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Abstract
Distributed logic programming languages, that allow both facts and
programs to be distributed among different nodes in a network,
have been recently proposed and used to declaratively program a
wide-range of distributed systems, such as network protocols and
multi-agent systems. However, the distributed nature of the under-
lying systems poses serious challenges to developing efficient and
correct algorithms for evaluating these programs. This paper pro-
poses an efficient asynchronous algorithm to compute incremen-
tally the changes to the states in response to insertions and deletions
of base facts. Our algorithm is formally proven to be correct in the
presence of message reordering in the system. To our knowledge,
this is the first formal proof of correctness for such an algorithm.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Operational Semantics

General Terms Algorithms, Theory, Correctness

Keywords Distributed Datalog, Logic Programming, Incremental
Maintenance

1. Introduction
One of the most exciting developments in computer science in re-
cent years is that computing has become increasingly distributed.
Both resources and computation no longer reside in a single place.
Resources can be stored in different machines possibly around the
world, and computation can also be performed by different ma-
chines, e.g. cloud computing. Since machines usually run asyn-
chronously and under very different environments, programming
computer artifacts in such frameworks has become increasingly dif-
ficult as programs have to be at the same time correct, readable, effi-
cient and portable. There has therefore been a recent return to using
declarative programming languages, based on Prolog and Datalog,
to program distributed systems such as networks and multi-agent
robotic systems, e.g. Network Datalog (NDlog) [10], MELD [5],
Netlog [6], DAHL [11], Dedalus [4]. When programming in these
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declarative languages, programmers usually do not need to specify
how computation is done, but rather what is to be computed. There-
fore declarative programs tend to be more readable, portable, and
orders of magnitude smaller than their imperative counterpart.

Distributed systems, such as networking and multi-agent robotic
systems, deal at their core with maintaining states by allowing each
node (agent) to compute locally and then propagate its local states
to other nodes in the system. For instance, in routing protocols,
at each iteration each node computes locally its routing tables
based on information it has gained so far, then distributes the set
of derived facts to its neighbors. We can specify these systems as
distributed logic programs, where the base facts as well as the rules
are distributed among different nodes in the network.

Similarly to its centralized counterpart, one of the main chal-
lenges of implementing these distributed logic programs is to ef-
ficiently and correctly update them when the base facts change.
For distributed systems, the communication costs due to updates
also need to be taken consideration. For instance, in the network
setting, when a new link in the network has been established or
an old link has been broken, the set of derived routes need to be
updated to reflect the changes in the base facts. It is impractical
to recompute each node’s state from-scratch when changes occur,
since that would require all nodes to exchange their local states in-
cluding those that have been previously propagated. For example,
in the path-vector protocol used in Internet routing, recomputation
from-scratch would require all nodes to exchange all routing infor-
mation.

A better approach is to maintain the state of distributed logic
programs incrementally. Instead of reconstructing the entire state,
one only modifies previously derived facts that are affected by
the changes of the base facts, while the remaining facts are left
untouched. For typical network topologies, whenever a link update
happens, incremental recomputation requires less bandwidth and
results in much faster protocol convergence times when compared
to recomputing a protocol from scratch.

This paper develops algorithms for incrementally maintaining
recursive logic programs in a distributed setting. Our algorithms al-
low asynchronous execution among agents. No agent needs to stop
computing because some other agent has not concluded its com-
putation. Synchronization requires extra communication between
agents, which comes at a huge performance penalty. In addition,
we also allow update messages to be received out of order. We
do not assume the existence of a coordinator in the system, which
matches the realty of distributed systems. Finally, we develop tech-
niques that ensure the termination of updates even in the presence
of recursive logic programs.



More concretely, we propose an asynchronous incremental
logic programming maintenance algorithm, based on the pipelined
semi-naı̈ve (PSN) evaluation strategy proposed by Loo et al. [10].
PSN relaxes the traditional semi-naı̈ve (SN) evaluation strategy for
Datalog by allowing an agent to change its local state by following
a local pipeline of update messages. These messages specify the
insertions and deletions scheduled to be performed to the agents’
local state. When an update is processed, new updates may be gen-
erated and those that have to be processed by other agents of the
system are transmitted accordingly.

We discovered that existing PSN algorithms [9, 10] may pro-
duce incorrect results if the messages are received out of order.
We formally prove the correctness of our PSN algorithm, which
is lacking from existing work. What makes the problem hard is
that we need to show that, in a distributed, asynchronous setting,
the state computed by our algorithm is correct regardless of the
order in which updates are processed. Unlike prior PSN propos-
als [9, 10], our algorithm does not require that message channels
be FIFO, which is for many distributed systems an unrealistic as-
sumption.

Guaranteeing termination is another challenge for developing
an incremental maintenance algorithm for distributed recursive
logic programs. Typically, in a centralized synchronous setting,
algorithms, such as DRed [7], guarantee the termination of updates
caused by insertion by maintaining the set of derivable facts, and
discarding new derivations of previously derived facts. However,
to handle updates caused by deletion properly, DRed [7] needs to
first delete facts caused by deletion of base facts, then re-derive
any deleted fact that has an alternative derivation. Re-derivation
incurs communication costs, which degrade the performance in
a distributed setting. This argues for maintaining the multiset of
derivable facts, where no re-derivation of facts is needed, since
nodes keep track of all possible derivations for any fact. However,
termination is no longer guaranteed, as cycles in the derivation of
recursive programs allow facts to be supported by infinitely many
derivations.

To tackle this problem, we adapt an existing centralized solu-
tion [12] to distributed settings. For any given fact, we add anno-
tations containing the set of base and intermediate facts used to
derive that fact. These per-fact annotations are then used to detect
cycles in derivations. We formally prove that in a distributed set-
ting, the annotations are enough to detect when facts are supported
by infinitely many derivations and guarantee termination of our al-
gorithm.

This paper makes the following technical contributions, after
introducing some basic definitions in Section 2:
• We propose a new PSN-algorithm to maintain distributed logic
programs incrementally (Section 3). This algorithm only deals with
distributed non-recursive logic programs. (Recursive programs is
dealt in Section 5.)
• We formally prove that PSN is correct (Section 4). Instead of di-
rectly proving PSN maintains distributed logic programs correctly,
we construct our proofs in two steps. First, we define a synchronous
algorithm based on SN evaluations, and prove the synchronous SN
algorithm is correct. Then, we show that any PSN execution com-
putes the same result as the synchronous SN algorithm.
• We extend the basic algorithm by annotating each fact with infor-
mation about its derivation to ensure the termination of maintaining
distributed states (Section 5), and prove its correctness.
• We point out the limitations of existing maintenance algorithms
in a distributed setting where channels are not necessarily FIFO
(Section 6) and comment on related work (Section 7);

Finally, we conclude with some final remarks in Section 8. All
proofs appear in the companion technical report [14].

2. Distributed Datalog
We present Distributed Datalog (DDlog), which extends Datalog
programs by allowing Datalog rules to be distributed among dif-
ferent nodes. DDlog is the core sublanguage common to many of
the distributed Datalog languages, such as NDlog [10], MELD [5],
Netlog [6], and Dedalus [4]. Our algorithms maintain the states for
DDlog programs.

2.1 Syntax and Evaluation
Syntax. Similar to Datalog programs, a DDlog program consists
of a (finite) set of logic rules of the form h(~t) :- b1(~t1), . . . , bn(~tn),
where the commas are interpreted as conjunctions and the symbol
:- as reverse implication. Following [16], we assume a finite signa-
ture of predicate and constant symbols, but no function symbols. A
fact is a ground atomic formula. For the rest of this paper, we use
fact and predicate interchangeably.

We say that a predicate p depends on q if there is a rule where
p appears in its head and q in its body. The dependency graph of a
program is the transitive closure of the dependency relation using
its rules. We say that a program is (non)recursive if there are (no)
cycles in its dependency graph. We classify the predicates that do
not depend on any predicates as base predicates (facts), and the
remaining predicates as derived predicates.

To allow distributed computation, DDlog extends Datalog by
augmenting its syntax with the location operator @ [10], which
specifies the location of a fact. The following DDlog program
computes the reachability relation among nodes:

r1: reachable(@S,D) :- link(@S,D).
r2: reachable(@S,D) :- link(@S,Z), reachable(@Z,D).

It takes as input link(@S,D) facts, each of which represents an edge
from the node itself (S) to one of its neighbors (D). The location
operator @ specifies where facts are stored. For example, link facts
are stored based on the value of the S attribute.

Distributed Evaluation. Rules r1-r2 recursively derive
reachable(@S,D) facts, each of which states that the node S is
reachable from the node D. Rule r1 computes one-hop reachability,
given the neighbor set of S stored in link(@S,D). Rule r2 computes
transitive reachability as follows: if there exists a link from S to Z,
and the node D is reachable from Z, then S can also reach D.

