Safe Inter-domain Routing.

IEEE/ACM Transactions on Networking, 2012.

[81] Anduo Wang, Limin Jia, Wenchao Zhou, Yiqing Ren, Boon Thau, Loo Jen-

nifer Rexford, Vivek Nigam, Andre Scedrov, and Carolyn Talcott. FSR: For-

mal Analysis and Implementation Toolkit for Safe Inter-domain Routing. In

ACM SIGCOMM Conference on Data Communication, Demonstration, 2011.

[82] Anduo Wang and Boon Thau Loo. Formalizing Metarouting in PVS. In Auto-

mated Formal Methods workshop (AFM), co-located with 21st International Confer-

ence on Computer Aided Verification CAV, France, 2009.

[83] Anduo Wang, Boon Thau Loo, Changbin Liu, Oleg Sokolsky, and Prith-

wish Basu. A Theorem Proving Approach Towards Declarative Network-

ing. In 22nd International Conference on Theorem Proving in Higher Order Logics

(TPHOLs) emerging trends proceedings, 2009.

[84] Anduo Wang, Carolyn Talcott, Alexander J. T. Gurney, Boon Thau Loo, and

Andre Scedrov. Reduction-based Formal Analysis of BGP Instances. In 18th

International Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS), 2012.

[85] Anduo Wang, Carolyn Talcott, Limin Jia, Boon Thau Loo, and Andre Scedrov.

Analyzing BGP Instances in Maude. In IFIP International Conference on For-

mal Techniques for Distributed Systems joint international conference 13th Formal

156

Bibliography

Methods for Open Object-Based Distributed Systems 31nd Formal Techniques for

Networked and Distributed Systems (FMOODS/FORTE), 2011.

[86] Yices. http://yices.csl.sri.com/.

[87] Randy Zhang and Micah Bartell. BGP Design and Implementation. Cisco Press,

2003.

157

http://yices.csl.sri.com/

	Contents
	Introduction
	Motivation
	Research Challenges
	Contributions

	Background: BGP Anomalies and Formal Models
	Background on BGP
	BGP Models
	Stable Path Problem
	Routing Algebra

	Taxonomy of BGP Anomalies
	eBGP Anomaly: Policy Conflicts Across ASes
	iBGP Anomaly: Inconsistent Policies
	IGP-iBGP Anomaly

	Overview
	Verifying Formal Models
	Unified Policy Specification
	Extending Routing Algebra
	Converting Policy Guidelines to Algebra
	Converting SPP Instances to Algebra

	Automated Safety Analysis
	Strict Monotonicity Implies Safety
	Converting Policies to Yices Constraints
	Yices Examples

	Evaluation
	Pinpoint iBGP Configuration Errors
	eBGP Gadget Analysis

	Summary

	Synthesizing Faithful Implementations
	Background: Declarative Networking
	Generating Faithful NDlog Implementation
	Correctness of NDlog implementation
	Evaluation
	Convergence Time vs. Network Size
	Pinpoint iBGP Configuration Errors
	eBGP Gadget Analysis
	Alternative Routing Mechanism

	Summary

	Verifying Actual Routing Systems
	Detect Anomalies in Policy Configurations
	A Maude Library for BGP Systems
	Specifying BGP Instance
	Detecting Anomalies

	Verifying Declarative Networks
	Path-vector Protocol in Declarative Network
	Verifying Path-Vector Protocol
	Soft-state, Events and Network Dynamics
	Alternative Routing Mechanisms: Distance-Vector

	Evaluation
	Summary

	Scalability Techniques for Analysis
	Network Reduction
	Formal Model for Reduction
	Network Reduction

	Properties of Network Reduction
	Duality: Relating Duplicate and Complementary Reduction
	Soundness
	Local Completeness
	Confluence

	Evaluation
	Network Generation
	Reduction Performance
	Observations and Implications

	Summary

	Conclusion
	Summary
	Future Directions
	Software-Defined Network
	Formal Synthesis for Software-Defined Networks

	Appendix
	Inconsistent Policy Configuration
	Properties of Network Reduction
	Duality
	Soundness

	Bibliography

