
A Policy-based Constraint-solving Platform Towards
Extensible Wireless Channel Selection and Routing

Changbin Liu∗ Xiaozhou Li∗ Shiv Muthukumar∗ Harjot Gill∗
Taher Saeed∗ Boon Thau Loo∗ Prithwish Basu†
∗University of Pennsylvania †Raytheon BBN Technologies

{changbl, xiaozhou, mshivk, gillh, taher, boonloo}@seas.upenn.edu, pbasu@bbn.com

ABSTRACT
This paper presents PUMA, a novel declarative constraint-
solving platform that achieves efficient policy-based chan-
nel selection and routing for multi-radio wireless mesh net-
works. PUMA is based on declarative networking, a database-
inspired extensible infrastructure using query languages to
specify behavior. In PUMA, users specify high-level declar-
ative policies that dictate their channel selection constraints
and routing protocol behavior. We demonstrate that channel
selection can be expressed in a compact fashion and imple-
mented efficiently. We have developed a PUMA prototype
based on the RapidNet declarative networking engine with
enhancements to handle multi-channel communication and
integration with an open-source constraint solver. We per-
form preliminary evaluation of PUMA using the emerging
ns-3 network simulator, and describe our ongoing research
in ORBIT testbed deployment, distributed channel selection
protocols, and distributed optimizations that combine rout-
ing and channel selection.

1. INTRODUCTION
Recently, the following trends have emerged in wireless

networking: (1) transceivers supporting multiple tunable RF
channels are becoming common; (2) devices with multiple
wireless interfaces are becoming ubiquitous; (3) software de-
fined radio technologies have developed into an active area
of research with commercial uses [19]; and (4) the Federal
Communications Commission (FCC) has opened up “white
spaces” spectrum to unlicensed devices. Therefore, it is now
more desirable (and feasible) to develop intelligent network
protocols that simultaneously control parameters for dynamic
(or agile) spectrum sensing and access, dynamic channel se-
lection and medium access, and data routing with a goal of
optimizing overall network performance. This is referred to
as Cognitive Radio Networking [11].

Given the above technology trends, several architectures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM PRESTO 2010, November 30, 2010, Philadelphia, USA.
Copyright 2010 ACM 978-1-4503-0467-2/10/11 ...$5.00.

and designs for dynamic spectrum access/sharing [16, 19]
and integrated channel selection and routing in cognitive ra-
dio networks (e.g. [18, 10, 9]) have been proposed for miti-
gating the impact of harmful interference and thus improving
overall network performance. For reasonable operation of
large mesh networks with nodes strewn over a large area with
heterogeneous interference and traffic characteristics and con-
straints, we believe that a one-size-fits-all channel selection
and/or routing protocol may be difficult to find.

To address the above needs, we propose PUMA1, a novel
declarative constraint-solving platform that achieves efficient
policy-based routing and channel selection for multi-radio
wireless mesh networks. PUMA is based on declarative
networking [15], a database-inspired extensible infrastruc-
ture using query languages to specify behavior. Declara-
tive programming allows programmers to say “what” they
want, without worrying about the details of “how” to achieve
it. PUMA allows wireless network providers to succinctly
specify (or declare) the “policy rules and constraints of op-
eration” for channel selection and routing. This allows the
service providers a great degree of flexibility in the specifica-
tion and enforcement of local and global policy constraints,
and run-time configurability of policies.

In PUMA, users declaratively specify a rich set of com-
munication goals, and communication policies and/or con-
straints on the procedure of selecting channels. The speci-
fications attempt to capture goals such as minimize interfer-
ence, maximize connectivity, maximize spectrum diversity,
subject to one or more constraints specific to the deployment
scenario. These specifications are then used as input to a con-
straint solver for determining channel assignments. PUMA’s
approach removes the dependence on stove-piped channel
assignment and routing protocols programmed into various
nodes in the network. For instance, we utilize our declara-
tive framework to encode different interference models (e.g.
one-hop vs two-hop), and further allow individual nodes to
customize local policy constraints on selecting channels.

