A Scalable Multi-Datacenter Layer-2 Network Architecture

Chen Chen
University of Pennsylvania
chenche @cis.upenn.edu

Boon Thau Loo
University of Pennsylvania
boonloo@cis.upenn.edu

ABSTRACT

Cloud today is evolving towards multi-datacenter deployment, with
each datacenter serving customers in different geographical areas.
The independence between datacenters, however, prohibits effec-
tive inter-datacenter resource sharing and flexible management of
the infrastructure. In this paper, we propose WL2, a Software-
Defined Networking (SDN) solution to an Internet-scale Layer-2
network across multiple datacenters. In WL2, a logically central-
ized controller handles control-plane communication and configu-
ration in each datacenter. We achieve scalability in three ways: (1)
eliminating Layer-2 broadcast by rerouting control-plane traffic to
the controller; (2) introducing a layered addressing scheme for ag-
gregate Layer-2 routing; and (3) creating an overlay abstraction on
top of physical topology for fast flow setup. WL2 is fault-tolerant
against controller and gateway failures. We deployed and evaluated
WL2 in a 2,250-VM testbed across three datacenters. The results
indicate high performance and robustness of the system.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—~Network communications; C.2.3 [Computer-
Communication Networks]: Network Operations—Network man-
agement

Keywords

Software-defined networking, Layer-2 networking, multiple data-
centers, scalability, fault-tolerance

1. INTRODUCTION

Cloud today is evolving towards multi-datacenter deployment
over diverse geographical areas. For example, Google [20] and
Amazon [1] both maintain global infrastructure of datacenters in
different continents for better service quality (e.g., low latency and
high throughput) to their regional customers. Moreover, geograph-
ically distributed datacenters enable service continuity in face of
large-scale disasters that could shut down a whole datacenter.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

SOSR2015, June 17 - 18, 2015, Santa Clara, CA, USA

Copyright 2015 ACM . ISBN 978-1-4503-3451-8/15/06$15.00

DOI: http://dx.doi.org/10.1145/2774993.2775008.

Changbin Liu
AT&T Labs - Research
changbl @research.att.com

Pingkai Liu
AT&T Labs - Research
pingkai @research.att.com

Ling Ding
University of Pennsylvania
lingding @cis.upenn.edu

However, current cloud infrastructure is more like multiple clouds
rather than a multi-datacenter cloud, in that different datacenters
usually operate independently except for data replication. This
setup has several drawbacks. First, it is hard for network admin-
istrators to manage the infrastructure as a whole, prohibiting inter-
datacenter optimizations such as load balancing and virtual ma-
chine (VM) migration. Second, customers, especially those that
have business presence at different locations, may demand an inter-
datacenter sub-network to achieve low-latency and seamless access
from each location. This requirement cannot be easily satisfied by
today’s cloud.

A datacenter is often built as an IP network for scalability. How-
ever, this increases the complexity of network management by in-
troducing substantial configuration overhead (e.g., IP division, BGP
routing). Moreover, since IP adopts the location-aware addressing
scheme, it is difficult, if not possible, to perform VM live migra-
tion [17] across IP prefix boundaries. IP address change during VM
migration would inevitably invalidate existing network sessions.

In contrast, Layer-2 (L2) network provides a simple abstraction
for both users and administrators. Central to L2’s ease of man-
agement is its plug-and-play semantics, which allows administra-
tors to add or remove devices with minimal disruptions. Moreover,
L2 network uses flat addressing scheme, which supports VM live
migration in the network without disrupting ongoing network ses-
sions [14, 16]. Public clouds including Amazon EC2 [13], Google
Compute Engine [6], and Microsoft Azure [28] all present users
with L2 network abstraction. OpenStack [31], the de facto stan-
dard of open cloud platforms, also adopts L2 network.

Despite its ease of configuration and management, L2 network
does not scale, particularly under the scenario of wide-area net-
works (WANs). The major scalability bottleneck lies at the broad-
cast nature of control traffic in a L2 network, such as Spanning Tree
Protocol (STP), Dynamic Host Configuration Protocol (DHCP) and
Address Resolution Protocol (ARP). A number of unconventional
L2 designs [18, 30, 34] have been proposed to address the scalabil-
ity issues of L2 within a single datacenter. It remains challenging
to design and implement a scalable L2 solution in the wide-area
scenario, where multiple datacenters of potentially heterogeneous
topologies are interconnected via the Internet.

In light of this, we present WL2 (Wide-area Layer-2), which
provides a L2 network abstraction that spans multiple datacenters
across diverse geographical regions, and yet maintains good scala-
bility and high availability. Specifically, WL2 provides the follow-
ing features:

e Software-defined networking (SDN). WL2 uses an SDN-
based architecture [23] to achieve scalability in a wide-area
L2 network. In each datacenter, WL2 deploys a centralized
SDN controller cluster, and creates full-mesh virtual overlay

networks among local hosts (similar to Nicira NVP [22] and
OpenStack Neutron [31]). Each controller cluster manages
virtual network devices via OpenFlow [26], a protocol allow-
ing the controller to access data plane of OpenFlow-supported
switches.

In contrast to solutions like TRILL [35] and OTV [9], WL2
does not require any modifications to existing physical net-
work devices. One goal of WL2 is to introduce minimal
change to operational networks in production and allow sep-
arate evolution of software and hardware. An important dif-
ference to NVP and OpenStack Neutron is that WL2 does not
build full-mesh overlays between hosts in all datacenters be-
cause of scalability issues and excessive tunnel maintenance
overhead. Instead, WL2 sets up gateway nodes at each data-
center and builds full-mesh overlays between gateways.

e Scalable L2. With the help of full-mesh overlays in each
datacenter and between gateways, WL2 is able to employ a
hierarchical addressing scheme and reduce the size of Open-
Flow flow tables at each host, hence achieving scalability. The
addressing scheme is transparent to cloud end users and en-
ables customizable design scales based on the demands of
cloud service providers. A typical design scale of WL2 is
tens of datacenters, tens of thousands of hosts per datacenter,
and hundreds of VMs per host. In aggregate this translates to
millions of VMs. To realize a L2 network abstraction which
can cope with this scale, WL2 SDN controller clusters in each
datacenter coordinates with each other to handle control-plane
traffic such as source learning, address assignment and ad-
dress resolution, while avoiding all traditional broadcast. De-
signed for the cloud, WL2 supports multi-tenancy of VMs.
WL2’s overlay network substrate and hierarchical addressing
scheme play a key role in simplifying the design of multi-
tenancy and data forwarding.

e VM live migration A major feature of WL2 is VM live mi-
gration across wide areas between any two datacenters. When
a VM is migrated, controller clusters in WL2 coordinate with
each other so that all traffic destined for the VM will be redi-
rected to its new location. The traffic redirection includes both
private communications between VMs and public communi-
cations between the VM and the Internet. Before and after
VM live migration, WL2 guarantees that VM IP address has
no change and ongoing network sessions of the VM are not
disrupted. In particular, WL2 avoids triangular traffic for-
warding problem over wide area via efficient flow table up-
dating.

o High availability. WL2 provides high availability in the pres-
ence of SDN controller failures. Within each datacenter, a
WL2 SDN controller cluster consists of multiple controllers
running in classic leader-followers mode. Moreover, all crit-
ical network data is stored in persistent data storage. With
the help of multi-controller support in OpenFlow protocol and
idempotence of OpenFlow operations adopted in WL2, we
have designed a log-based fail-over mechanism for WL2 con-
trollers. WL2 is able to recover from leader controller fail-
ure and resume ongoing network operations with zero control
traffic loss. Furthermore, WL2 guarantees high availability
of gateways by automatically redirecting traffic to alternate
gateways in the presence of failure.

