
TROPIC: Transactional Resource Orchestration Platform In the Cloud

Changbin Liu∗ Yun Mao† Xu Chen† Mary F. Fernández†

Boon Thau Loo∗ Jacobus E. Van der Merwe†
∗University of Pennsylvania †AT&T Labs - Research

Abstract
Realizing Infrastructure-as-a-Service (IaaS) cloud re-
quires a control platform to orchestrate cloud re-
source provisioning, configuration, and decommission-
ing across a distributed set of diverse physical resources.
This orchestration is challenging due to the rapid growth
of data centers, high failure rate of commodity hard-
ware and the increasing sophistication of cloud services.
This paper presents the design and implementation of
TROPIC, a highly available, transactional resource or-
chestration platform for building IaaS cloud infrastruc-
tures. TROPIC’s orchestration procedures that manipu-
late physical resources are transactional, automatically
guaranteeing atomicity, consistency, isolation and dura-
bility of cloud operations. Through extensive evaluation
of our prototype implementation, we demonstrate that
TROPIC can meet production-scale cloud orchestration
demands, while maintaining our design goals of safety,
robustness, concurrency and high availability.

1 Introduction
The Infrastructure-as-a-Service (IaaS) cloud computing
model exemplified by Amazon EC2 [1] provides users
on-demand, near-instant access to a large pool of vir-
tual cloud resources such as virtual machines (VMs), vir-
tual block devices, and virtual private networks. The or-
chestrations of the virtual resources over physical hard-
ware, such as provisioning, configuration, and decom-
missioning, are exposed to the users as a service via pro-
grammable APIs. These APIs hide the complexity of the
underlying orchestration details.

From the cloud provider’s perspective, however, build-
ing a robust system to orchestrate cloud resources is chal-
lenging in terms of both scale and fault tolerance, as
shown by recent studies [8, 13] on the open-source cloud
platforms. First, today’s large data centers typically run
on the scale of over 10,000 machines based on commod-
ity hardware [15]. As such, software glitches and hard-
ware failures including power outages and network parti-
tions are the norm rather than the exception. This unreli-
ability not only impacts the virtual resources assigned to
users, but also the controllers that orchestrate the virtual
resources. Second, to orchestrate a massively concur-
rent, multi-tenant IaaS environment, the control logic is
inherently complex. In particular, any engineering and
service rule must be met while avoiding race conditions.
The postmortem from the EC2 outage in April 2011 [10]
anecdotally reinforces our arguments: A human error in

router configuration that violates an implicit service rule
and a race condition in storage provisioning contributed
significantly to the prolonged downtime.

To address these challenges, we propose TROPIC, a
transactional orchestration platform with a unified data
model that enables cloud providers to develop complex
cloud services with safety, concurrency, robustness and
high availability. Specifically, we make the following
contributions:
Transactional abstraction. In TROPIC, orchestration
procedures are executed as transactions with ACID prop-
erties (atomicity, consistency, isolation and durability).
Transactional semantics provide a clean abstraction to
cloud providers to ensure that, orchestrations that en-
counter unexpected errors have no effect, concurrent or-
chestrations do not violate safety rules or cause race con-
ditions, and committed orchestrations persist on physical
devices. As a result, service developers only need to fo-
cus on developing high level cloud services without wor-
rying about the complexities of accessing and managing
underlying volatile distributed resources.
Transaction processing. While TROPIC adopts standard
database transaction processing techniques such as write-
ahead-logging for atomicity and a hierarchical intention
locking scheme for concurrency control [20], we propose
a two-layer transaction processing stack to cope with the
unique challenges in the cloud. In the logical layer,
each transaction is analyzed for possible resource con-
tention and constraint violations prior to actual execu-
tion. This provides early detection of unsafe operations
without touching physical resources. Once deemed safe,
the transaction is then executed in the physical layer. In
the presence of resource failures, TROPIC provides rec-
onciliation mechanisms to handle cross-layer inconsis-
tencies.
High availability. TROPIC adopts a highly available de-
centralized architecture where all components are decou-
pled to avoid single point of failure. TROPIC runs mul-
tiple controllers, and provides efficient recovery mech-
anisms such that whenever the lead controller fails, an-
other controller can take its place without service disrup-
tion while maintaining transactional semantics.
Prototype implementation and evaluation. We have
implemented a complete TROPIC prototype deployed
on the ShadowNet testbed [14]. We extensively evalu-
ated our prototype using production-scale traces obtained
from EC2 and a large US hosting provider, demonstrat-
ing that TROPIC is able to manage cloud resources at a

1



large scale, while ensuring transactional semantics and
high availability.

2 TROPIC Overview
2.1 Design Goals
Our objective is to provide a cloud orchestration platform
at the scale of at least 100,000 cloud resources (e.g., VMs
and block devices) in one data center [5] with the follow-
ing characteristics.

