
MOSAIC: Declarative Platform for
Dynamic Overlay Composition

Yun Mao, AT&T Labs - Research, Boon Thau Loo, Zachary Ives and Jonathan M.
Smith, University of Pennsylvania

Abstract

Overlay networks create new networking services using nodes that communicate using
pre-existing networks. They are often optimized for specific applications and targeted
at niche vertical domains, but lack interoperability with which their functionalities can
be shared. MOSAIC is a declarative platform for constructing new overlay networks
from multiple existing overlays, each possessing a subset of the desired new network’s
characteristics.

This paper focuses on the design and implementation of MOSAIC: composition
and deployment of control and/or data plane functions of different overlay networks,
dynamic compositions of overlay networks to meet changing application needs and net-
work conditions, and seamless support for legacy applications. MOSAIC overlays are
specified using Mozlog, a new declarative language for expressing overlay properties
independently from their particular implementation or underlying network.

MOSAIC is validated experimentally using compositions specified in Mozlog in
order to create new overlay networks with compositions of their functions: the i3 in-
direction overlay that supports mobility, the resilient overlay network (RON) overlay
for robust routing, and the Chord distributed hash table for scalable lookups. MO-
SAIC uses runtime composition to simultaneously deliver application-aware mobility,
NAT traversal and reliability. We further demonstrate MOSAIC’s dynamic composition
capabilities by Chord switching its underlay from IP to RON at runtime.

MOSAIC’s benefits are obtained at a low performance cost, as demonstrated by
measurements on both a local cluster environment and the PlanetLab global testbed.

1. Introduction

The Internet’s architecture continues to evolve towards a ubiquitous communica-
tions medium interconnecting mobile personal devices, environmental sensors, and
Web services. As new services (voice, video, emergency response, etc.) are deployed
on the network, new extensions of the existing Internet architecture are required for
new capabilities, such as efficient routing among mobile and wired nodes, location of
proximity-based services, and wide-area service discovery and composition.

Overlay networks [31] are one way to deploy new services using the existing Inter-
net for connectivity [32]. However, despite deployment at global scale and emerging
support for legacy applications [15], overlay networks now face several hurdles. First,

Preprint submitted to Elsevier May 27, 2011

they are often optimized for a specific application and may not be useful in all con-
texts. Second, overlay networks are generally targeted at, and limited to, niche vertical
domains (e.g., mobility [42, 25], security [17], reliability [2]). Third, the networks do
not normally interoperate or share their functionality. For example, resiliency [2] and
mobility [38] provided by one overlay cannot easily be leveraged by other overlay net-
works. Recent proposals for “clean slate” redesign of the Internet itself will exacerbate
this problem, as more and more overlays are proposed and implemented.

Example 1.1. Alice and Bob use private networks behind separate NATs, and wish to
communicate regularly via VoIP or video conferencing, occasionally sharing data from
internal web servers with trusted friends. As Alice and Bob travel regularly, and their
IP addresses change, continued contact and communications should be seamless.

In principle, Alice and Bob can use a combination of i3 [38]1 for NAT traversal,
ROAM [42] for mobility, RON [2] for reliability, and if DoS attack prevention is im-
portant, a secure overlay such as SOS [17] can be added. This type of custom overlay
offers benefits over a monolithic approach, e.g., Skype [36]: it can accommodate fu-
ture application needs and changing network conditions. For example, RON may be
excessive for a network with limited failures, and hence it may be desirable to remove
it; whereas, in a partially-connected network, epidemic routing [40] would be desired.
Alice and Bob may require session-layer mobility support, requiring DHARMA [25]
instead of ROAM.

Combining overlays to achieve desired capabilities sounds straightforward, but it is
challenging in practice. One must first identify combinations of overlays that can work
together and provide the right set of capabilities. Then the mechanics of interconnect-
ing the overlays must be tackled. Previous work [15] has shown that bridging between
different overlays requires significant “glue code.” Layering one overlay over another
is generally not even feasible, as each layer assumes it is running directly over IP.

