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ABSTRACT
We present SecureBlox, a declarative system that unifies a
distributed query processor with a security policy framework. Se-
cureBlox decouples security concerns from system specification,
allowing easy reconfiguration of a system’s security properties to
suit a given execution environment. Our implementation of Se-
cureBlox is a series of extensions to LogicBlox, an emerging com-
mercial Datalog-based platform for enterprise software systems.
SecureBlox enhances LogicBlox to enable distribution and static
meta-programmability, and makes novel use of existing LogicBlox
features such as integrity constraints. SecureBlox allows
meta-programmability via BloxGenerics–a language extension for
compile-time code generation based on the security requirements
and trust policies of the deployed environment. We present and
evaluate detailed use-cases in which SecureBlox enables diverse
applications, including an authenticated declarative routing proto-
col with encrypted advertisements and an authenticated and en-
crypted parallel hash join operation. Our results demonstrate Se-
cureBlox’s abilities to specify and implement a wide range of dif-
ferent security constructs for distributed systems as well as to en-
able tradeoffs between performance and security.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—Se-
curity, integrity, and protection; H.2.4 [Database Management]:
Systems—Query processing

General Terms
Design, Languages, Security

Keywords
Datalog, Secure data management, Distributed query processing

1. INTRODUCTION
In recent years, there has been a proliferation of large-scale net-

worked information systems for a variety of application domains
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including network monitoring infrastructures, publish-subscribe
systems, cloud computing, content distribution networks, and net-
work routing. These systems typically involve the continuous pro-
cessing of data in a distributed setting.

Recent work has shown that such systems can be specified as
queries in high-level declarative languages based on Datalog, often
in orders of magnitude less code than their imperative implemen-
tations. For example, one can express routing [23] and concur-
rency [5] protocols, overlay networks [22] and cloud analytics [4],
using a variant of Datalog enhanced with location specifiers – a dis-
tinguished attribute of each tuple that denotes the node where the
tuple is stored. These specifications can then be efficiently executed
in a distributed query processor.

An oft-overlooked challenge is that of securing these distributed
systems, particularly when their execution spans administrative
boundaries. For example, achieving secure distributed execution
may require authentication, encryption, and integrity-checking of
inter-node communications, as well as intra-node access control.

Although it may be possible to achieve a high level of security for
a particular deployment using a “one-size-fits-all” solution that im-
poses rigid cryptographic protocols and constructs, we argue that a
flexible security framework is applicable to a much broader range of
environments while providing the necessary level of security. For
example, while sharing sensitive data between nodes on the Internet
may require strong authentication and encryption mechanisms, ca-
pabilities may suffice within a trusted execution environment (e.g.,
a single datacenter [14]). The choice of security mechanisms may
also depend on the user’s estimation of the threat model in the cur-
rent environment (e.g., assumptions about an attacker’s abilities).
Similarly, bandwidth and computation constraints (such as in sen-
sor motes) may necessitate tradeoffs between resource consump-
tion and security.

Reasoning about security in distributed systems is further com-
plicated by the fact that security is a cross-cutting concern: decou-
pling it from a system implementation in a traditional imperative
language is often challenging or impossible. But it is precisely this
separation of concerns that is vital for customizable security. Ad-
ditionally, security properties are often stated as safety properties –
invariants that ensure something bad will never happen (e.g., “we
will never accept a message with an invalid signature”). Adding
new system functionality or security features may inadvertently
negate existing safety properties.

To address the above challenges, this paper presents SecureBlox,
a distributed query processor that allows security properties to be
expressed and customized in a variant of the Datalog language.
Our implementation of SecureBlox is a series of extensions to Log-
icBlox [20], an emerging commercial Datalog-based platform for
enterprise software systems. SecureBlox extends Datalog with dis-



tributed execution, static meta-programming, and a familiar notion
of database integrity constraints. The declarative, commutative na-
ture of Datalog rules, along with SecureBlox’s support for static
meta-programming and integrity constraints, ensure that program-
mers do not have to worry about where to enforce a security prop-
erty, but can instead focus on what high-level property to enforce
and how to enforce it (for example, the what may be only accept-
ing messages from other users we trust, and the how may be using
RSA digital signatures). Additionally, SecureBlox’s integrity con-
straints allow security properties to be monotonic under additions
to the program’s rules or constraints.

Specifically, this paper makes the following contributions:
SecureBlox: We present the design and implementation of Secure-
Blox, an extensible declarative system that unifies distributed query
processing with security policy enforcement. SecureBlox extends
LogicBlox [20], an emerging commercial Datalog-based platform
for enterprise software systems. LogicBlox enhances Datalog with
features such as integrity constraints, a static type system that guar-
antees conformance to certain constraints for all possible schema
instantiations, and user-defined functions that can be integrated into
query execution. SecureBlox leverages LogicBlox features in novel
ways: integrity constraints assist in the expression of security prop-
erties, and user-defined functions implement custom encryption op-
erators. SecureBlox further enhances LogicBlox with static meta-
programming and support for distributed execution.
Static meta-programming: We enhance the query language of
LogicBlox with BloxGenerics , a set of language features for static
meta-programming–compile-time code generation through
user-defined declarative rules. BloxGenerics enables security prop-
erties to be specified generally, for arbitrary predicates. BloxGener-
ics further allows certain correctness criteria on generated code to
be specified as meta-constraints; the BloxGenerics compiler veri-
fies that such criteria will always be met at compile-time. Indepen-
dent of the contributions of SecureBlox, the BloxGenerics frame-
work demonstrates the practical realization of meta-programmability
in a commercial Datalog engine.
Customizable secure data applications: We demonstrate that Se-
cureBlox expresses a wide variety of security properties for authen-
tication, confidentiality, integrity, speaks-for, and restricted delega-
tion. Using these primitives, SecureBlox supports a variety of dis-
tributed network applications, including (i) an authenticated declar-
ative routing [23] protocol with encrypted advertisements and (ii)
an authenticated/encrypted parallel hash join operation. In these
applications, SecureBlox is used not only to execute the distributed
queries, but also to specify and enforce the relevant security prop-
erties. We have developed an implementation of SecureBlox and
evaluated the system on a local cluster based on the above appli-
cations. Our results demonstrate SecureBlox’s ability to specify
and implement a variety of secure distributed systems with different
cryptographic schemes in a manner that enables the programmer to
intelligently select the desired levels of performance and security.

2. BACKGROUND: LogicBlox
We first present an overview of the LogicBlox architecture. Log-

icBlox is a commercial Datalog-based platform for building enterprise-
scale corporate planning and pricing applications. LogicBlox is
currently used in several commercial decision automation appli-
cations, including retail supply-chain management [26], insurance
risk management, and software program analysis [7, 8, 27].

