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Abstract—This paper presents the design and implementation
of PUMA, a declarative constraint-solving platform for policy-
based routing and channel selection in multi-radio wireless mesh
networks. In PUMA, users formulate channel selection policies
as optimization goals and constraints that are concisely declared
using the PawLog declarative language. To efficiently execute
PawLog programs in a distributed setting, PUMA integrates a
high performance constraint solver with a declarative networking
engine. We demonstrate the capabilities of PUMA in defining
distributed protocols that cross-optimize across channel selection
and routing. We have developed a prototype of the PUMA system
that we extensively evaluated in simulations and on the ORBIT
testbed. Our experimental results demonstrate that PUMA can
flexibly and efficiently implement a variety of centralized and
distributed channel selection protocols that result in significantly
higher throughput compared to single channel and identical
channel assignment solutions.

I. INTRODUCTION

Recently, the following trends have emerged in wireless
networking: (1) transceivers supporting multiple tunable RF
channels are becoming common; (2) devices with multiple
wireless interfaces are becoming ubiquitous; (3) software
defined radio technologies have developed into an active area
of research with commercial uses [24]; and (4) the Federal
Communications Commission (FCC) has opened up “white
spaces” spectrum to unlicensed devices.

Another wireless networking technology that is gaining
popularity is community mesh networking [2] — a cost-
effective mechanism for providing high speed wireless Internet
connectivity to rural and urban communities where broadband
wireless connectivity is unavailable or too expensive. Instead
of dealing with mobility or minimizing power usage, the
focus here is to increase the network capacity by reducing
the interference [12]. Multi-radio multi-channel solutions have
the potential to facilitate high throughput scalability in dense
mesh network deployment scenarios to meet user needs.

In light of the above technological trends, several archi-
tectures and designs for dynamic spectrum access/sharing in
cognitive radio networks [21], [24], and channel selection and
routing in wireless mesh networks [11], [23], [7], [12] have
been proposed. These proposals aim to mitigate the impact
of harmful interference and thus improve overall network
performance. For reasonable operation of large wireless mesh
networks with nodes strewn over a wide area with heteroge-
neous policy constraints and traffic characteristics, we believe
that a one-size-fits-all channel selection and routing protocol
may be difficult, if not impossible, to find.

To address the above needs, this paper presents Policy-
based Unified Multi-radio Architecture (PUMA) for agile
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mesh networking, a platform that aims to develop intelligent
network protocols that simultaneously control parameters for
dynamic (or agile) spectrum sensing and access, dynamic
channel selection and medium access, and data routing with a
goal of optimizing overall network performance.

PUMA aims to serve two important communities. For
researchers, PUMA provides a common framework for rapidly
describing, evaluating, and comparing new channel selection
and routing policies. For network operators, PUMA eases the
process of implementing, configuring, and deploying mesh
networks. Towards this goal, PUMA makes the following
contributions:

Declarative channel selection and routing: In PUMA,
channel selection policies are formulated as constraint opti-
mization problems (COP) that are specified using the PawLog
declarative language. The customizability of PawLog allows
providers a great degree of flexibility in the specification and
enforcement of various local and global channel selection
policies. These policy specifications are then compiled into
efficient constraint solver [1] code for execution. Compared
to traditional imperative alternatives, PawLog results in ap-
proximately 100X reduction in code size, and is easier to
understand, debug and extend.

In addition to supporting policy specifications, PUMA in-
tegrates the constraint solver with a declarative networking
engine [19]. This enables one to use PawLog to specify
distributed COP programs that implement distributed channel
selection protocols. The declarative networking engine is also
used for implementing multi-hop routing protocols [16].

Distributed cross-layer protocol: By combining channel
selection and routing within a common declarative framework,
PUMA further enables new and interesting capabilities that
are significantly easier to capture compared to traditional
imperative approaches. As an example of such capabilities,
we have developed a novel distributed cross-layer protocol
that integrates and optimizes across channel selection and
routing policy decisions. This protocol incorporates the traffic
rate into consideration for channel selection, and improves
route computation to jointly optimize for traffic load and
channel diversity. As evidence of the advantages of declarative
programming, the cross-optimized protocol requires minor
modifications to existing declarative specifications to encode
dependencies across route and channel selection policies.

Implementation and evaluation: We have developed a
PUMA prototype using the Gecode [1] high-performance
constraint solver and the RapidNet [6] declarative network-
ing engine as building blocks. We have conducted extensive
802.11 wireless simulations and actual experimentation on the



ORBIT [4] testbed. Our evaluation demonstrates that PUMA
can implement a wide range of channel selection protocols
that converge quickly and significantly outperform single-
channel and identical channel assignment in terms of network
throughput. Moreover, the cross-layer protocol significantly
outperforms all other protocols, particularly when one incorpo-
rates traffic-aware policies into channel selection and routing.

II. OVERVIEW
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Fig. 1.  Components of a PUMA node. The components in dotted lines

indicate PawLog inputs.

Figure 1 shows an overview of PUMA from the perspective
of a single PUMA node.

Channel manager. The role of the channel manager is to
assign available channels to wireless links to optimize a per-
formance goal (e.g. minimize network interference, minimize
the number of unique channels) while subjected to constraints
(e.g. regional policies on spectrum usage [21], yield to primary
users who own exclusive rights to certain spectrums in white
space networks). In PUMA, we use the PawLog language for
declaratively expressing goals and constraints as a constraint
optimization problem (COP) [26]. These specifications are
compiled into executables within Gecode constraint solver [1].
The channel manager takes as additional input network status
information from the declarative networking engine, including
network topology and the set of channels available to each
node.

The channel manager can be deployed either in a centralized
or distributed mode. In the centralized mode, all nodes send
their local neighborhood and channel availability information
to a centralized channel manager which performs channel
assignment for the entire network. In the distributed mode,
each node makes individual channel assignment decisions
using its own solver, with only information gathered from
neighbors within the vicinity.