First, the platform should guarantee that a cloud ser-
vice is safe, that is, the service’s orchestration procedures
do not violate any constraints. These constraints reflect
service and engineering rules in operation. If violated,
an illegal orchestration operation could disrupt cloud ser-
vices, e.g., spawning a VM on an overloaded compute
server, or migrating a VM to an incompatible hypervisor
or CPU with different instruction sets. Enforcing these
constraints is challenging as it often requires acquiring
the states of distributed resources and reasoning about
them holistically.

The second goal is that the platform should allow high
concurrency, i.e., performing simultaneous execution of
massive orchestration procedures safely, especially when
they access the same resources. For example, simultane-
ous spawning of two VMs on the same compute server
may exceed the physical memory limit of the server.
Concurrency control guarantees that simultaneous exe-
cution of orchestration procedures avoids race conditions
and permits the platform to scale.

Third, the platform should guarantee that a service is
robust in the presence of unexpected failures. Robust-
ness ensures that failures in an orchestration procedure
do not lead to undefined behavior or inconsistent states.
This goal is challenging because of high volatility in the
cloud environment, caused by software bugs, unstable
hardware, transient network disconnections and power
outages [9], etc. An orchestration procedure usually in-
volves multiple state changes of distributed resources,
any of which can fail due to volatility. For example,
spawning a VM has the following steps: clone a VM disk
image on a storage server; create a VM configuration
on a compute server; set up virtual local-area networks
(VLAN), software bridges, and firewalls for inter-VM
communication; finally start the VM. During the process,
an error at any step would prevent the client from obtain-
ing a working VM. Worse, the leftover configurations in
the compute, storage and network components become
orphans if not properly cleaned up, which may lead to
undefined behavior for future orchestrations.

Our last goal is to guarantee high availability of cloud
services and the platform that manages them. In the
era of web-scale applications, unavailability of the cloud
platform directly translates to loss of revenue and ser-
vice degradation for customers. Based on our estimation
of Amazon EC2’s rate of VM creation (see §6), a mere

inputQ

Compute Storage Network C
lo

u
d

 
re

so
u

rc
es

Lo
gi

ca
l l

ay
er

Orchestration requests

Operators End users

Controllers
(leader + followers)

Workers

P
h

ys
ic

al
la

ye
r

Replicated 
persistent 

storage

TR
O

P
IC

phyQ 

Devices & APIs

Stored procedures

ActionsQueries

Logical
data model Constraints

Actions
Physical

data model

C
lie

n
ts

API gateway

Figure 1: TROPIC architecture
10-minute service disruption can result in not fulfilling
1,400 VM spawn operations in a single region. Such
disruptions are unacceptable for mission-critical appli-
cations.

2.2 Architecture
To achieve these design goals, we present the TROPIC
platform, which performs transactional cloud resource
orchestrations. Transactions provide ACID semantics
which fit our design goals well: (i) Safety is enforced
by integrity constraints in order to achieve transactional
consistency; (ii) Concurrency is supported by a concur-
rency control algorithm that permits multiple transac-
tions to execute in parallel while preserving the transac-
tional behavior of isolation; (iii) Robustness is provided
by the atomicity and durability properties, which guar-
antee that committed orchestrations persist on physical
devices, while orchestrations that encounter unexpected
errors have no effect; (iv) High availability is enabled
by TROPIC’s adoption of a decentralized architecture of
replicated components.

Figure 1 depicts TROPIC’s architecture. The orches-
tration requests of clients are initiated either directly by
cloud operators (e.g., for maintenance), or indirectly by
the cloud end users via the API service gateway (e.g., to
spawn VMs). Between the clients and cloud resources,
TROPIC provides a two-layer orchestration stack with the
controllers at the logical layer and the workers at the
physical layer.

In the logical layer, the controllers provide a uni-
fied data model for representing the control states of
cloud resources and a domain-specific language for im-
plementing services. The controllers accept orches-
tration requests and invoke corresponding orchestration
operations—stored procedures written in TROPIC’s pro-

2



gramming language. These stored procedures are exe-
cuted as transactions with ACID semantics. In the phys-
ical layer, the workers straddles the border between the
controllers and the physical devices, and provide a phys-
ical data model of devices’ state. The logical data model
contains a replica of the physical data model with weak,
eventually consistent semantics.

Execution of orchestration operations in the logical
layer modifies the logical data model. In the process,
actions on physical devices are simulated in the logi-
cal layer. TROPIC guarantees safety by transitioning the
logical model transactionally from one consistent state
to another, only after checking that all relevant global
safety constraints are satisfied. Resource conflicts are
also checked to avoid race conditions. After the checks
in the logical layer, corresponding physical actions are
executed in the physical layer, invoking device-specific
APIs to actually manipulate the devices. Transactional
orchestration in both layers is described in detail in §3.

