
Reduction-based Formal Analysis of BGP Instances

Anduo Wang1 Carolyn Talcott2 Alexander J. T. Gurney1

Boon Thau Loo1 Andre Scedrov1

University of Pennsylvania SRI International
{anduo,boonloo}@cis.upenn.edu clt@csl.sri.com
agurney@seas.upenn.edu scedrov@math.upenn.edu

Abstract. Today’s Internet interdomain routing protocol, the Border Gateway
Protocol (BGP), is increasingly complicated and fragile due to policy misconfig-
urations by individual autonomous systems (ASes). These misconfigurations are
often difficult to manually diagnose beyond a small number of nodes due to the
state explosion problem. To aid the diagnosis of potential anomalies, researchers
have developed various formal models and analysis tools. However, these tech-
niques do not scale well or do not cover the full set of anomalies. Current tech-
niques use oversimplified BGP models that capture either anomalies within or
across ASes, but not the interactions between the two. To address these limita-
tions, we propose a novel approach that reduces network size prior to analysis,
while preserving crucial BGP correctness properties. Using Maude, we have de-
veloped a toolkit that takes as input a network instance consisting of ASes and
their policy configurations, and then performs formal analysis on the reduced
instance for safety (protocol convergence). Our results show that our reduction-
based analysis allows us to analyze significantly larger network instances at low
reduction overhead.

1 Introduction
The Internet today runs on a complex routing protocol called the Border Gateway Pro-
tocol or BGP for short. BGP enables Internet Service Providers (ISPs) worldwide to
exchange reachability information to destinations over the Internet, and simultaneously,
each ISP acts as an autonomous system that imposes its own import and export policies
on route advertisements exchanged with its neighbors.

Over the past few years, there has been a growing consensus on the complexity and
fragility of BGP routing. Even when the basic routing protocol converges, conflicting
policy decisions among different ISPs have led to route oscillation and slow conver-
gence. Several empirical studies (e.g. [12]) have shown that there are prolonged periods
in which the Internet cannot reliably route data packets to specific destinations, due to
routing errors induced by BGP.

Since protocol oscillations cause serious performance disruptions and router over-
head, researchers devote significant attention to BGP stability (or “safety”). A BGP
system converges and is said to be safe, if it produces stable routing tables, given any
sequence of routing message exchanges. We broadly refer to any route misconfigura-
tions that result in instability as BGP anomalies in this paper. To study potential config-
uration issues with BGP, the network community has studied small network instances.

Sometimes, these come from a single network (the “internal BGP” or “iBGP” case), or
they may relate to interaction between different networks (“external BGP” or “eBGP”).
These small topology configurations (or “gadgets”) serve as examples of safe systems,
or counterexamples showing a safety problem such as lack of convergence.

Today, analyzing these gadgets is a manual and tedious process, let alone analyzing
actual network instances that are orders of magnitude larger. Researchers check these
gadgets by manually constructing “activation sequences” where the nodes make suc-
cessive routing decisions that form an oscillation. To automate the process, in our prior
work [18], we have developed an analysis toolkit using Maude [1] that automates the
process of analyzing BGP instances using a rewriting logic [13] approach. While auto-
mated, this approach can only work for small network instances, since the approach is
susceptible to the state explosion problem as the number of nodes increases. To address
these challenges, this paper makes the following contributions.

First, we identify the key contributing attributes in BGP routing that lead to eBGP
and iBGP anomalies resulting in route oscillations.

Second, we propose an efficient algorithm for reducing BGP instances, so that the
network size can be reduced by merging nodes in such a way that the overall con-
vergence properties remain the same. Our reduction uses the well-known Stable Paths
Problem (SPP) [9] formalism for safety analysis of BGP configurations, where the en-
tire instance is modeled in terms of the router-level topology and each router’s policy-
induced route preferences. We show how the reduction works for both inter-AS and
intra-AS policy configurations using well-known gadgets as examples, and provide for-
mal proofs that the reduction correctly preserves convergence properties in general for
any arbitrary BGP instances. The reduction process not only reduces the state size for
subsequent analysis, but also provides us the capability to reduce an existing BGP net-
work instance into a known anomaly (i.e. misbehaving gadget), or determine equiva-
lence between two configuration instances.

Finally, using Maude, we develop a tool that (1) takes as input router configura-
tions, (2) extracts the SPP representation of a protocol by generating and comparing
all possible routes against each AS policy, (3) applies the reduction step, and (4) per-
forms an exhaustive state exploration on the reduced BGP instance to check for possible
configuration anomalies that result in divergence.

Our results show that the reduction-based analysis is much more effective than
the prior approach of doing exhaustive search on unreduced instances [18]. The data
demonstrate that we have not only gained speed, but also the ability to analyze network
instances that were previously infeasible to study.

For example, an instance which would naively take 221193ms to analyze, can now
be reduced in 22ms to one which takes only 8ms to analyze, which makes the new
method over 7000 times faster (See our technical report [17] for more details). There
are also many instances whose analysis was infeasible with the previous approach, but
which can now be tackled by reduction. The naive technique was limited to networks
of no more than about 20 nodes (at a push, 25) whereas we now have no difficulty in
scaling to instances with over a hundred nodes, and with a greater arc density, which
are more characteristic of real networks.