Our implementation of WL2 is deployed and extensively evalu-
ated on a testbed with 2,250 VMs spanning three datacenters inter-
connected by high-speed networks. We demonstrate that WL2

can support a variety of L2 functionalities at the scale of multi-
datacenter, including DHCP, ARP, multi-tenancy, and VM live mi-
gration. In our evaluation, WL2 achieves high performance with
orders of magnitude reduction in ARP latency compared against
traditional L2 network. Moreover, WL2 has zero packet loss when
handling ARP traffic, compared to about 50% loss for traditional
L2. WL2 has been demonstrated to work well with heavy ARP
traffic equivalent to that generated by 62,000 VMs in a typical pro-
duction environment. In VM live migration over wide areas, WL2
is able to efficiently update OpenFlow flow tables so that network
latencies to the migrated VM adapt instantly, with only 1-2 packet
losses. We further demonstrate that WL2 is fault tolerant in the
presence of both SDN controller and gateway failures.

2. SYSTEM OVERVIEW

Datacenter 2

Datacenter 3
e
Data

|
1
1
|
I
I
1
{ 1 ——
- 1 Data
SDN H Store
-~1| . Controllers | ™~~~ i :
|g; 17=~.RPC H
' Ss SDN
! Controllers
| i;
I 7
1 i
| ;
1
1
|
I
I
|
1
i
.
I
|
1
I
|

Datacenter 1

e
Data
Store

'_:"OpenFlow

:':_OpenFIow

'
'
1
1
'
I
'
'
1
1
'
I
'
i 1
: RPC.-~7]
SDN - !
RPC
Controllers ! OpenFlow
: 1
L I
H '
'
1
1
'
I
'
'
1
1
'
'
d
1
'
'

Full Mesh Tunnels

Figure 1: WL2 system overview.

In this section, we present a high-level overview of WL2, intro-
ducing its network architecture and the role of SDN controllers in
handling control traffic in the network.

2.1 Network Architecture

WL2 is designed to be deployed over multiple datacenters ad-
ministered by the same entity (e.g., a company or an organization).
Datacenters are geographically distributed and communicate with
each other through the Internet. They can have arbitrary physical
topology (e.g., Fat-tree [12]), and different scales — from tens of
thousands of switches to hundreds of thousands. Figure 1 presents
an example deployment of WL2 over three datacenters.

Overlay network substrate. Inside a single datacenter, WL2
creates a virtual switch (through OpenvSwitch [32]) in each server
(i.e., host), and establishes a logical Ethernet link between every
pair of virtual switches through L2 tunneling (e.g., VXLAN [11],
GRE [5]), forming a full-mesh overlay network. VMs spawned in
a server connect to the local virtual switch to communicate with
other VMs. A number of virtual switches in each datacenter are
selected as gateway switches (GWs in Figure 1). Gateway switches
in different datacenters connect to each other through L2 tunneling
on top of the Internet, and form another full-mesh overlay network
among themselves. Having multiple gateway switches allows WL2
to support load balancing of inter-datacenter traffic and failover in
case a gateway switch is down (Section 3.6). Gateway switches can
possess public IPs and serve as Internet routing gateways to enable
VMs in WL2 to access the Internet.

Adopting L2 overlay network has several benefits. First, building
overlay network leverages the existing mechanisms in the underly-
ing physical network to handle routing, load balancing, and fault
tolerance. Next, an overlay network provides a simple abstraction
for SDN controllers to operate on, thus reducing controller work-
load. Also, this approach allows incremental deployment, as it does
not require modification to the underlying physical network. There
might be concern that an overlay network leads to higher latency
and reduced throughput. Study [27] shows that current hardware
can support tunneling with negligible loss of performance.

A number of cloud solutions like VMWare/Nicira NVP [22] and
OpenStack Neutron [31] also choose full-mesh cloud architecture.
In contrast to them, WL2 does not create full-mesh overlay tun-
nels between all hosts in all datacenters. One major reason is that
WL2 is designed for the scale of over hundreds of thousands of
hosts spanning multiple datacenters. Full-mesh overlay between
all hosts would result in too much overhead in tunnel establishment
and maintenance.

SDN Controllers. In each datacenter, WL2 runs a centralized
SDN controller (Figure 1) to manage the overlay network substrate,
communicating with host and gateway switches through OpenFlow
protocol [26]. The controller is responsible for (1) handling L2
broadcast-based control traffic, which is intercepted by the virtual
switches and forwarded to the controller (Section 3.2); and (2)
setting up/modifying forwarding flow entries in switches to en-
able/redirect traffic (Section 3.3).

For fault tolerance and high performance, the centralized con-
troller in each datacenter is implemented as a controller cluster con-
sisting of multiple nodes in leader-followers mode (Section 3.7).
To achieve high availability, WL2 stores all critical network data
in replicated persistent data storage which provides strong consis-
tency (e.g., SQL database, ZooKeeper [19]). On the other hand, to
speed up data query and minimize load on persistent storage, each
controller maintains a local in-memory data copy which is discard-
free. When the leader controller fails, follower controllers perform
a leader election (e.g., Paxos [24], ZooKeeper [19]) to elect a new
leader. Our failover design guarantees no network control traffic
loss in face of leader failure (Section 3.7).

Controllers in each datacenter coordinate with each other to cre-
ate a logically centralized controller over all datacenters. Each con-
troller in a datacenter shares control information of the local net-
work with controllers in all other datacenters via message passing,
such as Remote Procedure Call (RPC). WL2 employs highly avail-
able message queues in each datacenter to buffer messages received
from remote controllers, allowing for asynchronous message pro-
cessing. The distributed data storage across datacenters preserves
eventual consistency, which tolerates high latency of the Internet
across datacenters and is acceptable in a L2 network since slow
network data updates in the worst case only delays, rather than pro-
hibits, communications between VMs.

An alternative controller design is to have one physical controller
cluster managing all datacenters. However, we abandoned this de-
sign for an important reason: network latency through the Internet
is orders of magnitude larger than within a datacenter. This pre-
vents host and gateway switches in one datacenter from effectively
communicating with the centralized controller which resides in an-
other location, in terms of both data query and update.

3. SYSTEM DESIGN

In this section, we elaborate on the design details of WL2. To
make WL2 scalable, we have redesigned a number of fundamen-
tal L2 control-plane components, including the addressing scheme,

DHCP, ARP, the data forwarding scheme, multi-tenancy, and han-
dling of VM live migration. In addition, we present mechanisms
that ensure high availability of WL2 controllers and gateway switches
against failure, and enhance performance by running controllers of
different roles.

3.1 Virtual MAC Address

While the design scale of WL2 is by no means fixed, a typical
one we consider accommodates tens of datacenters, tens of thou-
sands of hosts in each datacenter, and hundreds of VMs on each
host. This translates to millions of VMs across wide areas. If we
naively adopt the addressing and forwarding scheme in traditional
L2, WL2 will suffer from serious scalability issues. For example,
flat addressing in traditional L2 would make each virtual switch,
in the worst case, end up with flow entries equal to the number of
VMs in the whole network, resulting in state explosion of flow ta-
bles. Moreover, multi-tenancy is not well supported in L2. Though
VLAN can create different broadcast domains in a L2 network, it
only supports at most 4094 domains, a far cry from the requirement
of modern cloud providers.

To address these issues, we introduce a tenant-aware hierarchical
addressing scheme called Virtual MAC address (VMAC), in place
of traditional flat addressing in L2. A VMAC has the same length
of 48 bits as a normal MAC address, and consists of four fields as
below:

| datacenter_id: switch_id: vm_id: tenant_id |

Here datacenter_id denotes the globally unique ID assigned
to each datacenter beforehand. Within each datacenter, WL2 as-
signs a datacenter-wide unique switch ID switch_id to all con-
nected virtual switches. vm_id differentiates VMs on the same
host. The prefix “datacenter_id: switch_id: vm_id”, in essence,
encodes the physical location of a VM and uniquely identifies it in
the whole network. The postfix tenant_id represents the ID of a
cloud tenant allocated by the cloud provider.