The separation of logical and physical layers is unique
in TROPIC and has several benefits. First, updating phys-
ical devices’ state can take a long time to complete. Sim-
ulating changes to physical devices in the logical layer
is more efficient than executing the changes directly at
the physical layer, especially if there are constraint vio-
lations or execution errors. Second, the separation facil-
itates rapid testing and debugging to explore system be-
havior and performance prior to deployment (§5). Third,
if the logical and physical models diverge (e.g., due to
physical resource volatility), useful work can still be
completed on consistent parts of the data model, and in
the meantime, repair and reload strategies (§4) are used
to reconcile any inconsistencies.

TROPIC adopts a semi-structured hierarchical data
model because it handles heterogeneity of cloud re-
sources well. Each tree node is an object representing
an instance of an entity. Each entity has associated ex-
pressions and procedures for inspecting and modifying
the entity: queries, actions, constraints, and stored proce-
dures. A query inspects system state in the logical layer
and provides read-only access to resources. An action
models an atomic state transition of a resource. Each ac-
tion is defined twice: in the physical layer, the action im-
plements the state transition by calling the device’s API,
and in the logical layer, the action simulates the state
transition on the logical data model. Preferably, an action
is associated with a corresponding undo action, which is
used to roll back a transaction (§3.1). Constraints spec-
ify service and engineering rules. Constraints support the
safety property, and TROPIC automatically enforces them
at runtime. Orchestration logic is specified as stored pro-
cedures, composed of queries, actions and other stored
procedures to orchestrate cloud resources. [11, 18] pro-
vide more details on TROPIC’s data model and program-

ming constructs.

2.3 High Availability
The TROPIC architecture is designed with redundancy
to avoid single point of failure. First, the components
of TROPIC are connected via distributed queue services
(inputQ and phyQ) that are highly available, which reduce
the dependency between the components. Second, the
persistent storage service is pluggable to any backend
system that offers replicated, atomic key-value storage
with strong consistency. We adopt ZooKeeper [16] to
implement the queues and the storage service (§5).

TROPIC runs multiple controller instances. One of
them is the leader, and the rest are followers, decided by
a quorum-based leader election algorithm [21]. Only the
leader serves transaction executions in the logical layer.
When it fails, the followers among themselves elect a
new leader, which then resumes execution after restoring
the most recent state of the previous leader. TROPIC con-
trollers only maintain state in local memory as a cached
copy for performance reasons and can be safely dis-
carded without impacting the correctness of transaction
execution. Whenever the lead controller fails at any pos-
sible failure points, the new leader elected among the fol-
lowers are able to restore the state of the controller at
failure time, using state from persistent storage. Due to
space constraint, we refer interested readers to the tech-
nical report [11] for details of the replicated state design
and the idempotent recovery protocol.

3 Transactional Orchestration
In this section, we describe TROPIC’s transaction exe-
cution model, and explain how TROPIC can meet our
design goals of safety, concurrency, and robustness,
through the enforcement of ACID properties in orches-
tration operations. Specifically, TROPIC makes the fol-
lowing guarantee: if the logical and physical layers are
consistent at the beginning of each transaction, ACID
properties can always be enforced in the logical layer.
Furthermore, in the absence of cross-layer inconsistency
caused by resource volatility, these properties are also
enforced in the physical layer. We defer the discussion
of inconsistency between the logical and physical layers
to §4, and focus on transaction processing here.

We first describe a typical life cycle of a transactional
orchestration operation, followed by the execution de-
tails in the logical and physical layers. Figure 2 depicts
the typical steps in executing a transaction t, from the
initial request submitted by a client until t is committed
or aborted.
Step 1: initialization. A client issues a transactional
orchestration as a call to a stored procedure. The trans-
action is initialized and enqueued to inputQ.
Step 2: acceptance. The controller (leader) accepts t by
dequeuing it from inputQ and enqueues it to todoQ.

3



Transaction 
request

Transaction 
request

Transaction 
request

inputQ

Controller (Logical layer)Clients

todoQ

Worker1

Worker2

Workerm

Workers (Physical layer)

Committed, Aborted, or Failed

phyQ

…

t = top()

…

Committed

Rollback
Release lock

Aborted / 
Failed

t Accepted
Initialized

Resource
conflict

Constraint
violation

schedule()

Runnable
lockManager

Release lock

❶Initialized

❷
❹

❺A

❺B

Rollback

t Aborted

❸A

t Deferred

❸B

t Started
Acquire lock

❸C

Figure 2: The execution flow of transactional orchestration in TROPIC.

Step 3: logical execution. The controller is responsible
for scheduling accepted transactions, making sure there
is no constraint violation or possible race condition, and
generating the execution logs for future undo and physi-
cal layer execution. All these steps happen in the logical
layer and are explained in §3.1.
Step 4: physical execution. Any transaction that has
gone through the controller is dequeued from phyQ and
executed in the physical layer by the physical workers
(§3.2). The execution result (e.g., committed or aborted)
is enqueued to inputQ to notify the controller.
Step 5: cleanup. The controller examines the execution
result received from the workers. If it is successful, the
transaction state is marked as committed and the locks
held by the transaction are released (5A). Otherwise, if
the transaction fails in Step 4, it is marked as aborted.
The controller then rolls back the logical layer and re-
leases corresponding locks (5B).

