
Partial specification of routing configurations

Alexander J. T. Gurney1 Limin Jia2 Anduo Wang1

Boon Thau Loo1
1University of Pennsylvania, Philadelphia, USA
2Carnegie-Mellon University, Pittsburgh, USA

24 June 2011

Abstract

The formal analysis of routing protocol configurations for safety prop-
erties is well established. Methods exist to identify potential protocol
oscillations by analysis of the network topology and route preference in-
formation. However, if not all of this information is available, then the
existing theory does not apply. We present an analysis of partial specifi-
cation of protocol instances and apply it to eBGP and iBGP examples,
so that potential oscillations can be detected from the incomplete data.
This technique is applicable to the incremental design of network configu-
rations, where some parts of the design have been specified but others are
not yet known. We also anticipate that automated tools could be used
to ‘fill in the blanks’ of a partial configuration in some optimal way. To
that end, we show how our analysis can be used to derive constraints on
an IGP weight matrix, characterizing the set of possible weights that do
not lead to BGP oscillation. We propose that these integer constraints
could be used as part of a link weight optimization engine, to achieve some
traffic engineering goal while not violating global stability.

1 Introduction

The Internet is a network of networks, operated by entities that are often in
commercial competition, but who still seek global connectivity. It is therefore
essential that the routing system allow these networks to enforce policy that
is at odds with what their neighbors might prefer. Unfortunately, this means
that there will be some combinations of policy that are wholly incompatible,
leading to protocol oscillation and other related problems. Various researchers
have identified safety conditions, by which policy is restricted in order to ensure
protocol convergence [1, 2, 3, 4]. But the formal treatment of these conditions
assumes a model where all route preferences are known, in order for the verifi-
cation to take place. In reality, many details about connectivity and policy will
be unavailable. There is therefore a need for a theory which is able to speak
about the correctness of configurations which are only partially known.

1

There are many aspects of a routing configuration which could be unspeci-
fied, including the protocol in use, the network topology, and the local configu-
rations of each router. This paper focuses on the third of these—we assume that
we are dealing with some network whose layout is known, and that the choice
of routing protocol has been made (it is the Border Gateway Protocol [5]), but
that protocol has not yet been fully configured. In particular, the route prefer-
ences may not be fully specified. We are interested in this scenario because it
describes the state that a network operator may see when adjusting (configur-
ing) parts of the router policy configuration, while other parts of the policy are
set and the network topology known.

Given the partial specification, we still want to be able to discuss the con-
vergence of the overall system, based on the information that we do know. In
this paper, we develop a formalism for modeling partial specifications based on
the well-studied stable paths problem (SPP) model of interdomain routing [6, 2].
Whereas the conventional SPP definition gives a degree of preference to all
routes, our partial stable paths problem definition allows some routes to have
unknown preference. We are able to show that for any such instance, there are
two possible outcomes. One is that the known preferences are already prob-
lematic, which means that no matter how the remaining route preferences are
resolved, there is a potential oscillation. The other is that there exists at least
one way to assign preferences to the remaining routes so that the resulting con-
figuration will be guaranteed to be stable. In other words, if there is no safe
way to resolve the unknown preferences, then that fact can be detected purely
by examining the known preferences.

One application for analyzing partial problems is the iterative design of net-
work configurations, proceeding from an incomplete view of how the network
should behave, and then specifying more and more details, until finally a com-
plete configuration is reached. The partial SPP definition allows us to reason
about a set of complete configurations—all those whose preferences are consis-
tent with those already given. Given a partial SPP, we can then determine the
entire set of completions of that SPP for which convergence is guaranteed. By
considering all the ways in which preferences could be assigned to the unranked
paths, we can determine a precise characterization of the conditions when ex-
tensions to the partial specification are ‘safe’. The network operator can use
this characterization to guide the incremental configuration.

This paper makes the following contributions.

• We propose a formal model (the partial stable paths problem) for partial
specifications, and show how to discover potential oscillations in a sound
manner.

• We identify a precise safety condition under which a partial specification
has a safe extension.

• We explain how to use our formalism to aid policy configuration.