Figure 2 shows an example VMAC scheme used in our imple-
mentation of WL2 (Section 4). In the scheme, we reserve 7 bits for
datacenter_id, 16 bits for switch_id, 8 bits for vm_id, and 16
bits for tenant_id. One bit is reserved for multicast address. This
permits a deployment of up to 128 datacenters, 65,536 hosts in each
datacenter, 256 VMs per virtual switch, and 65,536 cloud tenants.
Notice that the length of each field is not static. WL2 allows the
cloud provider to adjust the number of bits allocated to each field
in VMAC to their needs. For example, major cloud providers (e.g.,
Amazon EC2) who have a large number of customers can allocate
more bits (e.g., 20 bits or 1,048,576) to tenant_id, while reduc-
ing the size of datacenter_id (e.g., 5 bits or 32), based on the
number of datacenters they have.

VMAC plays an important role in making WL2 scalable. Below
we discuss how VMAC (1) is constructed during VM source learn-
ing in Section 3.2, (2) helps reduce flow table size in Section 3.3,
and (3) supports large-scale multi-tenancy in Section 3.4.

L Multicast bit

o| | [16 bits

Y -

r .
Datacenter ID Switch ID VM ID Tenant ID

Figure 2: An example VMAC scheme.

3.2 DHCP and ARP

| Datacenter 1

Host switch VMAC

@ |02:00:01:00:00:00 — ﬁ

Controllers|| I~

%JPW’I' Port(3)
Host switch VMAC
[@) 02:00:02:00:00:00
VM MAC VMAC

@ A4:31:3F:C7:45:9D | 02:00:02:01:00:01

Datacenter 3|

Figure 3: WL2 deployment in three datacenters with MACs
and VMAC:s highlighted.

As in many cloud environments (e.g., OpenStack, Amazon EC2),
WL2 uses DHCP to allocate IP addresses to newly spawned VMs.
In a traditional L2 network, a node broadcasts a DHCP request
packet to obtain its IP address from DHCP server. This broadcast-
based approach incurs too much control traffic in a L2 domain, es-
pecially for a large-scale L2 network. By comparison, WL2 con-
troller pre-installs a flow entry in each virtual switch, commanding
the switch to intercept all DHCP packets (i.e., DHCP DISCOVER
and DHCP REQUEST) it receives, and forward the packets to the
controller. The controller can serve either as a DHCP agent — for-
ward DHCP packets to DHCP server(s) whose position is known
beforehand — or as a DHCP server itself. In either way, it for-
wards/replies DHCP OFFER and DHCP ACK back to the request-
ing VM.

WL2 is able to obtain location information of a VM through any
control-plane message originated from that VM, such as a DHCP
packet. Combining the location information with the tenant mem-
bership, WL2 can construct a unique VMAC address for each VM.
The VMAC information is globally shared among all controllers
through RPC, to support efficient query during address resolution.

Traditional L2 network uses Address Resolution Protocol (ARP)
to learn the destination MAC address and initiate communications.
Unfortunately, ARP also relies on broadcast and hence has the same
scalability issue with DHCP. To avoid ARP broadcast, WL2 in-
stalls a flow entry on each host switch, intercepting all broadcast
ARP requests and forwarding them to the controller. The controller,
on receiving the ARP request, looks up its in-memory ARP table,
finds the corresponding VMAC of the requested VM, and replies
the VMAC to the requesting VM. The requesting VM sends data
packets to the requested VM using replied VMAC as the destina-
tion MAC address.

3.3 Hierarchical Data Forwarding

Now we illustrate in detail how hierarchical addressing scheme
of VMAC improves scalability of our system, compared to tradi-
tional flat addressing scheme. The main insight of VMAC is that
it enables WL2 virtual switches to carry out data forwarding us-
ing prefix matching. Although the hierarchical addressing scheme
can dramatically reduce the flow space, without careful design the
controller still needs to install four flow entries for each communi-
cating pair of VMs: one outbound entry at the source virtual switch

Pattern Match Priority | Actions
dl_src=A4:31:3F:C7:45:9D 3 GOTO(fwd)
dl_dst="*:00:01
in_port =1 2 DROP
DEFAULT 1 GOTO(fwd)

Figure 4: Switch D’s tenant table

o

Pattern Match Priority | Actions
dl_dst=04:* 4 PORT(3)
dl_dst=02:00:01:* 3 PORT(2)
dl_dst=02:00:02:01:00:01 2 dl_dst—A4:31:3F:C7:45:9D
PORT(1)
DEFAULT 1 DROP

Figure 5: Switch D’s forwarding table

and one inbound entry at the destination virtual switch for each di-
rection. Therefore, it is challenging for the controller to install flow
entries efficiently enough to allow instant communication upon VM
initialization, especially when multiple VMs simultaneously try to
send traffic through the network.

We address this problem based on the observation that with hi-
erarchical addressing, forwarding tables of L2 switches no longer
need to be set up upon detection of a VM — A VM is only signifi-
cant in terms of its connected virtual switch, and is hidden from the
rest of the L2 network behind the virtual switch. This means we
can take a two-step flow table setup: (1) after virtual switches are
connected to the controller and before any VM is spawned, the con-
troller sets up inter-datacenter and inter-switch flow entries match-
ing only datacenter_id and switch_id respectively; (2) when-
ever a new VM is spawned, the controller only needs to set up one
flow entry in its locally connected virtual switch, to distinguish it
from other locally connected VMs.

Specifically, WL2 performs data forwarding by installing three
types of flow entries on each virtual switch, matching on different
portions of a destination VMAC address:

e Inter-datacenter flow: match traffic towards VMs in a differ-
ent datacenter.

e Inter-switch flow: match traffic towards VMs in the same
datacenter, but connected to a different virtual switch.

e Local flow: match traffic towards a locally connected VM on
the same virtual switch.

Figure 3 presents an example WL2 deployment in three data-
centers, each with one gateway and two virtual switches. It uses
the same VMAC addressing scheme given in the example in Fig-
ure 2. Figure 5 further gives the Forwarding Table of virtual switch
D in Figure 3. With this example deployment, we explain in detail
how a packet arriving at a virtual switch gets forwarded based on
different flow priorities in the forwarding table.

Inter-datacenter flow. The packet is first matched against inter-
datacenter flows (in Figure 5 the first row with priority 4), with the
following format:

dl_dst=<datacenter_id >:*, actions=(port_to_gateway) |

It states that a packet whose destination MAC address (d/_dst) is
prefixed by datacenter_id will be forwarded to a local gateway

switch. The gateway switch has the same matching field, and for-
wards the packet to its peer gateway in the destination datacenter.
Recall that full-mesh overlay is built between datacenter gateways
(Section 2). So given a network of Ny datacenters, each virtual
switch would set up (N, — 1) inter-datacenter flow entries, one for
each neighboring datacenter.

Inter-switch flow. If the packet does not match any inter-datacenter

flow, it will be matched against inter-switch flows (in Figure 5 the
second row with priority 3), whose format is as follows:

dl_dst=local_dcid:<switch_id >:*, actions=(port_to_switch) |

It states that a packet whose destination MAC address (d/_dst)
is prefixed by ID of the local datacenter (local_dcid) and ID of
a specific virtual switch (switch_id) should be forwarded to the
host switch indicated by switch_id. Given a datacenter hosting
Ny, switches, each virtual switch sets up (Ny, — 1) inter-switch
flow entries, one for each neighboring virtual switch in the same
datacenter.

Local flow. If neither of the above two types of flows is matched,
the packet will be matched against local flows (in Figure 5 the third
row with priority 2). Local flow entries have the following format:

dl_dst=vmac, actions=(rewrite—mac & port_to_vm)

It states that a packet with vmac as destination address will be
rewritten with a new destination address and forwarded to the local
target VM. The new destination address is the actual MAC address
of the target VM. Each virtual switch with N,,, locally connected
VMs has N,,;, local flow entries.