In a distributed setting, initially, each node in the system stores
the link facts that are relevant to its own state. For example, the
fact link(@2,4) is stored at the node 2. To compute all reachability
relations, each node runs the exact same copy of the program
above concurrently. Newly derived facts may need to be sent to
the corresponding nodes as specified by the @ operator.

Rule localization. As illustrated by the rule r2, the atomic for-
mulas in the body of the rules can have different location specifiers
indicating that they are stored on different nodes. To apply such
a rule, facts may need to be gathered from several nodes, possi-
bly different from where the rule resides. To have a clearly defined
semantics of the program, we apply rule localization rewrite pro-
cedure as shown in [10] to make such communication explicit. The
rule localization rewrite procedure transforms a program into an
equivalent one (called localized program) where all elements in the
body of a rule are located at the same location, but the head of the
rule may reside at a different location than the body atoms. This
procedure improves performance by eliminating the need of unnec-
essary communication among nodes, as a node only needs the facts
locally stored to derive a new fact. For example, the followings two
rules are the localized version of r2:

r2-1: reachable(@S,D) :- link(@S,Z), aux(@S,Z,D).
r2-2: aux(@S,Z,D) :- reachable(@Z,D), co-link(@Z,S).



Here, the predicate aux is a new predicate: it does not appear in the
original alphabet of predicates and the fact co-link(@Z,S) is true
if and only if link(@S,Z) is true. The predicate co-link(@Z,S) is
used to denote that the node Z knows that the node S is one of its
neighbors. As specified in the rule r2-1, these predicates are used
to inform all neighbors, S, of node Z that the node Z can reach node
D. It is not hard to show, by induction on the height of derivations,
that this program is equivalent to the previous one in the sense that
a reachable fact is derivable using one program if and only if it is
derivable using the other. For the rest of this paper, we assume that
such localization rewrite has been performed.

2.2 Multiset Semantics
The semantics of DDlog programs is defined in terms of the
(multi)set of derivable facts (least model). We call such a (multi)set,
the state of the program. In database community, it is called the
materialized view of the program. For instance, in the following
non-recursive program, p, s, and t are derived predicates and u, q,
and r are base predicates.

{p :- s,t,r; s :- q; t :- u; q :-; u :-}.

The (multi)set of all the ground atoms that are derivable from this
program, is {s, t, q, u}. For this example, each fact is supported
by only one derivation and therefore the same state is obtained
whether the state is the set, or the multiset of derivable facts. If we
add, the rule s :- u to this program, then the state when using the
multiset semantics of the resulting program would change to {s,
s, t, q, u} where s appears twice. This is because there are two
different ways to derive s: one by using q and the other by using u.
Our choice of multiset-semantics is essential for correctness, which
we discuss in detail in Section 6.

2.3 Incremental State Maintenance
Changes to the base predicates of a DDlog program will change its
state. The goal of this paper is to develop a correct asynchronous al-
gorithm that incrementally maintains the state of DDlog programs
as updates occur in the system. The main idea of the algorithm is
to first compute only the changes caused by the updates to the base
predicates, then apply the changes to the state. For instance, when a
base fact is inserted, the algorithm computes all the facts that were
not in the state before the insertion, but are now derivable. Simi-
larly, when a deletion occurs, the algorithm computes all the facts
that were in the state before the deletion, but need to be removed.
We introduce notations for defining such an algorithm here, and we
formally define our algorithms and prove them correct in the next
few sections starting from Section 3.

We denote an update as a pair 〈U, p(~t)〉, where U is either +,
denoting an insertion, or -, denoting a deletion, and p(~t) is a ground
fact. We call an update of the form 〈+, p(~t)〉 an insertion update;
and 〈-, p(~t)〉 a deletion update. We write U to denote a multiset of
updates. For instance, the following multiset of updates

U = {〈+, q(@1, d)〉, 〈-, q(@2, a)〉, 〈-, q(@2, a)〉},
specifies that two copies of the fact q(@2, a) should be deleted
from node 2’s state, while one copy of the fact q(@1, d) should be
inserted into node 1’s state.

We use ] as the multiset union operator, and \ as the multiset
minus operator. We write P to denote the multiset of ground atoms
of the form p(~t) (atoms whose predicate name is p), and ∆P
to denote the multiset of updates to predicate p. We write P ν

to denote the updated multiset of predicate p based on ∆P . P ν

can be computed from P and ∆P by union P with all the facts
inserted by ∆P and minus the facts deleted by ∆P . For ease
of presentation, we use the predicate name ∆p in places where
we need to use the updates, and pν in places where we need

to use the updated multiset. For instance, if the multiset of q is
{q(a), q(a), q(b), q(c)} and we update it with U shown above, the
resulting multiset (Qν ) for qν is {q(b), q(c), q(d)}.

Rules for computing updates. The main idea of computing up-
dates of a DDlog program given a multiset of updates to its base
predicates is that we can modify the rules in the corresponding pro-
gram to do so. Consider, for example, the rule p :- b1, b2 whose
body contains two elements. There are the following three pos-
sible cases that one needs to consider in order to compute the
changes to the predicate p: ∆p :- ∆b1, b2, ∆p :- b1,∆b2, and ∆p

:- ∆b1,∆b2. The first two just take into consideration the changes
to the predicates b1 and b2 alone, while the last rule uses their com-
bination. We call these rules delta-rules.

Following [1, 16], we can simplify the delta-rules above by us-
ing the state of pν , as defined above. The delta-rules above are
changed to ∆p :- ∆b1, b2 and ∆p :- bν1 ,∆b2, where the second
clause encompasses all updates generated by changes to new up-
dates in both b1 and b2 as well as only changes to b2.

Generalizing the notion of delta-rules described above, for each
rule h(~t) :- b1(~t1), . . . , bn(~tn) in a program, we create the follow-
ing delta insertion and deletion rules, where 1 ≤ i ≤ n:

〈+, h(~t)〉 : −bν1(~t1), . . . , bνi−1(
~ti−1),∆bi(~ti), bi+1(~ti+1), . . . , bn(~tn)

〈-, h(~t)〉 : −bν1(~t1), . . . , bνi−1(
~ti−1),∆bi(~ti), bi+1(~ti+1), . . . , bn(~tn)

The first rule applies when ∆bi is an insertion, and the second one
applies when ∆bi is a deletion.

By distinguishing predicates with ν and without ν one does not
derive the same derivation twice [7].

3. Basic PSN Algorithm for Non recursive
Programs

We first present an algorithm for incremental maintenance of dis-
tributed non-recursive logic programs. We do not consider termina-
tion issues in the presence of recursive programs, which allows us
to focus on proving the correctness of pipelined execution. In Sec-
tion 5, we will present an improved algorithm that provably ensures
termination of recursive programs.

3.1 System Assumptions
Our model of distributed systems makes two main assumptions,
which are realistic for many systems, such as in networking and
systems involving robots.

The first assumption, following [10], is the bursty model: once a
burst of updates is generated, the system eventually quiesces (does
not change) for a time long enough for all the nodes to reach a fixed
point. Without the bursty model, the links in a network could be
changing constantly. Due to network propagation delays, no routing
protocol would be able to update routing tables to correctly reflect
the latest state of the network. Similarly, if the environment where
a robot is situated changes too quickly, then the robot’s internal
knowledge of the world would not be useful for it to construct a
successful plan. The bursty model can be seen as a compromise
between completely synchronized models of communication and
completely asynchronous models.

The second assumption is that messages are never lost during
transmission. Here, we are not interested in the mechanisms of
message transmission, but we assume that any message is eventu-
ally received by the correct node specified by the location specifier
@. Differently from previous work [9, 10], it is possible for mes-
sages to be reordered in our model. We do not assume that a mes-
sage that is sent before another message has to necessarily arrive
at its destination first. There are existing protocols which acknowl-
edge when messages are received and have the source nodes resend
the messages in the event of acknowledgments timeouts, hence en-
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Figure 1. A simple network topology. A dashed arrow indicates
an edge that is inserted, while a curly arrow an edge that is deleted.
For instance, the edge from d to f is added, while the edge from a

to b is deleted.

forcing that messages are not lost. Message reordering manifests
itself in several practical scenarios. For instance, in addition to re-
ordering of messages buffered at the network layer, network mea-
surements studies have shown that packets may traverse different
Internet paths for any two routers due to ISP policies [15]. In a
highly disconnected environment such as in Robotics [5], messages
from a given source to destination may traverse different paths due
to available network connectivity during the point of transmission
of each message.

3.2 PSN Algorithm
We propose Algorithm 1 for maintaining incrementally distributed
states given a DDlog program. Algorithm 1 enhances the original
pipelined evaluation strategy [10]. Since all facts are stored accord-
ing to the @ operator, we can use a single multiset K containing the
union of states of all the nodes in the system. It is clear from the @

operator where the data is stored. Similarly, we use a single multi-
set of updates U containing the updates that are in the system, but
that have not yet been processed by any node.