3.1 Logical Layer Execution
The logical layer execution logic is depicted as Steps
3A–3C in Figure 2. When a transaction t is scheduled
to execute (schedule() in the figure), it is first dequeued
from todoQ. The controller decides t is runnable, if and
only if: (i) It does not violate any safety constraints, and
(ii) It does not access or modify resources that are be-
ing used by outstanding transactions (race conditions).
If there is a safety violation, t is marked as aborted and
the controller rolls back the logical layer state (3A). If
there is a resource conflict, t is put back into the front of
todoQ for subsequent retry (3B). Otherwise, t is runnable.
The controller acquires the locks on related resources,
and the transaction state is changed to started before t is
enqueued into phyQ (3C).

3.1.1 Scheduling
In executing the schedule() operation, TROPIC adopts
a FIFO queue todoQ for fairness and simplicity. It de-
queues and schedules a new transaction whenever one of
the following conditions is met: (i) A transaction is in-
serted into an empty todoQ; (ii) A transaction is aborted
from its logical execution due to a constraint violation;
(iii) A transaction finishes its physical execution (either

committed or aborted); (iv) A transaction has been iden-
tified as runnable and is sent to phyQ. More sophisticated
scheduling policies are possible (e.g., an aggressive strat-
egy of scheduling transactions queuing behind the one
with conflicts). We leave a detailed study of alternative
scheduling policies as future work.
3.1.2 Simulation
Once scheduled, instead of directly executing on the
physical resources, a simulation step in the logical layer
is used to analyze the transaction for possible constraint
violations and infer the resources it reads and writes (i.e.,
queries and actions) for concurrency control. This pro-
vides early detection of unsafe operations without touch-
ing actual physical resources. Table 1 shows an example
transaction for spawning a VM. The transaction consists
of 5 actions, which are recorded in an execution log for
use in subsequent phases. In simulation, every action
within the transaction is applied sequentially, and when-
ever an action results in a constraint violation, the trans-
action is aborted. Modifications to the logical layer are
rolled back via the undo actions in the execution log.
3.1.3 Concurrency Control
TROPIC adopts a pessimistic concurrency-control algo-
rithm based on multi-granularity locking [20]. A lock
manager keeps track of the locks acquired by each trans-
action and detects possible conflicts. New transactions
are allowed to run only if their required locks do not con-
flict with existing locks used by outstanding transactions.

During its execution, a transaction t acquires write
(read) locks on resource objects used by individual ac-
tions (queries). For instance, in table 1, write locks are
acquired for each object identified by its resource path.
Once these objects and their corresponding lock types
are identified, the lock manager acquires read (R) or
write (W) locks on the actual object, and intention locks
(IR/IW)1 on the ancestors of this object.

Besides acquiring locks on the resources used by
transactions, additional locks are also acquired based on

1Intention locks are commonly used for managing concurrency in
hierarchical data structures. They summarize the locking status of de-
scendant nodes, and allow conflicts to be detected higher up the tree.
IW locks conflict with R/W locks, while IR locks conflict with W locks.

4



log record # resource object path action args undo action undo args
1 /storageRoot/storageHost cloneImage [imageTemplate, vmImage] removeImage [vmImage]
2 /storageRoot/storageHost exportImage [vmImage] unexportImage [vmImage]
3 /vmRoot/vmHost importImage [vmImage] unimportImage [vmImage]
4 /vmRoot/vmHost createVM [vmName, vmImage] removeVM [vmName]
5 /vmRoot/vmHost startVM [vmName] stopVM [vmName]

Table 1: An example of execution log for spawnVM
the constraints that impact transactions. When a write
operation is performed on an object, we find its high-
est ancestor that has constraints defined and acquire an R
lock on the node. As a result, all its descendants are read-
only to other concurrent transactions, hence preventing
others from making state changes that may break safety.

3.2 Physical Layer Execution
Once a transaction t is successfully executed in the log-
ical layer, it is ready for actual execution in the physical
layer. t is stored in phyQ and dequeued by one of the phys-
ical workers in Step 4. Executing t in the physical layer
involves replaying the execution log generated in the log-
ical layer simulation. If all the physical actions succeed,
t is returned as committed. If any action fails, the worker
selects the actions that have been successfully executed,
identifies the corresponding undo actions, and executes
them in reverse chronological order.

To guarantee atomicity of transactions, each action in
a transaction must have a corresponding undo action. In
our experience, most actions, such as resource allocation
and configuration are reversible. Once all undo actions
complete, the transaction is returned as aborted. Using
the execution log in Table 1 as example, suppose the first
four actions succeed, but the fifth one fails. TROPIC re-
versely executes the undo actions in the log, i.e., record
#4, #3, #2 and #1, to roll back the transaction. As a re-
sult, the VM configuration and cloned VM image are re-
moved.