Lastly, packets that do not match any above flow entry are dropped
by default (in Figure 5 the fourth row with priority 1).

WL2 data forwarding scheme makes the flow tables of each host
scalable. In total each virtual switch has (Ng. + Ngy + Ny — 1)
forwarding entries, a huge reduction of flow table size compared to
Nyii_yms under traditional L2 flat addressing, where Ny s is the
number of all VMs in the whole network.

In WL2, inter-datacenter and inter-switch flow entries can be
preset before any VM is spawned. As a result, adding/removal of a
VM only incurs the change of a single local flow on a virtual switch,
drastically reducing the workload of WL2 controllers when faced
with network churn.

3.4 Multi-Tenancy

Multi-tenancy is a crucial feature in a cloud to isolate traffic
among different tenants. Virtual LAN (VLAN) in traditional L2
networking, though allowing traffic isolation, supports only up to
4094 tenants, a number far from enough for major cloud providers.
WL2, instead, supports large-scale multi-tenancy by assigning a
unique tenant ID in the VMAC for each tenant, and filtering inter-
tenant traffic through additional flow entries. These flow entries
determine if the source and destination of a packet belong to the
same tenant, and drops mismatching packets. Though the idea is
straightforward, it is challenging to set up appropriate flow entries
that both satisfy the traffic isolation requirement and minimize the
space complexity. Since OpenFlow does not yet support equality
checking between packet fields, we are obliged to enumerate all
possible tenant IDs on each virtual switch to allow access between
the same tenant. With the large number of supported tenants, this
could cause flow table explosion.

We solve the challenge with observation that despite the large
number of tenants supported in WL2, the number of tenants on
each virtual switch is bounded by the number of ports open to lo-

cally connected VMs. Hence, WL2 sets up one more forwarding
table on each switch, called Tenant Table, to filter traffic from lo-
cally connected VMs, before sending it to the forwarding table de-
scribed in Section 3.3). We reuse the example in Figure 3 to explain
the handling of a packet through Tenant Table. Figure 4 shows an
example table for switch (D. Each Tenant Table contains two types
of flow entries:

Tenant-forward flow entry. A newly incoming packet is first
matched against tenant-forward flow entries (the first row with pri-
ority 3 in Figure 4). This type of flow entry allows legitimate
intra-tenant packets to get forwarded. The format of a typical entry
is as follows:

| dl_sre=src_mac, dl_dst=*:tenant_id, actions=(GOTO(fwd))

It states that if the packet is sent from a locally connected VM
(src_mac) to another VM of tenant tenant_id, it will be for-
warded as described in Section 3.3. src_mac is supposed to be-
long to tenant_id, and the information is known by the controller
when it sets up the flow entry. GOTO(fwd) means that the packet
will be matched further against the forwarding table fwd.

Port-filter flow entry. If the packet does not match any of tenant-
forward flow entries, it will be next matched against port-filter flow
entries (the second row with priority 2 in Figure 4). The purpose
of a port-filter flow entry is to prevent illegitimate local packets
to be matched against the default flow entry below and forwarded
wrongly. They also prevent any malicious VM who hides from
WL2 controller from sending traffic into the network. A port-filter
flow entry takes on the format:

| in_port=local_port, actions=(DROP)

It states that packets coming from any local port are dropped.

Default flow entry. Lastly, packets matching none of the above
two types of flow entries are matched and forwarded by default
entries (the third row with priority 1 in Figure 4). These packets
are incoming traffic sent by other virtual switches.

In summary, a virtual switch with Ny, VMs and N, local ports
will set up (Nym + Nporr 4 1) flow entries in its tenant table. The
number of flows is significantly smaller compared to the naive so-
lution which matches on the source and the destination tenant_id.

3.5 VM Live Migration

VM live migration [17] is an important technique in a cloud for
dynamic computing resources allocation. For instance, it enables
cloud providers to upgrade or replace their hardware devices with-
out affecting any customer’s ongoing workload [7].

The challenge of supporting live migration is how to enable fast
traffic adjustment after a VM is migrated. Traditionally, the mi-
grated VM will broadcast a Gratuitous ARP (GARP) to the whole
network domain after migration. All switches receiving the GARP
will change their forwarding table to reflect the new route. In
a multi-datacenter scenario, since broadcast does not scale, other
mechanisms are needed to adjust forwarding tables on switches.

WL2 supports live migration by maintaining a VM’s private ac-
cess and public access after it is migrated. To properly adjust pri-
vate access, the controller clusters coordinate with each other, ad-
justing flow entries collectively so that traffic is redirected correctly
and efficiently towards the migrated VM.

3.5.1 Private Access

We focus on traffic adjustment of inter-datacenter VM migra-
tion (intra-datacenter migration is simpler). Figure 6 and Figure 7

’j new_VMAC _{
4E:BB:C1:40:08:95 i1/ | 04:00:08:02:00:01 L

rrs] | -
Datacenter 2 AN

g 'ff

v W\
,/’ I old_VMAC M
v 1)]02:00:08:02:00:01 j

SNo -

Figure 6: Live migration: A VM has just migrated from Data-
center 1 to Datacenter 2.

illustrate how live migration is handled in a three-datacenter sce-
nario. In Figure 6, a VM of MAC address “4E:BB:C1:40:08:95”
in Datacenter 1 is about to be live migrated to Datacenter 2 (red
arrow). The VMAC before the migration is “02:00:08:02:00:01”
and is “04:00:08:02:00:01” after live migration respectively. Be-
fore live migration, there was a VM in each datacenter communi-
cating with the migrated VM, whose traffic is represented as dashed
lines.

After the migration is done, the migrated VM would broadcast
a Gratuitous ARP message (GARP), which is intercepted and for-
warded to the controller cluster in the new datacenter by the virtual
switch (Section 3.2). The controller then takes three steps to adjust
flow tables in the network (Figure 7):

Add a local flow towards the new VMAC. When the migrated
VM starts in the new datacenter, the local controller cluster would
create a new VMAC address for it, based on its location and tenant
information, and add a local flow entry in the virtual switch directly
connecting the VM (Step D in Figure 7). Any VM who obtains the
new VMAC of the migrated VM is able to communicate with it
immediately.

Redirect local flows towards the old VMAC. VMs who send
traffic to the old VMAC of the migrated VM will have their pack-
ets dropped, before they flush their ARP cache and request the new
VMAC. To solve this issue, WL2 instructs the virtual switch which
connected to the migrated VM before migration to rewrite the desti-
nation address of packets from the old VMAC into the new VMAC,
and forward them based on the new VMAC (Step @ in Figure 7).

The above two steps is enough to maintain connection between
the migrated VM and all communicating VMs. Also, these two
steps are sufficient for intra-datacenter VM migration, in which
case the source and destination datacenter happen to the be same.
To optimize performance in multiple-datacenter scenario, however,
the third step is desirable:

Avoid unnecessary Internet trafficc. 'WL2 optimizes two types
of traffic: (1) VMs in the datacenter hosting the migrated VM
should be able to contact the migrated VM directly, without hav-
ing their traffic traverse the Internet twice (i.e., back and forth),
as indicated by the above adjustment. Since the number of such
VMs, in the worst case, is equal to the total number of VMs in
the datacenter, WL2, rather than modifying flow entries in all in-

0) Part(1)
Match Actions
dl_dst=
04:00:08:02:00:01 | PO"tL)
Match
dl_dst= dl_dst->04:00:08:02:00:01
02:00:08:02:00:01 & port(1)
Datacenter 3 Port(1). > \~\ Port(1) [Datacenter 1
‘ < (/)’/ \E
Port(1) 4 @
Match Actions LY
di_dst= dl_dst—>04:00:08:02:00:01 [-‘{
02:00:08:02:00:01 & port(1) -

Figure 7: Live migration: All flow tables are updated.

volved virtual switches, instructs the gateway switch to rewrite the
destination address of the outgoing packets from the old VMAC
to the new VMAC, and to bounce them back to the migrated VM
(upper Step @ in Figure 7). (2) VMs in other datacenters, exclud-
ing the two datacenters involved in migration, will also have their
traffic traverse the Internet twice (i.e., triangular traffic forward-
ing). WL2 instructs the gateways in all these datacenters to rewrite
the destination address of outgoing packets from the old VMAC
to the new VMAC, and directs them to the new datacenter hosting
the migrated VM (lower Step @ in Figure 7). In our implementa-
tion, the controller in the datacenter hosting the migrated VM will
send asynchronous RPC messages to remote controllers in other
datacenters, so that these remote controllers can instruct their local
gateways to perform the rewriting.