Declarative networking engine. At the network layer, the
RapidNet declarative networking engine [6] is deployed within
the control plane to implement a variety of neighbor discov-
ery and routing protocols also expressed in PawLog. These
protocols can either be specified dynamically by the user, or
pre-programmed as a library of declarative wireless routing
protocols [16]. In addition, channel selection protocols enable

nodes to exchange status information among themselves while
performing channel assignment using the constraint solver. All
network states computed by PUMA (e.g. neighbor discovery,
routing, channel availability and assignments) are maintained
and stored as RapidNet tables, and made available to other
components via callbacks.

Note that routing protocols, channel selection goals and
constraints, and channel selection protocols are all written in
the same PawLog language. We will demonstrate later in this
paper how one can leverage this unified declarative framework
to encode policies that optimize across routing and channel
selection.

Channel abstraction layer. Each PUMA node runs a
number of multi-channel wireless radio devices (interfaces).
Typically, the first interface operates on the common control
channel (CCC), which is reserved for routing and channel se-
lection protocol messages. A spectrum sensing ' component is
able to detect channels available for each interface by period-
ically scanning a wide range of spectrum. The set of available
channel information is then made available to the channel
manager through the channel abstraction layer [9], which
interacts with multiple radios and presents upper layers with
a multi-channel communication interface. In order for packets
to be routed to neighbors using appropriate interface/channel,
the output of the channel manager is then used to initialize
the channel assignment table at the channel abstraction layer.

Forwarding agent. Finally, the output of declarative routing
is a forwarding table (next-hop for each destination) used
by the forwarding agent. Given a destination, the forwarding
agent queries the channel abstraction layer to determine the
corresponding interface/channel for the next-hop, and forwards
the packet accordingly.

III. DECLARATIVE CHANNEL SELECTION

In this section, we describe how to declaratively specify
channel selection policies in the form of goals, constraints,
and derivation rules. We first formulate channel selection
as a constraint optimization problem (COP), followed by
describing how these COP formulation can be expressed using
PawLog and then compiled into efficient executions.

A. COP Formulation

A COP formulation takes as input a set of constraints,
and attempts to find an assignment of values chosen from an
input domain to a set of variables to satisfy the constraints
under an optimization goal. The goal is typically expressed
as a minimization over a cost function of the assignments.
In the context of channel assignment, the variables are the
channels to be assigned to each communication link, while
the values are chosen from candidate channels available to
each node. The goal in this case is to minimize the likelihood
of interference among conflicting links, which maps into the
well-known graph-coloring problem [14].

We consider the following example that avoids interference
based on the one-hop interference model [27]. In this model,
any two adjacent links are considered to interfere with each

!'Spectrum sensing is an orthogonal problem beyond the scope of this paper,
where we focus on channel selection and routing.



other if they both use channels whose frequency bands are
closer than a certain threshold. The formulation is as follows:

Input domain and variables: Consider a network G =
(V, E), where there are nodes V = {1,2,..., N} and edges
E C V x V. Each node x has an available set of candidate
channels A, to select from, and a set of channels P, currently
occupied by primary users within its vicinity. The number of
interfaces of each node is 7.

Optimization goal: For any two adjacent nodes z,y € V,
lgy denotes the link between x and y. Channel assignment
selects a channel c,, for each link [, to meet the following
optimization goal:
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Constraints: The optimization goal has to be achieved under
the following four constraints:
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(3) ensures that each channel assignment c,, is selected
from the available channel domain A,. (4) expresses the
constraint that a node should not use channels currently
occupied by primary users within its vicinity. (5) requires two
adjacent nodes to communicate with each other using the same
channel. (6) guarantees the number of assigned channels is no
more than interfaces.

B. PawLog Specifications

Instead of hard-coding the COP formulation into a con-
straint solver, PUMA uses the PawLog language to concisely
declare the formulation in the form of policy goals, rules and
constraints. This results in orders of magnitude reduction in
code size. The compact specifications further facilitate policy
customization and enable us to rapidly explore and deploy a
range of channel selection protocols.

As an example, the following PawLog program specifies
the one-hop interference model COP formulation described
in Section III-A. This program requires only a handful of
PawLog rules, and has a natural mapping to the mathematical
formulation.

// goal declaration

goal minimize C in totalCost (C)

// variable declaration

var assignChannel (X,Y,C) forall link(X,Y)

// cost assignment rules

sl cost(X,Y,%Z,C) :- assignChannel (X,Y,C1),
assignChannel (X,Z%,C2), Y!=z, C=1,
|C1-C2|<F_mindiff.

s2 totalCost (COUNT<C>) :— cost(X,Y,Z,C).

// Input domain constraint for assignChannel
cl assignChannel(X,Y,C) -> link(X,Y),
availChannel (X,C,F,St) .

// primary user constraint
c2 assignChannel (X,Y,C) -> !primaryUser(X,C).

// channel symmetry constraint
c3 assignChannel (X,Y,C) -> assignChannel(Y,X,C).

// interface constraint
c4 uniqueChannel (X, Count) -> numInterface (X,K), Count<=K.
s3 uniqueChannel (X, UNIQUE<C>) :- assignChannel (X,Y,C).

In PawLog, two reserved keywords goal and var specify
the goal and variables used by the constraint solver. PawLog
constraints (c1-c4) are of the form F; -> F,, which denotes
the logical meaning that whenever F} is true, then Fy must also
be true in order for the constraint not be violated. Derivation
rules (s1-s3) of the form p :- g1, g2, ., an., result in
the derivation of p, whenever the rule body (q1 and g2 and

. and qgn) is true. Each term within a rule (e.g. q1, g2) is
typically referred to as a predicate, and the corresponding data
output obtained during rule execution are referred to as fuples.
The derivation rules are based on Network Datalog [19], a
recursive query language used in declarative networking for
computing network graph properties. PawLog can hence be
viewed as a superset of Network Datalog, with additional
constructs specific to constraint solving (e.g. goal, var, and
constraint rules). We next describe in detail the input/output
to the program, goal and constraints:

Input tables: The above program takes as two input ta-
bles 1ink (X,Y) and availChannel (X,C,F,st). As described
in Section II, the 1ink table stores the gathered network
topology information, and the availchannel table is supplied
by the channel abstraction layer via known spectrum sensing
mechanisms, where each entry denotes that node x has an
available channel ¢ with frequency r and signal strength st.