The LogicBlox platform uses the DatalogLB query language, and
an evaluation engine (the runtime) that executes DatalogLB pro-
grams over data stored in a LogicBlox workspace. Figure 1 il-
lustrates the overall architecture of LogicBlox. We next provide a

brief overview of the DatalogLB language features, as well as the
LogicBlox runtime and workspace.
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Figure 1: LogicBlox Architecture

The DatalogLB Language. DatalogLB extends ordinary Data-
log with constructs for specifying integrity constraints such as func-
tional dependencies, as well as a static type system that guarantees
the validity of certain constraints for all schema instantiations.

The basic programming construct in DatalogLB is “<-” (implica-
tion), which allows the declaration of a derivation rule:

q1, ..., qm <- p1, ..., pn.

The above rule means that “q1 and ... and qm can be derived
from p1 and ... and pn”. The p’s and q’s are atoms, which can
either be predicates with variables or constants as arguments, com-
parison expressions (using relational operators such as <, =, etc),
arithmetic expressions, or negated atoms. The left-hand-side of the
<- is the head of the rule, and the right-hand-side comprises the
rule’s body.

DatalogLB adds to Datalog the notion of an integrity constraint,
declared using “->”:

q1, ..., qm -> p1, ..., pn

Informally, the above constraint means that “if q1 and ... and
qm, then it must be true that p1 and ... and pn”. The difference
between a constraint and a rule is that a rule derives data for the
atoms in its head, whereas a constraint checks that for existing data
on the left-hand-side of ->, the right-hand-side must hold. Whereas
many constraints can only be effectively checked at runtime (e.g.,
foreign key violations), DatalogLB employs a static type system,
which guarantees at compile-time that certain kinds of constraints
always hold for all possible instantiations of a given schema. The
following is a typical type-based constraint, or a type declaration,
for predicate p:

p(x1,...,xn) -> q1(x1), ... , qn(xn).

Unary predicates such as qn are considered “types”. A value x
is of type q if q(x) is true. The above constraint thus declares that
for every tuple 〈x1,...,xn〉 in p, xi must be of type qi. The predicates
q1,...,qn are referred to as the types of p. Type-based constraints can
be checked at compile-time by verifying that every rule that derives
facts for p implies the proper set membership for its arguments. For



instance, the following rule will be rejected as not being type-safe,
because the set of values in s is not guaranteed to be contained by
the set qn:

p(x1,...,xn) <- ..., s(xn).

One way to make the above-rule type-safe is to declare that all
elements of s is are guaranteed to be in qn, using a constraint: s(x)
-> qn(x).

There are two language features that are used frequently in our
case studies. First, DatalogLB provides syntactic sugar for declaring
a functional dependency for a predicate: p[x1,...,xn]=y declares
that predicate p is a function from its first n arguments to the last ar-
gument. Functional dependencies are checked at runtime. Further-
more, a predicate can be declared as a singleton, i.e., a predicate
with exactly one value (a constant). For instance, p[]=v declares p
to be a singleton that contains only the value v. The value can be
retrieved through p[].

LogicBlox Evaluation Engine & Workspace. After com-
pilation, a LogicBlox program – i.e., rules and constraints – is
loaded into the workspace. A LogicBlox workspace is essentially
a database instance that contains a set of predicate definitions1, a
set of installed rules (similar to continuous queries), as well as
constraints. Within a designated workspace, the LogicBlox API
allows an application to query and modify the data defined by the
workspace. For example, the application may add or remove facts
from predicates. When predicate data is modified, the installed
rules are incrementally maintained using the DRed algorithm [15].

The LogicBlox engine evaluates rules using the semi-naïve algo-
rithm until a fixed-point is reached—that is, until no more facts can
be derived for the atoms in the heads of the rules. At the same time,
the engine checks for constraint violations for every new fact that is
derived, throwing constraint violation errors and restoring database
consistency when appropriate.

3. OVERVIEW OF SecureBlox
Figure 2 shows an overview of the SecureBlox architecture and

its usage model. The details of the LogicBlox platform are elided,
as it is shown in detail in Figure 1. SecureBlox enhances Log-
icBlox with BloxGenerics and a distributed query processing run-
time. These extensions are shown in light-grey boxes, labeled “Se-
cureBlox”.

SecureBlox takes as input user queries for data processing ap-
plications, as well as the security policies required by these appli-
cations. Queries, together with security policies, are input to the
BloxGenerics compiler. The BloxGenerics compiler may throw
compile-time errors for queries and policies that do not satisfy spec-
ified correctness criteria (details are presented in the next section).
The BloxGenerics compiler then rewrites the queries and generates
additional rules and constraints based on the security policies. The
result of the BloxGenerics compilation is a set of modified queries,
augmented with various security constructs.

These modified queries then go through the LogicBlox pipeline
of compilation and loading into the workspace. The distributed
query processing extension of SecureBlox then disseminates appro-
priate queries and security policies (out-of-band) to all participating
nodes. During query execution, intermediate tuples are exchanged
among nodes, and the query results are similarly assembled from

1A predicate definition declares both the logical attributes of a
predicate, such as its name and arity; and also the physical at-
tributes for the purposes of cost-based optimizations, such as the
predicate’s data storage format, data location, and population den-
sity statistics.

various nodes at the end of the execution, or further distributed in
the network based on the query specifications.

3.1 First Motivating Example
We motivate SecureBlox using the following example to high-

light the need for customizable security policies, and outline how
such customization can be achieved using SecureBlox:

reachable(X,Y) <- link(X,Y).
reachable(X,Y) <- link(X,Z), reachable(Z,Y).

The above rules define the transitive closure of the link predi-
cate as reachable. In a distributed environment, each node may
store different facts for link. For ease of exposition, we assume
that the first argument of each fact in link (and thus reachable) is
also the location of that fact. The above program is hence a dis-
tributed transitive closure computation. Prior work on declarative
networking [21, 23] has shown that distributed transitive closure
computations can be used as a basis for expressing routing proto-
cols.

A central component of security in a distributed setting is authen-
tication: where the identity of a principal is established and veri-
fied. Most previous work represents authentication using a distin-
guished keyword, says, that associates a principal with some fact.
For instance, using the SeNDLog language introduced by Zhou et
al. [29], the above query would be rewritten as follows, prefixing
each body predicate with the remote principal asserting the fact:

reachable(X,Y) <- link(X,Y).
reachable(X,Y) <- link(X,Z), Z says reachable(Z,Y).

The says operator implements a common logical construct in au-
thentication [18]: we assert “p says s” if the principal p supports
the statement s. The says keyword enables the distribution system
at principal X to authenticate the reachable(Z,Y) fact from Z before
using it to derive its own reachable(X,Y) fact.

The notion of says is usually a hard-wired concept that is baked
into the underlying system [1, 11]. However, a fixed policy over
says can only work in a limited setting. For instance, users of the
database have no way of applying different authentication schemes.
Moreover, principals that receive facts do not have mechanisms for
authorization, e.g., limiting how remote principals can modify lo-
cal predicates. Nor do users have a choice over methods of encryp-
tion (if encryption is supported).