Dashed lines in Figure 7 show the updated traffic paths after live
migration. After a VM is migrated, the controller will in addition
send a gratuitous ARP to all VMs which communicate with the
migrated VM, informing them of the new VMAC and invalidating
the old one. In our implementation, for each VM, WL2 controller
keeps track of all VMs that request its VMAC address in the past
60 seconds — the time of normal ARP cache timeout. Hence, all
redirecting flow entries setup in Step 2 and 3 can safely timeout
after the same amount of time with ARP cache.

3.5.2 Public Access

A VM migrating inside a datacenter does not need to worry about
public access, as it preserves the same network gateway and public
IP. For a VM migrating between datacenters, WL?2 installs a flow
entry in its newly connected virtual switch, rewriting the destina-
tion of packets which were sent to the old gateway into VMAC
of the new gateway, until the VM obtains the address of the new
gateway through DHCP.

Floating IP is a popular technique to grant public access to VMs
from the Internet in modern cloud (e.g., OpenStack and Amazon
EC2 [13]). A floating IP is the public IP of a virtual switch, asso-
ciated to VMs via Network Address Translation (NAT). After mi-
gration, the VM is re-assigned the same floating IP from the newly
connected virtual switch, and WL2 would announce a BGP adver-
tisement from within the datacenter hosting the migrated VM, with
a short prefix (e.g., /32) so that users from the Internet can access
the VM without detouring. To avoid too many individual BGP ad-

vertisement updates, it is preferable to migrate all VMs in the same
service together so that their BGP advertisement updates can be
grouped under a longer prefix.

3.6 Multiple Gateways

In each datacenter, it is desirable to have more than one gate-
way switch for two reasons. First, as the volume of inter-datacenter
and Internet traffic grows, a single gateway is insufficient to handle
all the traffic. WL2 can run multiple gateways and balance load
among them. The load balancing can be switch-based, flow-based,
or remote-datacenter-based, with support of myriad scheduling al-
gorithms (e.g., round robin, weighted). The second reason is to
achieve high availability. WL2 sets up a backup node for each
gateway switch in the mode of master-backup. Each pair of master
and backup gateways shares two virtual IPs (VIPs), one public (de-
noted as public_vip) and one private (denoted as private_vip)
to the local datacenter. VIPs can be maintained via the VRRP pro-
tocol [10]. Within a local datacenter, switches build overlay tunnels
to the gateway pair using private_vip as the tunnel endpoint. Be-
tween peer gateways in different datacenters, their overlay tunnels
use public_vip as endpoint. WL2 sets up two sets of identical
forwarding flows on both the master and the backup gateway. In
case of master gateway failure, public_vip and private_vip
are automatically shifted to the backup gateway, which keeps for-
warding all ongoing traffic.

3.7 Multiple Controllers

Similar to gateways, high availability and performance are im-
portant to WL2 controllers. WL2 achieves these two goals by run-
ning multiple controllers as a controller cluster. We discuss how
WL2 achieves seamless controller failover with zero control packet
loss while providing high performance.

3.7.1 High Availability

To avoid single point of controller failure, WL2 runs multiple
controllers, one as leader and others as followers. The controllers
share a highly available persistent data backend which stores the
network information (e.g., VMACs, address mappings). The stor-
age backend provides strong data consistency. To speed up data
lookup, the leader controller maintains an in-memory data copy
which is discard-free. Both the leader and followers connect to all
switches and receive OpenFlow packet_in messages.

Controller operations without failure. =~ Normal controller op-
erations without failure are illustrated in Figure 8. Whenever the
leader receives a packet_in, it logs the message into persistent
storage (Step (D). Then it handles the packet_in as described pre-
viously, such as VMAC creation and forwarding table setup (Step
Q). Afterwards, the leader enqueues the packet_in message into
a failover queue in the persistent storage (Step Q). Lastly, the
leader commits all network data updates into the storage and deletes
the log (Step @). The data updates and log deletion are executed in
a transactional style (i.e., all-or-nothing). In particular, the leader
takes similar steps in processing RPC requests received from re-
mote datacenters, but not enqueuing packets.

Follower controllers, simultaneously, buffer packet_in mes-
sages received from switches in local memory. In the meanwhile,
they keep dequeuing from the failover queue, which is a broadcast
queue to all followers, and delete in-memory packet_in message
copies that are identical with those retrieved from the failure queue.

In essence, logging in Step (D denotes that the leader begins to
process packet_in. Log deletion in Step @ indicates the process-
ing is completed. packet_in enqueuing in Step @ is to synchro-
nize buffered packets between the leader and follower controllers.

Failover Queue
‘Packet_n‘ ‘Packet_:q/)

(%
Log E —

L Dédueue/Deleteypacket

L

Packet Buffer

'

Leader Follower
Controller Controllers
Leader Controller Operations

Step Operation Step Operation
o Log task 9 Enqueue packet
e Handle packet_in e Write back data + Delete Log

Figure 8: WL2 controller operations.

Controller operations upon failure. When the leader fails, fol-
lowers perform a leader election [24] to produce a new leader. The
new leader would take over and resume unfinished work. First, it
reads all network data (e.g., ARP mapping, VMAC registration)
from the storage backend. Second, it dequeues all messages from
the failover queue, and deletes corresponding packet_in messages
buffered in the memory. Afterwards, the new leader checks whether
any log is left by the previous leader. If the log exists, it performs
Step @~ @ to resume operations relevant to the packet_in stored
in the log. Otherwise, it does nothing. Lastly, the new leader han-
dles the remaining packet_in messages in memory normally as if
no failure had ever happened.

Our strategy for controller failover is transparent to the network,
with zero control packet loss. We prove that it can recover from
leader controller failure at any point in processing a packet_in.
There are four possible failure points during packet processing, and
we will analyze the handling of them by case study. First, failure
before Step (D or after Step @ does not require the new leader to
do any failover. Next, failure between Step D and Step @ will
leave a log entry indicating that the processing of packet_in is
not finished by the previous leader. The new leader will check the
existence of this log and simply re-process the packet by doing Step
@~ @. We note that Step D, @), and @ are atomic data write to the
storage backend since each is executed in a transactional style. Step
@ is idempotent, because all OpenFlow instructions used in WL2
(e.g., flow_mod, Packet_out) are idempotent. The new leader can
safely execute duplicate OpenFlow instructions without introduc-
ing inconsistency. Multiple enqueuings in Step Q) will be ignored
by other followers.

3.7.2 High Performance

One observation in L2 network is that packets like ARP requests
account for a large portion of control traffic compared to other
packets (e.g., DHCP). In WL2, processing these packets only in-
volves data queries (read-only) in the controllers. As a result, to
increase the controller performance, one idea is to set aside read-
only controllers which are dedicated to processing read-only con-
trol packets like ARP requests. Correspondingly, we divide WL2
controllers into two roles, write-only and read-only.

write-only controllers perform normal operations as described
previously, including updating forwarding tables and network in-
formation in persistent data storage. write-only controllers ig-
nore packets like ARP requests. read-only controllers are ded-
icated to processing packets without updating any backend data.
They synchronize with persistent storage to get instant updates from
write-only controllers.

