
Provenance-aware Secure Networks
Wenchao Zhou Eric Cronin Boon Thau Loo

University of Pennsylvania

Abstract
Network accountability and forensic analysis have be-
come increasingly important, as a means of performing
network diagnostics, identifying malicious nodes, en-
forcing trust management policies, and imposing diverse
billing over the Internet. This has led to a series of work
to provide better network support for accountability, and
efficient mechanisms to trace packets and information
flows through the Internet. In this paper, we make the
following contributions. First, we show that network ac-
countability and forensic analysis can be posed gener-
ally as data provenance computations and queries over
distributed streams. In particular, one can utilize declar-
ative networks with appropriate security and provenance
extensions to provide a unified declarative framework
for specifying, analyzing and auditing networks. Sec-
ond, we propose a taxonomy of data provenance along
multiple axes, and show that they map naturally to differ-
ent use cases in networks. Third, we suggest techniques
to efficiently compute and store network provenance,
and provide an initial performance evaluation on the
P2 declarative networking system with modifications to
support authenticated communication and provenance.

1 Introduction
The Internet was not designed with accountability as
its primary goal. However, network accountability and
forensic analysis have become increasingly important in
recent years, as a means of performing network diagnos-
tics, identifying malicious and misbehaving users, en-
forcing trust management policies, and imposing diverse
billing over the Internet. This has led to a series of pro-
posals (e.g. [22, 3, 23, 13, 26, 4, 11, 14]) on improving
network support for accountability, and efficient mecha-
nisms to trace packets and information flows through the
Internet. While there have not been a lack of proposals,
several of them narrowly tackle a specific security chal-
lenge, or target a limited set of network applications.

Provenance (also called lineage) has been studied in
many different contexts. In the context of database sys-
tems, they have primarily used in databases to help “ex-
plain” to users why a tuple exists [7]. In this paper,
we show that network accountability and forensic analy-
sis can be posed generally as data provenance computa-
tions and queries over distributed streams. We argue that
declarative networks [15, 17, 16] enhanced with the abil-
ity to maintain provenance of computations will enable a
general extensible framework for specifying, analyzing,
and auditing networks. Declarative networks utilize a
database query language for specifying and implement-

ing networks, and its dataflow framework captures in-
formation flow naturally as distributed streams compu-
tations. We further demonstrate that with the appropri-
ate security extensions [1] to the query language used
in declarative networks, we can further allow prove-
nance computations and queries to be authenticated in
untrusted environments.

Contributions and Organization: In Section 2, we pro-
vide a background on declarative networks, its query
languages, and recent security extensions obtained by
unifying its core language with logic-based access con-
trol languages. Next, in Section 3, we survey vari-
ous use cases of network provenance ranging from real-
diagnostics, forensics, accountability, and trust manage-
ment. In Section 4, we then provide a taxonomy of dif-
ferent types of data provenance (local vs distributed, on-
line vs offline, authenticated, etc), several of which are
derived from existing database literature, and show that
they map naturally into existing use cases. We outline
some possible optimizations (Section 5), perform initial
performance evaluations based on extensions to the P2
declarative networking system (Section 6), and then con-
clude in Section 7.

2 Declarative Networks
As background, we briefly introduce declarative net-
working and its query language, including security
extensions. The high level goal of declarative net-
works [17, 16, 15] is to build extensible network archi-
tectures that achieve a good balance of flexibility, per-
formance and safety. Declarative networks are spec-
ified using Network Datalog (NDlog), which is a dis-
tributed recursive query language used for querying net-
work graphs. NDlog queries are executed using a dis-
tributed query processor to implement the network pro-
tocols, and continuously maintained as distributed views
over existing network and host state. Declarative queries
such as NDlog are a natural and compact way to im-
plement a variety of routing protocols and overlay net-
works. For example, traditional routing protocols can be
expressed in a few lines of code [17], and the Chord [25]
distributed hash table in 47 lines of code [16]. When
compiled and executed, these declarative networks per-
form efficiently relative to imperative implementations.