2 Analyzing BGP Anomalies
BGP assumes a network model in which routers are grouped into various Autonomous
Systems (ASes), each assumed to be under separate administrative control. An indi-
vidual AS exchanges route advertisements with neighboring ASes using a path-vector
protocol. Upon receiving a route advertisement, a BGP router may choose to accept or
ignore the advertisement based on its import policy. If the route is accepted, the node
stores the route as a possible candidate. Each node selects among all candidate routes
the best route to each destination, based on its local route preference policy. Once a
best route is selected, the node advertises it to its neighbors. A BGP node may choose
to export only selected routes to its neighboring ASes based on its export policy. The
determination of these three kinds of policy is up to the network operator: BGP allows
considerable flexibility. Conflicting policies, within or between ASes, are the cause of
protocol oscillation, as the protocol struggles and fails to satisfy all policies at once.

Router-to-router BGP sessions come in two flavors: external BGP (eBGP), which
establishes routes between ASes; and internal BGP (iBGP), which distributes routes
within an AS. All routers maintain internal state, including their roster of known paths
for all destinations, and the list of other routers to whom they are connected. They
communicate with one another by exchanging route advertisements. Not all routers
communicate directly with routers outside their own AS. If they do, they are border
routers; if they do not, they are internal routers. Additionally, some routers may have a
special role as route reflectors, collating and distributing route advertisements on behalf
of their clients, to avoid having to establish pairwise connections between all routers in
an AS.

Stage BGP route selection step

eBGP
1. Highest LOC PREF
2. Lowest AS path length
3. Lowest origin type

iBGP
4. Lowest MED (with same NEXT-HOP AS)
5. Closest exit point (lowest IGP cost)
6. Lowest router ID (break tie)

Table 1. Key attributes in BGP route selection

Every BGP route is endowed with attributes that describe it. These are summarized
in Table 1. We also characterize these by whether they are primarily associated with
eBGP- or iBGP-level routing decisions. Whenever an AS receives a new route, it will
compare the attributes of its current available routes (for a given destination) with the
new route, and then decide whether the new route is selected as best route. The attributes
are listed in the order in which they are compared during route selection: if the routes
are tied at any stage, then BGP proceeds to consider the next attribute on the list.

The most important attribute in eBGP route selection is local preference (LOC PREF).
This is a value set by each router on routes it receives, according to (arbitrary) rules es-
tablished by the network operator. If two routes have the same local preference, then the
next tiebreaking attribute is the AS path length—the number of ASes through which this
route passes—followed by the ‘origin’ code. The next step is to use the multi-exit dis-
criminator (MED) attribute, the most important attribute in iBGP route selection, which

says which individual link is preferred, out of the many links between this AS and its
neighbor. If that was not enough to determine a single best route, BGP breaks ties by ex-
amining the shortest-path distance to the relevant border router. Finally, if all else fails,
it uses the value of each router’s unique identifier. This final step is meant to ensure that
all possible routes can be placed in a total order, with no two routes being equivalent in
preference.

Oscillation anomalies in BGP can be localized to the definition and use of particular
attributes. This paper looks at three families of problems.

• In eBGP anomalies, routing policy conflicts occur at an inter-AS level. The typical
causing attribute is LOC PREF, because it is set arbitrarily at each AS, independently
of any other.

• iBGP anomalies are limited to a single AS, and associated with MED. Due to a quirk
in the decision procedure, it is possible for there to be three routes p, q, and r such that
p is preferred to q, q to r, and r to p. The router will be unable to settle on a single
choice, if there is feedback where its actions cause the visibility of those three routes
to change.

• iBGP-IGP anomalies result from inconsistency between the semantics of route re-
flectors, and particular IGP distance values.

We will revisit these anomalies and give formal definitions in Section 4. We will
also examine the correctness of network reduction with respect to these anomalies.

3 Network Reduction
Existing network analysis techniques do not scale well: Static analysis [6, 5, 8, 2, 7, 14]
by checking combinatorial structure that reflects routing oscillations is normally NP-
complete; and dynamic analysis [3, 11] by systematic exploration of the protocol state
space will likewise suffer an exponential blow-up as problem size increases. As a result,
analysis techniques normally assume an over-simplified BGP model that only covers a
portion of the routing anomalies in Section 2.

To address these limitations, we propose network reduction that preservers correct-
ness properties - a process that simplifies network instances. Network reduction can be
viewed either as a pre-step prior to formal analysis in order to reduce analysis space; or
a model construction step that extracts a simplified model from the real BGP instance.

In network reduction, the basic idea is to incrementally merge two network nodes
into one while preserving network properties. To formally define reduction, we need to
first represent a BGP instance in an abstract form that also captures each node’s routing
policy. We choose the extended stable paths problem (SPP) as the formal representation
to include both eBGP and iBGP instances.