Roadmap The rest of this paper is organized as follows. In Section 2, we
present the formal definition for partial SPP, and explain how to detect pos-

2

sible oscillations based on the partial specification. In Section 3, we use IGP
weight assignment in iBGP as an example to motivate using our model to aid
incremental policy configuration. We formally define the safety conditions of
a partial SPP in Section 4, and continue with our running example, deriving
integer constraints on the IGP weight values. Finally we discuss related work
(Section 5) and future work (Section 6).

2 A Formal Model of Partial Specifications

In this section, we formally model partially specified policies in terms of a partial
variant of the familiar stable paths problem. We also give a safety characteri-
zation, in terms of an auxiliary structure called the paths digraph.

2.1 The partial stable paths problem

Definition 1. A partial stable paths problem (PSPP) S is defined as a tuple
(G, d,

⋃
i∈N Pi,

⋃
i∈N{(Ri,≤i)}), where

• G = (N,E) is a graph, and N is the set of nodes and E is the set of
directed arcs on N .

• d is a fixed destination node in N .

• For each node i, Pi is the set of permitted paths from i to d.

• For each node i, Ri is a subset of i’s permitted paths Pi, and ≤i is a total
order on Ri.

A PSPP is well-formed if Pd consists only of the empty path, from d to
itself, and Rd = Pd. We only consider well-formed PSPPs. We say a PSPP is
full if each node’s total order is on the entire set of permitted paths (for all i,
Ri = Pi). A full PSPP is an ordinary stable paths problem.

We can define a partial order among partial SPPs, and a notion of maximal
element. For two PSPPs S and T , where

S = (G, d, {Pi}i, {(Ri,≤i)}i)
T = (G′, d′, {P ′

i}i, {(R′
i,≤′

i)}i)

we say T extends S (written S ≤ T) if G = G′, d = d′, and:

• For all i in N , Pi = P ′
i .

• For all i in N , R′
i ⊇ Ri; and if p ≤i q for some p and q in Ri, then p ≤′

i q
as well.

T is called a completion of S, if S ≤ T and T is a total order. Such elements are
maximal according to the partial order (there is no element strictly exceeding
T).

We write ↑(S) to denote the set of all extensions of S, formally: ↑(S) =
{T | S ≤ T}. These are exactly the PSPPs which can be obtained from S by
giving preferences to the paths which, in S, did not have specific preferences.

3

p (uv)p Transmission arc

q q′ Preference arc

r (ij)s Dispute arc

Figure 1: The three kinds of arc that might be present in a digraph.

2.2 Oscillation detection of partial specifications

Given a PSPP, one important question that we would like to answer is if the
configuration is safe, as with the SPP theory. For a partial configuration to be
safe, we mean that it is possible to complete it to a full configuration that has
a unique solution (and therefore does not oscillate). If this is not possible then
the partial configuration is already unsafe.

Previous work on routing stability in terms of stable paths problems has
been founded on a dispute digraph structure [6]. Each SPP instance defines a
dispute digraph instance. If the SPP instance represents a routing configuration
which does not converge, then the accompanying dispute digraph must contain
a cycle; so acyclicity of the digraph is a sufficient condition for convergence.

Unfortunately, the dispute digraph definition is not ideal for our purpose
of investigating partial specification, especially the safe completions of partial
specification. Given PSPP instances S and T , with S ≤ T , it is not obvious how
their dispute digraphs should be related, and so it is difficult to make inferences
about the stability of T from the data given in S.

We use a related definition, the paths digraph, based on earlier work by
Sobrinho [3]. The paths digraph structure does have a clear relationship to the
partial order on PSPP instances, and so we are able to use it in examining
partial specification.

Definition 2. Given a PSPP S, the paths digraph is defined as follows. The
nodes of the digraph are the permitted paths in S (elements in Pi). There are
two kinds of directed arc:

1. An arc from p to q is a transmission arc, if p is the immediate prefix of q
(i.e. q = (ij)p for some nodes i and j).

2. An arc from p to q is a preference arc, if p and q are paths from the same
source, and p is preferred to q.

We illustrate these arcs in Figure 1. (The ‘dispute arc’ is defined and used
in the appendix.)

We say that S is acyclic if its paths digraph is acyclic. Note that the paths
digraph is defined for an SPP, which is a full PSPP. The following theorem
shows that acyclicity of the paths digraph is equivalent to acyclicity of the
dispute digraph. (The proofs of this and of Theorem 2 are in the appendix.)