We have developed a PUMA prototype based on the Rapid-
Net declarative networking engine [5] with enhancements
to handle multi-radio multi-channel communication and in-
tegration with an open-source constraint solver [1] and the
emerging ns-3 network simulator [2]. Our evaluations using
wireless simulations demonstrate that PUMA can flexibly
and efficiently implement centralized channel selection pro-

1Stands for Policy-based Unified Multi-radio Architecture.

tocols that significantly outperform single-channel and naı̈ve
identical channel assignment.

We conclude this paper by describing some of our ongoing
work, which includes deployment on the ORBIT [3] wire-
less testbed, enabling distributed channel selection protocols
by leveraging the distributed capabilities of declarative net-
working, and a distributed protocol that optimizes across rout-
ing and channel selection policy decisions.

2. OVERVIEW

Interface 0
(CCC)

Interface 1 Interface n…

Link &
Physical Layer

Network
Layer

Spectrum
Sensing

Channel Abstraction Layer
Channel Assignment Table

Control Plane Data Plane

Forwarding Agent

Dst NextHop

Forwarding Table

Solver

Channel Manager

Declarative
Networking Engine

Routing Protocols
(LS, DSR, OLSR, etc)

Channel Selection Protocols
(Centralized and Distributed)

Network Status
Link Table

Node NextHop

Channel Availability Table

Ch FreqIf

Constraints and
Goals

Interface Channel NextHop

Figure 1: Components of a PUMA node
Figure 1 shows an overview of PUMA from the perspective

of a single PUMA node. Each node runs a number of multi-
channel wireless radio devices (interfaces). Typically, the
first interface runs on the common control channel (CCC),
reserved solely as a control channel for routing and channel
selection protocol messages. A spectrum sensing component
is able to detect channels available for each interface by pe-
riodically scanning a wide range of spectrum. The set of
available channel information is then made available to the
channel manager through the channel abstraction layer [7],
which interacts with multiple radios and presents upper lay-
ers with a uniform communication interface. Using this in-
formation, the channel manager assigns a channel for com-
munication with each of the node’s neighbors.

At the network layer, a declarative networking engine [5]
is deployed within the control plane to implement a variety
of declarative routing protocols. These protocols can either
be specified dynamically by the user, or pre-programmed as
a library of declarative routing protocols (e.g. OLSR, DSR,
and epidemic routing), and can themselves be selected via a

series of policy rules [14]. The output of a declarative routing
protocol is a forwarding table that indicates for a destination,
the next hop to which the packet should be routed.

The channel manager selects and assigns channels that are
used for data communication between pairs of neighbors. A
typical goal of channel assignment is to ensure that pairs of
adjacent nodes within communication range use a common
channel such that the overall network interference is min-
imized. The channel assignment is performed using a con-
straint solver, that takes as input existing network state infor-
mation, which consists of a link table that stores the network
topology, and a channel availability table that contains the
set of channels available to nodes.

The channel manager can be deployed either as central-
ized or distributed. In the centralized model, all nodes send
their local neighborhood and channel availability informa-
tion to a centralized channel manager whose “solver” takes
the entire topology and per-node information into account to
perform channel assignment. In the distributed model, each
node makes the channel assignment decisions using its own
“solver”, with only information gathered from immediate
neighbors or neighbors within the vicinity. In this paper, we
focus on the centralized model, and briefly discuss the dis-
tributed model in Section 6. After channel selection, channel
assignments are then exchanged with neighboring nodes via
channel selection protocols implemented using declarative
networking engine to initialize the channel assignment table
at the channel abstraction layer of each node.

In addition to the input topology and available channel in-
formation, the solver can take additional user-defined con-
straints and policy goals and determines a channel assign-
ment that meets the goal. In the PUMA framework, pol-
icy constraints and optimization goals are all specified in a
declarative language.

PUMA focuses primarily on routing and channel selection,
and assumes the presence of a correctly functioning spec-
trum sensing component. Hence, we consider the challenges
of spectrum sensing to constitute a set of separate and or-
thogonal problems that are outside the scope of this paper.

3. DECLARATIVE NETWORKING ENGINE
PUMA uses a declarative networking engine as a basis for

executing routing and channel selection protocols. Based
on Figure 1, the outputs of PUMA’s declarative networking
component are the link and forwarding tables, as well as
any other network state required in routing and channel se-
lection protocols.