SPP is a well-established combinatorial model of BGP configurations that captures
the outcomes of routing policy—which paths are preferred over which other paths,
at each router—while avoiding the need for detailed modeling of the BGP decision
process in all its complexity.

We extend SPP to define path preference in a more general way. The extended SPP
is then used as the representation to implement reduction. In addition, we provide au-
tomatic generation of extended SPP for a BGP instance given its network topology and

high-level routing policy (e.g. how the path attributes are configured/transformed). We
will revisit this in Section 5.

3.1 Hierarchical Reduction
The SPP formalism captures the route preferences that exist for all routers, over their
routes to a single fixed destination. 1 An SPP instance consists of a graph, together with
each router’s preferences over paths in the graph. We define this in a more general way
than in previous work.

Definition 1 An extended SPP instance is given by G = (V,E, d, P,≺), where V is
the set of nodes, E is the set of directed arcs, d ∈ V is the destination node, P is the
set of all permitted paths to d, and the binary relation ≺ over P indicates when one
route is preferred over another. Every path in P must be a simple path (that is, no node
appears more than once).

For a given extended SPP instance G as above, and a node i in V , write P i for
the subset of P consisting of paths from i to d. The SPP definition requires that ≺
be a transitive total order on each P i, but our definition does not enforce that, and
supports more routing policies. Routes from different source nodes are incomparable.
Conventionally, ‘p ≺ q’ means that path p is preferred to path q, where both p and q are
paths to d from the same source.

In this paper, we will use the symbol ‘◦’ for concatenation of arcs and paths. If (i, j)
is an arc in E, and p is a path from j to d, then their concatenation (i, j) ◦ p is a path
from i to d. Similarly, if p is a path from i to j, and q is a path from k to l, and (j, k) is
an arc in E, then the concatenation is p ◦ (j, k) ◦ q or just p ◦ q.

This combinatorial definition washes away the some important features about how
BGP operates and how paths are chosen: in particular, the distinction between external
and internal BGP. The eBGP/iBGP distinction is critical for our reduction technique,
because it is based on the observation that certain kinds of anomaly can be ‘localized’ to
one or the other mode. Our reductions will operate on the iBGP level first, for each AS.
After iBGP simplification, we simplify eBGP by reducing the extended SPP instance
for the remaining network. This ordering also allows certain kinds of inconsistency, that
can only occur in iBGP, to be detected and handled; we do not need to contaminate our
other reductions with knowledge of these special cases. Since our reduction method
includes steps that are specific to one or the other mode of operation— we assume
that, in reduction, all we are faced with are extended SPP instances, derived from BGP
configurations.

3.2 Network Reduction
This subsection proposes sufficient conditions for two BGP nodes to be ‘unifiable’,
meaning that they can be merged into one node. The reduction proceeds by repeatedly
(1) locating two unifiable nodes, and rewriting their local configuration, and (2) rewrit-
ing the remainder of the BGP instance to reflect that local change. In the following,
assume we are working with a given extended SPP instance G = (V,E, d, P,≺).

1 Route preferences are configurable separately for each destination, so this assumption focuses
the analysis rather than limits it.

Locate unifiable nodes
We identify two special cases of unifiable nodes, which we call duplicate and supple-

mentary. We first define an auxiliary notion: “node rewrite”, based on which unifiable
node conditions are defined.

Definition 2 For two nodes i, k in V , rewrite i to k by rewriting P i and≺ as follows:
1. Check for any path p in P on which i and k both occur, if they occur only in an
adjacent position, then proceed to the next step, otherwise abort the rewrite.

2. For every path p in P i, if i or ik occurs, replace it by k.
3. For every two distinct paths p and q in P i, that rewrite to p′ and q′ respectively,
check whether p′ and q′ are equal. If they are, then abort the rewrite; otherwise,
proceed to the next step.

4. Every preference p ≺ q, where p and q are in P i and rewrite to p′ and q′ respec-
tively, becomes p′ ≺ q′.

Step 1 ensures that if there is any permitted path on which i and k both occur,
with some intervening nodes between them, then they are not considered for rewriting
(unification). Therefore, after the first step of rewriting, the paths in P i will still be
simple (k will not occur twice). Step 3 ensures that after rewriting, no two paths in P i

can collapse into one. Based on this rewriting notion, the two unifiable node conditions
are as follows.

Definition 3 Two nodes i, j in V are unifiable if i is supplementary for j, or i and j
are duplicate, where:

1. A node i is supplementary for j if:
1. i can be rewritten to j as defined in Definition 2.
2. For every path p in P i, there is some path q in P j such that p and q are equal

after rewriting.
3. Whenever p1 ≺ p2 in P i, there are paths q1 and q2 in P j such that q1 ≺ q2;
p1 and q1 are equal after rewriting; and p2 and q2 are equal after rewriting.