4

A B

C d

E F

Node Preferences
A ABd ≺ Ad
B BCEd ≺ Bd
C {CAd,CEd} unranked
d d
E EFd ≺ Ed
F FCAd ≺ Fd

Figure 2: A PSPP that does not have a completion.

Theorem 1. The dispute digraph of a PSPP S contains a cycle if and only if
its paths digraph contains a cycle.

Theorem 1 allows us to use the paths digraph to analyze safety. When we
assign preferences to previously unranked paths, the corresponding operation
on the paths digraph is simply to add new preference arcs. This means that
we can detect cycles in the paths digraph before completing the configuration.
The following theorem formalizes this idea, and characterises the instances for
which we are able to ‘fill in the blanks’, and provide a complete, safe routing
solution for the given partial configuration.

Theorem 2. Let S be a PSPP. Then S has an acyclic completion if and only
if S is acyclic.

To give an example that has no safe completion, consider the PSPP in Fig-
ure 2. Its paths digraph is shown in Figure 3: it already contains a cycle, which
does not go away when new preference arcs are added, and so this PSPP has
no acyclic completion.

No matter which preferences are chosen at node C, an oscillatory configura-
tion called a dispute wheel [2] is created. If CAd is preferred to CEd (written
‘CAd ≺ CEd’) then nodes A, B and C are in a dispute wheel: node A has ABd
≺ Ad, B has BCEd ≺ Bd, and C has CAd ≺ CEd. But if we instead choose
CEd ≺ CAd, there is a dispute wheel among C, E and F, since CEd ≺ CAd,
EFd ≺ Ed and FCAd ≺ Fd. These options correspond, in the paths digraph,
to adding a new preference arc between CAd and CEd. This can be done in
either direction, but there is still a cycle.

Since the absence of cycles from the dispute digraph of an SPP is sufficient
for convergence [6], we obtain the following theorem.

5

Fd FCAd CAd Ad

EFd d ABd

Ed CEd BCEd Bd

Figure 3: Paths digraph for the PSPP of Figure 2.

Theorem 3. If a PSPP is acyclic then it has some completion which converges.

Proof. From Theorem 2, a PSPP which has an acyclic paths digraph must have
some completion whose paths digraph is also acyclic; by Theorem 1, its dispute
digraph is acyclic, and so convergence is guaranteed.

3 Guiding Incremental Configuration

The ability to assess the stability of partially specified instances means that
stability problems can be detected before the entire network configuration has
been given. Our ultimate goal is to aid the process of finding a safe configuration
that is a completion of some given partial configuration. The completion process
could be incremental, where new preferences are incorporated one at a time,
and in such a way as to avoid creating cycles in the paths digraph. Instead
of constructing a paths digraph and searching for cycles at each step, we can
extract a condition to characterize all the ways that a given PSPP instance
could be completed (so that all preferences are specified) without inducing a
cycle—that is, given S, the subset of ↑(S) containing only acyclic instances.

The advantages of obtaining such a condition include not only that it can
be automatically checked, but also that it has the potential to be used by a
partially or fully automated process to guide the configuration of the rest of the
system.

In this section, we given an example of applying the partial SPP model to
extract a safety condition; this is generalized in Section 4.

3.1 Stability of iBGP

Even within an autonomous system (AS), internal BGP (iBGP) presents stabil-
ity concerns. In particular, interaction with the multi-exit discriminator (MED)
attribute is known to be potentially problematic [7, 8, 9]. MED allows a neigh-
boring AS to exercise control over egress point selection, overriding the normal
decision procedure based on IGP distance (‘hot-potato’ routing). For particular
choices of MED values and IGP weights, oscillations may occur.

In Figure 4, some combinations of IGP weight values will lead to oscillation
and others will not. For example, if the weights are wRS = 1, wAR = 5,

6

R S

A B C

X Y

d

wRS

wAR wBR wCS

MED: 10 MED: 1 MED: 0

Figure 4: Fill in the blanks: what choices of wAR, wBR, wRS and wCS ensure
stability?

wBR = 4, and wCS = 12 then an oscillation will occur [7]. But this would not
be the case if, say, wRS were raised to 20.

3.2 Modeling IGP weight assignment as a PSPP

Given the problemetic interactions between MED and IGP weights, it is de-
sirable to have a process that derives IGP weights that are guaranteed not to
cause such problems.