To improve overall performance, read-only controllers can be
deployed as many as possible. Each switch is connected to all
write-only controllers and at least one read-only controller. To
balance load on read-only controllers, each switch can connect
to them randomly.

4. IMPLEMENTATION
We have implemented a prototype of WL2 in 2000 lines of Python

code. WL2 uses the open-source SDN platform Ryu (release 3.4) [2].

Our implementation includes VMAC addressing scheme, DHCP,
ARP, data forwarding scheme, multi-tenancy, VM live migration,
multiple gateways, and controller high availability and high perfor-
mance presented in Section 3. Our implementation is open-source
released at github.com/att/ryu.

WL2 host and gateway switches are created using Open vSwitch
(release 2.0.1) [32], a software switch for network virtualization.
The intra- and inter-datacenter full-mesh overlay networks are cre-
ated as VXLAN [11] tunnels. The software switches are configured
to fail-secure mode and communicate with WL2 controller clusters
through OpenFlow protocol (release 1.2) [26]. In the fail-secure
mode, a switch drops all packets destined to the controllers if its
TCP connection to the controllers is lost.

We use ZooKeeper [19] as the persistent data storage backend of
WL2. ZooKeeper serves like a distributed transactional database
and provides strong data consistency. Moreover, we leverage the
distributed coordination services provided by ZooKeeper to imple-
ment task logging, failover queue and leader election [24] used in
controller high availability. ZooKeeper can also be used to pro-
vide the asynchronous RPC queue for communications among con-
trollers in different datacenters.

5. EVALUATION

We perform extensive evaluation of WL2, including the perfor-
mance of ARP, traffic redirection during VM live migration, and
high availability of gateways and controllers.

5.1 Testbed Setup

To evaluate WL2, we set up a testbed spanning three datacen-
ters, namely DC1 and DC2 in New Jersey, and DC3 in New York.
Each datacenter has a private cloud managed by OpenStack [31].
We use OpenStack VMs (KVM as hypervisor) as WL2’s host and
gateway switches. In each host, we launch nested VMs [25, 15]
via either KVM or Docker/LXC [4]. We use nested virtualization
because it substantially facilitates our evaluation. It not only saves
the overhead of managing physical machines but also enables quick
testbed building via VM snapshots, while being transparent to other
tenants of our OpenStack private clouds.

In each datacenter, we launch three OpenStack VMs as host
switches. Each host has 16 virtual CPUs (vCPUs), 15GB RAM,
and 50GB disk. The underlying physical CPUs are Intel(R) Xeon(R)
CPU ES5-2470 2.30GHz. In addition, we launch one OpenStack
VM per datacenter as the gateway switch. It serves as both DHCP
server and Internet gateway. Each gateway is allocated 2 vCPUs,
4GB RAM and 10GB disk. We ensure that all hosts and gateways
are created on different physical machines so that communications

between them are real network packets rather than memory copy
on the same physical machine. Moreover, in each datacenter, we
create three OpenStack VMs as WL2 SDN controllers. Each con-
troller has 2 vCPUs, 4GB RAM and 10GB disk. Our ZooKeeper
cluster is co-located with the controllers. All our OpenStack VMs
run Ubuntu 14.04 64bit Server as OS.

Our OpenStack VMs within each datacenter are attached to a pri-
vate L2 network provided by 1Gbps physical switch. As described
in Section 2, we set up full-mesh (one-hop) VXLAN tunnels be-
tween hosts within each datacenter. We measure the performance
of VXLAN tunnels in terms of latency and throughput. For one-
hop VXLAN, its latency is 0.5 to 1ms and throughput is 890Mbps.
This is comparable to the performance of underlying physical L2
network. Two-hop VXLAN has much worse performance, with
latency of 1.5ms and throughput of 700Mbps. This justifies the
full-mesh overlay network substrate adopted by WL2. For bet-
ter VXLAN performance, NICs with hardware VXLAN support
(e.g., [3]) can be used.

Table 1 gives the wide-area network latency and throughput be-
tween our three datacenters. We note that the throughput between
DC1 and DC2 is significantly higher due to a dedicated backbone
line between them.

| Datacenters || Latency | Throughput |

DC1, DC2 3ms 930Mbps
DC1,DC3 4ms 80Mbps
DC2,DC3 Sms 80Mbps

Table 1: Latency and throughput between three datacenters.

Between the three gateway switches in DC1, DC2 and DC3, we set
up full-mesh VXLAN tunnels. Table 2 summarizes the latency and
throughput over one-hop VXLAN on gateways. We observe that
wide-area one-hop VXLAN does not affect latency and only adds
marginal overhead to network throughput.

| Datacenters || Latency | Throughput |

DC1,DC2 3ms 825Mbps
DC1,DC3 4ms 75Mbps
DC2,DC3 Sms 72Mbps

Table 2: Latency and throughput between three datacenters
over one-hop VXLAN on gateways.

We note that due to the limitation of physical resources, our de-
ployment consists of three datacenters in relatively close geograph-
ical regions. However, the testbed suffices our purpose of evalua-
tion in this paper regarding functionality and scalability. WL2 is
designed to accommodate much wider geographical regions. We
leave deployment of larger scale as future work.

5.2 ARP

ARP latency and loss rate are two basic metrics to measure L2
network performance. ARP latency is the time interval between
a node sends out an ARP request and receives the corresponding
ARP reply. ARP loss rate is the percentage of ARP requests whose
ARP replies are never received. To evaluate the performance of
ARP in WL2, we launch nested Docker/LXC container VMs to
build a large scale network environment. Light-weight container
technology enables efficient VM creation. On each host, we launch
250 nested VMs, leading to 2,250 VMs in total across three dat-

100,

80}
~—~~ 60}
3
L
o
O 4o}
20 — WL2 (All/Inter-host/Inter-DC)
[- - L2 (All-to-all)]
L2 (Inter-host)
“““ L2 (Inter-DC)
0 o n
10° 10’ 10° 10°

ARP latency (ms)

Figure 9: ARP latency in traditional L2 network and WL2.

©

— DC1 ICMP ping
| - - DC2ICMP ping ||
-.- DC3ICMP ping

~
T

)
T

3
T

LY i
[
AT A R AR
v

1‘0 2‘0 3‘0 4‘0 50 éO 7‘0 80
Time (s)

w
T

ICMP ping latency (ms)

" n , .’
[SRR RPN \-~“-I‘\’\ s

Figure 11: ICMP ping latencies from other datacenters during
VM live migration .

acenters. Our nested VMs run Ubuntu 14.04 64bit Server as OS.
After being spawned, each VM obtains an IP address via DHCP,
and WL2 sets up one data forwarding flow on its host switch.

We emulate a heavy load of ARP by making each nested VM
randomly arping each other every 2.5 seconds. We make arping
bypass local ARP cache and send out ARP request every time. This
translates to 900 ARP requests per second in the network. Given
a study [29] which shows that a L2 network with 2,456 nodes on
average sends 89 ARPs per second, the ARP load in our evaluation
is equivalent to that generated by 25,000 VMs in a typical produc-
tion environment. We run the evaluation for about 15 minutes and
compare the results to traditional L2 network provided by Open
vSwitch.

Figure 9 shows the performance of ARP latency in both tradi-
tional L2 network and WL2. We set arping timeout to 1 second.
To differentiate the ARP traffic, we divide it into three categories:
(1) A11-to-all: between all VMs; (2) Inter-host: between
VMs on different hosts; and (3) Inter-DC: between VMs in dif-
ferent datacenters. Figure 9 shows that traditional L2 suffers from

1000

— CPU utilization (%) [- - Memory footprint (MB)]

80} 1800

_
—_ m
g =
= €
o 60 4600 =
= Q.
Iy 5
= [
S 40l 1400 >
5 £
o WMMMWW\I\WMWWWM 5

20 200

0 100 200 300 400 500 600 700 800 900
Time (s)

Figure 10: WL2 controller overhead of CPU utilization and
memory footprint.