Algorithm 1 starts with a multiset of updates U and the mul-
tiset K containing two copies of the state of all nodes in the sys-
tem, one marked with ν and another without ν (see Section 2.3).
The execution of one node of the system is specified by one it-
eration of the while-loop in Algorithm 1. In line 2, an update is
picked non-deterministically from U to be processed next. How-
ever, only deletion updates whose corresponding facts are present
in K are allowed to be picked. This is specified by the operation
removeElement(K), which avoids facts to have negative counts.
Once an update is picked, the ν table is updated according to the
type of update in lines 3–6. In lines 7–12, the picked update is used
to fire delta-rules and create new updates that are then inserted into
the multiset U (lines 13–15). This last step intuitively corresponds
to a node sending new messages to other nodes, even to itself. Fi-
nally in the remaining lines, the changes to the state without ν are
committed according to the update picked, making the table with
ν and without ν have the same elements again and ready for the
execution of the next iteration.

We prove that Algorithm 1 terminates for non-recursive DDlog
programs.

LEMMA 1. For non-recursive DDlog programs, PSN executions
always terminate.

The idea behind the proof is that since the dependency graph of
non-recursive programs is a DAG (does not have cycles), when-
ever an update is picked and used to fire delta-rule, all updates cre-
ated involve facts whose predicate names appear necessarily in a
position “higher” in the dependency graph. Eventually, the set of
updates will be empty since the dependency graph has a bounded
height. Thus, the algorithm finishes. This argument is valid regard-
less of the order in which updates are picked.

An Example Execution. We illustrate an execution of Algorithm
1 using the topology in Figure 1 and the following program adapted

Algorithm 1 Basic pipelined semi-naı̈ve algorithm.
1: while U .size > 0 do
2: δ ← U .removeElement(K)
3: if δ is an insertion update 〈+, p(~t)〉
4: P ν = P ] {p(~t)}
5: if δ is a deletion update 〈-, p(~t)〉
6: P ν = P \ {p(~t)}
7: if δ is an insertion update 〈+, b(~t)〉
8: execute all insertions delta-rules for b:
9: 〈+, h〉 :- bν1 , . . . , b

ν
i−1,∆b, bi+1, . . . , bn

10: if δ is a deletion update 〈-, b(~t)〉
11: execute all deletion delta-rules for b:
12: 〈-, h〉 :- bν1 , . . . , b

ν
i−1,∆b, bi+1, . . . , bn

13: for all derived insertion (deletion) updates u do
14: U .insert(u)
15: end for
16: if δ is an insertion update 〈+, p(~t)〉
17: P = P ] {p(~t)}
18: if δ is a deletion update 〈-, p(~t)〉
19: P = P \ {p(~t)}
20: end while

from [7], which specifies two and three hop reachability:1

hop(@X,Y) :- link(@X,Z), link(@Z,Y)

tri hop(@X,Y) :- hop(@X,Z), link(@Z,Y)

Here the only base predicate is link. Furthermore, assume that the
state is as given below, where we elide the @ symbols. For example,
the facts link(@a,b) and hop(@a,c) are in the state. Also at the
beginning, the multiset of predicates with ν is the same as the
multiset of predicates without ν, so we elide the former.

Link = {link(a,b), link(a,d), link(d,c), link(b,c),

link(c,h), link(f,g)}
Hop = {hop(a,c), hop(a,c), hop(d,h), hop(b,h)}
Tri hop = {tri hop(a,h), tri hop(a,h)}

In the state above some facts appear with multiplicity greater than
one, which means that there are more than one derivation support-
ing such facts. Assume as depicted in Figure 1 that there is the
following changes to the set of base facts link:

U = {〈+, link(d,f)〉, 〈+, link(a,f)〉, 〈-, link(a,b)〉}

Algorithm 1 first picks an update non-deterministically, for in-
stance, the update u = 〈+, link(a,f)〉, which causes an insertion
of the fact link(a,f) to the table marked with ν. Now Link

ν is as
follows:

Link
ν = {linkν(a,b), link

ν
(a,d), link

ν
(d,c),

link
ν
(b,c), link

ν
(c,h), link

ν
(f,g),

link
ν
(a,f)}

Then, u is used to propagate new updates by firing rules, which
creates a single insertion update: 〈+, hop(a,g)〉. Finally, the change
due to the update u is committed to the table without ν. The new
multiset of updates and the new multiset of the link facts are as
follows:
U = {〈+, hop(a,g) 〉, 〈+, link(d,f)〉, 〈-, link(a,b)〉}
Link = {link(a,b), link(a,d), link(d,c), link(b,c),

link(c,h), link(f,g), link(a,f)}

Asynchronous Execution. As previously mentioned, in a dis-
tributed setting, agents need to run as asynchronously as possible,

1 Technically, the given program passes first through the rule localization
procedure described in Section 2. However, for the purpose of illustration,
we use instead this un-localized program.



since synchronization among agents involves undesired communi-
cation overhead.

Synchronized algorithms proposed in the literature admit the
following invariant: in an iteration one only processes updates that
insert or delete facts that are supported by derivations of some spe-
cific height. This is no longer the case for Algorithm 1: it picks
updates non-deterministically. In the example above, one does not
necessarily process all the updates involving link facts before pro-
cessing hop or tri hop facts. In fact, in the next iteration of Algo-
rithm 1, a node is allowed to pick the update 〈+, hop(d,g)〉 although
there are insertions and deletions of link facts still to be processed.
However, this asynchronous behavior makes the correctness proof
for Algorithm 1 much harder and forces us to proceed our correct-
ness proofs quite differently.

Algorithm 1 sequentializes the execution of all nodes: in each it-
eration of the outermost while loop, one node picks an update in its
queue, fires all the delta-rules and commits the changes to the state,
while other nodes are idle. However this is only for the convenience
of constructing the proofs of correctness. In a real implementation,
nodes run Algorithm 1 concurrently. The correctness of this simpli-
fication is justified by Theorem 2 below. Intuitively, the localization
procedure described in Section 2 ensures that all the predicates in
the body are stored at the same location, which implies that updates
on two different nodes can proceed independently, based only on
their local states respectively.

Consider, as an illustrative example, the following localized
program with two clauses:

(1) p(@Y ) :- s(@X,Y )
(2) s(@Y,X) :- q(@X), v(@X,Y ).

Assume that there are two nodes n1 and n2 and that the initial
state and set of updates are, respectively, {q(@n1), v(@n1, n2)} and
{〈+, s(@n2, n1)〉, 〈-, q(@n1)〉}. If both nodes execute concurrently,
then both updates are picked and used to fire the rules of the
program. However, since the programs are localized, there is no
need for the nodes n1 and n2 to communicate between each other
during the execution of an iteration of Algorithm 1: they only need
to access their own internal states. Node n1 will fire a deletion
delta-rule of rule (2) using the update 〈-, q(@n1)〉 and the fact
v(@n1, n2), which are at node n1. The update 〈-, s(@n2, n1)〉 is
then created and sent to node n2, while the fact q(@n1) is deleted
from n1’s local state. Similarly, the node n2 will fire an insertion
delta-rule of rule (1) using the update 〈+, s(@n2, n1)〉 and creating
the insertion update 〈+, p(@n1)〉. Since the operations involved
in the iterations do not interfere with each other, this concurrent
execution can be replaced by a sequential execution where the node
n1 executes its iteration before the node n2 and the resulting final
state is the same.

For simplicity Theorem 2 only considers the case with two
nodes running concurrently. The general case where more than two
nodes running concurrently can be proved in a similar fashion.

THEOREM 2. Let P be a localized DDlog program, and let WI

and UI be an initial state and an initial multiset of updates. Let
WF and UF be the state and the multiset of updates resulting from
executing at different nodes two iterations, i1 and i2, of Algorithm 1
concurrently, where w.l.o.g. i1 starts before or at the same time as
i2. Then the same state and multiset of updates, WF and UF , are
obtained after executing in a sequence i1 and then i2.

4. Correctness of Basic PSN
The correctness proof relates the distributed PSN algorithm (Al-
gorithm 1) to a synchronous SN algorithm (Algorithm 2), whose
correctness is easier to show. After proving that Algorithm 2 is cor-
rect, we prove the correctness of Algorithm 1 by showing that an

execution using distributed PSN can be transformed into an execu-
tion using SN.

4.1 Operational Semantics for Algorithm 1
To prove the correctness of Basic PSN, we first formally define the
operational semantics of Algorithm 1 in terms of state transitions.