Output tables: The solver outputs assignChannel (X, Y, C)
table, where each entry indicates channel c is used for com-
munication between x and v. The channel abstraction layer
uses this information to select an unused interface to run on
channel c, and then updates its internal state that stores the
mapping from neighbors to interfaces. This information will
be used by the forwarding agent to ensure that all messages
forwarded to neighbors are directed to the selected interface.

Optimization goal: The goal in this case is to minimize
the cost attribute ¢ in totalcCost, while assigning channel
variables assignchannel for all communication links. Rule
s1 sets cost ¢ to 1 for each cost (%, v, z,c) tuple if the chosen
channels that x uses to communicate with adjacent nodes v
and z are interfering. Rule s2 counts the number of interfering
channels among adjacent links in the entire network, and stores
the result in totalcost.

Constraints: Policy constraints are used to remove illegal
channel assignments. These constraints can be globally applied
to all nodes, or customized at the node-level. The constraints
cl-c4 encode the four constraints introduced in COP for-
mulation in Section III-A. Constraint c1 restricts the domain
of assignChannel (X,Y,C) to only valid channel assignments
for existing links 1ink (x,v) and ensures that only available
channels are considered. Constraint c2 applies to the input



availChannel table, and states that a channel c at node x is
only available, if there does not exist a primary user within
the vicinity of x. Constraint ¢3 enforces channel symmetry on
the output assignChannel table. Constraint c4 requires that
nodes must use at most K unique channels, where K is the
number of usable interfaces. The number of unique channels
is derived in rule s3 using aggregate keyword UNTIQUE.

C. Policy Customizations

One of the advantages of declarative programming is the
ease of customization, which can often be achieved with only
minor modifications to existing policies. We illustrate some
examples here.

In some wireless deployments, e.g. IEEE 802.11, the two-
hop interference model [27] is often considered a more accu-
rate measurement of interference. This model considers inter-
ference that results from any two links using similar channels
within two hops of each other. The two-hop interference model
requires minor modifications to rule s1 as follows:

:— assignChannel (X,Y,C1l), link(Y,Z),
X!=7, Y'!=7, X!'=w, C=1,

sla cost(X,Y,Z,W,C)
assignChannel (Z,W,C2),
|C1-C2|<F_mindiff.

The above rule considers four adjacent nodes X, v, z, and w,
and assigns a cost of 1 to node x’s channel assignment with
Y (assignChannel (X,Y,C1)), if there exists a neighbor z of
v that is currently using channel c2 that interferes with c1
to communicate with a node other than v. The above policy
requires only adding one additional 1ink (x,Y) predicate,
demonstrating the customizability of PawLog. Together with
the original rule s1, one can assign costs to both one-hop
and two-hop interference models. Furthermore, one can easily
generalize to K-hop interference model using a recursively
defined rule. Interference models based on other indicators,
e.g. Received Signal Strength Indication (RSSI), are as well
succinctly expressible in PawLog.

In addition, PUMA can flexibly declare more constraints,
e.g., impose regional policies on spectrum usage; avoid chan-
nels that have low SNR (a straightforward filter condition on
availChannel table); ensure channel diversity along each path
(by having the cost assignment take into account of interfer-
ence along each best path); minimize the number of unique
channels in a network while ensuring no link conflicts [15]
(by making the cost function a “hard constraint” which incurs
infinite cost if violated).

D. PawLog Compilation

PawLog programs are compiled into executions within the
Gecode [1] solver and the RapidNet declarative networking
engine [6]. Gecode is used for high-performance constraint
solving, while RapidNet is used for table materialization, rule
execution, and distributed implementation of channel selection
protocols (Section IV). In a typical deployment, RapidNet runs
the channel selection and routing protocols at each node, and
invokes Gecode’s COP modules when a channel assignment
is required.

Our compilation process maps PawLog’s goal, var, and
constraints into equivalent COP primitives in Gecode. Prior
to running the COP in Gecode, the generated code loads in
the appropriate input data from RapidNet, and then stores the
output results (channel assignments) in RapidNet after COP

execution. We note that this compilation process is generic
and can be applied to other solvers as well.

The more interesting aspect of our compilation process is
the interplay between Gecode solver and RapidNet declarative
networking engine. The derivation rules of PawLog programs
are executed using database operators, such as joins (variable
matching in rule body), aggregation (e.g. COUNT, UNIQUE),
selection filters, rule head renaming, etc. For efficiency and
code reuse purpose, these rule executions are offloaded from
the solver to RapidNet’s query engine. The solver adopts the
standard branch-and-bound searching approach to solve the
optimization while exploring the space of variables under
constraints. In cases where the rule body contains solver
variables (e.g. rule s1), instead of running these rules within
RapidNet, we perform a rule rewrite process that transforms
derivation rules into solver constraints to prune the search
space.

Finally, the declarative networking engine is also used for
executing policy rules whose body predicates span across
multiple nodes (Section IV-B). All derivation rules executed
in RapidNet are done in a continuous, long-running fashion,
where rule head tuples are continuously updated (inserted or
deleted) in an incremental fashion [18] as the body predicates
are updated. As we show in subsequent sections, this allows
us to incrementally re-optimize channel selection as the un-
derlying network topology changes.