Declarative networking [15] aims to build extensible ar-
chitectures that achieve a good balance of flexibility, perfor-
mance and safety. Declarative networks are specified using
Network Datalog (NDlog), which is a distributed recursive
query language. Declarative queries such as NDlog are a nat-
ural and compact way to implement a variety of routing pro-
tocols and overlay networks [15]. In our prior work [14], we
have further demonstrated on the ORBIT wireless testbed,
the feasibility of declarative mobile ad-hoc network (MANET)
routing protocols, and capabilities to adapt among these pro-
tocols at runtime based on specified policies. When com-

piled and executed, these declarative networks perform effi-
ciently relative to imperative language implementations, as
shown by open-source implementations [4, 5].

NDlog is based on Datalog [17]: a Datalog program con-
sists of a set of declarative rules. Each rule has the form p

:- q1, q2, ..., qn., which can be read informally as “q1
and q2 and ... and qn implies p”. Here, p is the head of the
rule, and q1, q2,...,qn is a list of literals that constitutes the
body of the rule. Literals are either predicates with attributes
(which are bound to variables or constants by the query), or
boolean expressions that involve function symbols (includ-
ing arithmetic) applied to attributes.

Datalog rules can refer to one another in a mutually re-
cursive fashion. The order in which the rules are presented
in a program is semantically immaterial; likewise, the order
predicates appear in a rule is not semantically meaningful.
Commas are interpreted as logical conjunctions (AND). Con-
ventionally, the names of predicates, function symbols, and
constants begin with a lowercase letter, while variable names
begin with an uppercase letter. Function calls are addition-
ally prepended by f . Aggregate constructs are represented
as functions with attribute variables within angle brackets
(<>). We illustrate NDlog using a simple example below,
which is link-state (LS) routing:
ls1 lsu(@X,X,Y,C,X) :- link(@X,Y,C).
ls2 lsu(@M,X,Y,C,Z) :- link(@Z,M,C1),lsu(@Z,X,Y,C,W),M!=W.

lsu(@M,X,Y,C,Z) is a link state update (LSU) correspond-
ing to link(X,Y,C), which indicates a link between node X

and Y with a cost of C. The link table forms the basis of
routing protocols – it represents the neighborhood informa-
tion gathered at each node, and can itself be generated via
a neighbor discovery process expressible in NDlog [5]. The
cost of each link can also be customized, e.g. based on link
RTT or expected transmission count (ETX) [8] or expected
transmission time (ETT) [9].

This LSU tuple is flooded in the network starting from
source node X. During the flooding process, node M is the
current node it is flooded to, while node Z is the node that
forwarded this tuple to node M. Rule ls1 generates an lsu

tuple for every link at each node. Rule ls2 states that each
node Z that receives an lsu tuple recursively forwards the tu-
ple to all neighbors M except the node W that it received the
tuple from. NDlog supports a location specifier @ in each
predicate to denote the source location of each correspond-
ing tuple. Datalog tables are set-valued, meaning that dupli-
cate tuples are not considered for computation twice. This
ensures that no similar lsu tuple is forwarded twice.

In link-state routing, once the lsu information is avail-
able at each node, additional rules can be written to compute
routes for each node, and then select the routes with least
hop count, as shown in [5]. This is in turn used to generate
the forwarding(@S,D,N) table at each node S, which denotes
that the optimal route to destination D is via immediate neigh-
bor N. In addition to computing min-hop paths, NDlog rules
on route selection can be customized to consider channel di-
versity, for instance, by utilizing the Weighted Cumulative
Expected Transmission Time (WCETT) metric [9].