Algorithm 1 consists of three key operations: pick, fire and
commit. We call them basic commands, and an informal descrip-
tion are given below:

pick – A node picks non-deterministically one update, u, that is
not a deletion of a fact that is not (yet) in the state, from the multiset
of updates U . If u is an insertion of predicate p, pν is inserted
into the updated state P ν ; otherwise if it is a deletion update, pν

is deleted from P ν . This basic command is used in lines 2–6 in
Algorithm 1.

fire – This command is used to execute all the delta-rules that
contain ∆p in their body, where 〈U, p(~t)〉 has already been selected
by the pick command. After a rule is fired, the derived updates
from firing this rule are added to the multiset U of updates. This
basic command is used in lines 7–15 in Algorithm 1.

commit – Finally, after an update u has already been both
picked and used to fire delta-rules, the change to the state caused by
u is committed: if u is an insertion update of a fact p, p is inserted
into the state P ; otherwise, if it is a deletion update of p, p is deleted
from the state P . This basic command is used in lines 16–19 in
Algorithm 1.

A configuration s is a tuple 〈K,U ,P, E〉, where K is a multiset
of facts, and U ,P and E are all multisets of updates. More specifi-
cally, at each iteration of the execution, K is a snapshot of the deriv-
able facts, and it contains both the multiset (P ) and the updated
multiset (P ν ). The multiset U contains all the updates that are yet
to be picked for processing; P contains the updates that have been
picked and are scheduled to fire delta-rules; and finally E contains
the updates that have been already used to fire delta-rules, but not
yet committed into the state. At the end of the execution, U , P and
E should be empty signaling that all updates have been processed,
and K is the final state of the system.

The five functions depicted in Figure 2, that take a configuration
and an update and return a new configuration, specify the semantics
of the basic commands. The semantics of the pick command is
specified by pickI , when the update is an insertion; and pickD ,
when the update is a deletion. The pick command moves, an update
〈U, p(~t)〉 from U to P , and updates the state in K: pν(~t) is inserted
into K if U is +; it is deleted from K if U is -. Note that the rule
pickD only applies when the predicate to be deleted actually exists
in K. Because messages may be re-ordered, it could happen that a
deletion update message for predicate p arrives before p is derived
based on some insertion updates. In an implementation, if such an
update happens to be picked, we simply put it back to the update
queue, and pick another update.

The rule fire specifies the semantics of command fire, where we
make use of the function firRules. This function takes an update,
〈U, p(~t)〉, the current state, K, and the set of rules, R, as input
and returns the multiset of all updates, F , generated from firing all
delta-rules that contain ∆p in their body. The multiset F is then
added to the multiset U of updates to be processed later.

Finally, the last two rules, commitI and commitD , specify the
operation of committing the changes to the state. Similar to the
rules for pick, they either insert into or delete from the updated
multiset P a fact p(~t).

A computation run of a program R is a valid sequence of
applications of the functions defined in Figure 2. We call the first
configuration of a computation run the initial configuration and its
last configuration the resulting configuration.



• pickI(S, 〈+, p(~t)〉) = 〈K ] {pν(~t)},U \ {〈+, p(~t)〉},P ] {〈+, p(~t)〉}, E〉, provided 〈+, p(~t)〉 ∈ U .

• pickD(S, 〈-, p(~t)〉) = 〈K \ {pν(~t)},U \ {〈-, p(~t)〉},P ] {〈-, p(~t)〉}, E〉, provided 〈-, p(~t)〉 ∈ U and pν(~t) ∈ K.

• commitI(S, 〈+, p(~t)〉) = 〈K ] {p(~t)},U ,P, E \ {〈+, p(~t)〉}〉, provided 〈+, p(~t)〉 ∈ E .

• commitD(S, 〈-, p(~t)〉) = 〈K \ {p(~t)},U ,P, E \ {〈-, p(~t)〉}〉, provided 〈-, p(~t)〉 ∈ E .
• fire(S, u) = 〈K,U ] F ,P \ {u}, E ] {u}〉, provided u ∈ P and where F = firRules(u,K,R).

Figure 2. Definition for the Basic Commands. Here S is the configuration 〈K,U ,P, E〉.

A single iteration of Algorithm 1, called PSN-iteration, is a
sequence of these three commands. In particular, only one update
is picked from U (lines 2–6), and used to fire delta-rules (lines 7–
15), and then the change to the state (lines 16–19) is committed.
For instance, in the example execution described in Section 3.2.
The initial configuration is 〈K,U , ∅, ∅〉, where K and U are the
same initial set of facts and updates shown in Section 3.2. Then the
update u = 〈+, link(a,f)〉 from U is picked using the rule pickI .
The resulting configuration is the following, where the update u is
moved to the set of picked updates:

〈K ] {linkν(a,f)},U \ {u}, {u}, ∅〉.

Then the fire rule is applied and creates the single update u′ =
〈+, hop(a,g)〉, which is added to the set of updates, obtaining:

〈K ] {linkν(a,f)}, (U \ {u}) ] {u′}, ∅, {u}〉.

Finally the commit rule is applied and the state is updated yielding:

〈K ] {linkν(a,f), link(a,f)}, (U \ {u}) ] {u′}, ∅, ∅〉.

which corresponds to the execution shown in Section 3.2, where
the facts link

ν
(a,f) and link(a,f) are added, and the update u

is removed from the original set of updates, while the propagated
update u′ is added to it.

The intuition above is formalized by using the more general
notion of complete-iterations. Intuitively, a complete-iteration is
a sequence of picks, fires and updates that use the same set of
updates. A PSN-iteration is one special case of a complete-iteration
where only one update is picked. In the example above the update
used was 〈+, link(a,f)〉. A PSN execution is a sequence of PSN-
iterations.

DEFINITION 3 (Complete-iteration).
A computation run is a complete-iteration if it can be parti-

tioned into a sequence of transitions using the pick commands
(pickI and pickD), followed by a sequence of transitions using
the fire command, and finally a sequence of transitions using the
commit command, such that the multiset of updates, T , used by the
sequence of pickI and pickD transitions is the same those used by
the sequence of fire and those used by commit transitions.

DEFINITION 4 (PSN-iteration). A complete iteration is a PSN-
iteration if the multiset of updates used by the pick commands con-
tains only one update.

DEFINITION 5 (PSN execution). We call a computation run a PSN
execution if it can be partitioned into a sequence of PSN-iterations,
and in the last configuration U , P and E are empty.

4.2 Correctness of SN Evaluations
We define an incremental maintenance algorithm based on syn-
chronous semi-naı̈ve (SN) evaluation. This algorithm itself is not
practical for any real implementation because of high synchroniza-
tion costs between nodes. We only use it as an intermediary step to
prove the correctness of Algorithm 1.

Algorithm 2 Basic semi-naı̈ve algorithm (multiset semantics).
1: while U .size > 0 do
2: for all insertion updates u = 〈+, h(~t)〉 in U do
3: Ih.insert(h(~t))
4: end for
5: for all deletion updates u = 〈-, h(~t)〉 in U do
6: Dh.insert(h(~t))
7: end for
8: for all predicates p do
9: P ν ← (P ] Ip) \Dp

10: end for
11: while U .size > 0 do
12: δ ← U .removeElement(K)
13: if δ is an insertion update 〈+, b(~t)〉
14: execute all insertions delta-rules for b:
15: 〈+, h〉 :- bν1 , . . . , b

ν
i−1,∆b, bi+1, . . . , bn

16: if δ is a deletion update 〈-, b(~t)〉
17: execute all deletion delta-rules for b:
18: 〈-, h〉 :- bν1 , . . . , b

ν
i−1,∆b, bi+1, . . . , bn

19: for all derived insertion (deletion) updates u do
20: Uν .insert(u)
21: end for
22: end while
23: U ← Uν .flush
24: for all predicates p do
25: P ← (P ] Ip) \Dp; Ip ← ∅;Dp ← ∅
26: end for
27: end while

4.2.1 A Synchronous SN Algorithm
Algorithm 2 is a synchronous SN algorithm. There, all the updates
in U (lines 2 – 10) are picked to fire delta-rules (lines 11–22)
creating new updates, which are inserted in U (line 23), and then
the changes are committed to the state (lines 24–26), where the
operation flush in line 23 denotes that all the elements from Uν are
moved to U .

The main difference between Algorithm 1 and Algorithm 2
is that in Algorithm 2, all nodes are synchronized at the end of
each iteration. In one iteration, all updates at the beginning of the
iteration are processed by the corresponding nodes and updates
created are sent accordingly. However, the updates that are created
are not processed until the beginning of the next iteration. Nodes
need to synchronize with one another so that no node is allowed to
start the execution of the next iteration if there are some nodes that
have not finished processing all the updates in its local queue in the
current iteration or have not received all the updates generated by
other nodes in the current iteration. On the other hand, Algorithm 1
allows each node to pick and process any one update available at
the time of the pick.