2.1 Network Datalog Language
NDlog is based on Datalog [19]: a Datalog program
consists of a set of declarative rules. Each rule has the
form p :- q1, q2, ..., qn., which can be read in-
formally as “q1 and q2 and ... and qn implies p”.
Here, p is the head of the rule, and q1, q2,...,qn is a list

1

of literals that constitutes the body of the rule. Literals
are either predicates with attributes (which are bound
to variables or constants by the query), or boolean ex-
pressions that involve function symbols (including arith-
metic) applied to attributes. Predicates in datalog are
typically relations, although in some cases they may rep-
resent functions.

Datalog rules can refer to one another in a cyclic fash-
ion to express recursion. The order in which the rules
are presented in a program is semantically immaterial;
likewise, the order predicates appear in a rule is not se-
mantically meaningful. Commas are interpreted as logi-
cal conjunctions (AND). The names of predicates, func-
tion symbols, and constants begin with a lowercase let-
ter, while variable names begin with an uppercase letter.
We illustrate NDlog using a simple example of two rules
that computes all pairs of reachable nodes:

r1 reachable(@S,D) :- link(@S,D).
r2 reachable(@S,D) :- link(@S,Z),

reachable(@Z,D).

The rules r1 and r2 specify a distributed transitive clo-
sure computation, where rule r1 computes all pairs of
nodes reachable within a single hop from all input links
(denoted by the link), and rule r2 expresses that “if
there is a link from S to Z, and Z can reach D, then S
can reach D.” By modifying this simple example, we can
construct more complex routing protocols, such as the
distance vector and path vector routing protocols.

NDlog supports a location specifier in each predicate,
expressed with @ symbol followed by an attribute. This
attribute is used to denote the source location of each
corresponding tuple. For example, all reachable and
link tuples are stored based on the @S address field. The
output of interest is the set of all reachable(@S,D)
tuples, representing reachable pairs of nodes.

When executed, the above NDlog query is essentially
a distributed stream computation, where stream of link
and reachable tuples are joined at different nodes to
compute routing tables. In a recent work [2], we show
that sliding windows commonly used in stream process-
ing can be used to process soft-state [20] data in declara-
tive networks, where the time-based window size essen-
tially corresponds to the soft-state lifetime of all routes.

2.2 Secure Network Datalog
Secure Network Datalog (SeNDlog) [1] is a unified
declarative language for networks and security policies,
which combines language features from NDlog, and
Binder, a logic-based language for access control in dis-
tributed systems. SeNDlog utilizes Binder’s notion of
context that represents a component (or security prin-
cipal) in a distributed environment and a distinguished
operator “says”. We illustrate SeNDlog via the same
reachable example as before, with the additional use of
the “says” operator:

At S:
s1 reachable(S,D) :- link(S,D).
s2 linkD(D,S)@D :- link(S,D).
s3 reachable(Z,Y)@Z :- Z says linkD(S,Z),

W says reachable(S,Y).

The rules s1-s3 are within the context of the principal
S. An additional localization rewrite [15] ensures that
all rule bodies are localized within a context (i.e. have
the same location specifier). Assuming an untrusted net-
work, this allows rules to execute only based on trusted
local data, or authenticated data from remote sources.
The “says” construct is an abstraction for the details
of authentication. In one specific implementation, com-
munication happens via signed certificates, where de-
rived tuples signed using the private key of the export-
ing context can be imported into another context and
checked using the corresponding public key. E.g. node
S will import the reachable(S,Y) fact from its neigh-
bor W, and verify that it is indeed from W via the sig-
nature stored with the fact. Node S then derives the
reachable(Z,Y) fact which is signed and exported to
node Z. Note that the implementation of “says” may de-
pend on the system and its context. In a hostile world,
“says” may require digital signatures, while in a more
benign world, “says” may simply append a cleartext
principal header to a message—and this will of course
be cheaper. The policy writer could additionally provide
hints along with rules, indicating that some “says” are
more important than others, e.g. by supporting multiple
“says” operators with different security levels.