4. DECLARATIVE CHANNEL SELECTION

In this section, we describe how to declaratively specify
channel selection rules and constraints. The role of the chan-
nel manager in Figure 1 is to assign available channels to
wireless links to satisfy one of several potential objectives,
e.g., minimize interference in the network, minimize the num-
ber of unique channels etc, while subject to additional chan-
nel assignment constraints. In the interference minimization
example, the channel manager needs to assign channels to
communication links between neighboring nodes in order to
improve channel diversity, i.e. communication links that are
within transmission range should ideally use non-conflicting
channels that do not interfere with each other. This problem
has been shown to map into the well-known graph-coloring
problem [12], an NP-hard problem that aims to minimize the
number of conflicting links.2

4.1 CSP Formulation
Our channel manager utilizes a constraint solver to per-

form channel selection formulated as a constraint satisfac-
tion problem (CSP) [21]. A CSP formulation takes as input
a set of constraints, and attempts to find an assignment of
values chosen from an input domain to a set of variables to
satisfy the constraints. Often, there can be multiple possible
assignments; hence an optimization goal is supplied to the
solver, to return the optimal assignment. The goal is typi-
cally expressed as a minimization over a cost function of the
assignments. For example, in the context of channel assign-
ment, the variables are the channels assigned to each com-
munication link, while the values to be assigned are chosen
from candidate channels available for each link. The goal in
this case is to minimize the likelihood of interference among
conflicting links.

To mathematically illustrate how channel selection maps
into CSP, we consider the following example that avoids in-
terference based on the one-hop interference model [22]. In
this model, any two adjacent links are considered to inter-
fere with each other if they are both using channels whose
frequency bands are closer than a certain threshold. The for-
mulation is as follows:
Input domain and variables: Consider a network G =
(V,E), where there are nodes V = {1, 2, . . . , N} and edges
E ⊆ V × V . Each node x has an available set of candidate
channels Ax to select from, and a set of channels Px cur-
rently occupied by primary users which own exclusive right
to a certain spectrum band within its vicinity. The number
of interfaces of each node is ix. For simplicity of exposition,
we assume interfaces are homogeneous and are able to use
any candidate channel.
Optimization goal: For any two adjacent nodes x, y ∈ V ,
lxy denotes the link between x and y. Channel assignment
selects channel cxy for each link lxy to meet the following
optimization goal:

min
∑

lxy,lxz∈E,y 6=z

cost(cxy, cxz) (1)

2The high-level approach is to model each wireless link as a ver-
tex in a conflict graph, and each edge in the conflict graph denotes
two links within interference range of each other. The equivalent
graph coloring problem becomes minimizing the number of edges
in conflict graph.

where cost(cxy, cxz) assigns a unit penalty if adjacent chan-
nel assignments cxy and cxz are separated by less than a
specified frequency threshold Fmindiff :

cost(cxy, cxz) =
{

1 if |cxy − cxz| < Fmindiff

0 otherwise (2)

Constraints: The optimization goal has to be achieved un-
der the following four constraints:

∀lxy ∈ E, cxy ∈ Ax (3)
∀lxy ∈ E, cxy /∈ Px (4)
∀lxy ∈ E, cxy = cyx (5)

∀x ∈ V, |
⋃

lxy∈E

cxy| ≤ ix (6)

(3) ensures that each channel assignment cxy is selected
from the available channel domain Ax. (4) expresses the
constraint that a node should not use channels currently oc-
cupied by primary users within its vicinity. (5) requires two
adjacent nodes to communicate with each other using the
same channel. (6) guarantees the number of assigned chan-
nels is no more than interfaces.

While the above CSP formulation can be hard-coded into
existing constraint solvers, PUMA instead provides a declar-
ative interface using NDlog for customizing the formulation
in the form of policy rules. These policy rules are then com-
piled into actual implementation usable by a constraint solver.

PUMA also allows a good degree of flexibility in the def-
inition and configuration of the CSP formulation. For in-
stance, the problem of minimizing the number of unique
channels in a network while ensuring no link conflicts [13]
can be formulated in PUMA by making the cost function (2)
a “hard constraint” which incurs infinite cost if violated and
by replacing the optimization goal with min |

⋃
lxy∈E cxy|.

NDlog not only facilitates policy customization, but also en-
ables us to naturally integrate with declarative networking
rules, to enable channel selection protocols.

Our implementation is based on the widely used Gecode [1]
solver, although our framework is general enough to be ap-
plied to most constraint solvers. We next demonstrate the
compilation process, by describing the mapping from the
above CSP formulation to NDlog rules.