This situation is a good fit for our partial specification analysis. We will treat
the IGP-induced preferences as unknown, with all other preferences (including
those determined on the basis of MED) as known. Then, we can consider all of
the ways in which the unknown preferences can be resolved, without creating a
cycle in the paths digraph. Finally, each of these route preferences corresponds
to an inequality on IGP weight values: so in the end, we will have a condition
composed of linear inequalities (for which see Section 4.2).

In this example, we assume that the IGP weights in the network shown in
Figure 4 are unknown. The paths digraph for this partially specified instance
is shown in Figure 5. We have drawn additional unoriented preference arcs,
between pairs of paths whose preferences are determined by IGP weight. In a
completion, there will be some preference expressed, but the directions are not
yet known.

The number of combinations to check may be reduced, since not all prefer-
ences will be capable of being induced by the same IGP weight settings. In this
example, we can use the monotonic rule of integer arithmetic (a < b if and only

7

d

Xd Yd

AXd BYd CYd

RAXd SCYd

SRAXd RSCYd

RBYd

SRBYd

Figure 5: Paths digraph for the example of Figure 4. Dashed lines without
arrowheads indicate preference arcs whose direction is yet to be determined.

if c+ a < c+ b) to observe that the preference between RAXd and RBYd must
be the same as between SRAXd and SRBYd.

We obtain these three independent choices:

• RAXd versus RBYd,

• RAXd versus RSCYd,

• SRAXd versus SCYd.

There are therefore no more than eight ways of resolving the preferences in this
example. By inspection, there are three of these cases where a cycle occurs.

• SRAXd ≺ SCYd, and RSCYd ≺ RAXd

• RBYd ≺ RAXd, and SRAXd ≺ SCYd

• RBYd ≺ RAXd, and RAXd ≺ RSCYd.

To ensure safety, an IGP weight assignment of the network in Figure 4 needs to
avoid making any of these preference combinations hold. In other words, such
assignment will guarantee the path diagraph to be acyclic, and by Theorem 3,
the resulting routing policy converges.

4 Capturing All Safe Completions

The procedure above can be generalized to derive a cycle formula for any PSPP.
This will capture the combinations of preference that induce cycles in the paths
digraph. Its negation therefore captures the safe choices of preference.

8

In the case of the MED-IGP example, the unknown preferences relate to
different choices of IGP weight values, which are integers. We can then translate
the cycle formula into a formula on linear integer inequalities. This will describe
the set of IGP weight matrices which can be considered safe.

4.1 The cycle formula

Definition 3. A partially directed acyclic graph (PDAG) is given by G =
(N,Ed, Eu), consisting of a set of nodes N , a set of directed arcs Ed, and a
set of undirected arcs Eu, such that the graph (N,Ed) is acyclic [10].

The paths digraph of an acyclic PSPP defines a PDAG, where the undi-
rected arcs are between any pair of nodes (from the same source to the same
destination) whose relative preference is unspecified. These will be preference
arcs in the completion, pointing one way or another, but for now we only know
that there is some preference to be defined between those paths. The check for
which completions are acyclic amounts to considering all possible orientations
of these arcs, and finding which combinations induce cycles in the digraph.

We can trace paths and cycles in a PDAG, following both directed and
undirected arcs.

Definition 4. For a path π in a PDAG, define its enabling formula to be the
conjunction

E(π) =
∧
{(p ≺ q) | (p, q) is an unoriented arc in π}.

The enabling formula is intended to capture the preference decisions that
need to be made, in completing a PSPP, for the given path to exist in the paths
digraph. Note that E(π) is always of finite length, since there are only finitely
many unoriented arcs that π can traverse.

The formula includes the symbol ‘≺’ for strict preference. Logically, we will
manipulate formulae under the assumption that ≺ is the strict part of a preorder
relation; in particular, it is irreflexive and transitive. For example, for all p and
q, the conjunction (p ≺ q) ∧ (q ≺ p) is equivalent to falsity.

We can now consider which combinations of preference lead to a cycle in the
paths digraph.

Definition 5. For a PDAG G, define the cycle formula to be the disjunction

C(G) =
∨
{E(π) | π is a cycle in G}.

Again, this C(G) is always of finite length. It tells us which combinations
of preference induce cycles in the paths digraph. Its negation ¬C(G) does the
opposite, characterizing the preference decisions that are guaranteed to be safe,
formally:

Theorem 4. Given a PSPP, S, let L be the negation of the cycle formula on
its paths digraph. If L is satisfiable, then there is at least one T , with S ≤ T ,
such that T satisfies L, and T converges.