4. Two nodes i and j in V are duplicate if each is supplementary for the other.

Reduce BGP Instance
After locating two unifiable nodes i and j, we rewrite the entire extended SPP to reflect

this unification. This completes one network reduction step.
First define a function θij from V to V \{i} by θij(i) = θij(j) = j, and θij(x) = x

for all x not equal to either i or j. This function induces corresponding maps on E and
P , as follows.

Definition 4 If i and j are unifiable nodes in V , then G may be reduced to G′ =
(V ′, E′, d, P ′,≺′), where

• V ′ = V \ {i}
• E′ = {(θij(u), θij(v)) | (u, v) ∈ E \ {(i, j), (j, i)}}
• P ′ consists of all paths in P after rewriting each node according to θij , and eliding

any (j, j) arc.
• p′ ≺′ q′ if and only if p′ 6= q′ and there exist paths p and q in P such that p rewrites
to p′, q rewrites to q′, and p ≺ q.

3.3 Examples: Reducing eBGP and iBGP Instances

We now illustrate the intuition of network reduction by applying reduction to various
eBGP and iBGP instances.

Example 1 Reducing eBGP instances Two eBGP instances called Bad gadget and
Good gadget are shown on the left of Figure 1. The topology of each eBGP instance
is given by the network graph, whereas the routing policies are shown by the path pref-
erences indicated alongside each network node. In each list, the more preferred paths
are at the top, and paths that do not appear are not permitted. For example, in the good
gadget, the policy for node 1 says it has two permitted paths, 1 3 0 and 1 0, where 1
3 0 is preferred to 1 0.

In both gadgets, nodes 3,4 are unifiable nodes according to Definition 3. After re-
duction, these nodes are merged into one, shown on the right hand side of Figure 1.

Fig. 1. Reducing bad/good gadget makes it easier to detect divergence/prove safety.

The reason why the bad gadget is called ‘bad’ is that it suffers from permanent
route oscillation: the preferences are incompatible, there is no stable solution, and the
iterative attempt to find one does not terminate. The ‘dispute wheel’ pattern alluded to
above is what causes the badness, and after reduction this pattern becomes clearer. In
the reduced bad gadget instance, we can see that each of the three outer nodes prefers an
indirect path (around the cycle and then in) over a direct one (straight to the destination).
This is an order-three dispute wheel. The pattern was present in the original instance,
but obscured by the presence of node 4. On the other hand, the ‘good’ gadget has a
unique stable solution, which is found by iteration. We can identify the solution on the
reduced instance (shown here in green), and the original instance also converges.

In addition to good and bad gadget, our technical report [17] shows an eBGP in-
stance that is not reducible, and the reduction of an iBGP instance.

4 Correctness of Network Reduction
We have identified three types of routing anomalies in Section 2, and associated each of
them with particular BGP attributes. In this section, we examine sufficient conditions
by which each of these three can be avoided. These are safety, the standard property
for convergence of a path-vector routing system; acyclic preference, for ensuring that
iBGP configurations express a consistent choice function; and IGP-iBGP consistency,
for avoiding intra-AS oscillation. We then show that our reduction is sound with respect
to preservation of the first two properties, but it does not always preserve the third.
Therefore, the third condition needs to be checked separately.

4.1 eBGP Correctness
The eBGP correctness property we consider is safety [15, 10]. The progress of the
BGP algorithm towards a solution depends on the timing of messages and other non-
deterministic factors: we want to ensure that every execution schedule will result in
a routing solution being found, regardless of the asynchronous nature of the protocol.
The final state is characterized by stability, meaning that no future messages will affect
which best paths are selected by each router.

Definition 1. A BGP instance is safe, if under all possible executions, it converges to
a stable state, where the best routes selected by all the routers form a policy-compliant
routing tree.

We show that our reduction preserves safety, using a structure called the path di-
graph [15]. This is derived from an SPP instance (V,E, d, P,≺). Compared with the
extended SPP which is used to define reduction, SPP requires an additional constraint:
≺ totally orders each P i where i is a node in V . This holds for instances which are
restricted to the ‘eBGP’ attributes, plus the router identifier, in Table 1.

Definition 5 Let G = (V,E, d, P,≺) be an SPP instance. The path digraph is a graph
whose nodes are the elements of P , and where there is an arc (p, q) from p to q if either
of these two cases holds:

1. If q = r ◦ p for some path r, there is a ‘transmission arc’.
2. If p and q are two paths in P i and p ≺ q, there is a ‘preference arc’.

If the digraph is acyclic then the SPP has a unique stable solution, which can be
found by iteration from any starting state. We will call an SPP instance cyclic (or
acyclic) if its path digraph is cyclic (or acyclic).

The following proposition 1, proved by Sobrinho [15], relates cyclicity of the di-
graph to safety of the SPP, and therefore of the BGP configuration it represents.

Proposition 1. If a SPP instance is acyclic, then it is safe. If an SPP instance is cyclic,
then we can construct an execution trace that exhibits route oscillation.

Our main result (Lemma 1) is that our reduction technique transforms cyclic SPPs into
cyclic SPPs, and acyclic SPPs into acyclic SPPs. This means that we never have false
positives or false negatives, with respect to this safety property, after applying the re-
duction.