4.2 Declarative Specification
Our exploration of channel selection is based on a central-

ized channel selection protocol [18, 6]. In this protocol, we
consider channel selection to be carried out separately from
routing. The constraint solver is executed on a single node
in the network. Typically, this node is pre-determined, or
is chosen via a separate leader election protocol. The cen-
tralized solver collects the network status information from
each node – this includes neighborhood information, avail-
able channels, and any additional local policies. Such sta-
tus information is collected using link-state dissemination or
its variants, which are themselves expressible in NDlog (see
Section 3). Alternatively, if a route to the centralized solver
has already been computed, each node can forward the status
information directly to the centralized solver.

CSP NDlog
symbol Ax availChannel(X,C,F,St)

symbol cxy assignChannel(X,Y,C)

symbol ix numInterface(X,K)

symbol lxy link(X,Y)

symbol Px primaryUser(X,C)

equation (1) rules goal and s2

equation (2) rule s1

equation (3) constraint c1
equation (4) constraint c2
equation (5) constraint c3
equation (6) constraint c4
Table 1: Mappings from CSP to NDlog.

The following NDlog program specifies the one-hop inter-
ference model CSP formulation. Since the constraint solver
is centralized and the entire topology and network-wide chan-
nel availability information is available at the solver, we omit
the use of location specifiers in NDlog. Table 1 summarizes
the mapping from CSP symbols to NDlog tables, and CSP
equations to NDlog rules/constraints identified by the rule
labels. In cases when symbols refer to sets, e.g. Ax and
Px, it matches more than one entry in the respective tables.
For instance, Ax is represented by all availChannel entries
where the first attribute is x.

// goal declaration
goal minimize C in totalcost(C)

// variable declaration
var assignChannel(X,Y,C) forall link(X,Y)

// cost assignment rules
s1 cost(X,Y,Z,C) :- assignChannel(X,Y,C1),

assignChannel(X,Z,C2), Y!=Z, C=1,
f_freqDist(C1,C2)<F_mindiff.

s2 totalCost(COUNT<C>) :- cost(X,Y,Z,C).

// Input domain constraint for assignChannel
c1 assignChannel(X,Y,C) -> link(X,Y), availChannel(X,C,F,St).

// primary user constraint
c2 availChannel(X,C,F,St) -> !primaryUser(X,C).

// channel symmetry constraint
c3 assignChannel(X,Y,Cx) -> assignChannel(Y,X,Cx).

// interface constraint
c4 uniqueChannel(X,Count) -> numInterface(X,K), Count <= K.
s3 uniqueChannel(X,UNIQUE<C>) :- assignChannel(X,Y,C).

The above rules take as input two tables link(X,Y) and
availChannel(X,C,F,St). The link table stores the gath-
ered network topology information, as described in Section 3.
The availChannel table is supplied by the channel abstrac-
tion layer via known spectrum sensing mechanisms, where
each entry denotes that node X has an available channel C
with frequency F and signal strength St. C is typically a
globally known channel identifier. If interfaces are hetero-
geneous, i.e. different interfaces run on different range of
channels, one additional attribute interface I can be added to
the availChannel predicate.

The output of the solver is the table assignChannel(X,Y,C),
that indicates for neighbor Y of X, the channel C that is used
for communication. The channel abstraction layer uses this
information to select an unused interface to run on channel

C, and then update its internal forwarding state (i.e. the chan-
nel assignment table in Figure 1) to ensure that all messages
forwarded to neighbors are directed to the selected interface.

4.2.1 Optimization Goal
Two reserved rules goal and var specify the goal and vari-

ables used by the constraint solver. The goal in this case is to
minimize the cost attribute C in totalCost, while assigning
channel variables for communication of all links.

Rules s1-s2 provide the definitions of totalCost as fol-
lows. Rule s1 sets cost C to 1 for each cost(X,Y,Z,C) tu-
ple if the chosen channels that X uses to communicate with
adjacent nodes Y and Z are interfering with each other. Rule
s2 counts the number of interfering channels among adjacent
links in the entire network, and stores the value in totalCost.
Note that the cost aggregation function is highly customiz-
able, e.g., by expressing rule s1 differently or using a differ-
ent aggregation function other than COUNT.