9

Proof. If L is satisfiable, then there is at least one way of assigning preferences
to the unranked paths in S, so that no cycle is created in the paths digraph.
Let T be one such resulting PSPP. Then S ≤ T , and T satisfies L, and T has
no cycle in its paths digraph, so T must converge.

Given a PSPP S, a cycle formula can be automatically constructed using a
brute-force algorithm that enumerates all possible combinations of assignments
of unknown preferences. The performance of this procedure is not critical for
analysis, since the formula is pre-computed. We leave optimization of such a
process for future work.

4.2 Transfer to the integer domain

The derivation above gives us a condition in terms of path preferences. For
the networking application, we need to translate these preferences back into
the language of BGP. We will obtain a version of the cycle formula that makes
reference to the attributes of BGP routes, as opposed to abstract relations like
‘p ≺ q’. In doing this, we can find that some combinations of preferences that
were apparently feasible according to the cycle formula, are in fact unobtainable.
This can happen if there is no way of configuring the BGP routing policy so
that those preferences are the result. Such manipulations could be automated
with the aid of an SMT solver capable of handling linear arithmetic, such as
Yices [11].

In Figure 5, the unknown path preferences are induced by the IGP weights.
Consequently, every preference clause ‘p ≺ q’ can be translated into an inequal-
ity between the weights of paths p and q, (If other attribute values were un-
known, this complete rewriting would not necessarily be possible.) A straightfor-
ward translation is for the preference ‘RAXd ≺ RSCYd’. To make this happen,
the weight wAR must be strictly less than the sum of weights wRS +wCS . So we
can translate this preference into the integer inequality wAR −wRS −wCS < 0.
Each of the other path preferences can be handled in the same way, so the final
formula contains only conjunctions and disjunctions of integer inequalities.

Based on the attributes which follow IGP distance in the BGP decision
chain, we can determine whether each inequality should be strict. This yields
a more precise characterization of the solution space. For example, when route
reflectors are in use, the next attribute after IGP distance is the route reflector
originator identifier [12]. If we want path p to be better than path q, and the
originator for p has a lower identifier than that for q, then we know that the sum
of IGP weights for p must be less than or equal to the sum for q. If the weights
were equal, then the next tiebreaker would give us the desired preference in any
case. But if the originator identifiers were ordered in the opposite sense, then
the required IGP distance inequality would be a strict one.

An example of integer-based simplification is as follows. It appears that one
possibility for assigning preferences is to have RSCYd better than RAXd, and
at the same time SRAXd better than SCYd. But this cannot happen, since the

10

inequalities wRS+wCS < wAR and wRS+wAR < wCS cannot be simultaneously
satisfied for natural number weight values.

We finally obtain

(wRS + wCS < wAR)

∨ ((wAR < wRS + wCS) ∧ (wAR < wBR))

as the negated formula. This identifies just two ways of avoiding a cycle in the
paths digraph.

The mitigation advice in RFC 3345 is to make the link weight wRS large [7],
so that each reflector will select a best path from its local cluster, rather than
needing to go via another reflector. This formula tells us how large that weight
has to be compared to the other link weights, and also what other ways there
are to avoid oscillation. For example, if wRS were as small as 1, we would still
converge if we set wCS to 1 and wAR to 3. If this could not be done due to wAR

also having to be small, then we could ensure convergence by increasing wBR.
Each option has different implications for egress point selection and internal
traffic flow, which can be predicted from the routing data.

The consideration of every safe completion has therefore not only revealed
additional possibilities for how to make a partial configuration safe: it has also
established precise numeric bounds on the integer parameters involved.

5 Related Work

Routing algebra The main alternative formalism to the SPP model is routing
algebra [13, 4, 14]. There are various different structures used in this theory,
but they share the general idea that route preferences can be considered in-
dependently from the network topology. This is, in a sense, a form of partial
specification: once we have decided on the route signatures and on their relative
preferences, and verified certain correctness properties, protocol convergence is
guaranteed regardless of the layout of the network. Could our notion of partial
specification of preference also be treated in an ‘algebraic’ way? Some steps in
this direction have already been taken, since we have convergence results which
apply even when some pairs of routes are incomparable [14], and a notion of
refinement whereby those incomparabilities are resolved in one way or another,
becoming strict preferences [15].