SecureBlox aims to support a heterogeneous execution environ-
ment in which nodes have different security levels. Thus, the users,
not the underlying system, must be able to specify the appropriate
security policies for their environment. In a hostile world, “says”
may require digital signatures. In a more benign world, “says” may
simply append a cleartext principal header to a message—and this
will of course be cheaper. Somewhere in between, the use of digital
signatures may be applied only to certain important messages. One
may also want to use different cryptographic or non-cryptographic
schemes. Next, we show how to declare and customize policies for
says in SecureBlox. We provide additional security policy variants
in Section 6, and use-cases of these policies in Section 7.

3.2 Customizable Policies Using SecureBlox
In SecureBlox, says can be implemented as a predicate-

to-predicate mapping: given any predicate T, saysmaps T to a pred-
icate ST, the “said” version of T. We can then define different poli-
cies and constraints on ST regarding its use. We define such a pred-
icate mapping using BloxGenerics, the meta-programming facility
we developed for LogicBlox. In the following examples, we infor-
mally explain the BloxGenerics rules by appealing to the reader’s
intuition. We detail the design and semantics of BloxGenerics in
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Section 4. The following is a simple policy for says, involving
only authentication:

says[T]=ST, predicate(ST),
‘{
ST(P1,P2,V*) ->
principal(P1), principal(P2), types[T](V*).

}
<-- predicate(T).

The BloxGenerics rule above (or just a generic rule, as indicated
by the “<--” in place of “<-”) declares that for all predicate T,
a new mapping exists for says, and it maps T to ST, where ST is
also a predicate. Furthermore, a DatalogLB constraint, enclosed in
‘{...}, is also derived/generated for each predicate T. The derived
constraint requires that ST’s first and second arguments must be of
type (or in the set of) principal; the remainder of its arguments–as
indicated by the variable-length argument notation V*–must have
the same types as the argument types of predicate T. Arguments
such as V* allow the arity of ST to vary based on the arity of T.

We refer to predicates that store facts about other predicates as
generic predicates. The generic predicate says can be parameter-
ized by any concrete predicate to retrieve the “said” counterpart.
For instance, says[‘reachable] parameterizes says with the pred-
icate reachable, and the result is a “said” version of reachable. A
corresponding constraint is generated, restricting the first two argu-
ments of says[‘reachable] to principals.

Using the above definition of says, the distributed version of the
transitive closure can be written as follows:

reachable(X,Y) <- link(X,Y).
reachable(X,Y) <- link(X,Z),

says[‘reachable](Z,self[],Z,Y).

Note that the second rule makes use of the “said” version of
reachable. says[‘reachable] takes two principals as the first
two parameters: Z is the principal that “said” the fact, and self[]
is the singleton representing the local principal that is receiving the
fact. Because the first two arguments of says[‘reachable] are de-
clared to be of type principal, the LogicBlox runtime will verify Z
and self[] against the constraint that they are known principals—
a simple method of authentication.

In a benign world, where a principal trusts all other principals,
he may derive a fact for predicate T for every T fact that was “said”
to him:

‘{ T(V*) <- says[T](P,self[],V*). }
<-- predicate(T).

In a more hostile environment, however, one might want to add
authorization and encryption policies.

Authorization. For more control over says, one might want to
declare that “if a principal P1 wishes to say a fact about predicate
T, then P1 must have write-access to T”. This policy can be easily
added to any existing policy with the following BloxGenerics rule:

‘{ says[T](P1,P2,V*) -> writeAccess[T](P1). }
<-- predicate(T).

The above rule says that, for all predicate T, generate the con-
straint that the first argument of says[T] (i.e., the principal saying
the fact) must be part of the writeAccess[T] relation. writeAccess
is simply another generic predicate that can be locally populated
with principals allowed to write to a particular predicate.

Cryptography. In a more hostile environment, one may wish to
cryptographically sign and verify facts exchanged between princi-
pals, as well as employ encryption to thwart eavesdropping. The
following generic rule declares a constraint for every predicate T,
requiring that every fact said about T by a principal P must have a
valid signature (sig), as verified by rsa_verify given P’s
public_key):

‘{
says[T](P,self[],V*) ->
sig[T](P,self[],V*,S),
public_key(P,K), rsa_verify[T](K,V*,S).

}
<-- predicate(T).

Note that rsa_verify is implemented as a user-defined function.
LogicBlox provides a set of APIs for hooking user-defined func-
tions into rule or constraint execution.

Signature generation can be similarly defined with a generic rule,
using a principal’s private_key:2

‘{
sig[T](self[],P,V*,S)
<- says[T](self[],P,V*),
private_key[]=K, rsa_sign[P](K,V*,S).

}
<-- predicate(T).

The above generic rule says that, for every predicate T, gener-

2 In practice, we have found it useful to sign aggregates of seri-
alized facts, rather than signing individual tuples, as a transaction
may result in the transit of multiple tuples to a single node.



ate the rule that, for every fact about T by local node (self[]),
produces the signature by rsa_signing the fact V* with the local
private_key.

Alternate Cryptographic Scheme. A different encryption
scheme can be easily constructed by redefining the rules for signa-
ture generation and verification. For instance, one can implement a
keyed-Hash Message Authentication Code (HMAC), by replacing
public_key and private_key with a shared secret, and replacing
rsa_sign and rsa_verify with hmac_sign and hmac_verify:

‘{
says[T](P,self[],V*) ->
sig[T](P,self[],V*,S),
secret(U,K), hmac_verify[T](K,V*,S).

sig[T](self[],P,V*,S)
<- says[T](self[],P,V*),
secret(U,K), hmac_sign[T](K,V*,S).

}
<-- predicate(T).

We assume that hmac_verify and hmac_sign predicates have been
implemented as user-defined functions.

The above examples give a flavor of how one can use Secure-
Blox to build customized security policies. Notice that in Secure-
Blox, the notion of says is defined as derivation rules and con-
straints – it is not a hard-wired concept. In previously proposed
systems [1,11,29] where says is baked into the underlying runtime,
it would take a very motivated programmer to change its meaning
and interpretation. SecureBlox does not assume a specific security
model–its goal is to be as general as possible so as to enable users
to build constructs that reflect any security model of their choice.
When a user programs or chooses constructs, she makes assump-
tions about an adversary, and makes trade-offs between security and
efficiency.

Note that the ability to declare says as a generic predicate through
meta-programming is crucial to the generality of SecureBlox. If
one cannot declare says in a way that abstracts over the specific
predicates it may be parameterized with, one would need to man-
ually declare constraints involving says for every predicate that
can be “said”. That is, one would need to declare constraints for
not only says_reachable, but also says_foo, says_bar, etc. It is
of course impossible to anticipate all possible predicates that may
be defined and said. Thus, meta-programming is an indispensable
language feature in supporting security policies, and in decoupling
security concerns from the implementation of a system.