In some wireless deployments, e.g. IEEE 802.11 network,
the two-hop interference model [22] is often considered a
more accurate measurement of interference. This model con-
siders interference that results from any two links using simi-
lar channels within two hops of each other, and can be achieved
via only minor modification to rule s1.

4.2.2 Channel Assignment Constraints
In addition to the optimization goal above, the solver can

take as input additional constraints, that are used to remove
from channel assignments that are considered illegal for the
purpose of correct assignments. These constraints can be
globally applied to all nodes, or customized at the node-level.

Our constraints are of the form F1 -> F2, which denotes
the logical meaning that whenever F1 is true, then F2 must
also be true in order for the constraint not be violated. Unlike
a rule, which derives new values for a predicate, a constraint
restricts a predicate’s allowed values, hence representing an
invariant that must be maintained at all times.

The constraints c1-c4 encodes the four constraints intro-
duced in CSP formulation in Section 4.1. Constraint c1 re-
stricts the domain of assignChannel(X,Y,C) to only valid
channel assignments for existing links link(X,Y) and en-
sures that only available channels are considered. Constraint
c2 applies to the input availChannel table, and states that a
channel C at node X is only available, if there does not exist a
primary user within the vicinity of X. Constraint c3 enforces
channel symmetry on the output assignChannel table. The
fourth constraint c4 requires that nodes must use at most K
unique channels, where K is the number of usable interfaces.
The number of unique channels is derived in rule s3 using
aggregate keyword UNIQUE.

In addition, one can declare additional constraints, e.g.,
avoid channels that have low SNR (a straightforward filter
condition on availChannel table); ensure channel diversity
along each path (by having the cost assignment take into ac-
count of interference along each best path).

5. PRELIMINARY EVALUATION
We have developed a prototype for PUMA based on the

RapidNet declarative networking engine [5]. The RapidNet
system is implemented as an add-on to ns-3 [2], an emerging

discrete-event network simulator aimed to replace ns-2. ns-3
emulates all layers of the network stack and supports (con-
figurable) packet loss, packet queuing, and network topology
models. ns-3 supports a simulation mode based on the IEEE
802.11b PHY+MAC model thus enabling the controlled ex-
amination of PUMA’s performance under various network
topologies and conditions. As extensions to realize our PUMA
prototype, we have enhanced ns-3 to support multi-radio multi-
channel capabilities via the use of the channel abstraction
layer described in Section 2. Moreover, we have integrated
the RapidNet engine with the Gecode [1] constraint solver,
in order to implement channel selection in Section 4.

5.1 Experimental Setup
In our setup, nodes utilize multiple interfaces consisting

of homogeneous multi-channel radios. For simplicity, we
limit the set of usable channels to “orthogonal channels”, i.e.
channels with sufficient frequency gap between them to in-
cur minimal or no interference when active in each other’s
vicinity. This limits interference to situations where nearby
links use the same channel.

We evaluate our declarative channel selection protocol in
Section 4 and compare it with two baselines: 1-Interface
where all nodes communicate with each other using one in-
terface and hence a common channel, and Identical-Ch [9],
where the same set of channels are assigned to the interfaces
to every node (e.g. channel 1 to the first interface, channel
2 to the second), and a centralized constraint solver then as-
signs each link to use one of these interfaces. In contrast,
PUMA does not hardcode the mapping from interfaces to
channels, but instead allows the solver to determine the map-
ping that best meets the specified optimization goal. In all
our experiments, routing is based on the WCETT metric.

To determine the effectiveness of channel assignments, we
inject traffic load with increasing sending rate, and then mea-
sure the aggregate network throughput (in terms of aggregate
packets that are successfully received by their destinations),
and loss rate (fraction of packets that are not delivered suc-
cessfully at the receiver). Since loss rates can be derived by
dividing the receiving over the sending rates for each work-
load, we present only the throughput graphs. In addition, to
quantify the overhead of resources required for channel se-
lection, we measure the solver execution time (dominating
factor) for PUMA.