Indeed, this approach is very close to the ‘partial SPPs’ we treat in this
paper; there are, however, some obstacles to using the algebraic definitions for
the partial specification problem. The principal one is that in the algebraic
theory, certain properties must hold of path preferences as a matter of defini-
tion: for example, the order must be transitive. Therefore, we are forbidden to
even speak about certain situations where cyclic preferences occur—they simply
cannot be formulated in terms of routing algebra. But we want to be able to
say that certain rankings induce cyclic preferences, whereas others do not, and
to capture exactly which preferences are involved in either case. We cannot do
this, or at least not as straightforwardly, in the algebraic world.

11

For algebras satisfying the strict inflationary property, the set of all paths
in the labelled graph can be put in preference order, where a path is always
preferred over any extension of that path; and convergence is guaranteed in this
case [14]. This viewpoint is compatible with the paths digraph structure, which
has transmission arcs (for path extension) and preference arcs, but is required
to be acyclic overall.
MED oscillation There is substantial literature on the ‘MED problem’ in BGP,
extending from practical advice [7], to theoretical approaches [8], to proposed
protocol changes [9]. Our partial specification analysis is aimed at understand-
ing the shape of the parameter space for avoiding MED-induced oscillation, and
assumes the traditional BGP mechanism. Knowing this, more precise advice
can be given about which combinations of attribute values are desirable. So
far, our approach has not been extended to multipath models, for which the
oscillation problem may be alleviated [9].

6 Future Work

We would like to provide an automated tool that could derive the cycle formula
from a given partial BGP configuration (or partial SPP instance). Derivation
of this formula is likely to be computationally difficult, though hopefully not
intractable in practice. As presented, we are dealing with a data structure
whose components are all simple paths in a graph, and considering all possible
ways of orienting the undirected arcs in a partially directed graph. This can be
mitigated in the case of the IGP weight example, by making use of facts about
integer arithmetic.

The next part of the story is to put the formula to good use. We antic-
ipate that our analysis will be a good fit for traffic engineering methods: we
provide safety constraints in terms of the integer parameter values, and then
some automated process will tune those weight values to achieve some optimal
outcome, subject to the constraints. This would mean integrating our gener-
ated safety constraint into an existing traffic engineering tool. We could then
assess the quality of configurations that were output, as well as the method’s
performance, for various different scenarios.

Traffic engineering methods can be divided into two categories: there are
heuristic techniques, making use of local search, genetic algorithms, and the
like; and there are exact techniques, drawn from linear programming and related
work in mathematical optimization [16]. The output of our analysis could be
used in each of these settings. Firstly, the predicate that we derive can be
used to screen candidate configurations in a local search process, such as tabu
search [17]. In this way, the search can be restricted to only considering weight
assignments that ensure stability. Secondly, the fact that the components of our
predicate are linear inequalities suggests that there should be a more intelligent
way to combine it with linear programming methods, though the presence of
disjunctions is a complication.

12

Existing techniques for assigning link weights do so from the perspective of
optimization, ignoring the fact that these weights are also used in BGP egress
point selection. There are some approaches that attempt to capture BGP hot
potato logic, by simulating the BGP decision process [18, 19, 20]. This does
not directly address the stability issue: it is more concerned with the effect of
BGP on the traffic matrix. Additionally, the use of a simulator is somewhat
unwieldy, compared to a pure numeric method.

There may be other occasions where the partial specification theory is well
matched with an automated configuration process. The theory could also be
extended to handle scenarios where other kinds of partial information are in-
volved, such as when the permitted paths are unknown, or when some detail of
the protocol rules must be inferred.

Acknowledgement

We are grateful to Jennifer Rexford for discussions on the topic and potential
applications of this paper. This research was supported by NSF grants CCF-
0820208, CNS-0845552, CNS-1040672, and CNS-1115706; and AFOSR grant
no. FA9550-08-1-0352.

References

[1] L. Gao and J. Rexford, “Stable internet routing without global coordina-
tion,” IEEE/ACM Transactions on Networking, pp. 681–692, 2001.

[2] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths prob-
lem and interdomain routing,” IEEE/ACM Transactions on Networking,
vol. 10, no. 2, pp. 232–243, 2002.