If an error occurs during undo in physical execution2,
the transaction is returned as failed. The logical layer
is still rolled back. However, failures during undo may
result in cross-layer inconsistencies between the physical
and logical layers.

4 Handling Resource Volatility
In cloud environments, unexpected software and hard-
ware errors (e.g., power glitches, unresponsive servers,
misconfigurations, out-of-band access) may occur. We
explore mechanisms in TROPIC for dealing with this
volatility of resources during transaction execution.
TROPIC does not attempt to transparently tolerate fail-
ures of the volatile cloud resources. Instead, it makes the
best effort to maintain consistency between the logical

2We choose to stop executing undo actions in the physical layer
once an undo action reports an error, because they might have temporal
dependencies.

and the physical layer, by using two reconciliation mech-
anisms that achieve eventual consistency. In the event of
resource failures, TROPIC provides feedback to the cloud
operator, in the form of transaction aborts and timeouts,
and recovery is handled at higher layers, in accordance
with the end-to-end argument [23].

In order for a transaction to execute correctly, the log-
ical layer needs to reflect the latest state of the physi-
cal layer. However, achieving cross-layer consistency at
all times is improbable given the volatility of cloud re-
sources. To illustrate, consider three scenarios in which
inconsistencies occur: (i) During the physical layer exe-
cution, an error triggers the rollback procedure, and the
execution of an undo action fails. The transaction is
terminated as failed, with the logical layer fully rolled
back and the physical layer partially rolled back; (ii)
An intentional out-of-band change is made to a physi-
cal device. For example, an operator may add or de-
commission a physical resource, or she may log in to
a device directly and change its state via the CLI with-
out using TROPIC; (iii) An unintentional crash or system
malfunction changes the resource’s physical state beyond
TROPIC’s knowledge. At the scale of large data centers,
these events are the norm rather than the exception, and
TROPIC must be able to gracefully handle the resulting
inconsistencies.

TROPIC adopts an eventual consistency model for rec-
onciliation, which allows the two layers to go out of sync
in between reconciliation operations. Inconsistency can
be automatically identified when a physical action fails
in a transaction, or can be detected by periodically com-
paring the data between the two layers. Once an incon-
sistency is detected on a node in the data model tree,
the node and its descendants are marked inconsistent to
deny further transactions until the inconsistency is rec-
onciled. Any transactions involving inconsistent data are
also aborted with rollback.

The two mechanisms for reconciliation are as follows:
Physical to logical synchronization (reload). States
of specified devices are first retrieved from the physi-
cal layer and then used to replace the current ones in
the logical layer. Similar to normal transaction execu-
tion, the controller ensures reload is concurrently exe-
cuted with outstanding transactions while not violating
any constraints. If any constraints are violated, reload is
aborted.
Logical to physical synchronization (repair). Physi-
cal states of devices are also first retrieved. TROPIC then

5



compares the two set of states in the logical and phys-
ical layers, and performs corresponding pre-defined ac-
tions to repair physical devices. For instance, suppose a
compute server is unexpectedly rebooted, resulting in all
its running VMs being powered off. By comparing the
VM states in two layers — one “running” and the other
“stopped”, repair will execute multiple startVM actions
to start the powered-off VMs. After repair the logical
layer is intact and hence no constraint violation should
be found in this process.

In the event that reload and repair operations do not
succeed due to hardware failures, the failed resources
are marked as unusable, and future transactions are pre-
vented from using them.

Given that repair and reload operations are expensive,
we do not run them at the beginning of each transaction.
Instead, repair is periodically invoked at a frequency
customized by cloud operators, and reload is called when
devices are added to or decommissioned from TROPIC.

Another source of error induced by resource volatility
is the indefinite stalling of a transaction. This prevents
the transaction from completing (either to a committed,
aborted, or failed state) within a bounded period of time.
To handle unresponsive transactions, TROPIC provides
two mechanisms, by sending either TERM or KILL sig-
nals3. A TERM signal aborts the outstanding transaction
via rollback with graceful cleanups at both the logical
and physical layer (e.g., undo actions, lock releasing) so
that cross-layer consistency is maintained. A KILL signal
makes the controller always immediately abort the trans-
action, but only in the logical layer. Any resulting cross-
layer inconsistencies are then reconciled using repair.

5 Implementation
We have implemented a prototype of TROPIC. We briefly
describe some of our implementation choices and outline
a cloud service developed based on top of TROPIC.

We have chosen Python as our implementation lan-
guage and the prototype of TROPIC is implemented in
11K lines of code. We use ZooKeeper [16] as the dis-
tributed coordinator to implement leader election and
distributed queues (inputQ and phyQ). ZooKeeper pro-
vides highly available coordination services to large-
scale distributed systems. We also unconventionally use
ZooKeeper as a highly available persistent storage en-
gine for storing the transaction states and logs.