For instance, if we apply SN to the same example discussed in
Section 3.2, then all updates in U :

U = {〈+, link(d,f)〉, 〈+, link(a,f)〉, 〈-, link(a,b)〉}



are necessarily picked and are used to fire delta-rules creating the
following set of new updates:

{〈+, hop(a,g)〉, 〈+, hop(d,g)〉, 〈+, hop(a,f)〉,
〈-, hop(a,c)〉, 〈-, hop(a,h)〉}

At the end of the while-loop, the updates picked are committed
in the state. The facts link(d,f) and link(a,f) are inserted into
the state, while the fact link(a,b) is deleted from it. The iteration
repeats by using all the new updates created above.

Interestingly, the operational semantics for Algorithm 2 can
also be defined in terms of the three basic commands: pick, fire,
and commit. In particular an iteration of the outermost loop in
Algorithm 2 corresponds exactly to an SN-iteration. Differently
from PSN-iterations, where only a single update is picked at a time,
SN-iterations are complete-iterations that pick all updates.

DEFINITION 6 (SN-iteration). A complete-iteration is an SN-
iteration if the multiset of updates used by the pick commands
contains all updates in the initial configuration U .

DEFINITION 7 (SN execution). We call a computation run an SN
execution if it can be partitioned into a sequence of SN-iterations,
and in the last configuration U , P and E are empty.

4.2.2 Correctness Statement
In this section we prove that the Algorithm 2 is correct. For this we
need to introduce the following set of definitions.

We keep track of the multiplicity of facts by distinguishing be-
tween different occurrences of the same fact in the following form:
we label different occurrences of the same base fact with differ-
ent natural numbers and label each occurrence of the same derived
fact with the derivation supporting it. Consider, for example, the
program from Section 2.2:

{p :- s,t,r; s :- q; s :- u; t :- u; q :-; u :-}.

The state of the above program using multiset-semantics is actually
interpreted in our proofs as the set of annotated facts:

{sΞ1 , sΞ2 , tΞ3 , q1, u1}

. The two occurrences of s are distinguished by using the deriva-
tions trees Ξ1 and Ξ2. The former is a derivation tree with a single
leaf q1 and the latter is a derivation tree with a single leaf u1. We
elide these annotations whenever they are clear from the context.
These annotations are only used in our proofs as a formal artifact
to distinguish different occurrences of facts.

We use the following notation throughout the rest of this sec-
tion: given a multiset of updates U , we write U t to denote the mul-
tiset of facts in U . Given a program P , let V be the state of a pro-
gram P given the set of base facts E, and let V ν be the state of P
given the set of facts E]It\Dt, where I and D are, respectively, a
multiset of insertion and deletion updates of base facts. We assume
that Dt ⊆ E ] It.

We write ∆ to denote the multiset of insertion and deletion
updates of facts such that V ν is the same multiset resulting from
applying the insertions and deletions in ∆ to V . We write ∆[i]
to denote the multiset of insertion and deletion updates of facts in
∆ such that 〈U, p(~t)〉 ∈ ∆[i] if and only if p(~t) is supported by
a derivation of height i. In an execution of Algorithm 2, we use
U [i] to denote the multiset of updates at the beginning of the ith

iteration, and U [i, j] to denote the union of all multisets U [k] such
that i ≤ k ≤ j.

Continue our example, the state of this program is the multiset
of annotated facts V = {sΞ1 , sΞ2 , tΞ3 , q1, u1}. If we, for example,
delete the base fact u1, then the resulting state changes to V ν =

{sΞ1 , q1}, where the difference set is

∆ = {〈-, u1〉, 〈-, sΞ2〉, 〈-, tΞ3〉},
∆[0] = {〈-, u1〉}, and ∆[1] = {〈-, sΞ2〉, 〈-, tΞ3〉}.

Before proving the correctness of Algorithm 2, we formally
define correctness, which is similar to the definition of eventual
consistency used by Loo et al. [10] in defining the correctness of
declarative networking protocols.

DEFINITION 8 (Correctness). We say that an algorithm correctly
maintains the state if it takes as input, a program P , the state V
based on base facts E, a multiset of insertion updates I and a
multiset of deletion updates D, such that Dt ⊆ E ] It; and the
resulting state when the algorithm finishes is the same as V ν , which
is the state of P given the set of facts E ] It \Dt.

In particular, we can prove that Algorithm 2 is indeed correct
according to the definition above. It corresponds to maintenance
algorithms that use semi-naı̈ve strategies. The proofs which can
be found in [14] are quite interesting. It is non-trivial to find the
invariants needed for the proofs.

THEOREM 9 (Correctness of SN). Given a non-recursive DDlog
program P , a multiset of base facts, E, a multiset of updates
insertion updates I and deletion updates D to base facts, such that
Dt ⊆ E ] It, Algorithm 2 correctly maintains the state of the
program when it terminates.

4.3 Relating SN and PSN executions
Our final goal is to prove the correctness of PSN. With the correct-
ness result of Algorithm 2 in hand, now we are left to prove that
Algorithm 1 computes the same result as Algorithm 2. At a high-
level we would like to show that given any PSN execution, we can
transform it into an SN execution without changing the final re-
sult of the execution. This transformation requires two operations:
one is to permute two PSN-iterations so that a PSN execution can
be transformed into one where the updates are picked in the same
order as in an SN execution; the other is to merge several PSN-
iterations into one SN-iteration. We need to show that both of these
operations do not affect the final configuration of the execution.

Definitions. Let s sn−→ (U)s′ and s
psn−→ (U)s′ denote, respec-

tively, an execution from configuration s to s′ using an SN iteration
and a PSN iteration. We annotate the updates used in the iterations
in the parenthesis after the arrow. We write s a

=⇒ s′ to denote an
execution from s to s′ using multiple SN iterations, when a is sn;
or PSN iterations, when a is psn. Let s =⇒ s′ denote an execution
from s to s′ using multiple complete iterations. We write σ1  σ2

if the existence of execution σ1 implies the existence of execution
σ2. We write σ1 ! σ2 when σ1  σ2 and σ2  σ1.

An update u is classified as conflicting if it is supported by
a proof containing a base fact that was inserted (in It) and an-
other fact that was deleted (in Dt). We say u and ū are a pair
of complementary updates if u is an insertion (deletion) of pred-
icate p, and ū is a deletion (insertion) of p. Intuitively, conflicting
updates are temporary updates that appear in the execution of in-
cremental maintenance algorithms but that do not affect the final
configuration. The effect of a deletion update cancels the effect of
the corresponding insertion update. Lemma 13 formalizes this in-
tuition, and we will explain later in this section.

Permuting PSN-iterations. The following lemma states that per-
muting two PSN-iterations that are both insertion (deletion) up-
dates leaves the final configuration unchanged. So in our exam-
ple execution described in Section 3.2, it does not matter whether
the update 〈+, link(a,f)〉 is picked before or after the update
〈+, link(d,f)〉. The set of updates after these two updates are



picked is the same, namely the set of updates: {〈+, hop(a,g)〉,
〈+, hop(a,f)〉}.

LEMMA 10 (Permutation – same kind).
Given an initial configuration s,
s

psn−→ ({〈U, r1〉})s1
psn−→ ({〈U, r2〉})s′

!
s

psn−→ ({〈U, r2〉})s2
psn−→ ({〈U, r1〉})s′ ,where U ∈ {+, -}.

The proof, given in [14], proceeds by considering all possible
ways that an update can fire a rule and showing that the same set
of updates are created when we permute the order in which the
updates are picked.

However, permuting a PSN-iteration that picks a deletion update
over a PSN-iteration that picks an insertion update might generate
new updates. Consider a program consisting of the rule p :- r1, r2
and assume that r2 is in the state. Furthermore, assume the updates
{〈+, r1〉, 〈-, r2〉}. If the deletion update is picked before the inser-
tion update, no delta-rule is fired. However, if we pick the insertion
rule first, then the rule above is fired twice, one propagating an in-
sertion of p and the other propagating a deletion of p. However, the
new updates are necessarily conflicting updates. This is formalized
by the statement below. The side condition that r1 6= r2 captures
the semantics of the pick command in that deletion updates are only
picked if the facts to be deleted are already in the state.

LEMMA 11 (Permutation – different kind).
Given and initial configuration s
s

psn−→ (〈+, r1〉)s1
psn−→ (〈-, r2〉)〈K′,U ′ ]∆, ∅, ∅〉

!
s

psn−→ (〈-, r2〉)s2
psn−→ (〈+, r1〉)〈K′,U ′, ∅, ∅〉,

where r1 6= r2 and ∆ is a (possibly empty) multiset containing
pairs of complementary conflicting updates.

The proof is very similar to the proof of Lemma 10.

From PSN iterations to an SN iteration and back. The second
operation we need for transforming a PSN execution into an SN
execution is merging a PSN-iteration with a complete-iteration to
form a bigger complete-iteration.