Lemma 1. Let G = (V,E, d, P,≺) be an SPP instance, containing unifiable nodes
u and v, and let G′ = (V ′, E′, d, P ′,≺′) be the result of applying the procedure of
Definition 4 to unify those two nodes. Then G is cyclic if and only if G′ is cyclic.

Proof. See technical report [17] for more details. ut

Finally, the following theorem proves that network reduction is sound: to analyzeG
for safety, it is sufficient to analyze its reduction G′.

Theorem 1. If G′ is acyclic then G is safe; If G′ is cyclic then in running G, there
exists at least one execution trace that exhibits route oscillation.

Proof. Obvious from Lemma 1 and Proposition 1. ut

4.2 iBGP correctness: Cyclic iBGP Route Preference
As previously noted, use of the MED attribute means that routes might not be totally
ordered, and therefore Proposition 1 is inapplicable. We handle this case by employing
a more general notion of route selection in our analysis, and can show that our reduction
does preserve these kinds of preference cycle. The details are in technical report [17].

4.3 iBGP Correctness: IGP-iBGP Consistency Property
While BGP can choose the correct egress point in an AS, for each destination, establish-
ment of the intra-AS path to that border router is the responsibility of another protocol
(an interior gateway protocol or IGP). Problems can occur if the iBGP configuration
does not match the distance values used in the IGP. Our network reduction is designed
for analysis BGP routing policies, and is unaware of IGP-iBGP inconsistency (see tech-
nical report [17]). Therefore, to ensure the soundness of analysis, one should check
IGP-iBGP consistency before applying network reduction, using pre-existing methods
from the literature [16, 4].

5 Network Reduction in Maude

To validate our reduction method, we have extended our library for analysis of BGP
configurations [18] to support automatic abstraction from dynamic (BGP) configu-
rations to static (extended SPP) configurations, reduction based on SPP configurations,
and integration with dynamic exhaustive search analysis. Using the original library BGP
instances up to 25 nodes have been successfully analyzed in minutes. Using our reduc-
tion technique, we are able to reduce and analyze various 100 nodes BGP instances
within seconds. Our extended library consists of the following three components:

• Dynamic network representation For a BGP instance, we require users to input rout-
ing policies, i.e., the values of the BGP attributes that cause anomalies. We also require
users to input the network topology. Based on the routing policy and topology, we
automatically generate the dynamic representation of the BGP instance. The dynamic
representation includes configurations (snapshots of an executing instance) and rewrite
rules describing a router’s actions during execution of the BGP protocol. The dynamic
representation can be used to compute the complete set of permitted paths, and route
selection information.

• Static network representation While the dynamic representation is good for simu-
lating the dynamic behavior of a BGP system, it is not the right representation for
network reduction. Thus we introduce a static representation of BGP instances corre-
sponding to the extended SPP instance (Definition 1). For each router, its static rep-
resentation consists of its complete set of permitted paths, and route selection result
given any sub-set of the permitted paths. Our library provides functions to compute
the static representation from the dynamic initial network state.

• Network reduction on static representation Our library implements the network
reduction process described in Definition 4 that applies to the static (extended SPP)
representation.

Our library is implemented in Maude [1], a language and tool based on rewriting
logic. Rewriting logic [13] is a logical formalism that is based on two simple ideas:
states of a system can be represented as elements of an algebraic data type, and the
behavior of a system can be given by transitions between states described by local
rewrite rules. A rewrite rule has the form ‘t =⇒ t′ if c’ where t and t′ are patterns
(terms possibly containing variables) and c is a condition (a boolean term). Such a rule
applies to a system state s if t can be matched to a part of s by supplying the right
values for the variables, and if the condition c holds when supplied with those values.
In this case the rule can be applied by replacing the part of s matching t by t′ using
the matching values for variables in t′. Maude provides a high performance rewriting
engine featuring matching modulo associativity, commutativity, and identity axioms.
Given a specification S of a concurrent system, Maude can execute this specification,
allowing one to observe some possible behaviors of the system. One can also use the
search functionality of Maude to check if a state meeting a given condition can be
reached during any system execution.

The dynamic representation is a small extension of [18] to account for the MED
attribute. In this paper we only discuss generation of the static representation and the
implementation of the reduction process.

5.1 Computing the Static BGP Representation

We recall that the dynamic representation of a BGP router has the form [rid : asid

|Nb: nbrs,LR: routes ,BR: best] where rid : asid is called the NodeInfo
with rid the router ID, and asid the AS ID. The remaining three arguments represent
the routers state: nbrs is a list of neighbor router IDs, routes is a list of routes, and
best is the best route.

Recall that in Definition 4, we apply the network reduction to the static representa-
tion of a BGP system G = (V,E, d, P,≺). In this representation we need the following
information: (1) the complete set of permitted paths P that the routers could ever gen-
erate in protocol execution; and (2) the ≺ relation that determines how each router
selects the best route, given an arbitrary subset of permitted paths. To capture P and
≺, we introduce the static representation of a BGP system using the Maude constructor
declaration:
op [_|Nb:_,perPath:_,pref:_] : NodeInfo List{NodeInfo} List{route} List{sel-fun}

-> absNode .