3 Provenance in Practice
In this section, we survey a (non-exhaustive) list of exist-
ing work in the networking literature that motivates the
use of network provenance. We classify the use-cases
as real-time diagnostics, forensics, accountability, and
trust management.
Real-time Diagnostics: Provenance is useful for real-
time diagnostics and debugging [24, 8, 21] of distributed
systems. In a declarative monitoring system, one can
add additional queries that monitor a network for run-
time anomalies, e.g. lack of convergence, network traf-
fic spike suggesting possible intrusion. To illustrate, a
continuous query specified in SeNDlog can be used to
compute the number of changes changes to a routing
table entry over past T seconds, and generate an alarm
event when the number of changes exceed a threshold
as an indication of possible divergence. Upon receiving
the alarm, the system may generate a distributed recur-
sive query over the network provenance to detecting the
source of malicious activities.
Forensics: In addition to real-time data, historical data
is often required to correlate traffic patterns of attack-
ers. A common area of research has been in providing
“traceback”[22] of traffic, either by the receiver or by
an involved third party, to determine where packets are

2

originated from without trusting the unauthenticated IP
headers. One can store annotations either in the packet
(i.e. piggyback each tuple with its complete “path” or
“provenance”), or maintain state at each router, to allow
for subsequent traceback via a distributed query during
forensic analysis. To reduce the storage and communica-
tion overhead, ForNet [23] and Time Machine[13] have
proposed techniques that trade-off accuracy for perfor-
mance, by using summarization (via bloom filters) and
sampling techniques to compress the provenance.
Accountability: Forensics analysis is essentially a form
of call-detail used in voice telephone networks, where
historical information on the caller, callee, length of call,
and call status both in real-time and in many cases his-
torically through the examination of call detail records.
One important use of the call-detail information is to en-
force accountability, or proper usage in networks. For
example, PlanetFlow [11] is a network auditing service
provided on PlanetLab [18], to provide accountability
for all traffic generated by PlanetLab services, to ensure
that all users are in accordance with PlanetLab policies.
Trust Management: In our final use case, network
provenance is useful for enforcing distributed trust man-
agement [5] policies in networked information systems.
Using an example from Internet routing, the path-vector
protocol used in BGP carries the entire path during route
advertisement, in order to allow for ASes to enforce
their respective policies. More generally, provenance in
our system enables any networked information node to
trace the origins of its data, and hence enforce trust poli-
cies to accept or reject incoming updates based on the
source origins. The Orchestra [12] p2p data-integration
engine uses provenance in this manner, to accept or re-
ject updates from neighboring nodes by examining the
provenance of updates and the trust relationships among
nodes. Taking this idea one step further, one can main-
tain a quantifiable notion of trust, e.g. accepting an up-
date only if over K principals assert the update.

4 Taxonomy of Data Provenance
In this section, we present a taxonomy of data prove-
nance, most of which are derived from existing database
literature. We then map that to the use cases presented in
Section 3. To illustrate, we make use of an example net-
work which consists of three nodes a, b, c and three uni-
directional links link(a,b), link(a,c), link(b,c).

We give the derivation tree for reachable(@a,c) in
Figure 1 as a result of executing the NDlog query in
Section 2.1. This derivation tree essentially represents
the lineage or provenance of the tuple, and one can use
this tree to figure out the initial input base tuples (at the
leaves of the tree). The ovals in the diagram represent
the rules (r1, r2, or union to combine their results) that
are used for the derivation of reachable(@a,c).

Declarative networks are essentially computations
over distributed streams, with time-based sliding win-

Figure 1: NDlog derivation tree for reachable(a,c).

dows for soft-state derived tuples. In order to incorpo-
rate provenance into distributed streams, we make the
following changes to traditional provenance. First, we
annotate each derivation with its location (denoted by
the location specifier “@”). Second, since tuples are soft-
state with lifetimes, we also add creation timestamps and
time-to-live to the nodes in the tree.