In the next two sections, we discuss in detail SecureBlox’s ex-
tensions to LogicBlox: Section 4 discusses BloxGenerics, a meta-
programming facility, and Section 5 discusses our distributed query
processing mechanism.

4. BloxGenerics
Security policies in SecureBlox are essentially programs that

specify rules and constraints over DatalogLB programs. Hence, we
refer to such programs as meta-programs. SecureBlox achieves
static meta-programmability using BloxGenerics, a language mech-
anism that allows rules and constraints to be declared over struc-
tural elements of DatalogLB programs: predicates, rules, constraints,
formulas, etc. Furthermore, DatalogLB programs can be generated
using BloxGenerics rules. While meta-programming mechanisms
exist for other Datalog dialects [10] as well as Prolog [9], Blox-
Generics distinguishes itself by guaranteeing that generated code
will always obey the correctness criteria of the DatalogLB language,
as well as those specified by the programmers.

4.1 BloxGenerics Language Features
BloxGenerics adds four language constructs to DatalogLB: <--

for declaring generic rules, ‘{...} for declaring code templates, a
notation for declaring variable-length variable sequences, and -->
for declaring generic constraints. In the rest of this section, we
discuss these language features using the following BloxGenerics
rule presented in Section 3:

says[T]=ST, predicate(ST),
‘{
ST(P1,P2,V*) ->
principal(P1), principal(P2), types[T](V*).

}
<-- predicate(T).

4.1.1 Generic Rules
A generic rule specifies how facts about DatalogLB program ele-

ments (e.g., predicates, rules, etc.) can be derived from other facts
about DatalogLB program elements. For instance, the above generic
rule defines how new predicates (ST) can be derived from existing
predicates (T).
<-- has very similar semantics to the regular rule implication ar-

row, <-, for DatalogLB. The right-hand-side of <-- (the body) spec-
ifies the conditions for the rule’s firing; the left-hand-side (the head)
specifies the relations derived as a result. The difference, however,
is that whereas <- rules define relationships between values such as
strings, integers, etc, the only predicates allowed in generic rules
are generic predicates—i.e., predicates that store relationships be-
tween program elements.

BloxGenerics provides a number of built-in generic predicates
to facilitate declaration of BloxGenerics rules: predicate(p) is the
set of predicates; rule(r) is the set of rules; ruleHead(r,h) is a
relation between a rule and the formula comprising its head; and
atom(a) is the set of atoms. Additionally, programmers can declare
custom generic predicates. For instance, says is a user-defined
generic predicate. A BloxGenerics compiler pipeline stage con-
verts input DatalogLB programs into their relational representations
and populates these generic predicates.

Head-Existentials. Note that a generic rule allows variables
that are not bound in its body to appear in its head. For instance, ST
is not bound by any predicate in the body of the above rule. This
type of variable is referred to as being “existential in the head” of
the rule. For each head-existential variable, a new entity must be
created for each fact in the body. For our use cases, this is precisely
the desired behavior. For instance, for every predicate T, we want a
new predicate ST to be created to represent the “said” version of T.

The admittance of head-existential variables, however, takes Blox-
Generics beyond Datalog’s P-time termination guarantees. Indeed,
the evaluation of a BloxGenerics rule may not terminate with a
fixpoint. There have recently been a number of breakthroughs on
termination conditions for Datalog rules with head-existentials [12,
25], mostly in the context of the data exchange problem. Explor-
ing these techniques, as well as developing our own solutions for
strong termination guarantees, is part of our future work. The cur-
rent BloxGenerics compiler throws a compiler error if no fixpoint
is reached within a time limit. However, we note that none of the
BloxGenerics rules or constraints presented in this work result in
a non-terminating compilation phase, and we stress that the issue
of non-termination is restricted to the compilation phase: a local
procedure that occurs strictly before execution of the system.

4.1.2 Code Templating
‘{...} is a templating mechanism for specifying the code to be

derived/generated from generic rules. It allows a piece of DatalogLB



code to be specified using variables in place of concrete predicate
names. This quoting mechanism affords users the ability to specify
security rules that apply to any predicate rather than to a specific
concrete predicate. This level of generality is a necessity for main-
taining a separation between security policy and system implemen-
tation.
‘{...}, however, is simply syntactic sugar for fully specifying

the structure of the templated code using generic predicates. For
instance, ‘{ ST(P1,P2,V*) -> principal(P1), ...}, is syntactic
sugar for the following formula:

constraint(C1), lhs(C1,H1), atom(H1), atomPred(H1,ST),
body(C1,B1), atom(B1), atomPred(B1,principal), ...

The BloxGenerics compiler expands every quoted rule into a full
specification.

4.1.3 Variable-length Argument Sequence
The above example makes use of a feature for declaring a pred-

icate with a variable number of arguments. Note that ST has argu-
ment P1, P2, and V*. The * notation indicates that argument V is a
sequence of variables of any length, including length 0. The length
of V* is bound by the types of T. Depending on which concrete
predicate instantiates T, V* may instantiate to arbitrary length vari-
ables. For instance, since reachable is a predicate of arity 2, V*
expands to “V0,V1” for says[‘reachable].

4.1.4 Generic Constraints
One of the distinguishing features of BloxGenerics is that it al-

lows programmers to specify the necessary correctness criteria for
generated code using generic constraints. The compiler guaran-
tees that all possible code generated from a template will obey the
specified constraint before the actual (run-time) code generation.

For instance, one may want to restrict which predicates’ data are
allowed to be “said”. This constraint can be easily defined as a
generic constraint on says:

says(P,SP) --> exportable(P).

Note the use of -->, the constraint arrow for BloxGenerics. The
above generic constraint says that for all tuples says(P,SP), Pmust
be in the exportable relation (exportable can be separately de-
clared and have the appropriate predicates inserted into it).

The BloxGenerics compiler will check every rule producing says
tuples to verify whether such a constraint will be followed. In fact,
for the example rule in this section, this constraint does not always
hold, and the BloxGenerics compiler will reject the program for
this reason. The fix is to simply add a condition in the body of the
generic rule, restricting T to those predicates in exportable:

says(T,ST), predicate(ST), ‘{ ... }
<-- predicate(T), exportable(T).

4.2 Compilation of BloxGenerics Programs
Figure 3 shows a detailed view of the BloxGenerics compiler

architecture. The compilation of a BloxGenerics program is essen-
tially the evaluation of BloxGenerics rules and the verification of
BloxGenerics constraints. As we have shown, a BloxGenerics rule
or constraint is simply a DatalogLB rule or constraint (with support
for head-existential variables) that computes over a DatalogLB pro-
gram as data. Thus, the BloxGenerics compiler evaluates generic
rules (and checks constraints) using the same engine that evaluates
regular DatalogLB rules.