Similar to the dynamic representation, the first two arguments (indicated by under-
scores) specify the router’s ID, AS and neighbor information. What is different is the
second two attributes: rather than keeping the dynamic routing table and best route
attributes, we have the static permitted paths attribute perPath:, and the route prefer-
ence attribute pref:. The value of perPath: is the list of paths that can be computed
during BGP execution, and the value of pref: represents the preference function as a
list of pairs, each consisting of a route set and the selected route.

A BGP system’s static representation is computed from the specification of the dy-
namic representation in two steps. First, the complete set of permitted paths is computed
by simulating route exchanges and computation on the dynamic representation using the
the rewrite rule compute-spp:
rl [compute-spp]:
[from (S1 : AS1) to S2 : (S3 : AS3),lf2,[asp1],med1,S4]
[S2 : AS2 |Nb: nodes2, LR: lr2, BR: nilRoute]
=>
if ((occurs(import((S1 : AS1),(S2 : AS2),((S3 : AS3),lf2,[asp1],med1,S4)),lr2)) or

import(...) == nilRoute)
then [S2 : AS2 |Nb: nodes2, LR: lr2, BR: nilRoute]
else
[S2:AS2|Nb: nodes2,

LR: update(import(...),lr2),
BR: nilRoute]

generateMsg((S2:AS2),nodes2,export(import(...)))
fi .

Here, the left-hand matches a router S2 and a route message sent from its neighbor S1.
The right-hand side says that S2 computes a new route import(...), and if either
of the two conditions occurs(import(...), lr2) or import(...)==nilRoute
holds, that is, if either the new route import(...) is already in routing table lr2,
or if the new route is filtered out according to S2’s routing policy, S2 is unchanged,
and the routing message on the left-hand is consumed. Otherwise, the new route is in-
serted into the routing table (update(import(...),lr2)), and S2 applies its export
policy export(import(...)) and then (if allowed by export policy and export does
not result in nilRoute) S2 re-advertises this new route to all of its neighbors nodes2.
Compared with the normal BGP protocol execution, this rule is simpler in the sense
that it does not perform best route selection: Note that BR: is kept blank. Normal BGP
execution is non-deterministic—depending on the result of route selection, one of three
different types of actions are taken [18], and the system may converge to different final
states or not terminate (route oscillation may happen due to conflicting best route selec-
tion). However, the process defined by rule compute-spp always terminates with the
same final state, when the complete sets of permitted paths of all nodes are generated.

Second, based on the permitted paths, the route selection function pref: is com-
puted as follows:
eq compSPP ([S1 : AS1 |Nb: nodes1,LR: lr1, BR: nilRoute] Network) =
[S1 : AS1 |Nb: nodes1, perPath: lr1, pref: compSPPNode(lr1)] compSPP(Network) .

compSPP converts each dynamic router representation [S1:AS1|Nb: ,LR: , BR:]

in the network to its static form [S1:AS1 |Nb: , perPath: , pref:]. The crit-
ical part is to compute route selection compSPPNode(lr1), given the complete set
of subsets of the permitted paths lr1, by applying the best route selection function
select to each subset. The function select is defined in terms of path attributes.

As example, we show here the encoding of the two eBGP attributes LOCAL PREF and
AS PATH as follows:
op select : List{route} -> List{route} .
eq select(lr1) =

select-as(select-lf(lr1, best-lf(lr1)),
best-as(select-lf(lr1, best-lf(lr1)))) .

Here select first invokes best-lf to compute the lowest (best) LOCAL PREF value
in the permitted paths lr1, then select-lf selects from lr1 the set of routes with
this lowest LOCAL PREF value. Next, from these remaining routes, select invokes
best-as to compute the best AS value and select-as to select the set of routes with
such best AS value.

5.2 Reduction by Merging All Pairs of Unifiable Nodes

To reduce a BGP instance, we take its static representation - a set of routers of the form [

S1:AS1 |Nb: , perPath: , pref:] as input, and repeatedly merge pairs of unifi-
able nodes. For each router S1 in the Network, we look for its unifiable nodes, if such
nodes exist, we unify S1 with the first unifiable node S2, and transform the rest of the
network according to Definition 4 (e.g. the neighbors of S1,S2 now become neighbors
of S1). This reduction process is implemented by the function mergeDupEach.2

First, mergeDupEach implements the process of unifying node S1 and its first-
found unifiable node as follows:
eq mergeDupEach([(S1:AS1) |Nb:nodes1, perPath:lr1, pref:lsel-fun1],

([(S2:AS2)|Nb:nodes2, perPath:lr2, pref:lsel-fun2] C))
=
if (size(([(S1 : AS1) |Nb: nodes1, perPath: lr1, pref: lsel-fun1] unify

[(S2 : AS2) |Nb: nodes2, perPath: lr2, pref: lsel-fun2])) == 1)
then
(([(S1:...] unify [(S2:...]) C)

else
([(S2:...] mergeDupEach([(S1:...], C))

fi .