4.1 Local vs Distributed Provenance
The derivation tree shown in Figure 1 can be stored ei-
ther locally or in a distributed fashion. In local prove-
nance, the tree is stored at node a, which is the final
storage location of reachable(@a,b). In order to have
a locally complete provenance, each tuple that is derived
needs to piggy-back its entire provenance when shipped
from one node to another.

On the other hand, one can utilize distributed prove-
nance, which only stores pointers to the previous node
to reconstruct its provenance on demand. Hence,
node a only needs to store the fact that it is de-
rived from link(@a,b) which is available locally, and
reachable(@b,c) which is stored at node b. The anal-
ogy here is IP traceback, where one can either store the
entire traversed path within each packet (similar to lo-
cal provenance), or only maintain enough state at each
router to traceback the route on demand.

There are evidently tradeoffs between local and dis-
tributed provenance. In local provenance, computation
is more expensive for each tuple, but provenance query-
ing is cheap. Also, since each node has the provenance
available locally, it can also better enforce trust poli-
cies. On the other hand, distributed provenance requires
no extra communication overhead, but incurs expensive
cost of querying the provenance.

4.2 Online vs Offline Provenance
Along another axis, we can further classify provenance
as either online or offline. Online provenance is main-
tained for network state that is currently valid (i.e. not
expired), and offline provenance is kept even when the
derivations have expired. The purpose of online prove-

3

Figure 2: SeNDlog derivation tree for reachable(a,c) with an-
notations for condensed provenance.

nance is for runtime reaction to network anomalies. For
example, when a node is detected to be suspicious, one
can query the online provenance to delete all routing en-
tries associated with the malicious node. However, on-
line provenance by itself has limited usage given that
most networked data are maintained as soft-state with
TTLs. In this case, we can additionally maintain offline
provenance for data that has long expired. Offline prove-
nance is also useful for real-time diagnostics, and can
additionally be used to support forensics and enforce ac-
countability. Offline provenance can result in high stor-
age overhead. We will revisit this issue in Section 5.

4.3 Authenticated Provenance
Up to this point, we have assumed that all nodes who
compute the provenance are trusted. In practice, authen-
tication is required to ensure the validity of provenance
computed by other nodes (e.g. to prevent spoofing of
messages from malicious attackers).

Figure 2 shows an alternative derivation tree based on
the SeNDlog query presented in Section 2.2. We note
the following differences. First, since all rule bodies are
localized within the context of a security principal, we
can omit the location specifiers for each tuple. How-
ever, we annotate each operator (denoted by the oval)
with the location (or context) where the rule is executed.
Second, each node in the tree is asserted by a principal
using “says”. In an untrusted environment, this means
that individual nodes in the provenance tree need to have
digital signatures to validate the authenticity of the com-
puted provenance.

4.4 Condensed Provenance
When computing local provenance, the overhead of
shipping the entire provenance with each tuple may be
expensive. With authenticated provenance, the overhead
is increased due to the digital signatures. We note that
in several instances, local provenance is desired (e.g. for
deciding whether to accept a tuple based on its origins).

To reduce the overhead of computing and sending
provenance, we present an existing technique to con-
dense the size of local provenance, yet retain sufficient
information for enforcing trust based on source ori-
gins. This technique is inspired by provenance semir-
ings [9] in Orchestra [12] system, where tuples are anno-
tated with provenance expressions that are based on the
unique keys of base input tuples. These provenance ex-
pressions can themselves be encoded in boolean expres-
sions stored in Binary Decision Diagrams (BDD) [6] ,
and further compressed as presented in [2].

To provide the intuition behind the condensation pro-
cess, we revisit the derivation tree in Figure 2. Each tu-
ple has an additional field denoted by <...> that stores
the condensed provenance, where + represents union,
and * represents a join operation. An expression such
as <a+a*b> for reachable(a,c) can be compressed
simply into <a>. Intuitively, whether the principal b
is trusted or not is inconsequential given a. As long
as principal a is trusted by the node that receives the
reachable(a,c) tuple, this tuple will be accepted, re-
gardless of whether principal b is trusted or not.