IV. CHANNEL SELECTION PROTOCOLS

Given the declarative channel selection policies introduced
in the previous section, we next describe how these policies
can be realized in an actual deployment by adding additional
PawLog rules. Specifically, we present a centralized and
a distributed channel selection protocol implemented using
PUMA. In both protocols, we consider channel selection to
be carried out separately from routing. In Section V, we relax
this requirement, and take PUMA'’s approach one step forward
by presenting a novel distributed traffic-aware protocol that
optimizes across route and channel selection policies.

A. Centralized Channel Selection

In centralized channel selection [23], [8], the channel man-
ager is deployed on a single node in the network. Typically,
this node is a designated server node, or is chosen among
peers via a separate leader election protocol.

Due to space constraints, rather than present the entire
PawLog rules, we provide a high-level intuition on how
the PawLog program is formulated. The centralized manager
collects the network status information from each node in
the network — this includes their neighborhood information,
available channels, and any additional local policies. The
network status information can be collected using link-state
dissemination and its variants expressible also as declarative
rules [16]. Alternatively, if a route to the centralized solver
has already been computed, each node can forward the status
information via the CCC directly to the centralized solver.

After gathering network status information, the centralized
channel manager has access to the entire network topol-
ogy (1ink table) and available channels (availChannel ta-
ble). It then uses the solver to execute the policy rules



described in Section III to generate channel assignments
assignChannel (@X,Y,c) for each node x. This information
is then propagated to each node x to set its local channel
to neighbor v accordingly. Here, the location specifier e is a
common symbol used in declarative networking [19], denoting
the source location of each corresponding tuple. It is essential
for ensuring that each derived assignChannel (€x,Y,C) tuple
is sent to the appropriate node x.

Given that graph coloring is an NP-hard problem, to find
the solution in reasonable time one approximation method we
have explored is a divide-and-conquer strategy. The basic idea
is to divide the whole network into roughly equal-sized subnet-
works (we use a heuristic breadth-first search to partition the
network), and have the solver perform channel selection over
each smaller subnetwork. Interestingly, this division process
requires minimal changes to the PawLog policy rules, simply
by partitioning the input tables into smaller ones. Once the
channels are assigned to individual subnetworks, the remaining
links (or bridges) connecting the subnetworks together are
assigned channels that minimize the overall interference cost.
If no new channels are available (i.e. all interfaces have
already been assigned channels during the earlier subnetwork
optimization phase), the CCC is used as a fallback.

B. Distributed Channel Selection

We next demonstrate PUMA’s ability to implement dis-
tributed channel selection. Distributed channel selection pro-
vides approximations to the optimal centralized solution, and
hence scales better for large networks. Moreover, it has the
added advantages of not introducing single points of failure
and is amenable to incremental computations as the network
topology changes. Our example here is based on a variant
of distributed greedy protocol proposed in [25]. This exam-
ple highlights PUMA’s ability to support distributed COP
computations, where nodes compute channel assignments (a
COP computation) based on local neighborhood information,
and then exchange channel assignments with neighbors to
perform further COP computations. This distributed approach
is achieved by PUMA’s use of a declarative networking engine
in conjunction with a constraint solver.

The protocol works as follows. Periodically, each node
randomly selects one of its links (link selection) to start
a channel negotiation process with its neighbor. To avoid
conflicting channel assignments, for any given link(i,j),
the link selection protocol selects the node with the larger
identifier (or address) to carry out the subsequent channel
negotiation process. Once a link is selected for channel assign-
ment, the negotiation process solves a local COP and assigns a
channel such that interference is minimized. In case there are
several solutions with minimum interference cost, the solve
randomly picks one. The new channel-to-link assignment is
then propagated to immediate neighbors.

The following PawLog program implements the local
COP operation at every node x for performing channel
assignment. The output of the program sets the channel
assignChannel (€X,Y,C) for one of its links 1ink (ex,Y) (cho-
sen for the current channel negotiation process) based on the
two-hop interference model:

goal minimize C in totalCost (C)

var assignChannel (@X,Y) forall eSetLinkChannel (@X,Y)
// trigger the start of the solver
dl eStartSolver (@X) :- eSetLinkChannel (@X,Y).

// two-hop assignments
d2 twoHopChannels (@X,Y,Z,C)
assignChannel (QRY, Z,C) .

:— link (@X,Y),

// propagate channels to ensure symmetry
d3 assignChannel (@Y,X,C) :- assignChannel (@X,Y,C).

// cost assignment for two-hop interference model

dsl cost (@X,Y,Z,W,C) :— twoHopChannels (@X,Z,W,C1)
assignChannel (@X,Y,C2), W!=X, z!=Yy, w!=Y, C=1,
[C1-C2|<F_mindiff.

// aggregate the cost

ds2 totalCost (@X,COUNT<C>) :— cost (@X,Y,Z,W,C).

// Input domain constraint for assignChannel
dcl assignChannel (€X,Y,C) -> link (@X,Y),
availChannel (@X,C,F,Stl), availChannel (@Y,C,F,St2).

// primary user constraint
dc2 availChannel (@X,C,F,St) -> !primaryUser (@X,C).

The event that triggers the solver execution of the above
program is denoted by esetLinkChannel (€%, Y). This event is
periodically generated as part of the link negotiation process,
and v denotes the neighbor chosen for the current negotiation
process. The distributed program is similar to the centralized
equivalent presented in Section IV-A, with the following
differences:

Localized COP: While the centralized channel selection
searches for all combinations of channel assignments for all
nodes, the distributed equivalent restricts channel selection
to a single link one at a time, where the selected link is
represented by esetLinkChannel (@%,Y) based on the nego-
tiation process. For this particular link, the COP execution
takes as input its local neighbor set (1ink), the available
channels (availchannel), and all currently assigned channels
(assignchannel) for itself and nodes in the local neighbor-
hood. Hence, the COP execution is an approximation based
on local information gathered from a node’s neighborhood.