5.2 Simulation-based Results
Our experiments are carried out by running RapidNet over

a simulated network based on ns-3’s 802.11b PHY+MAC
model modified to increase the number of orthogonal chan-
nels. Our simulations do not use RTS/CTS among nodes,
but permit up to 3 retries at the MAC layer to transmit each
packet. The simulated wireless mesh network consisting of
12 nodes randomly located in a 450m × 450m arena. The
transmission range of each node is approximately 100m, and
each node has an average degree of 4. Each node is equipped
with one interface reserved for CCC, and two additional ho-
mogeneous data interfaces with 4 orthogonal channels each.
The small network size enables us to achieve an optimal so-
lution for centralized solver. We will discuss scaling up to
larger networks in Section 6.

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

Data rate (Mbps)

T
hr

ou
gh

pu
t (

M
bp

s)

PUMA
Identical−Ch
1−Interface

Figure 2: Aggregate net-
work throughput.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Flow throughput (Kbps)

C
D

F

1−Interface
Identical−Ch
PUMA

Figure 3: CDF of flow
throughput.

Figure 2 shows the aggregate network throughput for all
three protocols as the data sending rate increases. Our traffic
load consists of packets sent from random sources to ran-
dom destinations. We observe that the throughput for all
protocols (expectedly) first increases linearly, then becomes
sub-linear, and finally goes flat when network saturation is
reached due to high interference. Comparing across proto-
cols, 1-Interface is the first to saturate (at 4.0Mbps), fol-
lowed by Identical-Ch (at 6.5Mbps). In comparison, PUMA
saturates at a much higher sending rate.

Figure 3 shows the CDF of network throughput breakdown
by individual network flows. Here, instead of using a ran-
dom traffic model, we selected 50 random source/destination
pairs, and generate a steady stream of packets at a bidirec-
tional sending rate of 70Kbps (in each direction) between
each pair routed along the computed best path. Under this
workload, PUMA still achieves the best performance.

In terms of the performance overhead, PUMA requires less
than 10 seconds to perform channel selection on a Intel Quad
core 2.33GHz PC with 4GB RAM running Ubuntu 10.04,
demonstrating the efficiency of the solver in finding the op-
timal solution for a small network. Overall, our prelimi-
nary evaluation in simulations demonstrates that PUMA is
able to implement, in a flexible and efficient manner, cen-
tralized channel selection and routing protocols that signif-
icantly outperform single-channel and the identical channel
assignment in terms of high throughput and low loss rate.

6. ONGOING WORK
Scaling channel selection: While our initial evaluation re-
sults are encouraging, given that graph coloring is NP-hard,
the centralized approach typically does not scale beyond small
networks. One approximation method that we have explored
is a divide-and-conquer strategy. The basic idea is to divide
the whole network into roughly equal-sized subnetworks (a
heuristic breadth-first search is used to partition the network),
so that for each subnetwork the solver performs channel se-
lection optimization and finishes in reasonable time.
Distributed channel selection: Like the divide-and-conquer
strategy, distributed channel selection protocols provide ap-
proximations to the optimal centralized solution, and hence
scale better for large networks. Furthermore, fully distributed
protocols have the added advantages of not introducing sin-
gle points of failure and are amenable to incremental com-
putations (e.g., late joiners). One protocol that we are cur-
rently exploring is that proposed in [20]. In a nutshell, in this
protocol each node periodically randomly selects one of its
links to start a channel negotiation process with its neighbor.