4.5 Quantifiable Provenance
The provenance semirings formulation of provenance
also permits quantifiable notions of trust that can lever-
age the different levels of “says” described in Sec-
tion 2.2. For example, consider the non-condensed
expression <a+a*b>, where principal a has security
level 2, and b has security level 1. One can conclude
that reachable(a,c) derivation has a trust level of
max(2, min(2,1))=2, assuming that the higher secu-
rity level is more trusted. Other quantifiable notions of
trust are also possible, e.g. the count [10] of the number
of ways each derivation is achievable, or vote, represent-
ing the number of principals that agree on a derivation
concurrently.

4.6 Summary
We summarize the types of provenance that are applica-
ble to each usage scenario. In real-time diagnostics, on-
line provenance of existing data is required. The prove-
nance can be local or distributed, and can further be au-
thenticated. On the other hand, forensics and account-
ability require offline provenance, and in practice, would
be used in conjunction with online provenance. Trust
management is best enforced locally at each node, and
one can reduce communication overhead by using con-
densed provenance to store only the source principals
necessary to enforce trust, or quantifiable provenance if
trust is based on security levels

5 Optimizations
A key challenge in maintaining network provenance is
in lowering the storage, communication, and distributed
querying overheads. In the previous section, we have

4

seen how condensed provenance encoded via BDDs can
result in a compact representation of provenance that can
be evaluated locally for trust management. In addition,
we outline three possible optimizations that we would
like to further explore as future work:
Proactive vs reactive provenance: In proactive prove-
nance, all the provenance of new tuples are eagerly
maintained and propagated throughout the network. In
a more reactive mode of operation, one can maintain
lazy provenance, whose computation is triggered only
by specified network events. For example, in the earlier
path computation example, we can start computing the
provenance of nextHop only when route divergence is
detected. Similarly, offline provenance for forensics can
be aged out over time to reduce storage, unless explicitly
marked to persist as a result of network anomaly.
Sampling: A straightforward optimization is to only
record a portion of the provenance (both online and of-
fline) via sampling techniques. For example, IP Trace-
back [22] (which generates a new message 1/20,000th of
the time) and ForNet [23] (which uses Bloom filters) are
examples of this approach. The sampling techniques can
also be applied when querying distributed provenance.
One example existing technique is the use of random
moonwalks [26] to avoid querying all provenance.
Provenance granularity: In reconstructing network
provenance, there are different granularities at which
systems can operate. To reduce overhead, provenance
can be aggregated and maintained at the AS granularity.
While it may not be conducive to detect all attacks, AS
granularity is likely sufficient for detecting aggregated
events such as a large number of spoofed packet injec-
tions from a group of malicious nodes within the AS.

6 Preliminary Evaluation
In this section, we present a preliminary evaluation
study on the overhead of authenticated communication
and computation of network provenance. We modified
the P2 declarative networking system [16] to support
the SeNDlog query language, which is compiled into
distributed dataflows that exchange messages that are
signed with RSA signatures. We further modify var-
ious relational operators (particularly joins) in the P2
system to support provenance. In particular, we focus
on evaluating the performance of authenticated prove-
nance (Section 4.3) which is individually signed by the
principal that asserted each fact, and we further apply
the condensation (Section 4.4) to reduce communication
and storage overhead.

We utilize the OpenSSL v0.9.8b, and Buddy BDD v2.4
libraries to support encryption and provenance. Our ex-
periments are performed on a quad-core machine with
Intel Xeon 2.33GHz CPUs and 4GB RAM running Fe-
dora Core 6 with kernel version 2.6.20. In our experi-
ments, we execute up to 100 P2 processes representing
different nodes on the machine.

