& Penn

-

Harrison Duong?!

lUniversity of Pennsylvania

Trace-driven Analysis of an Internet-scale Cloud

Computing Platform

Boon Thau Loo!?

Godfrey Tan?

2Intel Corporation

—

* Cloud Computing is fast becoming a
popular paradigm to harnessing a
large computing capacity by many
different groups
» Large systems on an internet scale
« Systems that span multiple sites worldwide

with tens of thousands of compute servers

Flash crowds of high priority jobs decreases

latency of low priority jobs

* Usage: management of each pool of
compute servers can be independent

e Goal: Utilize global resources to
handle flash crowds

» Move jobs from one pool to others where
resources are available resulting in latency

_ improvements for lower priority job. y,

Introduction

* A study into areal world Internet-scale
Cloud Computing (ICCP) platform used
for compute intensive tasks

« Used for hundreds of millions of jobs per year

Virtual Pool Manager

- ppoolL O\ ppool2 ™

ICCP Local Site Architecture

e Hierarchical model of machines
» Jobs are submitted to a Virtual Pool and gets
distributed to physical pools
e Each physical pool manager
thousands of machines

¢ Usage model dictates jobs with various
levels of priorities
» Lower-priority jobs get suspended on
workstations when higher priority job
comes in

manages

» During high load, lower priority jobs are
suspended at local workstations while
global resources may be available to
execute the jobs.

« During high load periods, jobs end up getting
suspended for long periods of time.

» We explore and evaluate different
solutions within an event-driven agent
based simulator based on ICCP traces.

. 7

* Relative Improvement

« Comparison of restart delay at 5 mins and
the baseline

« Most low priority jobs (10%) see
improvements in completion time

« We see roughly a range of 20-40%
improvement on completion time of jobs
for the 90 percentile jobs

Relative Improvement In Completion Time

0 20 0 60 80 100
Percentile of Jobs

» Reassignment of Jobs

Running Jobs

12000

4

LT
5 ,NV H

Solution: Restart Jobs

» Restart suspended jobs on other
resources available
« Key problem here is when to restart the job and
where to restart the job
» Job Restart Delay specifies a threshold
of suspend time
* When suspend time of a job exceeds the restart

delay, the job is resubmitted and reassigned to
another machine

Purpose of this is to utilize available resources
to improve latency of low priority jobs while not
affecting high priority jobs

To understand when would be a a good
threshold, we studied different times to restart
the jobs.

Evaluation metrics: Number of suspended jobs,
Job completion time

» Experiments are conducted by varying

the restart delay

» Experimental period extends through two
weeks of measurements

» Strawman for comparison is based on ICCP
deployment where suspended jobs are not
restarted

 During this period, roughly 840,000 jobs
completed with about 35,000 jobs suspended
for the baseline.

ENTUT A,
=

2000

191520 196520 20520 208520 21520
Time

[oo o oo 90 st 0 s]

* Future Work

Running and Suspended Jobs on Pool #1

Suspended Jobs.

Bl

191520 190520 201520 20520 250 10520 e s AN Zusw

Time

11 Festan 100

[o i i I

Running and Suspended Jobs on Pool #2

« Job restart delay matters

= From the graphs above, between

restart delays, you see a difference

— Number of running jobs on Pool 1 are
similar, however restart off has more
suspended jobs

— Restart decreases lowers suspended jobs
by restarting them at other lower loaded
pools

— Dynamically
— Determine restart threshold based on real-time job
statistics
— Set limits on the number of times a particular job can
be restarted to avoid repeated job restarts.
— Implement a threshold to start execution of restart
policy
— Do not restart jobs if they have already executed
for a long period of time
— Study the effects of restarting jobs at pools on remote
sites as opposed to the local site

J