Distributed execution: The use of location specifier e
enables one to naturally capture constraints and dependencies
involving nearby neighbors. Rules 42 enables a node x to
collect the current set of channel assignments for itself and its
immediate neighbors v. In executing the channel selection for
the current link, constraint dc1 limits the channel assignment
for 1ink(ex,v) to only channels common to both x and v.
Once a channel is set at node x, the channel assignment
is immediately propagated to neighbor v, hence resulting in
symmetric channel assignments (rule d3).

In essence, one can view the distributed protocol as a series
of per-node COP carried out using each node’s constraint
solver. The channel negotiation process is repeated at each
node periodically until all links have been assigned a channel.
Each channel negotiation process will use the link channel as-
signments computed in previous rounds in order to determine
the channel assignment for the next link.

In situations when the constraint solver returns no solution,
the link is assigned to use the CCC as a fallback. The
complexity of this protocol depends upon the maximum node
degree, since each node at most needs to perform m rounds
of channel negotiation, where m is the node degree.



Incremental updates: Link and node dynamics are easily
captured in PawLog, via a technique known as incremental
view maintenance [18], that essentially stores the rule results
and incrementally updates the results as the rule body predi-
cates are updated. This avoids having to recompute a rule from
scratch whenever the inputs to the rule change. For example,
in rule d2, twoHopChannels tuples are updated whenever 1ink
and assignChannel are updated. This results in changes to the
cost and totalcost values, which will further result in new
channel assignment values when the solver is next executed
for the new link.

V. CROSS-LAYER OPTIMIZATIONS

Using the distributed channel selection protocol as a basic
building block, we present a distributed cross-layer protocol
that optimizes across channel selection and routing. While
similar cross-layer optimizations have received attention in a
centralized context [23], our proposed protocol (to our best
knowledge) is the first to be implemented in a fully distributed
fashion. PUMA’s use of declarative networking enables us
to compactly and naturally realize this distributed protocol,
requiring minimal modifications to the PawLog rules we
presented in Section IV-B. We further discuss enhancements to
the route selection metric to more effectively take into account
channel diversity and traffic load.

Figure 2 outlines the steps taken by the distributed cross-
layer protocol. Each box indicates a step (component) which
encapsulates a set of PawLog rules. The output of each com-
ponent can be directly used as input to the next component,
simply by having rules in the next component be defined in
terms of the output from the previous component.

We provide a brief description of each component:

Distributed channel selection: The first component is
Distributed Channel Selection, which reuses the set of rules
presented in Section IV-B. This process is usually started in
the initial phase of bootstrapping channel assignments.

Link-state update propagation: Following channel selec-
tion, a set of PawLog rules are used for implementing a
flood-based propagation of link-state updates (LSUs), using
either traditional link-state dissemination or more scalable
variants (e.g. OLSR [10]). The LSUs in this case include the
neighborhood set of each node, and also the assigned channels
for each link as computed in the previous step.

Route computation: Based on the LSUs, a Route Computa-
tion component executes the next step to compute best paths
based on the WCETT [12] metric. WCETT is a path-based
metric, resulting in the selection of a route with maximum
path channel diversity (Appendix A gives a brief description
of WCETT).

Link traffic estimation: Based on the computed routes,
another set of PawLog rules implement the Link Traffic Esti-
mation component, which estimates the expected traffic load
for each link. Consider two nodes ¢ and j. The traffic on
link (i,3) is estimated as S; x F;; where S; is the data
sending rate of node ¢, and P;; is the probability that the
link appears along selected best paths of node 7. For the
initial bootstrapping stage, we assume P is same for each
link. The aggregate traffic between ¢ and 7 is then calculated

by summing the traffic from ¢ to 5 and from j to ¢. Link traffic
estimation can be incrementally updated as routes are updated,
or as the sending rate of nodes changes at runtime. The
link traffic estimation is subsequently used as an interference
cost input to another round of Distributed Channel Selection,
making the channel selection process traffic-aware.

The above four components consist of 25, 11, 4 and 7
PawLog rules, respectively. PawLog specifications of the cross-
layer protocol result in significantly fewer lines of code
(and less code complexity) compared to alternative imperative
implementations (see Section VII for code size comparison).

Our technical report [5] shows the detailed rules used in
specifying the cross-layer protocol. In a nutshell, to encode
cross-layer dependencies, we express in PawLog rules that
capture mutual dependencies among predicates whose values
depend on each other. For example, the constraint solver will
use the cost of aggregate traffic load derived from route selec-
tion to determine channel assignments; these assignments are
subsequently propagated for channel diversity based routing
using WCETT metric.

Based on Figure 2, the cross-layer optimization process
stops when the second round of channel selection completes
(with some channel assignments possibly refined). An alter-
native (fancier) approach is to consider an indefinite feedback
loop in which the process of channel and route selection
is repeatedly co-optimized until some theoretically sound
stopping criteria is reached, e.g. when the network interference
is below certain level. While these extensions are feasible to
be explored and implemented in PUMA, repeated loops result
in longer convergence time and yield diminishing returns.
A detailed theoretical analysis of the stopping criteria is an
interesting avenue for future work.

The protocol works under the assumption that network
traffic is relatively stable over the period of channel selection
and routing. Given that wireless mesh networks usually have
relatively fixed traffic patterns for hours [23], this assumption
usually holds. In the event that traffic patterns keep fluctuating,
we can easily modify the PawLog rules to fallback to a traffic
agnostic policy (like the distributed protocol in Section IV-B).