90

Traffic throughput (Mbps)

=)
T

=)

1‘0 2‘0 3‘0 4‘0 5;0 éO 7‘0 80
Time (s)

Figure 12: Traffic throughput (TCP) during gateway failure
and recovery.

large ARP latencies, especially for the Inter-DC case where an
ARP has to be broadcast across wide area to reach its destination
and then sent back to the source. WL2, in contrast, achieves much
tighter latency distribution under heavy ARP load. In particular,
in WL2, 50% ARPs are replied within 10ms, and 80% ARPs are
replied within 30ms. Moreover, the three cases of ARP traffic have
almost identical distribution in WL2. This is not surprising, as all
ARP requests are answered by the local controller cluster in WL2.

Table 3 gives the loss rate of ARP requests. Because a tra-
ditional L2 network broadcasts ARPs throughout the network, it
leads to heavy control traffic in a large scale network. We note that
traditional L2 incurs 44.0%, 49.1% and 54.3% ARP loss rate for
All-to-all, Inter-host and Inter-DC respectively. WL2, in
contrast, achieves zero ARP loss rate for all cases, guaranteeing
good scalability. In addition, we measure the overhead of WL2
in terms of controller CPU utilization and memory footprint. Fig-
ure 10 gives the overhead results of the leader SDN controller in
DC2 (follower controllers are idling). It shows a decent 30% CPU
utilization (out of a single core) and 100MB memory footprint on

average. The leader controllers in DC1 and DC3 have similar over-
head.

With our testbed of 2,250 VMs, we have explored higher ARP
load by setting the arping interval to 1 second. This translates to
2,250 ARPs per second in the whole network, the same load as if
generated by 62,000 VMs in production environment. Under this
load, traditional L2 network breaks — most VMs become unreach-
able even before we can finish starting arping on them. How-
ever, WL2, with CPU utilization rising to 75%, handles the load
well. This demonstrates that WL2 is scalable in handling large-
scale wide-area L2 network. To further improve performance and
scale, WL2 can deploy read-only controllers dedicated to pro-
cessing ARP requests.

Traffic Type | Traditional L2 | WL2

All-to-all 44.0% 0%

Inter-host 49.1% 0%
Inter-DC 54.3% 0%

Table 3: ARP loss rate in traditional L2 network and WL2.

5.3 VM Live Migration

We launch nested KVM VMs to evaluate VM live migration in
WL2 (Docker/LXC does not support live migration yet). We use
NEFS as shared storage of nested VMs, so that live migration only
involves copying VM memory (256MB) across the network. Live
migration with persistent storage [16] is available in KVM and
works with WL2 as well, but it takes much longer to copy over
the disk.

In the evaluation, we launch a nested VM in DC2, and make it ini-
tiate communications to another VM in DC1. We then live migrate
the VM from DC2 to DC1, making the two VMs geographically
closer. We measure the latency between the two VMs through-
out the migration via ICMP ping and plot the results in Figure 11.
Live migration starts at time 40 seconds and it takes about 2.5 sec-
onds to finish. Figure 11 shows that before migration, the latency
(labeled DC1 ICMP ping) is about 3ms, consistent with Table 2.
After migration, the latency dramatically drops to 1ms, since the
two VMs are now in the same datacenter. We note that the la-
tency jumps to 6ms in the middle of migration. This is because,
before WL2 sets gateway flows to redirect the traffic destined to
the migrated VM, packets destined to its old VMAC would take
a double-way inter-datacenter route — from DC1 to DC2 and then
back to DC1 (Section 3.5). We note that this latency spike is only
transient and it quickly subsides after gateway flow updates. We
also measure the ICMP ping latencies from VMs in other two data-
centers towards the migrated VM (marked as DC2 ICMP ping and
DC3 ICMP ping). The results are consistent with inter-datacenter
latencies (Table 2), indicating that the flows are correctly updated.

The evaluation results show that WL2 is effective in handling
VM live migration across datacenters, by correctly updating for-
warding tables. The process is efficient and imposes minimal net-
work disruption. There is only one packet loss of the ICMP pings
from DC1 and DC2, and two losses from DC3.

5.4 Gateway High Availability

We evaluate high availability of WL2 gateways by setting up one
additional gateway switch as backup in DC3. The two gateways in
DC3 pair with each other in master-backup mode, and share public
and private VIPs via Keepalived [8]. WL2 sets up identical for-
warding flows on them (Section 3.6).

®
o

)
=]
T

>
=)
T

N}
=}
T

=}
S
T

©
S

=
S

ARP throughput (# of replies)

N
=)

o

2‘0 40 éO éU 100
Time (s)

o

Figure 13: ARP throughput during controller failure and re-
covery.

We launch a VM in DC2 sending TCP traffic (using iperf) to
another VM in DC3. After 30 seconds, we emulate a failure of the
master gateway in DC3 by manually powering it off. Keepalived
is set to shift VIPs to the backup gateway within three seconds
after detecting master failure. Figure 12 shows traffic throughput
between the two VMs during gateway failure and recovery. We
note that the throughput first drops from 80Mbps to 0, because of
master gateway failure. It then quickly recovers to 80Mbps in 10
seconds, after the backup gateway is promoted to master and takes
over traffic forwarding. The evaluation shows that gateway failure
has minimal network disruption to WL2.

5.5 Controller High Availability

To evaluate WL2 controller’s ability to maintain high availabil-
ity, we use a testbed of 150 nested Docker/LXC container VMs
in DC1. We launch 50 VMs on each host switch in DC1. Every
nested VM starts random arping towards each other every 2.5 sec-
onds. We measure the ARP throughput of WL2, i.e., the number
of ARP replies sent by the controllers per second, and plots the
results in Figure 13. The ARP throughput is steady at 60/second
between time 0 to 30 seconds, when the leader controller is han-
dling control traffic. At 30 seconds, we kill the leader controller
process. As a result, the ARP throughput plummets to zero imme-
diately. However, within 20 seconds a new leader is elected and
performs failover tasks described in Section 3.7.1, including pro-
cessing previously buffered ARP requests during failure. The ARP
throughput reflects this by jumping to a peak of 165/second, before
gradually falling back to a steady volume of 60/second again. In the
20-second failover period, 10 seconds are attributed to Zookeeper
leader failure detection, which can be configured to be shorter. Dur-
ing failover all controller operations (e.g., flow installation, VM in-
formation registering and sharing) are properly executed, as if the
failure had never happened.

6. RELATED WORK

Virtual Private LAN Service (VPLS) extends a L2 network over
IP or MPLS networks across wide area. It allows geographically
dispersed sites to share an Ethernet broadcast domain. Overlay
Transport Virtualization (OTV) [9] extends a L2 network across
distributed datacenters with reduced (not eliminated) ARP flood-

ing. Transparent Interconnection of Lots of Links (TRILL) [35] is
an IETF protocol that uses L3 link-state routing to create a fairly
large L2 network. Compared to WL2’s software-defined scalable
L2 solution, VPLS has the same scalability issue with L2 network,
while TRILL and OTV require dedicated hardware switches.