First, a relational representation is created for the incoming query.
That is, the structure of the query is represented using predicates
such as predicate, rule, etc. Next, the generic rules and the queries
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Figure 3: Detailed View of BloxGenerics Compiler

go through a static type-based constraint checking process. The
generic rules are then evaluated over the program data. The evalu-
ation of generic rules may cause more facts to be derived, and thus,
more DatalogLB programs to be generated (e.g., rules about a spe-
cialized version of says predicate may be defined). When a fixpoint
is reached, the BloxGenerics compiler reifies a DatalogLB program
from the workspace. This modified version of the input query is the
output of the BloxGenerics compiler.

Note that the BloxGenerics compiler in Figure 3 is a subset of
the LogicBlox compiler/runtime in Figure 1. Our implementa-
tion bootstraps the BloxGenerics compiler using the LogicBlox
compiler, converting DatalogLB programs to data, handling head-
existentials, and reifying DatalogLB programs from their relational
representations.

5. DISTRIBUTED EXECUTION
In this section, we describe language support for expressing dis-

tribution in DatalogLB and discuss how distributed execution is han-
dled in the presence of constraint checks.

5.1 Principals and Nodes
SecureBlox supports distributed computation by enabling users

to partition predicates by location. When a node derives a fact at a
location other than itself, the fact is implicitly communicated to the
correct node via a UDP message. SecureBlox represents location
with the built-in node type. An element of the node type consists of
an IP address and port that specifies the node’s location. A predi-
cate is partitioned by location if its first argument is node. Any ex-
isting predicate, p(X1, ..., Xn) -> t1(X1), ..., tn(Xn). may
be partitioned by creating a predicate p’ with a node argument in
its first key:

p’(N, X1, ..., Xn) -> node(N), t1(X1), ..., tn(Xn).

Furthermore, a rule encapsulating the placement policy of p’
needs to be specified. For example, one may wish to define a map-
ping from the first key attribute of p to the set of nodes, x1node, and
use it to populate the partitions of p’:

p’(N, X1, ..., Xn) <- p(X1, ..., Xn), x1node[X1]=N.



In addition to nodes, SecureBlox provides a notion of princi-
pals that are independent of physical nodes. A principal may be
identified by a global value. Specifying policies in terms of prin-
cipals rather than nodes allows policies to be location transpar-
ent. A principal is temporarily associated with a node through the
principal_nodemapping, which stores a single node per principal,
representing the principal’s location. The local principal is repre-
sented by the built-in self[] singleton predicate.

For example, the says construct introduced in Section 3.2 is de-
fined in terms of principals. Exportation of says facts and signa-
tures is handled by the following export rule which serializes a
said fact along with its signature, looks up the corresponding node
N for the principal specified in says, and exports the fact to N by
deriving export at N’s location:

‘{
export(N, L, T)
<- says[P](self[], U, V*),
sig[P](self[], U, V*, S),
serialize[P](S, T, V*),
principal_node[U] = N,
principal_node[self[]] = L.

}
<-- predicate(P).

At the destination, says facts and signatures are deserialized and
imported using a similar rule:

‘{
says[P](U, self[], V*)
<- export(N, L, T),
deserialize[P](S, T, V*),
sig[P](U, self[], V*, S),
principal_node[U] = N,
principal_node[self[]] = L.

}
<-- predicate(P).

To prevent unauthorized principals from interpreting facts, one
can expand the purview of the says construct to encompass en-
cryption. Implementing this requires the following simple modifi-
cations to the export rule (and a similar modification to the import
rule). To utilize AES, one applies the aesencrypt operator on the
serialized text (making use of a shared secret, K, with node N) and
exports the encrypted text:

‘{
export(N, L, CT)
<- says[P](self[], U, V*),
sig[P](self[], U, V*, S),
serialize[P](S, PT, V*),
principal_node[U]=N,
principal_node[self[]]=L,
secret(N, K), aesencrypt(PT, K, CT).

}
<-- predicate(P).

Note that the only difference between the first export rule in
this Section to the rule above is the last line in ‘{...}, where we
reference the aesencrypt operator and the secret predicate.

5.2 Distributed Evaluation with Constraints
Constraints evaluated at runtime set conditions under which pro-

gram evaluation should fail (for example, if a signature associated
with a says tuple is invalid). SecureBlox enforces constraints by
processing a batch of incoming facts from a remote node in a lo-
cal ACID transaction that encapsulates a fixpoint computation. If
a derivation in the transaction violates a runtime constraint, then
the transaction (including the input tuples) are rolled back. Deriva-
tions are committed to the workspace and network messages are
sent only after a transaction succeeds.

Our implementation contrasts with the pipelined semi-naïve

(PSN) evaluation method used for executing distributed Datalog
in declarative networking [21]. In PSN, tuples are processed tuple-
at-time in a pipelined fashion. Each node maintains a FIFO queue
(ordered by arrival timestamp) of new input tuples that can either
be incoming network or local events. Each new tuple is dequeued
and used as input to local rules. The execution of a rule may gen-
erate new tuples that are either inserted into the local queue or sent
to a remote node for further execution. Duplicate evaluations are
avoided using local arrival timestamps; each new tuple is combined
only with older tuples.

The advantage of PSN over local transactions in our implemen-
tation of SecureBlox is that PSN may send tuples to remote nodes
before a fixpoint is reached, thus enabling lower latency to the
first output from a distributed computation, and faster convergence.
However, PSN’s default behavior in this regard makes it unsuit-
able for supporting local constraints. For example, PSN may send
a tuple whose local transitive consequences later result in a local
constraint violation. Without distributed transactions, it is not ob-
vious how the node should retract this tuple when it learns of the
constraint violation.

One possible enhancement to SecureBlox that we are exploring
for future work is to relax local transactions: instead of sending
all results at the end of a local transaction, we could send results
in a predicate P as soon as all integrity constraints involving P –
and any predicate upon which P is transitively dependent – have
been evaluated. This approach would allow us to achieve lower
latency for the first output while guaranteeing the integrity of all
constraints.

6. SECURITY MECHANISMS
We have shown in Section 3 how different security policies in-

volving distributed data processing can be implement using rules
and constraints over the predicate says. In this section, we build
upon those concepts, and show two more example policies: trust
delegation and anonymity.

6.1 Trust Delegation
When a principal does not wish to trust all other principals, he

may selectively delegate trust by only accepting facts from certain
other principals. For example, the following generic rule expresses
that, if a principal P from a set of trustworthy principals says a
fact about any predicate T to me, then I will accept that fact into my
local predicate T:

‘{
T(V*) <- says[T](P,self[],V*), trustworthy(P).

}
<-- predicate(T).

A principal may also perform delegation on a more fine-grained
level. Consider, for example, a per-predicate delegation policy. If
a principal trusts a different set of nodes for each predicate, we can
declare trustworthyPerPred as a generic predicate such that each
trustworthyPerPred[T] contains the set of principals trusted for
predicate T:

‘{
T(V*) <- says[T](P,self[],V*), trustworthyPerPred[T](P).

}
<-- predicate(T).