Similarly to the case when permuting PSN-iterations of differ-
ent kinds, merging PSN iterations may change the set of conflict-
ing updates. For example, consider a program consisting of a sin-
gle rule p :- r,q, the initial state {q}, and the multiset of updates
{〈+, r〉, 〈-, q〉}. If both updates are picked in a complete-iteration,
then an insertion update, 〈+, p〉, is created by firing the delta-rule
〈+, p〉 :- ∆r,q using the insertion update 〈+, r〉. Similarly a dele-
tion update 〈-, p〉 is created by firing the delta-rule 〈-, p〉 :- rν,∆q

and the deletion update 〈-, q〉. However, if we break the complete-
iteration into two PSN-iterations, the first picking the deletion up-
date and the second picking the insertion update, then no delta-rule
is fired. We prove the following:

LEMMA 12 (Merging Iterations). Let U be a multiset of updates
such that the multiset {u} ] H ⊆ U and let s = 〈K,U , ∅, ∅〉 be an
initial configuration.

s =⇒ ({u} ] H)〈K′,U ′ ] F1, ∅, ∅〉
!

s =⇒ (H)〈K2,U ′]{u}]F ′
1, ∅, ∅〉

psn−→ (u)〈K′,U ′]F2, ∅, ∅〉
Where F1 and F2 only differ in pairs of complementary conflict-

ing updates.

Lemma 12 actually give us for free, the ability to break a
complete SN-iteration into several PSN-iterations.

For example, we can use the lemma above to transform the
SN-iteration shown in Section 4.2.1 where we pick all the updates
appearing in the set of initial updates:

{〈+, link(d,f)〉, 〈+, link(a,f)〉, 〈-, link(a,b)〉}

into a sequence of three PSN-iterations where these updates are
picked one by one in any order. In this particular case, there are no
conflicting updates created. The resulting sets of updates in both
executions are the same:

{〈+, hop(a,g)〉, 〈+, hop(d,g)〉,
〈+, hop(a,f)〉, 〈-, hop(a,c)〉, 〈-, hop(a,h)〉}.

Dealing with Conflicting Update Pairs. Next, we prove that con-
flicting updates do not interfere with the final configuration when
using PSN executions. Intuitively, we will rely on the following
observations: (1) All updates generated by firing delta-rules for
conflicting updates are also conflicting updates. (2) A pair of com-
plementary conflicting updates generate pairs of complement con-
flicting updates. For example, consider adding the rule v :- p to
the example given before Lemma 12. Then the conflicting update
〈+, p〉 would propagate the update 〈+, v〉. The latter update is also
conflicting because the fact p is supported by a fact q which is to
be deleted. Moreover, when the deletion of q “catches up,” then the
complementary update 〈-, v〉 is created and cancels the effect of
the conflicting update 〈+, v〉. Consequently, a PSN execution that
contains a pair of complementary conflicting updates in its initial
configuration can be transformed into another PSN execution that
does not contain these updates and that the final configurations of
the two executions are the same. The following lemma precisely
states that.

LEMMA 13. Let ∆ = {〈+, p〉, 〈-, p〉} be a multiset containing a
pair of complementary conflicting updates, then

〈K,U , ∅, ∅〉 psn
=⇒ s ! 〈K,U ]∆, ∅, ∅〉 psn

=⇒ s.

Its proof relies on the termination arguments for PSN algorithm
for non-recursive programs. For recursive programs, it is possible
that a pair of complementary conflicting updates will generate in-
finite number of complementary conflicting updates; and therefore
the transformation process may never terminate.

Correctness of Basic PSN. Finally, using the operations above
we can prove the following theorem, which establishes that PSN is
sound and complete with respect to SN.

THEOREM 14 (Correctness of PSN w.r.t. SN). Let s = 〈K,U , ∅, ∅〉
be an initial configuration. Then for non-recursive programs:

s
psn
=⇒ 〈K, ∅, ∅, ∅〉! s sn

=⇒ 〈K, ∅, ∅, ∅〉.

The above theorem states that the same derived facts that are
created by SN are also created by PSN and vice-versa. The proof
idea is that we can use the operations described in Lemmas 10, 11,
and 12 to transform a PSN execution into an SN one and vice-versa.
In particular, we use Lemmas 10 and 11 to permute PSN iterations
so that updates are picked in the same order as an SN execution.
Then we use Lemma 12 to merge PSN-iterations into SN-iterations.
The conflicting updates that are created in the process of using such
transformations are handled by Lemma 13. Hence, from Theorem
9, PSN is correct.

COROLLARY 15 (Correctness of basic PSN). Given a non-recursive
DDlog program P , a multiset of base facts, E, a multiset of updates
insertion updates I and deletion updates D to base facts, such that
Dt ⊆ E ] It, then Algorithm 1 correctly maintains the state of the
program.

Discussion The framework of using three basic commands: pick,
fire, and commit to describe PSN and SN algorithms can be
used for specifying and proving formal properties about other SN-
like algorithms. For instance, one can easily generalize the proof
above to prove the correctness of algorithms where nodes pick



• pick1
I(S, 〈+, (p(~t),S,H)〉) = 〈K ] {(pν(~t),S,H′)},U \ {〈+, (p(~t),S,H)〉},P ] {〈+, (p(~t),S,H′)〉}, E〉,

provided 〈+, (p(~t),S,H)〉 ∈ U and p(~t) ∈ S , whereH′ = H∪ {p(~t)}.
• pick2

I(S, 〈+, (p(~t),S,H)〉) = 〈K ] {(pν(~t),S,H)},U \ {〈+, (p(~t),S,H)〉},P ] {〈+, (p(~t),S,H)〉}, E〉,
provided 〈+, (p(~t),S,H)〉 ∈ U and p(~t) /∈ S.

• pick1
D(S, 〈-, (p(~t),S,H)〉) = 〈K \ {(pν(~t),S,H′)},U \ {〈-, (p(~t),S,H)〉},P ] {〈-, (p(~t),S,H′)〉}, E〉,

provided 〈-, (p(~t),S,H)〉 ∈ U and p(~t) ∈ S, whereH′ = H∪ {p(~t).
• pick2

D(S, 〈-, (p(~t),S,H)〉) = 〈K \ {(pν(~t),S,H)},U \ {〈-, (p(~t),S,H)〉},P ] {〈-, (p(~t),S,H)〉}, E〉,
provided 〈-, (p(~t),S,H)〉 ∈ U and p(~t) /∈ S.

• fire(S, u) = 〈K ] {(p(~t),S,H)},U ,P, E \ {〈+, (p(~t),S,H)〉}〉, provided u ∈ P , where F = firRules(u,K,R).

• commitI(S, 〈+, (p(~t),S,H)〉) = 〈K,U ] F ,P \ {u}, E ] {u}〉, provided 〈+, (p(~t),S,H)〉 ∈ E .

• commitD(S, 〈-, (p(~t),S,H)〉) = 〈K \ {(p(~t),S,H)},U ,P, E \ {〈-, (p(~t),S,H)〉}〉, provided 〈-, (p(~t),S,H)〉 ∈ E .

Figure 3. Definitions for the basic commands that detect cycles. Here S is the configuration 〈K,U ,P, E〉.

multiple updates per iteration instead of just one update, as in PSN-
iterations; or the complete multiset of updates available, as in SN-
iteration. That is, we can transform an execution with arbitrary
complete iterations into an SN execution and vice-versa. One first
breaks the complete-iterations into PSN-iterations, obtaining a PSN
execution. Then the proof follows in exactly the same way as
before. This means that when implementing such systems, a node
can pick all applicable updates that are in its buffer and process
them in one single iteration, instead of picking them one by one,
and the resulting algorithm is still correct.

5. Extended PSN Algorithm for Recursive
Programs

Algorithm 1 and 2 use multiset-semantics. As a consequence, ter-
mination is not guaranteed when they are used to maintain states of
recursive programs. Consider the following recursive program.

p(@1) :- a(@0) q(@2) :- p(@1) p(@1) :- q(@2)

Notice that p and q form a cycle in the dependency graph. Any
insertion of the fact p(@1) will trigger an insertion of q(@2) and
vice versa. Given an insertion of the fact a(@0), neither Algorithm 1
nor Algorithm 2 terminate because the propagation of insertion
updates of q(@2) and p(@1) do not terminate. Recursively defined
predicates could have infinite number of derivations because of
cycles in the dependency graph. In other words, in the multiset-
semantics, such facts have infinite count. Neither Algorithm 1 nor
Algorithm 2 have the ability to detect cycles.