In this paper, we present a new point in the design space of network architectures,
called MOSAIC 2, that aims to achieve extensibility based on the application of database
techniques to the networking domain. MOSAIC is a system that provides a declarative
framework for developing, deploying, combining, and composing overlay networks —
one capable of bridging between overlays, stacking them in layers, dynamically chang-
ing the layers or bridges, and allowing for rapid extensibility with new functionalities.
It enables (1) rapid creation and deployment of new overlay networks, (2) dynamic
adaptivity to compose overlay networks to meet changing application needs and net-
work conditions, and (3) seamless support for legacy overlay networks and applications
within the infrastructure.

This approach enables modular reuse of resources and functions. It also facilitates
rapid experimentation and the deployment of new network features. This is a major step

1Note that in this paragraph, i3 stands for Internet Indirection Infrastructure, ROAM stands for Robust
Overlay Architecture for Mobility, DHARMA stands for Distributed Home Agent For Robust Mobile Access,
RON stands for Resilient Overlay Network, and finally, SOS stands for Secure Overlay Services. Each system
is described in detail in their respective citations.

2A mosaic is a larger pattern or picture constructed with small pieces of colored glass, stone, or other
material. Likewise, MOSAIC builds useful overlay services from existing overlay components.

2

forward compared with existing hand-coded approaches [15] for manually bridging
amongst different overlays.

MOSAIC is based on declarative networking [22, 21, 20, 19], a declarative, database-
inspired extensible infrastructure using query languages to specify behavior. Declar-
ative programming allows programmers to say “what” they want, without worrying
about the details of “how” to achieve it. This programming paradigm makes it easy to
compose protocols, either vertically (layering) or horizontally (bridging), since com-
position is largely confined to the “what”, while composition of the “how” can be
automated. It also provides better language and runtime support for dynamic adaption.

In MOSAIC, overlay compositions are specified in a high-level specification lan-
guage, which is then further compiled into the Mozlog declarative networking language
that defines the composed network protocols. Unlike previous declarative network-
ing languages, Mozlog provides several novel language features essential for dynamic
composition: (1) dynamic location specifiers, combined with runtime types, enable
flexible naming and addressing; (2) composable virtual views support modularity and
composability; (3) data and control plane extensibility supports composition; and (4)
declarative tunneling and proxying enable support for legacy applications.

We note that although porting existing overlay code to the new platform is neces-
sary for using many overlay services in MOSAIC, it is made simple because MOSAIC
has a much higher-level set of abstractions for managing distributed state and its prop-
agation. Hence the code is more concise and its properties are more straightforward
to express. Moreover, because MOSAIC’s abstractions are higher level, it is easier to
specify protocols’ sub-functions in a modular way. New protocols can be developed
quickly in MOSAIC, and these can leverage sub-functions from existing protocols.

Our long-term vision is to automatically and dynamically compose overlays that
are best suited for the application requirements. There are two parts to achieving this
vision: (1) automatically reasoning about properties of composed overlays and their
interactions with one another, and (2) the mechanisms of actually “gluing” together
the overlays in a unified framework. The former problem is beyond the scope of this
paper, and is considered a challenging problem to automate [7, 37]; today it can only
be accomplished manually by human experts. The latter problem is the focus of our
work, as we provide new capabilities that an expert can harness to get much better
compositions than with the previous state of the art.

The rest of the paper is organized as follows. Section 2 describes the options for
overlay composition. Section 3 presents an architectural overview of the MOSAIC
infrastructure. Section 4 summarizes the aspects of Mozlog important to MOSAIC.
Section 5 illustrates how the MOSAIC compiler automatically translates composition
specifications into Mozlog rules. Section 6 shows example compositions developed
using MOSAIC. In Section 7, Mozlog specifications are shown to be executable within a
distributed query processor via modifications to the P2 declarative networking system.
In Section 8, measurement results are presented for networks created on a local cluster
and the PlanetLab testbed.