If a principal wishes to trust a credit agency CA about creditscore,
this information can be declared locally as:

trustworthyPerPred[‘creditscore]("CA").



If he wishes to ensure that creditscore is delegated to CA (and
no other principals), he may declare the constraint:

trustworthyPerPred[‘creditscore](U) -> U = "CA".

Note that there are other notions of delegation, such as allowing
another principal to act with your authority. SecureBlox can easily
express this type of delegation, but we omit those rules for brevity.

6.2 Anonymity
A low-latency anonymity system, like Tor [13], enables anony-

mous unicast between two hosts on the Internet through obfusca-
tion of a sender’s (and optionally a receiver’s) Internet Protocol (IP)
address by relaying communication through an anonymous path –
a series of intermediate nodes. Users of anonymity systems include
dissidents, who can freely blog their opinions without fear of retri-
bution, law enforcement, who can conduct undercover operations,
and privacy-conscious users, who can avoid tracking. The Tor web-
site maintains a comprehensive set of anonymity use cases [28].

Communicating using Tor first involves an initiator securely es-
tablishing forwarding state and keys at each intermediate node on
the path, so that each node knows only its predecessor and succes-
sor in the path. Thus, no single node can discern the identity of
the initiator with high probability. Interestingly, these path instan-
tiation rules can be expressed in SecureBlox, but we omit them for
brevity. We instead focus on how one would build an anon_says
construct to support anonymous communication. To send a mes-
sage over an instantiated anonymous path, an initiator repeatedly
encrypts the message with keys shared with each node in the path,
and forwards this multiply-encrypted message to the first node in
the anonymous path. As each intermediate node sees the message,
it removes the layer encrypted with its key and forwards the mes-
sage onward. The rule below shows the initial step:

‘{
anon_export(N, Id, CT)
<- anon_says[P](self[], U, V*),
anon_serialize[P](T, V*),
anon_path[U] = C,
anon_path_forward_id[C] = Id,
anon_path_nexthop[C] = N,
anon_encrypt(C, T, CT).

}
<-- predicate(P).

The above rule serializes3 and iteratively encrypts (using
anon_encrypt) any outgoing anon_says fact, and sends it via
anon_export to the first hop N of the appropriate anon_path C. Note
that anon_export contains Id, a link-local identifier. This value is
used to look up the appropriate next hop in the anonymous path at
an intermediate node.

An intermediate node receives an anon_export message, looks
up the link local identifier sent by the previous node, and exports the
message to the corresponding next hop N2 (with link identifier Id2)
after peeling off one layer of the encryption using anon_decrypt:

anon_export(N2, Id2, CT2)
<- anon_export(self[], N1, Id, CT1),
anon_path_backward_id[C] = Id1,
anon_path_forward_id[C] = Id2,
anon_path_nexthop[C] = N2,
anon_decrypt(C, CT1, CT2).

At the endpoint of the anonymous path, the following rule is
triggered, which derives an incoming anon_says_id_in fact. Note
the asymmetry between sending and receiving: the initiator builds

3anon_serialize represents serialize without the signature argu-
ment – it would be detrimental to a principal’s anonymity for her to
identify herself as the author of the message.

a circuit and thus knows the identity of the endpoint; however, the
endpoint does not know the identity of the initiator, and can only
refer to him via the circuit C.

‘{
anon_says_id_in[P](C, V*)
<- anon_export(self[], N1, Id, CT1),
anon_path_backward_id[C] = Id,
anon_path_endpoint[C] = true,
anon_decrypt(C, CT1, PT),
anon_deserialize[P](PT, V*).

}
<-- predicate(P).

Additional logic is required for forwarding backwards along the
circuit (from the endpoint to the initiator), however we omit this
due to space constraints.

7. USE CASES
We next outline three use cases: a path-vector routing protocol,

a parallel hash join, and a distributed join over an anonymizing
network. Note that our use cases are independent of the implemen-
tation of our security constructs (says, anon_says, trustworthy,
etc); our use cases may employ any implementations of security
constructs, not just those presented in previous sections.

7.1 Path-Vector Protocol
A path-vector routing protocol is a distributed all-pairs-shortest-

path computation. The computation joins links (paths of length
one) with paths of length at least one to form new paths which
are propagated to neighbors. The protocol propagates the entire
composition of each path so nodes can make policy decisions about
whether to accept the path and when to route traffic through it. For
example, if nodes sign the path as it is built, then a router may have
the constraints “require that accepted paths are from some set of
routers that I trust” or “require that no accepted paths route through
node X.”

Below, we present a schema (or type declarations) for the path
vector computation:

path[P,Src,Dst]=C -> pathvar(P), node(Src), node(Dst),
int[32](C).

pathlink[P,H1]=H2 -> pathvar(P), node(H1), node(H2).
bestcost[Src,Dst]=C -> node(N1), node(N2), int[32](C).
pathvar(P) -> .
link(N1,N2) -> node(N1), node(N2).

Intuitively, a path from a source (Src) to a destination (Dst) has
an associated cost (C) and consists of a series of links (pathlink)
between two hops (H1 and H2). As there may be many paths be-
tween two nodes, the bestcost predicate stores the cost of the best
path. The cost C may represent any metric on which a protocol
makes forwarding decisions–in our case, it represents the number
of hops between the source and the destination.

We use the pathvar entity to relate a path with its series of
pathlink tuples. This allows us to avoid introducing an explicit
set or list type to Datalog (and the associated termination issues),
as in [23].

The first rule is the base case of the distributed transitive closure
computation–it expresses that whenever there exists a link from Me
to N, then let there exist a path of length one from Me to N:4

4We use the head-existential variable P for ease of exposition. Be-
cause a routing protocol specifies one best path between a given
source and destination, we could instead modify the protocol and
replace P with two variables of type node representing the source
and destination of the path.



pathvar(P),
path[P, self[], U]=1,
pathlink[P, Me]=N
<- link(Me,N),
principal_node[self[]]=Me,
principal_node[U]=N.

The following rule joins a link fact with a path of best cost, and
says the resulting path and pathlink tuples to the linked node. The
rule reduces message exchange by not advertising a path to a node
if that node already appears in the path:5

says[‘path](self[], U, P, N, N2, C + 1),
says[‘pathlink](self[], U, P, H1, H2),
says[‘pathlink](self[], U, P, N1, Me)
<- pathlink[P, H1]=H2, link(Me, N), path[P, Me, N2]=C,
bestcost[Me, N2]=C,
principal_node[U]=N,
principal_node[self[]]=Me,
N != N2, !pathlink[P,N]= _.

The bestcost tuple may be computed through a min aggregate
as shown below, using the LogicBlox syntax for aggregation:

bestcost[Me, N]=C
<- agg<< C=min(Cx) >> path[Me, N, _]=Cx.

7.2 Parallel Hash Join
In a system where tuples are partitioned by a hash function on

some key attribute (e.g. a DHT [16]), performing a join on an at-
tribute other than the key involves rehashing the tuples on the join
attribute, joining the tuples, and sending the results to the initiator.