For the query workload, we utilize the Best-Path re-
cursive query that computes the shortest paths between
all pairs of nodes. This query is obtained from the ND-
log all-pairs reachability query presented in Section 2,
with additional predicates to compute the actual path,
cost of the path, and two extra rules for computing the
best paths. As input, we insert link tables for N nodes
with average outdegree of three, and vary the size of N
from 10 to 100. To isolate the individual overhead of
authenticated communication and provenance, we exe-
cute three versions of the Best-Path query: NDlog ver-
sion without authentication and provenance, SeNDLog
with authentication but without provenance, and SeND-
LogProv with both authentication and provenance. Our
metrics of evaluation are as follows:
Query completion time (s): Time taken for a query
to finish execution. As our example programs are re-
cursive, this means the time elapsed before the system
reaches a distributed fixpoint, where all nodes finish
computing their best paths.
Bandwidth usage (MB): The total combined band-
width usage across all nodes required for executing the
distributed query.

In our experiments, we measure the computation and
bandwidth overheads of encryption and provenance by
comparing NDLog, SeNDLog and SeNDLogProv. Fig-
ure 3 and 4 shows the query completion time and band-
width utilization respectively, averaged over 10 experi-
mental runs. We summarize our results as follows:
SeNDlog overhead: The use of authenticated commu-
nication in SeNDLog incurs in the average 53% delay
in query completion time and additional 36% bandwidth
utilization compared to NDlog. As N increases, the addi-
tional overhead decreases. For example, when N is 100,
the overhead is 44% and 17% respectively. Given that
we are running multiple P2 processes on a single node
and generating a signature for each tuple, this represents
an upper bound on the encryption overhead.
Condensed provenance overhead: The query comple-
tion time of SeNDLogProv increases by 41% compared
to SeNDLog due to the overhead of computing and ship-
ping provenance. In addition, SeNDLogProv requires
54% more bandwidth than SeNDLog. Similar to the
SeNDlog overhead above, we observe that provenance
overhead decreases as the number of nodes increases.
For example, when N is 100, SeNDLogProv only in-
curs additional 6% and 10% costs in computation and
bandwidth overhead respectively. Our results demon-
strate that the BDD-encoded condensed provenance is
efficient for recording derivation of tuples, at reasonably
low overhead especially for larger networks.

7 Conclusion
In this paper, we argue that network accountability and
forensic analysis can be posed as data provenance com-

5

0

40

80

120

160

200

240

280

0 20 40 60 80 100

Number of Nodes

Q
u
e
r
y

C
o
m
p
l
e
t
i
o
n

T
i
m
e

(
s
)

NDLog
SeNDLog
SeNDLogProv

Figure 3: Query completion time (s) for Best-Path query

0

10

20

30

40

50

60

70

0 20 40 60 80 100

Number of Nodes

B
a
n
d
w
i
d
t
h

U
t
i
l
i
z
a
t
i
o
n

(
M
B
) NDLog

SeNDLog
SeNDLogProv

Figure 4: Bandwidth utilization (MB) for Best-Path query.

putations and queries over distributed streams. In partic-
ular, one can utilize provenance-aware secure networks
with appropriate security extensions to provide a flexible
declarative framework for specifying, analyzing and au-
diting networks. To prove our case, we propose a taxon-
omy of data provenance along multiple axes, and show
that they map naturally to several use cases ranging from
network forensics and diagnostics to trust management.
We suggest techniques to efficiently compute and store
network provenance, and provide an initial performance
evaluation using the P2 declarative networking system.

Our future work is proceeding along several fronts.
First, while we focus on forensics and accountability
over the Internet, we intend to explore the general ap-
plicability of these techniques to overlay networks and
sensor networks. Second, we are in the process of eval-
uating a variety of secure networks specified and imple-
mented by using SeNDlog (e.g. secure Chord routing,
DNSSEC), and studying the usage of network prove-
nance for a variety of networks. This will enable us to
investigate cross-layer analysis opportunities that arise
as a result of having a single integrated system that uni-
fies network and security specifications.

References
[1] M. Abadi and B. T. Loo. Towards a Language and System for Secure

Networking. In NetDB, 2007.

[2] Anonymous. Paper is under submission.