One way to detect such cycles in a centralized setting is pro-
posed in [12]. The main idea is to remember for any fact p, the set
of facts, S , called derivation set, that contains all the facts that are
used to derive p. While maintaining the state, the algorithm checks
whether a newly derived fact p appears in the set of facts support-
ing it. If this is the case, then there is a cycle, and p has infinite
count. Whenever a fact with infinite count is detected, we store it
in a second set, H, called infinite count set. Future updates of p are
not propagated to avoid non-termination.2

The same idea is applicable to the distributed setting. We for-
malize this by attaching the derivation and infinite count sets, S
and H, to facts both in states and updates. An annotated fact is
of the form (p,S,H), where p is a fact, S is the derivation set of
p, containing all the facts used to derive p, and H is a subset of S
containing all the recursive facts that belong to a cycle in the deriva-
tion and therefore cause p to have an infinite count. In the example

2 Notice that the derivation set of a fact is not the same as the annotation
used before in our proofs to distinguish different occurrences of the same
fact. The former is part of the algorithm, while the latter is only used in our
proofs.

above, the state of facts without ν of the nodes would be:

{(a, ∅, ∅), (p, {a}, ∅), (q, {p,a}, ∅), (p,{a,p,q},{p}), . . .}

where we elide the (@X) symbols. The fact p in (p,{a,p,q},{p}),
also appears in the set supporting it. This means that p appears in a
cyclic derivation, and therefore p is in the set H.

In order to maintain correctly the state, we adapt the definition
of the basic commands accordingly. A summary of the rules are
shown in Figure 3. Each pick rule in Figure 2 is divided into
two rules. Once an update u = 〈U, (p,S,H)〉 is picked from
the multiset of updates by using either the transition rule pickI or
pickD , the algorithm first checks whether the fact is supported by
a derivation tree that has a cycle (if p ∈ S). If so, then p is added to
the set H; otherwise H remain unchanged. Notice that the updated
state of p in K uses the updated H set. The commit rule is the same
as before, except for the new presentation of facts.

The major changes in the operational semantics are in the fire
rule, where the derivation set and the infinite count set need to
be computed, when a delta-rule is fired and the propagation of
updates to facts with infinite count need to be avoided. Given
an update 〈U, (bi,Si,Hi)〉, in addition to computing all updates
that are propagated from this update, the algorithm also constructs
the corresponding derivation and infinite count sets, S and H
as follows. Assume that the update 〈U, p〉 is propagated using a
delta-rule with body bν1 , . . . , b

ν
i ,∆bi, bi+1, . . . , bn and the facts

(bj ,Sj ,Hj) where 1 ≤ j ≤ n, then the derivation set for p is
Sp = {b1, . . . , bn} ∪ S1 ∪ · · · ∪ Sn and the infinite count set
Hp = H1 ∪ · · · ∪ Hn. In order to avoid divergence, we also need
to make sure that an update of a fact with infinite count is not re-
send. To do so, the algorithm only adds the update 〈U, (p,Sp,Hp)〉
to the multiset of updates U , if it is not part of cycle that has been
already computed (p /∈ Hp).

Returning to the previous example, when the update inserting
the fact p(@1) arrives for the second time at node 1, this update
would contain the derivation set S = {a(@0),p(@1),q(@2)}. Since
the fact p(@1)∈ S, node 1 detects the cycle in the derivation and
adds the fact p(@1) to the infinite count set H. As q(@2) is not
in H, the insertion update of q(@2) is sent to node 2. However,
when this update is processed, creating a new insertion of p(@1),
this new insertion is not sent back to 1 because p(@1) is in the
infinite count set, which means that it is part of a cycle that has
already been computed. Therefore, computation terminates. In fact,
the derivation set and infinite count set guarantee termination of
PSN on any recursive DDlog program.

THEOREM 16 (Finiteness of PSN that detects cycles). Let S be
an initial configuration and R be a DDlog program. Then all PSN
executions using R and from S have finite length.
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Figure 4. Dependency graph of a propositional program.
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Figure 5. Sequence of updates created in an execution of PSN that
detect cycles when inserting the base fact s. Here P = {s, p, q, r}.

The proof of the theorem relies on the fact that while executing
PSN that detects cycles, the size of the derivation set, S and the
infinite set, H, of updates increase. Since there are finitely many
different facts in a program, there is an upper bound on the sizes
of these sets. Hence, there is a global bound on the number of
possible updates created in a run and therefore PSN that detects
cycles terminates.

COROLLARY 17. The PSN algorithm that detects cycles always
terminates.

Consider the following program with five clauses:
p :- s; q :- p; r :- q; p :- r; q :- r,

whose dependency graph is depicted in Figure 4 and contains mul-
tiple dependency cycles. Figure 5 contains the sequence of updates
created when executing PSN that detects cycles starting from an
update inserting the base fact s. The branches 1 and 2 are created
when 〈+, (r, {s, p, q}, ∅)〉 is used to fire delta-rules. At the end of
these two branches, no more updates are created. At the end of
branch 1, processing the update 〈+, (r,P, {p, q})〉 does not propa-
gate any updates, since it could only propagate an insertion of q and
of p. However, both q and p are in its infinite set, which means that
they have infinite count, and therefore such updates are not created.
Similarly, in the branch 2, processing the update 〈+, (p,P, {q, r})〉
does not propagate new updates, since q is in its infinite count
set. In the branches 1 and 2, the algorithm detects that all facts in
{p, q, r} have an infinite count. For instance, the first PSN-iteration
in branch 1, which processes the update 〈+, (p,P, ∅)〉, consists of
the basic commands pick1

I , fire, and commitI . In the pick1
I the

fact p is added to the infinite set, ∅, because p appears in the sup-
porting set, P . Hence, at the end of this iteration, by the commitI
command, the fact (p,P, {p}) is added to the state, which indicates
that p has infinite count since p is in the infinite count set of this fact.

As we discuss in the companion tech report [14], the use of the
annotated facts does not change the correspondence between PSN
executions and SN executions. Once we show that PSN that detects
cycles terminates, the same transformations used in Section 4 can
be used to show that a PSN execution can be transformed into an
SN execution and vice-versa, showing hence that PSN that detects
cycles is correct.

COROLLARY 18 (Correctness of PSN). Given any DDlog pro-
gram P , a multiset of base facts, E, a multiset of updates inser-
tion updates I and deletion updates D to base facts, such that
Dt ⊆ E ] It, then the PSN algorithm that detects cycles correctly
maintains the state of the program.

6. Comparison with Existing Incremental
Maintenance Algorithms

We compare our algorithm with existing incremental maintenance
algorithms. We discuss limitations of these existing approaches and
how our algorithms improve them.

Delete and Re-derive. Gupta et al. proposed an algorithm in their
seminal paper [7] on incrementally maintaining logic programs in a
centralized setting, called DRed (Delete and Re-derive). DRed [7]
maintains a state by using set-semantics. DRed does not keep track
of the number of supporting derivations for any fact. Whenever
a fact, p, is deleted, DRed eagerly deletes all the facts that are
supported by a derivation that contains p. Since some of the deleted
facts may be supported by alternative derivations that do not use p,
DRed re-derives them in order to maintain a correct state.

Re-deriving facts in a distributed setting is expensive due to
high communication overhead, as demonstrated in [9]. Consider,
for example, the topology depicted in Figure 1, taken from [7].
There are two ways to reach the node c from the node a, one
passing the node b and the other through the node d. There-
fore the fact reachable(@a,c) is supported by two derivations.
However, when using set-semantics, DRed only stores one copy
of reachable(@a,c) at the node a. Assume that at some point
the link from node a to the node b is broken, that is, the fact
link(@a,b) is deleted. Then in DRed’s deletion phase, the deletion
of this fact propagates the deletion of reachable(@a,b), which
similarly will propagate the deletion of reachable(@a,c) and
of reachable(@a,h). Then DRed’s re-derive phase starts, which
checks which facts that were deleted in the deletion phase can be re-
derived using an alternative derivation. In this case, all the deleted
facts (reachable(@a,b), reachable(@a,c), and reachable(@a,h))
are re-derivable using other derivations. All the reachable facts
derived using the path from a to b that passes through d have to be
sent cross the network. For example reachable(@d,c) is send to a

in order to re-derive the fact reachable(@a,c).
Our algorithm (Algorithm 1) uses multiset-semantics to keep

track of the number of supporting derivations of any fact. So, when-
ever a fact is deleted, such algorithm just needs to reduce its mul-
tiplicity by one, and whenever its multiplicity is zero, the fact is
deleted from the state. Algorithm 1 incurs less communication than
DRed. Our extended algorithm (Section 5) annotates each predicate
with the set of supporting facts. Compared with DRed, this algo-
rithm incurs higher communication overhead in a workload where
there are no deletions. In the presence of deletions, our algorithm
results in lower communication overhead, since the deletion of a
fact does not require the construction of alternative derivations.

Original PSN algorithm. The original PSN algorithm was pro-
posed by Loo et al.[10]. Our paper extends the original proposal in
several ways. First, Loo et al. consider only linear recursive termi-
nating Datalog programs. We consider the complete Datalog lan-
guage including non-linear recursive programs. Second, we relax
the assumptions in the original proposal: instead of assuming that
the transmission channels are FIFO, which is unrealistic in many
domains, we do not make any assumption about the order in which
updates are processed. In other words, we do not assume the ex-
istence of a coordinator in the system. An important improvement
is that the PSN algorithm proposed in this paper is proven to ter-
minate and maintain states correctly. As pointed out in our previ-
ous work [13], the PSN algorithm as presented in [10] may pro-
duce unsound results and the use of the count algorithm [7] leads
to non-termination. We elaborate further on the former problem of
the original PSN algorithm.