Here, the if condition tests if S1,S2 are unifiable, and mergeDupEach tests nodes in
the network C until a unifiable node is found. Then mergeDupEachEachRW is invoked.

eq mergeDupEachRW(abn, C) =
replaceNode(mergeDupEach(abn,C), get-NodeInfo(abn), findNodeInfo(abn, C))

Here, network C is transformed by replacing information relating to abn by that of
abn’s first unifiable node findNodeInfo(abn, C). The specific transformation is as
follows:
eq replaceNode ([S0:AS)|...] C, (S1:AS1) , (S2:AS2)) =

[(S0 : AS) |Nb: removeRepeatedNB (...,(S1:AS1),(S2:AS2)),
perPath: (replacePerPath(...,(S1:AS1),(S2:AS2))),
pref: replacePref(...,(S1:AS1), (S2:AS2))]

replaceNode (C, (S1:AS1), (S2:AS2)) .

2 Obviously, reduction always terminates. However, how the order of merging nodes affects the
reduction process—whether reduction always converges to the same reduced network—is the
subject of ongoing work, but does not affect correctness.

Here, each node S0 in the network is transformed by rewriting its neighboring table
(NB:), permitted path (perPath:), and route selection function (pref:).

Finally, putting it all together, mergeDup specifies the reduction process on the
entire network C as follows:
eq mergeDup(S1 Oidl, C) =
mergeDupEachRW(get-Node(S1, mergeDup(Oidl, C)),

mergeDup(Oidl, C) - get-Node(S1, mergeDup(Oidl, C))) .

Here mergeDup takes two inputs. The first argument S Oidl is the list of router IDs,
and the second argument is the list of routers [S1:AS1 |Nb: , perPath: , pref:].
mergeDup(Oidl, C) denotes the set of remaining routers after reducing all nodes
other than S1; if S1 is in these remaining routers, then get-Node(S1, mergeDup(Oidl,

C)) denotes S1 itself, otherwise (that is, if S1 is removed in the reduction) the value is
set to nil. In either case, mergeDup(Oidl, C) - get-Node(S1, mergeDup(Oidl,

C)) denotes the remaining routers other than S1 after reducing all routers except S1.
Based on these notions, the recursive definition of mergeDup says that, to merge all
unifiable nodes, we only need to merge node S1 into the routers that (1) are already
reduced among themselves; and (2) do not contain S1 itself.

Fig. 2. Reduction example
As an example, to perform network reduction to the network on the left of Figure

2, we execute in Maude as follows:
red mergeDup(N1 N2 N3 N4, Network)

Where Nodes = N1 N2 N3 N4 and Network = [N0:0 |Nb: ,LR: ,BR:] [N1 :

1 |...] ... [N5 : 5 |...]. The result is as follows:
[N0 : 0 |Nb: (N1 : 1) (N2 : 2),perPath: nil,pref: nil]
[N1 : 1 |Nb: N2 : 2,

perPath:(N0 : 0,200,[2 0],[1,2],N2)
(N0 : 0,100,[0],[1,0],N0),

pref: ...]
[N2 : 2 |Nb: N1 : 1, ...]

As expected, nodes N3,N4 are merged into N2.

6 Evaluation
In this section, we provide an empirical study to quantify the benefits of network reduc-
tion, by comparing the computation time required in safety analysis with and without
network reduction.

Our safety analysis was performed via an exhaustive search strategy using Maude,
as described in [18]. Oscillation is detected if the same best route is selected multiple
times during protocol execution. To detect such recurring best routes, we use Maude

to run the actual path vector protocol used in BGP, and simulate all possible sequences
in which ASes receive routes. At each node, we use a monitor object to track the best
routes that have been previously selected. We also attempt to apply our reduction tech-
nique and perform such analysis on the reduced version.

For the BGP instance shown in Figure 2, we note that in the reduced network (right),
our analysis tool detects the same route oscillation pattern found in the original network
(left), while requiring significantly less state space (reduction from 956 to 35) and anal-
ysis time (320ms to 8ms). In addition, we evaluate three common scenarios [10]: Bad
gadget that exhibits permanent oscillation, Disagree transient oscillation, and Good

gadget that is safe and no oscillation. The data table in this section shows the anal-
ysis results for Bad gadget scenario, indicating the performance requirements for the
ordinary exhaustive search and for the reduction alternative, as well as the final safety
outcome. For more details on the other scenarios, please see our technical report [17].