TROPIC offers a logical-only mode to simplify test-
ing and debugging. In this mode, we bypass the physi-
cal resource API calls in the workers, and instead focus
on various scenarios in the logical layer execution. In
this mode, we can easily plug in arbitrary configurable
resource types and quantities to study their possible im-

3Analogous to SIGTERM and SIGKILL signals to a POSIX-
compliant process.

pact on TROPIC. Our experiments in §6 heavily use the
logical-only mode to explore TROPIC performance under
large scale of diverse cloud resources.

Using TROPIC we have developed a cloud service
named TCloud. TCloud is deployed in a single data cen-
ter and has features similar to Amazon EC2. It allows
end users to spawn new VMs from disk images, and start,
stop, and destroy these VMs. The operator can migrate
VMs between hosts to balance or consolidate workloads.
The data center provides storage servers that export block
devices via the network, compute servers that allocate
VMs, and a programmable switch layer with VLAN fea-
tures. Specifically, we use GNBD [4] and DRBD [22]
over the Linux logical volume manager (LVM) as stor-
age resources, Xen [12] as compute resources, and Ju-
niper routers as network resources.

6 Evaluation
In this section, we present the evaluation of our TROPIC
prototype implementation. We emulate cloud orchestra-
tion workloads using traces from two production sys-
tems. The first trace (EC2) is inferred from Amazon EC2
and is representative of the rate at which VMs are created
within a large scale cloud environment. We use this trace
to evaluate the performance of TROPIC, in particular its
ability to achieve the design goal of high concurrency, as
defined in terms of metrics such as transaction overhead,
latency and throughput.

The EC2 trace is limited to VM spawn operations,
which does not capture all the complexities involved in
cloud orchestration. We therefore make use of a second
workload (hosting) derived from the traces obtained from
a large US hosting provider. We use this second work-
load to evaluate the safety, robustness and high availabil-
ity aspects of TROPIC.

Throughout the experiments, we run three TROPIC
controllers, instantiated on three physical machines.
Each machine has 32GB memory with 8-core 3.0GHz
Intel Xeon E5450 CPU processors and runs CentOS
Linux 5.5, interconnected via Gigabit Ethernet. TROPIC
runs one physical worker with multiple threads4 which
co-locates with one of the physical machines. As the
distributed coordinator and replicated persistent storage,
three ZooKeeper instances reside on the same set of
physical machines.

6.1 Performance
Workload. The EC2 workload used to evaluate the per-
formance of TROPIC was collected in July 2011. We
measured the number of newly launched VM instances
over a week period in the US-east region using the
methodology described by RightScale [2]. Specifically,
we created a VM instance every 60 seconds and recorded

4TROPIC can of course run multiple workers, but doing so does not
alter the conclusions drawn from our evaluation results.

6



the VM ID. The ID (after decoding) is unique and the dis-
tance between any two consecutive IDs reflects the quan-
tity of VMs spawned in between. Figure 3 shows the
measured workload in a 1-hour period. The workload
in total contains 8417 VM spawnings, with an average
of 2.34 per second and a peak of 14.0 at 0.8 hours. We
choose this time window because it has a typical average
VM launch rate (2 VMs/s) and also the highest peak rate
during the week we observed.
Controller CPU overhead. Next we use the 1-hour EC2
trace to inject the synthetic workload in TROPIC, by sub-
mitting VM spawn transactions every second. To simu-
late a large-scale cloud environment, we run TROPIC in
the logical-only mode (§5) with 12,500 compute servers.
Each server has 8 VMs, totaling 100,000 VMs (our tar-
get scale). 3,125 storage servers are used to hold the VM
images, i.e., 4 compute servers share a storage server. To
explore the behavior of TROPIC under higher load, we
further multiply the EC2 workload from 2 times (2×)
to 5 times (5×), and measure the CPU utilization of the
controller (leader) as shown in Figure 4.

We observe that the CPU utilization is synchronized
with the workloads. As the workloads scale up, CPU uti-
lization rises linearly. However, even during the peak
load of 5× EC2 workload, the CPU only reaches as
high as 54.0%. Additionally, we measure the memory
footprint of TROPIC controller. It is relatively stable, at
around 5.4% (of 32GB) for all workloads. We note that
the dominant factor contributing to the memory footprint
is the quantity of all managed cloud resources, instead
of the active workload. After 0.8 hours the CPU peaks
of 4× and 5× EC2 workloads retain longer than the
workload peak. It is because during the period TROPIC
reached the limit of transaction throughput, and hence
experienced delays in processing each transaction.
Transaction latency. Figure 5 shows a detailed break-
down of per-transaction latency results, in the form of
a cumulative distribution function (CDF). We define the
transaction latency as the time duration from the submis-
sion of a transaction until it is successfully committed or
aborted. In Figure 5 the median latency is less than 1s
for all the workloads. For 1× workload, the latency is
almost negligible. As expected, 4× and 5× workloads
have higher transaction latency, mostly as a result of the
workload spike from 0.8 to 1.0 hours.