A. Traffic-aware WCETT Enhancement

The WCETT [12] metric is based on Expected Transmission
Time (ETT), which depends on link capacity and packet loss
rate due to signal strength degradation. In practice, ETT is
also affected by link traffic. The higher the traffic load, the
more likely ETT will increase due to collisions and congestion
related delays. To avoid routing along links with high traffic,
we propose the Traffic-aware WCETT, which multiplies the
original ETT value for each link by estimated traffic that
traverses the link. Achieving this requires minimal changes
to our PawLog rules, since link traffic estimation is already
stored in the traffic table. Our evaluation results in Sec-
tion VI demonstrate that using the traffic-aware enhancement
to WCETT results in further performance improvements over
a regular distributed channel selection protocol, in addition
to the improvements that are attributed to the cross-layer
optimizations presented earlier in this section.
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VI. EVALUATION

We have developed a prototype of PUMA using the Rapid-
Net declarative networking engine [6] and the Gecode [1]
constraint solver. PUMA takes as input channel selection
and routing policies written in PawlLog, and then generates
RapidNet and Gecode C++ code using the compilation process
described in Section III-D.

Our PUMA platform provides two execution modes: (1) The
simulation mode uses ns-3 [3] as its simulated network layer.
ns-3 is an emerging discrete event-driven simulator intended as
an eventual replacement for the popular ns-2 simulator. ns-3
emulates all layers of the network stack, supporting config-
urable loss, packet queuing, network topology models, and
the IEEE 802.11b PHY+MAC model; (2) The implementation
mode runs the same PUMA instances as in simulation, but
instead of having the instances communicate via a simu-
lated network, uses actual sockets to allow PUMA instances
deployed on different physical nodes to communicate with
each other. This allows us to perform realistic performance
evaluation on the ORBIT [4] testbed.

In both modes, PUMA supports multi-radio multi-channel
capabilities via our implementation of the channel abstraction
layer [9] described in Section II. Simulations enable us to
evaluate the performance of various protocols in a controlled
environment where we can vary network topology, traffic
patterns, number of interfaces and available channels. This
complements our ORBIT testbed evaluation.

In the absence of a publicly available imperative plat-
form with capabilities (such as unified centralized/distributed
channel selection and routing) comparable to PUMA, our
evaluation focuses on validating PUMA'’s flexibility and ef-
ficiency. Specifically, we evaluate the PUMA platform along
the following dimensions.

PawLog execution: Our first evaluation goal is to quantify
the overhead of resources required for channel selection and
routing. For each PawLog program executed using PUMA,
we measure the solver execution time for centralized channel
selection, as well as per-node communication overhead and
convergence time for distributed protocols. The objective here
is to validate that PawLog can be deployed at reasonably low
overhead.

Channel selection and routing policies. Our second eval-
uation goal is to evaluate the policies and protocols used for
channel and route selection. We injected packets into PUMA
nodes with increasing sending rate, and then measure the
aggregate network throughput defined in terms of network-
wide aggregate data packet transmissions that are successfully
received by destination nodes. In our experiments, we either
fix the channel selection policy and vary the protocols (e.g.
centralized vs distributed), or fix the channel selection protocol
and vary the policies (e.g. one-hop vs two-hop interference).

PawLog language. In our third evaluation goal, we evaluate
the flexibility of PawLog in supporting a wide range of channel
selection and routing policies. We further provide evidence on

Components in distributed traffic-aware cross-layer protocol

the compactness of PawLog, by comparing the lines of code
in PawLog and the generated C++ code.

A. Experimental Setup

We evaluate the following channel selection protocols:
Centralized (Section IV-A), Distributed (Section IV-B), Cross-
layer (Section V), and Cross-layer (E) (Section V-A). Recall
that the enhanced cross-layer protocol refines WCETT by
taking link traffic load into route computation. For each
protocol, channel selection combines the use of one-hop and
two-hop interference models, by attempting to solve a COP
that minimizes the number of conflicting links under either
models.

As a basis of comparison, we consider two baselines I-
Interface and Identical-Ch. In I-Interface all nodes communi-
cate with each other using one interface and hence a common
channel. In Identical-Ch [12], the same set of channels are
assigned to the interfaces of every node (e.g. channel 1 to
the first interface, channel 2 to the second), and a centralized
constraint solver then assigns each link to use one of these
interfaces. All of these protocols use the WCETT metric for
routing, and runs a declarative link-state protocol [16].

In all our setups, nodes utilize multiple interfaces consisting
of homogeneous multi-channel radios. We limit the set of
usable channels to “orthogonal channels”, i.e. channels with
sufficient frequency gap between them to incur minimal or no
interference when active in each other’s vicinity. This limits
interference to situations where nearby links use the same
channel.

B. Simulation Results

Our first experiment consists of a network of 30 nodes
randomly located in a 600m x 600m arena. In this setup,
the transmission range of each node is approximately 100m,
and all nodes communicate using ns-3’s 8§02.11b PHY+MAC
model. Each node has an average degree of 5, and is equipped
with one interface reserved for CCC, and three additional data
interfaces with 8 orthogonal channels each. All interfaces have
a capacity of 11.0M bps. By default our simulations do not use
RTS/CTS among nodes, but permit up to 3 retries at the MAC
layer to transmit each packet.

Convergence time. Given the complexity of channel as-
signment and the size of the network, the Centralized solu-
tion uses the divide-and-conquer approximation introduced in
Section IV-A, which divides the network into roughly equal-
sized subnetworks. The smaller the size of each subnetwork,
the faster the solver terminates, but the farther from optimal
the solution is. For a subnetwork of size 7, PUMA'’s solver
is able to generate channel assignments within 30 seconds,
on a Intel Quad core 2.33GHz PC with 4GB RAM running
Ubuntu. The distributed protocols converge quickly as well
— at 40 seconds and 80 seconds respectively for Distributed
and Cross-layer. These convergence times represent the cost
of performing channel selection from scratch on the entire
network until all links have been assigned channels.
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Convergence in the distributed case is dominated by the net-
work degree and the periodic timers between each individual
link channel negotiation. Since the solver computation only
requires input channel information within a node’s neighbor-
hood, each per-link COP computation during negotiation is
highly efficient and completes within 200ms. In the steady
state after the initial channel assignments, as topology changes,
the distributed protocols require only incremental recomputa-
tion by performing a channel negotiation for each modified
link. On the other hand, the centralized approach requires a
complete solver recomputation (for the entire network) even
when only one link has changed.