Bad (reduced) Bad-10 Bad-20 Bad-53 Bad-83 Bad-102
Search (Time) 30510ms Unknown Unknown Unknown Unknown Unknown
SPP generation (Time) 0ms 3ms 44ms 134ms 246ms 273ms
Reduction (Time) 0ms 8ms 49ms 146ms 541ms 595ms
Search(State) 11118 Unknown Unknown Unknown Unknown Unknown
Oscillation? Yes Yes Yes Yes Yes Yes

Table 2. Network Instances that Reduces to Bad Gadget

Our analysis was carried out on a Intel 2.40GHz dual-core machine with 1.9GB
memory, running Maude v2.4 on the Debian 5.0.6. operating system. Table 2 shows the
analysis results for eBGP instances where the network size ranges from 10 (Bad-10)
to 102 (Bad-102). For each network size, we embed in a bad gadget. After apply-
ing the reduction process, all BGP instances are reduced to a single bad gadget Bad
(reduced). For each entry, Unknown means that the analysis cannot be completed
within reasonable time (after running Maude for several hours).

We make the following observations from our results. First, reduction requires min-
imal time. Even for a large network of 102 nodes, reduction can be completed within
one second. As input to the reduction process, the SPP formalism for a BGP instance is
extracted as described in Section 5 where a static representation (corresponding to the
SPP) is computed by simulating on the instance’s dynamic representation (correspond-
ing to the snapshot state). This is also an efficient process, requiring less than 300ms
for the largest network. Overall, network reduction results in significant savings in both
state and execution time during safety analysis. For example, while it was previously
infeasible to complete the analysis of any network beyond 10 nodes due to the state
explosion problem (depicted by Unknown), the reduced BGP instance can be analyzed
in around 300 seconds (and 11118 states).

In our technique report [17], we present a similar comparison of analysis overhead
for network instances that have the disagree and good gadget embedded. We similarly
observe significant state and execution time savings via the use of reduction.

7 Conclusion
In this paper, we present a technique to reduce BGP instances, such that safety anal-
ysis can be performed efficiently on large networks. We prove correct our reduction

technique, develop a reduction and BGP analysis tool using Maude, and demonstrate
its effectiveness at reducing the state space and execution time required for analyzing
BGP instances. As future work, we are (1) exploring the use of our tool on larger case
studies drawn from real network configurations, (2) making the tool available with doc-
umentation, (3) optimizing the formal representation for more efficient analysis, and (4)
possibly extending the library to detect iBGP cyclic preference, and IGP-iBGP incon-
sistency.

Acknowledgment This research is funded in part by NSF grants (CCF-0820208, CNS-
0830949, CNS-0845552, CNS-1040672, TC-0905607 and CPS-0932397), AFOSR grant
FA9550-08-1-0352, and ONR grant N00014-11-1-0555.

References
1. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and C. Talcott. All

About Maude: A High-Performance Logical Framework. Springer, 2007.
2. N. Feamster, R. Johari, and H. Balakrishnan. Implications of autonomy for the expressive-

ness of policy routing. In ACM SIGCOMM, 2005.
3. A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs. Locating Internet routing

instabilities. In ACM SIGCOMM, 2004.
4. A. Flavel, M. Roughan, N. Bean, and A. Shaikh. Where’s Waldo? Practical Searches for

Stability in iBGP. In Proc. International Conference on Network Protocols (ICNP), October
2008.

5. L. Gao, T. G. Griffin, and J. Rexford. Inherently safe backup routing with BGP. In IEEE
INFOCOM, 2001.

6. L. Gao and J. Rexford. Stable Internet routing without global coordination. In ACM SIG-
METRICS, 2000.

7. T. G. Griffin. The stratified shortest-paths problem. In COMSNETS, 2010.
8. T. G. Griffin, A. Jaggard, and V. Ramachandran. Design principles of policy languages for

path vector protocols. In ACM SIGCOMM, 2003.
9. T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths problem and interdomain

routing. IEEE Trans. on Networking, 10:232–243, 2002.
10. T. G. Griffin and G. Wilfong. An analysis of BGP convergence properties. In SIGCOMM,

1999.
11. A. Haeberlen, I. Avramopoulos, J. Rexford, and P. Druschel. NetReview: Detecting when

interdomain routing goes wrong. In NSDI, 2009.
12. C. Labovitz, G. Malan, and F. Jahanian. Internet Routing Instability. TON, 1998.
13. J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical

Computer Science, 96(1):73–155, 1992.
14. M. Schapira, Y. Zhu, and J. Rexford. Putting BGP on the right path: A case for next-hop

routing. In ACM SIGCOMM HotNets, Oct. 2010.
15. J. Sobrinho. Network routing with path vector protocols: theory and applications. In SIG-

COMM, 2003.
16. M. Vutukuru, P. Valiant, S. Kopparty, and H. Balakrishnan. How to Construct a Correct and

Scalable iBGP Configuration. In IEEE INFOCOM, Barcelona, Spain, April 2006.
17. A. Wang, C. Talcott, A. J. T. Gurney, B. T. Loo, and A. Scedrov. Reduction-based formal

analysis of BGP instances. University of Pennsylvania Department of Computer and Infor-
mation Science Technical Report, 2012.
http://netdb.cis.upenn.edu/papers/tacas12-TR.pdf.

18. A. Wang, C. Talcott, L. Jia, B. T. Loo, and A. Scedrov. Analyzing bgp instances in maude.
In FMOODS-FORTE, 2011.