The negotiation process solves a local CSP in PUMA and
assigns a channel such that interference is minimized. The
process repeats until all links have been assigned channels.
The use of location specifiers in declarative networking en-
ables one to naturally capture constraints and policies with
nearby neighbors within policy rules.
Integrated policies for route and channel selection: While
certain specific resource allocation architectures and designs
related to channel assignment and routing in multi-channel
wireless networks have been proposed [18, 10], the problem
of distributed channel selection and routing under a generic
set of user-specified policy goals and constraints has not re-
ceived much attention. We plan to study this problem in
PUMA, by developing a distributed protocol that optimizes
across routing and channel selection policies. Optimal routes
are selected to avoid interference, and based on expected
traffic loads along selected routes, the constraint solver re-
optimizes channel assignments which are in turn used to find
further fine-tuned routes. Leveraging the compact specifica-
tions of NDlog, this cross-layer protocol requires minor ex-
tensions to existing declarative protocols, to encode mutual
dependencies between route and channel selection.
ORBIT testbed deployment: We are currently in the pro-
cess of evaluating PUMA on the ORBIT wireless testbed. To
this end, we have enhanced RapidNet with socket implemen-
tation that is capable of multi-radio multi-channel wireless
communication on ORBIT. PUMA will be made able to tog-
gle between ns-3 simulations and ORBIT deployment with-
out changing the underlying system or NDlog programs.

7. ACKNOWLEDGMENTS
This work is supported in part by NSF grants CNS-0831376,

CNS-0845552, and CCF-0820208.

8. REFERENCES
[1] Gecode constraint development environment. http://www.gecode.org/.
[2] Network Simulator 3. http://www.nsnam.org/.
[3] ORBIT Wireless Network Testbed. http://www.orbit-lab.org/.
[4] P2: Declarative Networking. http://p2.cs.berkeley.edu/.
[5] RapidNet. http://netdb.cis.upenn.edu/rapidnet/.
[6] V. Brik, E. Rozner, S. Banerjee, and P. Bahl. DSAP: a protocol for coordinated

spectrum access. In DySPAN, 2005.
[7] C. Chereddi, P. Kyasanur, and N. H. Vaidya. Design and implementation of a

multi-channel multi-interface network. In REALMAN, 2006.
[8] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-throughput path

metric for multi-hop wireless routing. In MobiCom, 2003.
[9] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop wireless

mesh networks. In MobiCom, 2004.
[10] M. A. et. al. Joint channel assignment and routing for throughput optimization

in multi-radio wireless mesh networks. In MobiCom, 2005.
[11] J. M. III and G. Maguire. Cognitive Radio: Making Software Radios More

Personal. IEEE Personal Communications, August 1999.
[12] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu. Impact of interference on

multi-hop wireless network performance. In MobiCom, 2003.
[13] F. Kuhn and R. Wattenhofer. On the complexity of distributed graph coloring. In

PODC, 2006.
[14] C. Liu, R. Correa, X. Li, P. Basu, B. Loo, and Y. Mao. Declarative policy-based

adaptive MANET routing. In ICNP, 2009.
[15] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,

R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking. In
Communications of the ACM (CACM), 2009.

[16] F. Perich. Policy-based Network Management for NeXt Generation Spectrum
Access Control. In DySpan, 2007.

[17] R. Ramakrishnan and J. D. Ullman. A Survey of Research on Deductive
Database Systems. Journal of Logic Programming, 23(2), 1993.

[18] A. Raniwala, K. Gopalan, and T.-c. Chiueh. Centralized channel assignment and
routing algorithms for multi-channel wireless mesh networks. SIGMOBILE
Mob. Comput. Commun. Rev., 8(2):50–65, 2004.

[19] C. Santivanez, R. Ramanathan, C. Partridge, R. Krishnan, M. Condell, and
S. Polit. Opportunistic spectrum access: Challenges, architecture, protocols. In
ACM WiCon, Boston, MA, 2006.

[20] A. Subramanian, H. Gupta, and S. Das. Minimum Interference Channel
Assignment in Multi-Radio Wireless Mesh Networks. In SECON, 2007.

[21] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.
[22] Y. Yi and M. Chiang. Wireless Scheduling Algorithms with O(1) Overhead for

M-Hop Interference Model. In IEEE ICC, 2008.

http://www.gecode.org/
http://www.nsnam.org/
http://www.orbit-lab.org/
http://p2.cs.berkeley.edu/
http://netdb.cis.upenn.edu/rapidnet/

	Introduction
	Overview
	Declarative Networking Engine
	Declarative Channel Selection
	CSP Formulation
	Declarative Specification
	Optimization Goal
	Channel Assignment Constraints

	Preliminary Evaluation
	Experimental Setup
	Simulation-based Results

	Ongoing Work
	Acknowledgments
	References