2. Background: Overlay Composition

Overlay network composition combines distinct parts or elements of existing over-

3

lay networks to create a new overlay network with new functionalities. Overlay com-
position can be achieved along both the data and control planes.

bridging

Network3

(QoS)
S d

IP tunnel

Receiver B

Network2

Network1

(confidentiality)

Sender

Receiver A
Network2

(reliability)

(y)

Figure 1: Overlay composition by bridging.

2.1. Data plane composition

The data planes of two overlay networks can be composed horizontally by bridging
between the networks. They can be composed vertically by layering one overlay over
the other.

In bridging (see Figure 1), each overlay network runs on top of the same substrate
(e.g., the IP network) directly. However, for a variety of reasons (e.g., sending from
a wireless to a wired network), it may be necessary to send a packet across multiple
overlay networks to reach the receiver. This is usually done via a gateway node that
belongs to both networks. If such gateways do not exist, two nodes from each network
need to be connected via an IP tunnel to route packets. In Figure 1, a sending laptop
using wireless may use an overlay that provides confidentiality to route traffic over the
wireless links, then use an overlay with reliability guarantees to deliver important data
that is not time-sensitive to receiver A, while using a QoS overlay to deliver multimedia
traffic to receiver B.

i3 router

Sender
RON

Receiver
(1 hop

from sender)

Receiver

(behind NAT)

Sender

i3

Figure 2: Overlay composition by layering.

4

In layering, logically a packet is routed within a single data plane of an existing
overlay network. However, the data paths between the nodes inside the overlay may be
constructed on top of other overlay networks, rather than using IP. For example, RON
only works for nodes that have publicly routable IP addresses. As shown in Figure 2,
by composing RON on top of another overlay protocol that enables NAT traversal, such
as i3, nodes behind NAT should be able to join the RON network.

We note that the two data plane compositions listed above are not mutually exclu-
sive; some data composition scenarios may combine both layering and bridging. Prior
attempts [15] to compose overlay networks support bridging but not layering. Layering
adds a powerful new composition primitive that enhances individual overlay network
nodes with multiple new services.

2.2. Control plane composition

One overlay network’s control plane may be layered over either the data plane
or the control plane of another overlay network. For example, it is possible to build
the control message channels of distributed hash table (DHT) protocols [4] such as
Chord over the data plane of RON. Typically, the failure detection components of DHTs
assume that hosts unreachable via IP are dead. In fact, some hosts may be alive and
functioning, but temporary network routing failures may create the illusion of node
failure to part of the overlay nodes. If the network failures occur intermittently, the
churn rate is increased and may create unnecessary state inconsistency [11]. Using a
resilient overlay such as RON can overcome some of the network failures and reduce
churn. In a highly disconnected environment, one can use epidemic [40] forwarding of
control plane messages.

Some overlay network protocols have complex, layered control planes. For exam-
ple, both i3 and DOA [5] use DHTs for either forwarding or lookup. RON (an overlay
that provides resilient routing) and OverQoS [39] (an overlay that provides quality-of-
service routing) heavily depend on measurements of underlying network performance
characteristics such as latency and bandwidth. When overlay networks are built from
scratch over IP, it is conceivable that different logical overlays built on the same phys-
ical IP topology may duplicate the effort to maintain DHTs or perform network mea-
surements. Nakao, et al. [29], observed that on PlanetLab, each node had 1GB of
outgoing ping traffic daily: many overlay networks running on the same node were
probing the same set of hosts without coordination. Such duplicated probing traffic can
be wasteful, and interactions between probe traffic may introduce measurement error.
A composition-driven approach is to build smaller elements that provide well defined
interfaces (e.g., OpenDHT [35] for DHT lookup and iPlane [23] for measurement) so
that they can be easily composed with upper layer overlay network control planes to
share rather than compete for resources.