We further investigate the factors affecting perfor-
mance bottlenecks of TROPIC under high load. Our ex-
perimental results [11] indicate that the dominant over-
head comes from ZooKeeper API calls (I/O) instead of
TROPIC logical layer simulation (CPU). To analyze scal-
ability, we measure transaction throughput as the quan-
tity of resources and transactions (load input) scales
up. Our results demonstrate that TROPIC transaction
throughput stays constant as the number of resources

and transactions increases. This is due in part to our
efficient implementation and optimizations. Moreover
most of the factors affecting throughput (e.g., locking
overhead, ZooKeeper queue management) incur constant
costs. The main bottleneck of TROPIC lies instead with
physical memory used to store the data model. Given our
specific hardware, the maximum resource scale TROPIC
can handle is 2 million VMs.

6.2 Safety
To evaluate the design goals of safety, robustness and
high availability of TROPIC, we use the hosting workload
derived from a data center trace obtained from a large US
hosting provider. Unlike the EC2 workload, it involves
a more complex set of orchestration procedures. From
the trace, we generate the hosting workload consisting of
VM Spawn, Start, Stop and Migrate operations to mimic
a realistic TCloud deployment (§5).

We first use the hosting workload to evaluate the over-
head of enforcing safety constraints in TROPIC. We con-
sider two representative constraints featured in TCloud:
(1) VM type constraint: VM migration cannot be per-
formed across hosts running different hypervisors; and
(2) VM memory constraint: aggregated VMs memory
cannot exceed the host’s capacity. We focus primarily
on per-transaction CPU overhead, since the bulk of con-
straint checking overhead happens at the logical layer.
Our experimental results [11] show the logical layer
overhead incurred in checking the above constraints is
reasonably low (less than 10ms).

6.3 Robustness
In order to evaluate TROPIC’s performance in guaran-
teeing robustness via transaction atomicity, we carry out
two error scenarios, drawn from our experiences in de-
ploying TCloud: VM spawning error and VM migration
error. In our experiment, we measure the logical layer
overhead of TROPIC in performing transaction rollback
in the presence of the previous two errors. To emulate
the errors, we execute TROPIC with the hosting work-
load, and randomly raise exceptions in the last step of
VM spawn and migrate. In all our experiments [11], on
a per-transaction basis, the logical layer operations com-
plete in less than 9ms. This demonstrates that TROPIC is
efficient at handling transaction errors and rollback.

6.4 High Availability
Finally, we evaluate the ability of TROPIC to recover in
the presence of controller failures. We deploy TCloud
running the hosting workload on the ShadowNet testbed
using machines geographically dispersed across the US.
Our results [11] demonstrate that TROPIC can recover
quickly (within 12.5 seconds) to resume processing on-
going transactions in the presence of controller failures.
No transaction submitted during the recovery time is lost.
The recovery time is dominated by ZooKeeper’s failure

7



0.0 0.2 0.4 0.6 0.8 1.0
Time (h)

0

2

4

6

8

10

12

14

V
M

s 
la

u
n
ch

e
d
 p

e
r 

se
co

n
d

Figure 3: VMs launched per sec-
ond (EC2 workload).

0.0 0.2 0.4 0.6 0.8 1.0
Time (h)

0

10

20

30

40

50

60

C
P
U

 u
ti

liz
a
ti

o
n
 (

%
)

1x EC2

2x EC2

3x EC2

4x EC2

5x EC2

Figure 4: Controller CPU utiliza-
tion (EC2 workload).

10-2 10-1 100 101 102 103

Transaction latency (s)

0

20

40

60

80

100

C
D

F

1x EC2

2x EC2

3x EC2

4x EC2

5x EC2

Figure 5: CDF of transaction la-
tency (EC2 workload).

detection time as the heart-beat interval, suggesting that
the recovery time can be reduced by adopting a more ag-
gressive failure detection in ZooKeeper.

7 Related Work
Besides proprietary cloud orchestration platforms from
commercial IaaS providers such as Amazon EC2 [1],
open-source cloud control platforms, such as Open-
Stack [6] and Eucalyptus [3], have predefined cloud ser-
vice models embedded in their implementations. How-
ever, none of them provide transactional resource man-
agement at the granularity of cloud operations. In con-
trast, TROPIC is not simply a cloud service, but a general-
purpose programming platform to build safe, robust, and
highly available cloud services.