A number of unconventional designs aim to make L2 network-
ing scalable. SEATTLE [21] creates a global switch-level view
by running a link-state routing protocol to build a DHT-based di-
rectory. With the directory, SEATTLE eliminates broadcast traf-
fic including ARP and DHCP. VL2 [18] employs a L3 fabric to
implement a virtual L2 network targeted for a datacenter with a
Clos physical switch topology. It creates tunnels between phys-
ical switches and uses a link-state routing protocol to maintain a
switch-level topology. PortLand [30] designs a scalable L2 network
in a single datacenter with a largely fixed topology (i.e., Fat-tree)
of physical switches. It assigns a hierarchical Pseudo MAC ad-
dress (PMAC) to each node based on its physical location. Though
VMAC shares the same design philosophy as PMAC — replacing
the flat addressing scheme with the hierarchical addressing scheme
to achieve efficient routing and compact forwarding tables — the
datacenter_id and tenant_id in VMAC enable the additional
feature of large-scale multi-tenancy in multiple datacenters. Also,
the variable length of each field in VMAC offers flexibility when
deploying WL2 under different demands. PAST [33] implements
a per-address spanning tree routing algorithm to scale Ethernet net-
works in a single datacenter. [34] shows that software-defined solu-
tions such as NOX are comparable to VL2 and PortLand in a single
datacenter. VM Ware/Nicira NVP [22] and OpenStack Neutron [31]
are two prominent examples of recent software-defined solutions.
They build full-mesh overlays within a single datacenter and use an
SDN controller to manage the virtual network. Google B4 [20] is
a global wide-area network based on a SDN control plane, which
translates BGP routing and traffic engineering protocols to under-
lying OpenFlow operations.

WL2 is inspired by many of these prior works, including over-
lay substrate, hierarchical addressing, software-defined approach,
and dedicated directory system. The biggest difference between
WL2 and prior works is that WL2 extends the L2 network abstrac-
tion from a single datacenter to multiple datacenters over wide area
for the cloud environment. In the context of multi-datacenters and
cloud, WL2 addresses a series of unique challenges such as con-
troller cluster coordination, addressing, data forwarding, flow table
scalability, and multi-tenancy. Furthermore, WL2 supports a key
operation — VM live migration across datacenters.

The global private network of Google Compute Engine [6] shares
many features with WL2, including the L2 semantics, multi-tenancy,
and wide-area deployment. It also supports intra-datacenter VM
live migration, while support for inter-datacenter migration is un-
clear. However, how Google designs and implements this network
is proprietary and unknown.

7. CONCLUSION

In this paper, we have presented WL2, an SDN-based, scalable
multi-datacenter L2 network architecture for the cloud. We achieve
scalability by re-designing L2 addressing scheme, control-plane
protocols, data forwarding mechanism, multi-tenancy, gateway and
controller high availability, and VM live migration. With a testbed
of real networks and VMs spanning three datacenters, our experi-
ments validate good scalability and fault tolerance of WL2.

8. ACKNOWLEDGMENTS
The authors would like to thank Yun Mao and Xu Chen for their

inspiring discussions with us. We also thank the anonymous re-
viewers for their helpful comments on the earlier versions of the
paper. This work is supported in part by CNS-1218066, CNS-
1117185, CNS-1117052, CNS-0845552, AFOSR Young Investiga-
tor Award FA9550-12-1-0327, AT&T Labs Research summer stu-
dent internship program and Virtual University Research Initiative
(VURI) program.

9. REFERENCES

[1] Amazon Web Services. http://aws.amazon.com/
about-aws/global-infrastructure/.

[2] Build SDN Agilely: COMPONENT-BASED SOFTWARE
DEFINED NETWORKING FRAMEWORK.
http://osrg.github.io/ryu/.

[3] ConnectX-3 Pro - Mellanox.
https://www.mellanox.com/related-docs/prod_
adapter_cards/PB_ConnectX-3_Pro_Card_EN.pdf.

[4] Docker - Build, Ship, and Run Any App, Anywhere.
https://www.docker.com/.

[5] Generic Routing Encapsulation (GRE).
http://www.ietf.org/rfc/rfc2784.txt.

[6] Google Compute Engine.
https://developers.google.com/compute/.

[7] Google Compute Engine. https:
//cloud.google.com/compute/docs/robustsystems.

[8] Keepalived. http://www.keepalived.org/.

[9] Overlay Transport Virtualization (OTV) - Cisco.
http://www.cisco.com/c/en/us/solutions/
data-center-virtualization/
overlay-transport-virtualization-otv/index.
html.

[10] RFC 3768 - Virtual Router Redundancy Protocol (VRRP).
http://tools.ietf.org/html/rfc3768.

[11] VXLAN A Framework for Overlaying Virtualized Layer 2
Networks over Layer 3 Networks. http://tools.ietf.
org/html/draft-mahalingam-dutt-dcops-vxlan-03.

[12] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In Proceedings
of the ACM SIGCOMM 2008 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, Seattle, WA, USA, August 17-22, 2008,
pages 63-74, 2008.

[13] Amazon Elastic Compute Cloud (EC2).
http://aws.amazon.com/ec2/.

[14] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, 1. Pratt, and A. Warfield. Xen and the
art of virtualization. In Proceedings of the nineteenth ACM
symposium on Operating systems principles, 2003.

[15] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,

N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and B.-A.
Yassour. The turtles project: design and implementation of
nested virtualization. In OSDI, 2010.

[16] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schioberg.
Live wide-area migration of virtual machines including local
persistent state. In Proceedings of the 3rd International
Conference on Virtual Execution Environments, 2007.

[17] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, L. Pratt, and A. Warfield. Live migration of
virtual machines. In 2nd Symposium on Networked Systems
Design and Implementation (NSDI 2005), May 2-4, 2005,
Boston, Massachusetts, USA, Proceedings., 2005.

—

[18] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VI12: A
scalable and flexible data center network. In SIGCOMM,
20009.

[19] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
wait-free coordination for internet-scale systems. In USENIX
Annual Technical Conference, 2010.

[20] S.Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,

A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla,
U. Holzle, S. Stuart, and A. Vahdat. B4: Experience with a
globally-deployed software defined wan. In SIGCOMM,
2013.

[21] C. Kim, M. Caesar, and J. Rexford. Floodless in seattle: a
scalable ethernet architecture for large enterprises. In
SIGCOMM, 2008.

[22] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda,
B. Fulton, I. Ganicheyv, J. Gross, N. Gude, P. Ingram,

E. Jackson, A. Lambeth, R. Lenglet, S.-H. Li,

A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan,

S. Shenker, A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt,
A. Yip, and R. Zhang. Network virtualization in multi-tenant
datacenters. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation,

NSDI’ 14, pages 203-216, Berkeley, CA, USA, 2014.
USENIX Association.

[23] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: a distributed control platform for
large-scale production networks. In OSDI, 2010.

[24] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133-169, May 1998.

[25] C. Liu and Y. Mao. Inception: Towards a Nested Cloud
Architecture. In 5th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud), 2013.

[26] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
Enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev., 38(2):69-74, March 2008.

[27] R. Mehta. VXLAN Performance Evaluation on VMware
vSphere 5.1. Technical report, VMware, 2013.

[28] Azure: Microsoft’s Cloud Platform.
http://azure.microsoft.com/.

[29] A.Myers, T. S. E. Ng, and H. Zhang. Rethinking the Service
Model: Scaling Ethernet to a Million Nodes. In HotNets,
20040A.

[30] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
Portland: A scalable fault-tolerant layer 2 data center
network fabric. In SIGCOMM, 2009.

[31] OpenStack: Open Source Cloud Computing Software.
http://openstack.org/.

[32] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and
S. Shenker. Extending networking into the virtualization
layer. In HotNets, 2009.

[33] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter. Past:
Scalable ethernet for data centers. In Proceedings of the 8th
International Conference on Emerging Networking
Experiments and Technologies, CONEXT *12, pages 49-60,
New York, NY, USA, 2012. ACM.

[34] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker.
Applying NOX to the datacenter. In Eight ACM Workshop on

Hot Topics in Networks (HotNets-VIII), HOTNETS ’09, New
York City, 2009.

[35] RFC 6326 - Transparent Interconnection of Lots of Links
(TRILL) Use of IS-IS.
http://tools.ietf.org/html/rfc6326, 2011.