3. MOSAIC Overview

In this section, we provide an overview of MOSAIC, and describe how it provides a
framework for composing and re-composing overlay networks, by combining the use
of overlay bridging and layering described in Section 2. Note that we do not currently

5

tackle the issue of determining the appropriate compositions, but rather provide the
overlay composition specification and implementation framework.

MOSAIC is designed to be deployed as a composition service on a shared overlay
infrastructure where all nodes run the MOSAIC engine. Each node runs a MOSAIC
engine that is responsible for running the overlay protocols. In addition, a directory
service is deployed and shared by all infrastructure nodes, and maintains the meta
information of each overlay to enable the composition process.

On this infrastructure, several overlay networks can co-exist, and are not necessar-
ily deployed on all nodes. Individual overlay protocols are specified using the Mozlog
declarative networking language, then compiled and executed in MOSAIC. Composed
overlay networks are instantiated by leveraging existing deployed overlays, either by
layering (above or below) or bridging with them. In addition, private networks outside
of the infrastructure are bridged via public gateways with overlays deployed on this
infrastructure. Since the composition glue code is written in Mozlog, it is most natural
to implement each individual overlay as a declarative network in Mozlog. However,
MOSAIC can also support legacy overlays with the use of an adapter (see Section 7.2).

In the rest of this section, we will describe the MOSAIC engine and its directory
service in greater detail, followed by an overview of the composition process

Overlay 2
Specificationsend

Transport Layer

recvOverlay 1
Specification Specification

Overlay 1 Overlay 2
Specification

IP

N t k L i MOSAIC

dataflow

tables

dataflowdataflow

tablestables

Compiler Compiler

Network Layer in MOSAIC

Figure 3: An overview of the MOSAIC engine for network layer overlays.

i3

Bob’s internal

networkRON Bob’s

gateway

Alice’s internal

network

Alice’s

gateway

Figure 4: Graph of i3 layered over RON, and private networks of Alice and Bob bridged with RON.

6

MOSAIC engine. Figure 3 illustrates the MOSAIC engine from the perspective of a
single node. MOSAIC is positioned at the network layer in the network stack, replacing
IP. It exposes a simple interface to the transport layer by providing two primitives:
send(DestAddress, Packet) and recv(Packet). In IP, a packet consists of an IP header
with fixed format and a data payload not interpreted by IP. In MOSAIC, Packet is
represented abstractly as a structured data element, which might be a set of scalar
values or even nested tuples. The encoding of this packet is up to the specific overlay
protocol, and declarative mappings or transformations can convert between the packet
formats of different overlays (see Section 4). DestAddress is a specially typed tuple,
with the first attribute being the identifier of the overlay network to which the packet
belongs. This identifier is used to demultiplex the send requests to different overlays
or IP at the network layer. A send request will trigger a recv event at the node or nodes
who own the DestAddress if the network successfully routes the packet.
Directory service. For each overlay running on the infrastructure, there is a directory
service that maintains the following information: (1) A unique identifier for the over-
lay; (2) The list of physical nodes that are currently executing the overlay; (3) The list
of users who can utilize the overlay, and their privileges (e.g., whether they can bridge
with this overlay; these privileges are set by an overlay’s owner); and (4) Additional
meta-data that describes the overlay, such as its attributes, node constraints, etc. As
part of the process of creating a composed overlay, the user may issue queries to the
directory, searching for existing overlays that meet their criteria for composition.