[3] J. Sobrinho, “Network routing with path vector protocols: Theory and
applications,” in Proc. ACM SIGCOMM, 2003, pp. 49–60.

[4] T. G. Griffin and J. Sobrinho, “Metarouting,” in Proc. ACM SIGCOMM,
2005, pp. 1–12.

[5] Y. Rekhter, T. Li, and S. Hares, “RFC 4271: A Border Gateway Protocol
4 (BGP-4),” 2006.

[6] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “Policy disputes in path-
vector protocols,” in Proc. IEEE ICNP, 1999.

[7] D. McPherson, V. Gill, D. Walton, and A. Retana, “RFC 3345: Border
Gateway Protocol (BGP) persistent route oscillation condition,” 2002.

[8] T. G. Griffin and G. Wilfong, “An analysis of the MED oscillation problem
in BGP,” in Proc. IEEE ICNP, 2002.

13

[9] A. Flavel and M. Roughan, “Stable and flexible iBGP,” in Proc. ACM
SIGCOMM, 2009.

[10] D. Dor and M. Tarsi, “A simple algorithm to construct a consistent exten-
sion of a partially oriented graph,” Computer Science Department, Univer-
sity of California, Los Angeles, Tech. Rep. R-185, 1992.

[11] B. Duterte and L. de Moura, “A fast linear-arithmetic solver for DPLL(T),”
in Proc. CAV, 2006, pp. 81–94.

[12] T. Bates, E. Chen, and R. Chandra, “RFC 4456: BGP route reflection: an
alternative to full mesh internal BGP (IBGP),” 2006.

[13] J. Sobrinho, “An algebraic theory of dynamic network routing,”
IEEE/ACM Transactions on Networking, vol. 13, no. 5, pp. 1160–1173,
2005.

[14] A. J. T. Gurney, “Construction and verification of routing algebras,” Ph.D.
dissertation, University of Cambridge, 2009.

[15] A. J. T. Gurney and T. G. Griffin, “Neighbor-specific BGP: an algebraic
exploration,” in Proc. IEEE ICNP, 2010.

[16] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of rout-
ing optimization for Internet traffic engineering,” IEEE Communications
Surveys, vol. 10, no. 1, pp. 36–56, 2008.

[17] B. Fortz and M. Thorup, “Increasing Internet capacity using local search,”
Combinatorial Optimization and Applications, vol. 29, no. 1, pp. 13–48,
2004.

[18] B. Quoitin and S. Uhlig, “Modeling the routing of an autonomous system
with C-BGP,” IEEE Network, vol. 19, no. 6, pp. 12–19, 2005.

[19] S. Cerav-Erbas, O. Delcourt, B. Fortz, and B. Quoitin, “The interaction
of IGP weight optimization with BGP,” in Proc. International Conference
on Surveillance and Protection, 2006.

[20] S. Balon and G. Leduc, “BGP-aware IGP link weight optimization in the
presence of route reflectors,” in Proc. IEEE INFOCOM, 2009, pp. 316–324.

A The Paths Digraph and the Dispute Digraph

We previously defined the paths digraph and asserted that it was equivalent to
the traditional dispute digraph, in the sense that one is acyclic if and only if the
other was acyclic. We will now prove this assertion.

Compared to the paths digraph, the dispute digraph of an SPP lacks prefer-
ence arcs, but instead has dispute arcs as well as transmission arcs. See Figure 1
for our notation for these three kinds of arc. A dispute arc exists from a path q

14

q

p′ (uv)p′

(uv)q forbidden q

p′ (uv)p′

(uv)q

Figure 6: Dispute arcs and their context.

to a path p, where p = (uv)p′, if p′ and q are paths from j with q preferred to
p′, and either (uv)q is not a permitted path, or it is permitted and worse than
p. The intention is that this arc encodes the dispute between nodes u and v:
node v likes path q, but node u would prefer v to make a different choice.

In the following, we will assume that all three kinds of arc exist in the same
digraph. So what we have to prove is that if there is a cycle containing only
transmission and dispute arcs, then there is a cycle containing only transmission
and preference arcs, and vice versa.

First note that by the definition, there are only two possible configurations
in which dispute arcs may occur. These are shown in Figure 6. In particular,
if q is preferred to p′, and (uv)q and (uv)p′ are both permitted paths, then the
only way for there not to be a dispute arc from q to (uv)p′ is if (uv)q is preferred
to (uv)p′.