Transaction processing has been studied in database
area for decades [20]. As a programming paradigm, it
has also received more attentions recently from the sys-
tems community. These include transactional OS sys-
tem call APIs [19], file systems [25], and user-level li-
brary [24] for lightweight data management. Puppet [7]
is a data center automation and configuration manage-
ment framework. Puppet has a transactional layer, but
not in the sense of enforcing ACID properties. Autopi-
lot [17] is a data center software management infrastruc-
ture for automating software provisioning, monitoring
and deployment. It has repair actions similar to TROPIC,
but it does not provide a transactional programming in-
terface. TROPIC borrows ideas from these prior work,
such as undo log based rollback, multi-granularity lock-
ing. However, the transactional orchestration in TROPIC
is unique, in dealing with the logical and physical layer
separation and volatile nature of cloud resources, with a
“safety-first” mindset.

8 Conclusion
This paper presents TROPIC, a transactional framework
for service providers to safely and efficiently orchestrate
cloud resources. Our experience in building cloud ser-
vices on top of TROPIC demonstrates its usability in
handling errors, enforcing constraints, and eliminating
race conditions. The evaluation of the TROPIC proto-
type shows its capability to support workload with high

degrees of concurrency, provide high availability with
low overhead, and ensure the transactional semantics of
cloud operations.

9 Acknowledgments
This work is supported in part by NSF grants CCF-
0820208, NSF CNS-0845552, and NSF CNS-1040672.

References
[1] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/.
[2] Amazon Usage Estimates. http://bit.ly/poIkqk.
[3] Eucalyptus Cloud Computing Infrastructure. http://eucalyptus.com/.
[4] GNBD Project. http://sourceware.org/cluster/gnbd/.
[5] How Big is Amazon’s EC2? http://bit.ly/rjy4Zp.
[6] OpenStack. http://openstack.org/.
[7] Puppet: A Data Center Automation Solution. http://puppetlabs.com.
[8] Running 200 VM instances on OpenStack Compute. http://bit.ly/
n7LyMx.

[9] Summary of the Amazon EC2, Amazon EBS, and Amazon RDS Service
Event in the EU West Region. http://bit.ly/r7aXXR.

[10] Summary of the Amazon EC2 and Amazon RDS Service Disruption in the
US East Region. http://bit.ly/jFdKAR.

[11] TROPIC: Transactional Resource Orchestration Platform In the Cloud.
Extended Technical Report. AT&T TechDoc TD-100446. http://www.
netdb.cis.upenn.edu/papers/tropic_tr.pdf.

[12] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP,
2003.

[13] R. Bradshaw and P. T. Zbiegiel. Experiences with eucalyptus: deploying
an open source cloud. In LISA, 2010.

[14] X. Chen, Z. M. Mao, and J. Van der Merwe. ShadowNet: A Platform for
Rapid and Safe Network Evolution. In Proc. USENIX ATC, 2009.

[15] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud:
research problems in data center networks. SIGCOMM Comput. Commun.
Rev., 39:68–73, 2008.

[16] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper: wait-free
coordination for internet-scale systems. In USENIX ATC, 2010.

[17] M. Isard. Autopilot: automatic data center management. SIGOPS Oper.
Syst. Rev., 41(2):60–67, 2007.

[18] C. Liu, Y. Mao, J. Van der Merwe, and M. Fernandez. Cloud Resource
Orchestration: A Data-Centric Approach. In CIDR, pages 1–8, 2011.

[19] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and E. Witchel.
Operating system transactions. In SOSP, 2009.

[20] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-
Hill, third edition, 2002.

[21] B. Reed and F. P. Junqueira. A simple totally ordered broadcast protocol.
In LADIS, pages 2:1–2:6, 2008.

[22] P. Reisner. DRBD - Distributed Replication Block Device. In 9th Interna-
tional Linux System Technology Conference, 2002.

[23] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems, November 1984.

[24] R. Sears and E. Brewer. Stasis: Flexible transactional storage. In OSDI,
2006.

[25] R. P. Spillane, S. Gaikwad, M. Chinni, E. Zadok, and C. P. Wright. Enabling
transactional file access via lightweight kernel extensions. In FAST, 2009.

8

http://aws.amazon.com/ec2/
http://bit.ly/poIkqk
http://eucalyptus.com/
http://sourceware.org/cluster/gnbd/
http://bit.ly/rjy4Zp
http://openstack.org/
http://puppetlabs.com
http://bit.ly/n7LyMx
http://bit.ly/n7LyMx
http://bit.ly/r7aXXR
http://bit.ly/jFdKAR
http://www.netdb.cis.upenn.edu/papers/tropic_tr.pdf
http://www.netdb.cis.upenn.edu/papers/tropic_tr.pdf

	Introduction
	Tropic Overview
	Design Goals
	Architecture
	High Availability

	Transactional Orchestration
	Logical Layer Execution
	Scheduling
	Simulation
	Concurrency Control

	Physical Layer Execution

	Handling Resource Volatility
	Implementation
	Evaluation
	Performance
	Safety
	Robustness
	High Availability

	Related Work
	Conclusion
	Acknowledgments