[3] K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker. Providing packet
obituaries. In Proc. of 2006 ACM SIGCOMM Workshop on Mining Net-
work Data (MineNet ’06). ACM Press, Sept. 2006.

[4] A. Bender, N. Spring, D. Levin, and B. Bhattacharjee. Accountability as
a service. In USENIX Steps to Reducing Unwanted Traffic on the Internet,
2007.

[5] M. Blaze, J. Feigenbaum, and A. D. Keromytis. The role of trust man-
agement in distributed systems security. In Secure Internet Programming,
pages 185–210, 1999.

[6] R. E. Bryant. Symbolic boolean manipulation with ordered binary decision
diagrams. ACM Computing Surveys, 24(3), 1992.

[7] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characteriza-
tion of data provenance. In ICDT, 2001.

[8] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica. Friday: Global
Comprehension for Distributed Replay. In USENIX Symposium on Net-
worked Systems Design and Implementation, 2007.

[9] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In
ACM Symposium on Principles of Database Systems, 2007.

[10] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining Views
Incrementally. In Proceedings of ACM SIGMOD International Conference
on Management of Data, 1993.

[11] M. Huang, A. Bavier, and L. Peterson. PlanetFlow: Maintaining account-
ability for network services. Operating Systems Review, 40(1):89–94, Jan.
2006.

[12] Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir. ORCHESTRA: Rapid,
collaborative sharing of dynamic data. In CIDR, January 2005.

[13] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Sommer. Build-
ing a time machine for efficient recording and retrieval of high-volume
network traffic. In Internet Measurement Conference (IMC), 2005.

[14] P. Laskowski and J. Chuang. Network monitors and contracting systems:
Competition and innovation. In Proceedings of ACM SIGCOMM Confer-
ence on Data Communication, 2007.

[15] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Ma-
niatis, R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking:
Language, Execution and Optimization. In ACM SIGMOD, June 2006.

[16] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Sto-
ica. Implementing Declarative Overlays. In ACM SOSP, 2005.

[17] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative
Routing: Extensible Routing with Declarative Queries. In ACM SIGMOD,
2005.

[18] PlanetLab. Global testbed. 2006. http://www.
planet-lab.org/.

[19] R. Ramakrishnan and J. D. Ullman. A Survey of Research on Deductive
Database Systems. Journal of Logic Programming, 23(2):125–149, 1993.

[20] S. Raman and S. McCanne. A model, analysis, and protocol framework
for soft state-based communication. In SIGCOMM, pages 15–25, 1999.

[21] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vah-
dat. Pip: Detecting the Unexpected in Distributed Systems. In USENIX
Symposium on Networked Systems Design and Implementation, 2006.

[22] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network
support for IP traceback. In Proceedings of ACM SIGCOMM Conference
on Data Communication, 2000.

[23] K. Shanmugasundaram, N. Memon, A. Savant, and H. Bronnimann. For-
Net: A distributed forensics network. In Proc. of 2nd International Work-
shop on Mathematical Methods, Models, and Architectures for Computer
Network Security, 2003.

[24] A. Singh, P. Maniatis, T. Roscoe, and P. Druschel. Distributed Monitoring
and Forensics in Overlay Networks. In Eurosys, 2006.

[25] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications.
In Proceedings of ACM SIGCOMM Conference on Data Communication,
2001.

[26] Y. Xie, V. Sekar, M. K. Reiter, and H. Zhang. Forensic analysis for epi-
demic attacks in federated networks. In Proc. of the 2001 IEEE Symposium
on Security and Privacy, pages 43–53. IEEE Computer Society, May 2001.

6

http://www.planet-lab.org/
http://www.planet-lab.org/

	Introduction
	Declarative Networks
	Network Datalog Language
	Secure Network Datalog

	Provenance in Practice
	Taxonomy of Data Provenance
	Local vs Distributed Provenance
	Online vs Offline Provenance
	Authenticated Provenance
	Condensed Provenance
	Quantifiable Provenance
	Summary

	Optimizations
	Preliminary Evaluation
	Conclusion