Aggregate network throughput. Figure 3 shows the ag-
gregate network throughput for all protocols. The traffic load
consists of UDP data packets sent from random sources to
random destinations. We observe that the throughput for all
protocols first increases linearly as expected, then becomes
sub-linear, and finally flattens when the network is saturated.
Specifically, (1) Distributed consistently has higher throughput
than Centralized, suggesting that while both are approxima-
tions to the optimal solution, the divide-and-conquer strategy
is not as effective as a purely greedy approach that assigns link
channels one at a time; (2) Cross-layer’s relative improvements
over the other protocols are apparent, achieving an average
24.7% higher throughput compared to Distributed, and a 1.9X
and 4.8X improvement over Identical-Ch and I-Interface
respectively. This is because Cross-layer is able to select
channels and routes to intelligently bypass congested hot spots,
an optimization that cannot be easily achieved when routing
and channel selection decisions are carried out separately; (3)
the best performing protocol is Cross-layer (E), which has an
improved throughput of 9.5% over the basic Cross-layer.

Bandwidth utilization. Distributed, Cross-layer, and
Cross-layer (E) incur low per-node average bandwidth uti-
lization of 12.57Kbps, 12.64Kbps and 12.80Kbps, respec-
tively. The performance numbers for network throughput and
bandwidth utilization suggest that per-node overhead is low.
Moreover, as network size increases, distributed protocols are
a more attractive option compared to a centralized strategy
in generating good channel assignments within reasonable
communication overhead and convergence time.

Policy customization. In our previous experiments, we have
fixed the channel selection policy but vary the mechanisms
(e.g. centralized vs distributed). Given the same 30-node setup,
Figure 4 highlights the capabilities of PUMA to handle policy

variations with minor changes to the input PawLog policy
rules.

Specifically, we fix the protocol to be Cross-layer (E), and
then vary the policies in two ways. First, Restricted Channels
reduces the number of available channels for each node by
an average of 20%. This emulates the situation where some
channels are no longer available due to external factors, e.g.
decreased signal strength, the presence of primary users, or
geographical spectrum usage limits. Second, I-hop Interfer-
ence uses a different cost assignment function to consider
only one-hop interference. As a basis of comparison, 2-hop
Interference shows our original channel selection policy used
in prior experiments.

We observe that for Restricted Channels, the throughput
decreases by 35.9%. With the additional use of one-hop inter-
ference model, the throughput further reduces by an average
of 6.9%, indicating that the two-hop interference model does
a better job in ensuring channel diversity.

Other results. Using the 30-node setup, we have also
examined the sensitivity of our results by varying traffic
patterns and network topologies. These results are presented
in our technical report [5].

C. ORBIT Testbed Results
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Fig. 6. Aggregate ORBIT throughput (varying #channels).

Our final set of experiments are carried out on the OR-
BIT [4] testbed, a wireless testbed that consist of machines
arranged in a grid communicating with each other using
802.11. Each ORBIT node is equipped with 1 GhZ VIA
Nehemiah processors, 64KB cache and 512MB RAM. We
selected 30 ORBIT nodes in a 8m x 5m grid to execute
one PUMA instance each. Each of these 30 nodes utilizes
two Atheros AR5212-based 802.11 a/b/g cards as their data



interfaces. By default, RTS/CTS is not used, and nodes are
configured without retries.

ORBIT is one of the publicly available wireless testbeds
for carrying out large-scale wireless experiments. This testbed
allows us to validate results obtained in simulations. One
current limitation of ORBIT is that given that the maximum
distance between any two nodes in our experiment is about
9.4 meters, all nodes can hear the transmission signals from
all other nodes.

To mitigate this issue, we make the following changes: (1)
reduce the transmission power of all nodes to 1dBm; (2)
utilize iptables to filter packets at the MAC layer to emulate
a grid topology where each node only receives messages from
its designated neighbors within 1-2 meters range; (3) nodes
communicate using 802.11a/g with 54Mbps capacity, which
we have found to result in higher saturation bandwidth on
ORBIT compared to 802.11b. In total, we have 10 orthogonal
channels (7 from 802.11a and 3 from 802.11g) to assign to the
two data interfaces. Even with these mitigation techniques, we
note that the resulting network is physically a fully-connected
mesh since any two nodes can still receive signals from
each other. This limitation of ORBIT impacts the absolute
throughput across all protocols experimented.

The first experiment evaluates our protocols using the
random traffic model similar to previous simulations. After
channel assignments and routes are established, packets are
routed from randomly selected sources to destinations along
the best paths. Due to ORBIT’s configuration as a fully-
connected mesh, the utility of traffic-aware routing is limited.
We hence focus on comparing the regular Cross-layer with
other schemes. Figure 5 shows the aggregate network through-
put as the offered load increases until saturation is reached for
most protocols.

We make the following observations. First, the comparative
differences across protocols are consistent with our earlier
simulation results. The best performing protocol is Cross-
layer which has the highest aggregate throughput, followed
by Distributed and Centralized (with divide-and-conquer ap-
proximation).

Second, I-Interface and Identical-Ch have reductions in
throughput at high data rates greater than 8.0Mbps. We
attribute this to congestion-related high packet losses due to
increased interferences at high data rates. These losses are
more apparent for protocols with limited channel diversity.
Cross-layer on the other hand avoids throughput degradation
through a better choice in route and channel selection.

Third, we observe that PUMA is able to handle high rates of
traffic. For instance, when data is injected into the network at
a rate of 7.5Mbps, the Cross-layer protocol is able to forward
packets efficiently with only a loss rate of 14.7%. Given that
each packet traverses 3-4 hops from source to destination,
this translates to about 1.0Mbps per-node bandwidth. Given
ORBIT’s fully-connected mesh, these performance results
should be viewed as a lower bound.