For example, if table A is hashed on its first key attribute, the
following rules rehash it on its second key attribute:

says[‘A](self[],U,e1,e2)
<- A(e1,e2), sha1(e2,hash),
prin_maxhash[U] = max, max > hash,
prin_minhash[U] = bot, min >= bot.

In the above rule, prin_minhash and prin_maxhash represent the
range of hashes that a given principal is responsible for storing.
The rule performs a hash on the second key of A tuples, looks up
the principal U whose range contains this value, and says the tuple
to U. A similar rule exists for table B.

The following rule performs a join on tables A and B based on
their second attributes, sending the result back to the initiator:

says[‘AB_joinresult](self[],u,e1,e2,e3)
<- A(e1,e2), B(e3,e2),
initiator[]=u.

Building upon the above rules, one can perform two types of au-
thentication by simply modifying the says definition as presented
in the previous sections: In node-level authentication, machines
can be authenticated. For instance, in a cloud consisting of un-
trusted machines, each machine can authenticate all incoming re-
hashed tuples to ensure that only tuples sent from trusted machines
are used in the parallel hash join operation. Communication among
machines can be additionally encrypted.

In user-level authentication, the initiator needs to be authenti-
cated and checked against the access control policies to ensure that
she has the right permissions across tables A and B. This can be
enforced via a constraint that checks for read/write permissions on
table A and B, in a similar fashion as presented in Section 3.2.

7.3 Anonymous Join
We consider a special case where an anonymous user wants to

join a small local table with a publicly available large, remotely lo-
5An _ is Datalog convention for specifying a variable that appears
only once in the body of a rule.

cated table—for example, joining a local table of topics she is inter-
ested in (interests) with a large public repository of information
(publicdata). We want to avoid transferring the entire table to the
initiator, or the initiator transferring his entire table to the remote
node, as bandwidth is a precious commodity in anonymity net-
works. Running a hash join between the two nodes may be a better
solution. Composing a hash join with our earlier anonymous_says
primitive for anonymous communication is easy in SecureBlox.
The join involves an initiator performing a hash on the join key
of his interests table, and anonymously saying a req_publicdata
tuple to the table_owner of publicdata:

anonymous_says[‘req_publicdata](self[], U, Hx, 1)
<- interests(X,_),
table_owner[‘publicdata](U),
sha1(X,Hx).

The owner of publicdata executes the rule below to relay all
tuples with the matching hash back along the anonymous path they
arrived on:

anonymous_says_id_out[‘publicdata](C, X, Y)
<- publicdata(X,Y),
anonymous_says_id_in[‘req_publicdata](C, Hx, 1),
sha1(x,hx).

8. EVALUATION
We evaluate the SecureBlox prototype on a local cluster using

two of our use cases – the path vector protocol, and the parallel
hash join. All our experiments are carried out on a 36 node clus-
ter, interconnected by Gigabit Ethernet. Nodes in the cluster have
CPUs ranging from dual-core 2.80GHz Pentium Ds to 2.83GHz
quad-core Xeons, and run Fedora 10 with Linux Kernel 2.6.27.

8.1 Path Vector Protocol
For the path vector protocol, we evaluate the following metrics:

Fixpoint latency (s): The time taken for a SecureBlox program to
reach a distributed fixpoint based on the input network. A fixpoint
is reached when no new facts are derived by any node in the system.

Per-node communication overhead (KB): The per-node band-
width utilization for executing a SecureBlox program to a
distributed fixpoint in a stable network, measured by averaging
across the aggregate bandwidth of each node for the experiment’s
duration.

Average transaction duration (ms): The average length of a local
SecureBlox ACID transaction averaged over all nodes for all exper-
iments of a given graph size. The transaction duration represents
the amount of time required to process a batch of incoming tuples,
compute a local fixpoint, and export any tuples to other nodes.

Cumulative fraction of converged nodes: The fraction of nodes
that do not process or receive any additional tuples after a certain
time. When a node stops receiving and processing additional tu-
ples, it has calculated the shortest path to all other nodes in the
network.

We execute the protocol on network sizes ranging from 6 to 72
instances, where each physical cluster node executes one or two
SecureBlox instances. As input to the path vector protocol, for
each network size, we generate ten random graphs with an average
node degree of three. Each data point represents the average over
ten runs. We distribute initial links to all nodes simultaneously.

SecureBlox instances exchange messages over UDP using var-
ious combinations of authentication and confidentiality. We em-
phasize that customization of the encryption and digital signature
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Figure 6: Aggregate communication
overhead (KB) with no encryption.

schemes does not entail modifying the path-vector protocol spec-
ification – only minor changes to the implementation of the says
construct are required.

Figures 4 through 6 compare fixpoint latency and communica-
tion, respectively, imposed by different methods of authentication
and encryption. The signature schemes we evaluate are: no authen-
tication (NoAuth), keyed-hash message authentication codes based
on pairwise shared secrets (HMAC), and RSA digital signatures
(RSA). Additionally, we apply either no encryption, or (AES) sym-
metric key encryption. HMAC derives a signature by applying a
hash function – SHA-1 in our case – to a combination of the pair-
wise shared secret with the message. RSA authentication signs a
SHA-1 digest of the data with the private key of the sender. We use
128-bit random shared secrets for HMAC and AES, and a 1024-bit
keysize for RSA.

We make the following observations. First, in terms of commu-
nication overhead (Figure 6), NoAuth incurs the least overhead, as
expected. For instance, when the network size is 36, NoAuth incurs
an average per-node communication overhead of about 197 KB,
as compared to 223 KB for HMAC and 258 KB for RSA. As ex-
pected, HMAC causes additional traffic compared to NoAuth due
to the 20 byte output of the SHA-1 hash function. RSA incurs
the highest overhead due to its 256 byte signatures per message.
Second, a similar trend is observed when measuring fixpoint la-
tency (Figures 4 and 5). In a 36 node network, we observe that
when no authentication is used, the convergence time is approxi-
mately 15 seconds, whereas HMAC requires 19 seconds, and RSA
needs 25 seconds to reach a fixpoint. Adding AES encryption to
RSA signatures increases the fixpoint latency to 26 seconds. Our
results are comparable to benchmarks presented in the SeNDLog
work [29]. We believe that fixpoint latency will decrease as we re-
lax the ACID transactions currently executed per-message at every
node (Section 5.2).

Figure 8 shows the cumulative fraction of the nodes that have
converged at any number of seconds after the start of the experi-
ment, from a representative run of the path vector protocol on one
of the 36 node random graphs. As expected, increasing the com-
putational overhead of authentication causes a delay in the conver-
gence of the first node (a right-shift of the graph) and a decrease in
slope due to increased transaction duration. All lines on the graph
exhibit a step-like behavior, caused by bursts of nodes converging.
It is likely that these represent the various iterations of the shortest
path computation. For example, all paths of length one are com-
puted first, followed by paths of length two, etc. Certain groups
of nodes may share certain longest shortest-path lengths, and thus
converge simultaneously. Due to the larger number of possible
shortest-path lengths in the 72 node case, we observe more, but
smaller steps (Figure 9).