The original PSN performs the following operation: whenever
an update reaches a node, the update is not only stored at the end of
the node’s update queue, but also immediately used to update the



Node 1 : {}[ ] Burst {}[ ] {p}[〈+, p〉] Dequeue {p}[〈+, p〉] Dequeue {p}[ ]
Node 2 : {s, t}[ ] of {r, s, t}[〈+, r〉] Dequeue {r, s, t}[ ] 〈-, q〉 {r}[〈-, s〉, 〈-, t〉] all {r}[ ]
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Node 4 : {u}[ ] −→ {}[〈-, u〉] −→ {}[〈-, u〉] −→ {}[ ] −→∗ {}[ ]

Figure 6. PSN computation-run resulting in an incorrect final state. The ith row depicts the evolution of the state, in curly-brackets, and the update queue,
in brackets, of node i. The updates in the arrows are the ones dequeued by PSN and used to update the state of the nodes. We also elide the (@X) in facts.

node’s local state: the fact in the update is immediately inserted into
or deleted from the node’s state. This procedure, however, leads to
unsound results if channels are not FIFO. Consider the following
DDlog program, which is the same program as shown in Section
2.2, but now distributed over four nodes. The global state of this
program is {s(@2), t(@2), q(@3), u(@4)}:

node2: p(@1) :- s(@2), t(@2), r(@2).
node3: s(@2) :- q(@3).

q(@3) :-.
node4: t(@2) :- u(@4).

u(@4) :-

Consider the PSN computation-run depicted in Figure 6 (based
on the original algorithm). At the first transition, there is a burst of
updates inserting the base fact r and deleting the base facts q and u,
where we elide the (@X) symbols. When these updates are created,
they are not only stored in the nodes’ queues but also used to update
the state of the nodes (first transition in Figure 6). Then when the
update 〈+, r〉 is dequeued and processed, a new update inserting p is
created (second transition in Figure 6). When the updates 〈-, q〉 and
〈-, u〉 are processed, they create the updates 〈-, s〉 and 〈-, t〉 (third
transition in Figure 6). In the final transitions, none of the updates
deleting s or t trigger the deletion of p because t and u are no longer
in node 2’s state and the bodies of the respective deletion rules are
not satisfied. Hence, the predicate p is entailed after the original
PSN terminates although it is not supported by any derivation.

Our algorithms correct this error by delaying updates to the facts
until after updates are processed.

PSN with annotated facts. After the original PSN algorithm,
Liu et al. proposed in [9] a new PSN algorithm where facts are
annotated in order to handle the known problem that the original
PSN does not terminate. Differently from our approach, Liu et
al. only track the base facts used in the derivation, while our
derivation set contains all facts (including intermediate derived
facts) used for each derivation. Moreover, as with the original
PSN algorithm, Liu et al. also assume the existence of coordinator
in the system enforcing that all transmission channels are FIFO.
Under this assumption, Liu et al. show that their PSN algorithm
terminates.

However, by using only base facts, it is not possible, without
assuming that the transmission channels used are FIFO, to differ-
entiate an update that is the result of computing a cyclic derivation
from an update that arrived out-of-order. When messages are pro-
cessed out of order, the algorithm proposed in [9] yields unsound
results, illustrated below.

Consider the following program also used in Section 5 that
contains cycles and for which original PSN does not terminate:

a(@0) :-; p(@1) :- a(@0); q(@2) :- p(@1); p(@1) :- q(@2)

In [9], the state of this program is represented as the set {(a,{a}),
(p,{a}), (q,{a})} where we elide the (@X) symbols. All facts
are derived by only using the base fact a and therefore their anno-
tations consist only of the base fact a. An update inserting (p,{a})
could be derived due to a derivation with no cycles or due to a cyclic
derivation obtained by using the last two rules of the program.

In order to avoid divergence, the latter type of updates resulting
from cyclic derivations need to be discarded. Assume that there is a
deletion of a, represented by a deletion update 〈-, (a,{a})〉. When
this update is processed, node 1 creates 〈-, (p,{a})〉, which is pro-
cessed by node 2, creating the update 〈-, (q,{a})〉. Finally, node 2

processes the latter, creating again the deletion update 〈-, (p,{a})〉.
When this update is received by node 1, the fact (p,{a}) is not in
the state, as it was deleted by the first deletion update. Therefore,
node 1 can safely conclude, under the assumption of FIFO chan-
nels, that the latter update is due to a cyclic derivation. Hence it
just discards it and the algorithm terminates.

It is easy to show that discarding eagerly such deletion updates
yields unsound results when one relaxes the assumption of FIFO
channels. Consider the same program above, but two conflicting
updates: 〈-, (a,{a})〉 and 〈+, (a,{a})〉. If the deletion update is
processed first by node 0, it will be discarded since the fact (a,{a})
is not present in its state. The insertion update on the other hand
would be processed, generating eventually new insertion updates
for all the facts in the program. Hence, the final state obtained
by their algorithm is (a,{a}), (p,{a}), (q,{a}), whereas the
correct state is the empty set.

Our algorithm annotates each predicate with all the predicates
used to derive it, which include not only the base predicates, but
also intermediate predicates. We have shown in Section 5 that
we can detect cycles properly, even in the presence of message
re-ordering. Finally, Liu et al.’s algorithm is only experimentally
evaluated but not formally proven correct.

7. Additional Related Work
In contrast to our approach, MELD [5] simply attaches to each fact
the height of the supporting derivation. Although they are able to
perform many optimizations with such type of annotations, simply
attaching the height of derivations to facts is not enough to detect
cycles in derivations and therefore it is not enough to avoid diver-
gence by itself. They address this problem by synchronizing nodes
and not allowing nodes to compute until they receive the response
from other nodes that all the deletions propagated from a deletion of
a base fact have been processed. As expected, performance can be
greatly affected since an unbounded number of nodes might need
to be synchronized at the same time due to cascading derivations.
We believe that their work can directly leverage the results in this
paper.

In an attempt to generalize Loo et al.’s work [10], Dedalus [4]
relaxes the set of assumptions above by no longer assuming that
messages always reach their destination. The main difficulty when
considering message loss is that the semantics does not relate
well with the semantics in the Datalog literature. Depending on
whether a message is lost or not, the final states computed by their
evaluation algorithms can be considerably different. Therefore, it
is not clear what is the notion of correctness in such systems.
We believe that probabilistic models where messages are lost with
certain probability can be used, and we leave this for future work.

In the agent programming community, several languages that
allow for the update of knowledge bases have been proposed. For



instance, [3] proposes a logic programming language that allows
updates not only to base facts, but also to rules themselves. Differ-
ently from this paper, however, their work considers only a central-
ized setting. Moreover, a central difference from our work is that
while [3] is concerned in extending logic programming languages
so that programmers can specify updates, here we focus on algo-
rithms that efficiently maintain states of distributed Datalog pro-
grams. An interesting direction for future work would be extend
our results to also allow rule updates in a distributed setting.

Adjiman et al. in [2] use classical propositional logic to specify
knowledge bases of agents in a peer-to-peer setting. They prove
correct a distributed algorithm that computes the consequences of
inserting a literal, that is, an atom or its negation, to a node (or peer).
Since they use resolution in their algorithm, they are able to deduce
not only the atomic formulas that are derivable when an insertion is
made, but propositional formulas in general. While they are mainly
interested in finding the resulting state from inserting a formula,
we are interested in efficiently maintaining a state was previously
computed. It is not clear how their approach can be used to update
the consequences when a sequence of insertions and deletions are
made to the knowledge base.

8. Conclusions and Future Work
Besides the correctness of the algorithm itself, our ultimate goal
is to prove interesting properties about programs written in dis-
tributed Datalog. The correctness results in this paper allow us to
first formally verify high-level properties of programs prior to ac-
tual deployment by relying on the well established semantics for
centralized Datalog, then the verified properties carry over to the
distributed deployment, because semantics for Distributed Datalog
and centralized Datalog coincide.

In particular, we are interested in formal verification of imple-
mentations of networking protocols prior to actual deployment in
declarative network setting [19, 20]. In order to do so, we need to
extend this work to include additional language features present in
declarative networking including function symbols and aggregates.
Since Datalog programs with arbitrary functions symbols may not
terminate, we are investigating if we can extend existing analy-
sis techniques [8] developed for centralized Datalog with function
symbols to determine when DDlog programs with function sym-
bols terminate. It turns out that it is not an easy task to develop
efficient and correct algorithms that maintain logic programs in-
crementally in the presence of aggregate functions. We are looking
into adapting existing work, such as [17] in incremental view main-
tenance in a centralized setting to fit our needs.
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