In our second experiment, we execute Cross-layer using the
same setup as above, but limits the number of available chan-
nels to 10, 8, 6, 4, and 1 (fall back to I-Interface). This setup
emulates the situation where some channels are unavailable

due to policy constraints same as simulations in Section VI-B.
Figure 6 shows whenever more channels are available, PUMA
is able to leverage the increased channel availability to reduce
interference and hence results in increased throughput.

VII. DISCUSSION

We discuss our experimental results by revisiting our eval-
uation criteria used in Section VI:

PawLog execution: PUMA is able to perform channel
selection and routing in a bandwidth-efficient manner with fast
convergence time, and handle high traffic rates before reaching
interference-induced saturation.

Channel selection and routing policies. This paper is one
of the first comprehensive attempts at experimentally evaluat-
ing a wide range of channel selection protocols in both sim-
ulations and actual testbed. Centralized and distributed chan-
nel selection and routing protocols implemented in PUMA
significantly outperform single-channel and identical channel
assignment solutions. The relative differences and scalability
trends of these protocols are consistent with what one would
expect in imperative implementations.

Our proposed cross-layer protocol (particularly when with
the enhancement of traffic-aware routing) exhibits the best
overall performance in terms of high throughput and low loss
rate, and significantly outperforms other protocols.

Flexibility of PawLog. Our evaluation validates PawLog’s
flexibility in supporting various channel selection protocols
(e.g. centralized, distributed, cross-layer) and policies (e.g.
one-hop vs two-hop interference models, restricted channels).
PawLog’s high level abstractions make it extremely easy to
encode novel policies, such as the cross-layer strategy that
optimizes across channel selection and routing. This is a clear
evidence on the advantages of a declarative approach, which
allows us to rapidly prototype and evaluate varying protocols
and policies.

[ Protocol [[ PawLog | Imperative (C++) |
Centralized 35 3229
Distributed 48 4445
Cross-layer 59 5817

TABLE 1

PawLog AND COMPILED C++ COMPARISON

Compactness of PawLog. Table I illustrates the com-
pactness of PawLog, by comparing the number of PawLog
rules (2nd column) for three representative protocols against
the actual number of lines of code (LOC) in the generated
RapidNet and Gecode C++ code (3rd column).

Each PawLog program includes all rules required to im-
plement routing and channel selection. These include rules
for LSU propagation, route computation, channel selection,
and dissemination of channel information in the network. The
generated imperative code is approximately 100X the size
of the equivalent PawLog program. The generated code is a
good estimation on the LOC required by a programmer to
implement these protocols in a traditional imperative language.
In fact, PawLog’s reduction in code size should be viewed as a
lower bound. This is because the generated C++ code imple-
ments only the rule processing logic, and does not include
various PUMA’s built-in libraries, e.g. Gecode’s constraint
solving modules, the network and channel abstraction layers



provided by RapidNet. These built-in libraries need to be
written only once, and are reused across all protocols written
in PawLog rules.

While a detailed user study will allow us to comprehensively
validate the usability of PawLog, we note that the orders of
magnitude reduction in code size makes PawlLog programs
significantly easier to write, understand, debug and extend than
multi-thousand-line imperative alternatives.

VIII. RELATED WORK

Several architectures and designs for dynamic spectrum
access/sharing [21], [24], [20], [8] and channel selection and
routing [11], [23], [7], [12], [25], [22] have been proposed
for mitigating the impact of harmful interference and thus
improving overall network performance. PUMA aims to to
enable all of the above protocols and the policies that dictate
their behaviors to be specified and customized easily.

XG [21] proposes a policy-based network management ar-
chitecture for spectrum access control. PUMA’s policy-based
framework similarly addresses the issue of channel manage-
ment, but also provides the capabilities to implement policy-
based routing protocols and perform cross-layer optimizations.

Prior studies [14], [25] have formulated channel selection as
COPs, however they are typically hard-coded into a constraint
solver and limited to centralized contexts. [17] proposes the
formulation of centralized channel selection policies as declar-
ative COP programs. Our paper significantly extends this work
by exploring centralized approximations, distributed channel
selection, traffic-aware cross-layer optimizations, as well as
an extensive experimental evaluation in both simulations and
the ORBIT testbed.

Declarative networking has been studied in both wired [19]
and wireless [16] environments, and even used as a basis for
course projects in a networked systems class [13]. PUMA
focuses on a new domain that combines declarative channel se-
lection and routing in wireless mesh networks. By integrating a
declarative networking engine with a constraint solver, PUMA
provides novel capabilities that enable distributed cross-layer
optimizations in an incremental fashion.

IX. CONCLUSION

This paper presents PUMA, a policy-based extensible plat-
form that combines channel selection and routing within a
common declarative framework. PUMA integrates a declara-
tive networking engine with a constraint solver to realize a
variety of declarative wireless routing and channel selection
protocols, and in addition, provides avenues to optimize across
route and channel selection policies. We have developed a
prototype of PUMA using the RapidNet declarative network-
ing system and the Gecode constraint solver, and have carried
out extensive evaluations of PUMA in simulation and on the
ORBIT testbed. We are in the process of releasing PUMA as
open-source for use by the networking community. We are also
exploring integrating PUMA with legacy systems, for instance,
interfacing our channel selection manager with software router
packages.
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APPENDIX A: WCETT METRIC
The Weighted Cumulative Expected Transmission Time
(WCETT) [12] metric is based on Expected Transmission Time
(ETT) of each link and considers path channel diversity.
WCETTp = (1 — f3) l; ETTy+ 8+ max X;  (7)
In (7), the WCETT of a path P is expressed as a weighted
formula (tunable by coefficient 3) between the path ETT
(summation of ETT ET7T; for all links in path P), and the
maximum ETT of the bottleneck channel (computed by taking
the max of all X, where X; is defined as the sum of ETT
for all links in P with channel assignment 7).
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