Definition 6. A TP-cycle is a cycle in the digraph consisting only of transmis-
sion and preference arcs.

Definition 7. A TD-cycle is a cycle in the digraph consisting only of transmis-
sion and dispute arcs.

Lemma 1. A digraph which contains a TD-cycle also contains a TP-cycle.

Proof. Let C be a cycle in the given digraph which contains a dispute arc. We
show that for any dispute arc in C, we can find a cycle C ′ which does not contain
that arc, replacing it with a transmission and a preference arc. In this way, all
dispute arcs can be successively removed, leaving a TP-cycle.

Suppose the chosen dispute arc goes from q to p. Then there must be a path
p′, with q preferred to p′, and p = (ij)p′. By definition, there is a preference arc
from q to p′, and a transmission arc from p′ to p. Therefore, the cycle C ′ goes
from q, to p′, to p, and then back around C to q.

For a preference arc from p, define its negated rank to be (n+ 1)−|p|, where
n is the number of nodes in the network and |p| is the length of p.

Lemma 2. A digraph which contains a cycle also contains a TD-cycle.

Proof. The proof is by induction on the sum s of the negated ranks of all pref-
erence arcs in a cycle. We show that for all s, if there is a cycle whose sum of
negated ranks is s, then there is a TD-cycle.

15

For the base case, if s is zero, then there are no preference arcs in the cycle:
we are done.

For the inductive case, let s = m+ 1, assuming that the conclusion holds for
all s ≤ m. Choose a preference arc from p to q on the cycle, and consider the
next arc, from q to r. There are three cases.

1. Preference arc. By transitivity of preference, there is a preference arc
from p to r. We have found a new cycle, and the sum of negated ranks
is strictly smaller, since the arc from p to r has the same negated rank as
the arc from p to q, and the arc from q to r is now omitted.

2. Transmission arc. It may be that there is a dispute arc from p to r. If
so, then we have found the required cycle, in which this new dispute arc
replaces the two previous arcs. A dispute arc is not present only when
there is another path (ij)p, with a transmission arc from p to (ij)p, and a
preference arc from (ij)p to r. The negated rank of (ij)p is strictly smaller
than that for p: in this case also, we have found the required cycle.

3. Dispute arc. Whenever there is a dispute arc from q to r, there is some
path s such that there is a preference arc from q to s, and a transmission
arc from s to r. By transitivity of preference, there is also a preference
arc from q to s. We continue as in case (2).

In each case, we are able to deduce the existence of a cycle in which the sum of
negated ranks is less than or equal to m.

By induction, in any digraph with a cycle, there is a cycle in which the sum
of negated ranks is zero, and which is therefore a TD-cycle.

Theorem 1. The dispute digraph of a PSPP S contains a cycle if and only if
its paths digraph contains a cycle.

Proof. Immediate from Lemmas 1 and 2.

Theorem 2. Let S be a PSPP. Then S has an acyclic completion if and only
if S is acyclic.

Proof. Suppose that S has a completion T , and that the paths digraph of T is
acyclic. The paths digraph for S is a subgraph of the paths digraph for T : the
only difference is that T will contain some additional preference arcs. Therefore,
the paths digraph for S is acyclic.

For the reverse direction, suppose that S has an acyclic paths digraph.
Therefore, it can be topologically sorted. Let τ(p) denote the index at which
path p appears in the sorted order, with τ(d) being zero. We produce a full
SPP by assigning preferences to the paths in S that were permitted, but not
yet included in the ranking. For any two such paths p and q, we choose p to be
preferred over q if τ(p) < τ(q). This corresponds to adding a preference arc to
the paths digraph from p to q. When all such preferences have been resolved,
we have a paths digraph that is still acyclic.

16

	1 Introduction
	2 A Formal Model of Partial Specifications
	2.1 The partial stable paths problem
	2.2 Oscillation detection of partial specifications

	3 Guiding Incremental Configuration
	3.1 Stability of iBGP
	3.2 Modeling IGP weight assignment as a PSPP

	4 Capturing All Safe Completions
	4.1 The cycle formula
	4.2 Transfer to the integer domain

	5 Related Work
	6 Future Work
	A The Paths Digraph and the Dispute Digraph