Figure 7 shows the average execution time of a transaction for
NoAuth, HMAC and RSA-AES. We speculate that the initial decline
in average transaction time is because nodes 1-8 use older Pen-

tium D CPUs. When running two instances on nodes 1-8 (for con-
figurations 36 nodes and larger) we see a jump in the transaction
time for the computation-heavy RSA-AES scheme. Additionally,
as the number of nodes increases, one expects to see slightly longer
transaction times, as each transaction involves joining links with
more paths. The large growth after 48 nodes was caused by several
outlier experiments with high fixpoint execution time, possibly the
result of a relatively uniform distribution of longest shortest-path
lengths among the nodes – the cumulative fraction of converged
nodes for these outlier experiments contained relatively few bursts
of nodes converging (e.g. the step behavior observed in Figure 8
was far less pronounced). We omit the graph for brevity.

8.2 Secure Hash Joins
For the secure hash join, we evaluate per-node communication

overhead on various experiment sizes. Additionally, we measure:

Cumulative fraction of transaction completion time: The frac-
tion of transactions at the initiator of the join that are completed by
a given time.

Our secure hash join algorithm performs a binary equi-join of
two predicates of roughly equal size – one containing 900 tuples,
and the other containing 800. Tuples are initially hashed on their
first key attribute, so nodes must rehash on the second key attribute,
join the tuples, and send the result to the initiator of the join. Our
measurements commence at the beginning of the rehashing, and
conclude when the initiator receives the last batch of joined result
tuples. The second key attribute of each table is drawn from a do-
main consisting of 72 distinct join values (randomized for every
trial). For each distinct join value, there are a roughly equal number
of tuples, and it is expected that the distribution of rehashed tuples
is roughly equal across all nodes. We ran ten trials per experiment
size.

Figure 10 illustrates the cumulative fraction over all six-node ex-
periments of transaction completion time at the initiator. Since our
implementation of SecureBlox does not send any tuples over the
network until the end of a local transaction (Section 5.2), there is a
considerable lag until the first results arrive at the initiator. Because
the batches are large with low parallelism, cryptographic overhead
is low, as senders can perform a single signature operation per batch
of tuples destined for a given node, and receivers can perform a
single verification per batch. Figure 11 shows the same result over
all 18-node experiments. The cryptographic overhead is more pro-
found as the parallelism increases, because each sent and received
batch of tuples is smaller. Thus, senders and receivers must per-
form more cryptographic operations.

Figure 12 shows the per-node overhead in kilobytes in relation
to the size of the experiment. As expected, greater parallelism im-
plies less per-node overhead. However, as the experiment size gets
larger, we see diminishing returns due to (i) increasingly small mes-
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verged nodes for one 36-node random
graph.
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Figure 9: Cumulative fraction of con-
verged nodes for one 72-node random
graph.
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Figure 10: Cumulative fraction over all
6-node experiments of transaction com-
pletion time at the initiator.
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Figure 11: Cumulative fraction over
all 18-node experiments of transaction
completion time at the initiator.
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Figure 12: Per node communication
overhead for secure hash join.

sages being exchanged, and (ii) the presence of two SecureBlox
instances on some nodes.

9. RELATED WORK
SecureBlox’s distributed query processing feature is inspired by

declarative networking [21]; DatalogLB is closely related to their
Network Datalog (NDlog) language. Declarative networking views
network protocols as distributed recursive queries over database re-
lations (partitioned by location). Network communication is im-
plicit when a fact is derived in another partition, but a trusted ex-
ecution environment is assumed, and no attempt is made to en-
able security. NDlog has no notion of integrity constraints or meta-
programming – these differences affect query execution, as explained
in Section 5.

SecureBlox is inspired by recent work in trust management sys-
tems, which enable the formulation of access control policies and
security credentials, determine whether particular credentials sat-
isfy relevant policies, and support deferring trust to third parties
(delegation) [6]. Recently, the security community has proposed
several declarative trust management frameworks [1, 11, 17, 19].
These systems expose a small fixed set of hard-coded security op-
erators, such as says. Thus, they do not enable reconfigurability
or allow users to express custom security properties. For example,
one may want to ensure that a user Alice can never access a re-
source R. This might entail locating all rules in the program that
grant access to R, and inserting a restriction in each rule body that
prevents Alice from accessing R. In contrast, SecureBlox’s support
for meta-programming and integrity constraints allows one to con-
cisely express such a security property anywhere in the program.

Zhou et al. [29] propose the SeNDLog language, which adds the
says operator to NDlog. Similarly to existing trust management
systems, adding security constructs, and specifying custom poli-
cies, is difficult. Reconfiguration of their says operator necessitates
modification and recompilation of their runtime engine.

Our earlier position paper [24] further proposes that extending

Datalog with dynamic meta-programming, meta constraints (re-
strictions on the set of allowed programs), and a cryptographic li-
brary may enable one to customize the type of cryptography used
for says, as well as the manner in which delegation restrictions
are enforced. However, the paper does not specify an algorithm
for evaluating the dynamic meta syntax that it introduces. Also,
the proposed addition of dynamic (runtime) meta-programming to
Datalog potentially makes the language unsafe by enabling one to
write non-terminating programs and by allowing derivation of non-
typesafe rules at runtime. In contrast, this paper presents a static
meta-programming facility that ensures that all derived rules are
well-typed.

Evita Raced [10] adds a metacompiler to NDlog – an NDlog
compiler written in NDlog. Their focus is on enabling extensible
and reconfigurable compiler optimizations rather than security.

10. CONCLUSION
We present the design and implementation of SecureBlox, a declar-

ative system that unifies a distributed query processor with a secu-
rity policy framework. SecureBlox extends LogicBlox – an emerg-
ing commercial Datalog-based platform for enterprise software sys-
tems – with distributed execution, and support for meta-programming
through BloxGenerics.

We present a series of customizable security mechanisms en-
abled by SecureBlox, including various forms of authentication,
encryption, and delegation. Using these basic security building
blocks, we demonstrate the use of SecureBlox to support a range
of secure applications, including a path-vector routing protocol and
a parallel hash-join operation. Our evaluation results demonstrate
SecureBlox’s ability to specify and implement secure distributed
systems using a range of cryptographic schemes that achieve trade-
offs in performance and security.

As our ongoing research, we are exploring various practical de-
ployment scenarios for SecureBlox, including secure Internet com-
munication, and multi-user federated cloud computing environments



that require secure data sharing and integration among users. We
are also actively exploring the use of the declarative framework for
formally reasoning about the security properties of deployed pro-
grams written in SecureBlox.
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