A back-of-the-envelope calculation suggests that the state of the directory is on the
order of 100MB for a single overlay, given a reasonable MOSAIC deployment3. The
directory server can be hosted by a centralized server or in a distributed fashion [9, 4]
for scalability. The design choice of the directory service is orthogonal to the MOSAIC
architecture. In this paper, we focus on the use of a centralized server. We note that a
centralized service is sufficient for maintaining the metadata information for thousands
of infrastructure nodes, as demonstrated by the PlanetLab Central [32] service.
Composition process. To create a composed overlay network, a MOSAIC user (e.g.
a network administrator) first uses the directory service to locate overlay networks
that meet their criteria for composition, and retrieves relative metadata information .
Second, the administrator creates a composition specification, which is a high-level
graph-based description of the desired component overlay networks and their interac-
tions. Then, the specification is compiled into the Mozlog language used by MOSAIC’s
compiler, described later in Section 5. As part of this process, new code is created that
“glues” the compositions together. Finally the generated Mozlog code is deployed to
the physical nodes to start the new network, and the directory information is updated
regarding the newly composed network.

MOSAIC’s declarative approach provides major benefits. First, there are the bene-
fits of declarative networks in terms of compactness and safety. Second, protocols are
specified at a higher level, making them more modular. Finally, high-level composition

3Our calculations are based on the overlay network being deployed on 100,000 physical nodes with 1
million users on the MOSAIC infrastructure. The metadata size is 100 bytes for each physical node and user.

7

specifications have a significant potential for correctness checks and for making infer-
ences about the compositions’ attributes — and especially for reasoning about property
interactions among different overlays. For example, an insecure overlay when bridged
with a secure overlay will result in an end-to-end insecure overlay. A scalable lookup
overlay will increase its robustness when executing over a resilient overlay, at the ex-
pense of its performance.

3.1. Composition Specifications
Figure 4 shows a graphical representation of a composition specification, based

on the example scenario introduced in Section 1. Appendix A shows an example
composition specification encoded in XML for this specific scenario. Each module
(node) represents a component overlay network (e.g., i3 and RON) deployed on the
infrastructure, or a private network. The links represent connectors, where vertical
and horizontal links denote layering and bridging, respectively. Here, the i3 overlay is
layered over RON; Alice and Bob’s private networks are bridged to RON. In addition
to a unique overlay identifier, each module configuration consists of the following:

• Physical node constraints: When the overlay is first deployed, the user who
created the overlay can constrain the set of nodes on which the overlay may be
executed. This can be in the form of a prefix to indicate that nodes must be
deployed on particular subnets, or enforce the inclusion of particular nodes (e.g.
Alice’s and Bob’s gateways) must be on both the i3 and RON networks.

• Attributes: Each overlay network has properties that characterize its capabili-
ties, including mobility, secure routing, NAT traversal, resilient routing, anonymity,
private networks, etc. These properties can be queried by users to identify over-
lays that meet their requirements.

• Code: If a module is loaded for the first time, code can be included in the config-
uration. This can either be legacy code, or Mozlog specifications for declarative
networks.

• Default gateway: Each module can specify a default gateway for bridging. In
the absence of an explicitly specified gateway, the common physical node sitting
on both networks is selected to serve as the gateway.

• Access control: MOSAIC supports restrictions on which users can utilize an
overlay, and their privileges (e.g., layering above or below, and bridging, etc.).

The connectors between modules have properties associated with them. Bridg-
ing (horizontal lines) must specify whether there are default gateways to be used, and
whether tunneling is permitted. If two modules are specified to be bridged via a default
gateway node, both overlays must run on the specified gateway. Layering (vertical
lines) also has constraints on whether the overlay has to be layered on a subset or all of
the nodes. In this example, to get the full benefits of RON, all i3 nodes should utilize
RON as their underlay. However, this is not strictly required: i3 nodes that do not run
RON will default to using IP. For both bridging and layering, one can further specify
whether some connections replace existing ones.

8

3.2. Composition Compilation
Once the composition is specified, a composition compiler is used to generate the

Mozlog code that “glues” together different overlay networks based on the specifica-
tions. The compiler is either a client-side software, or deployed as a service in con-
junction with the directory service.

The compilation process can be performed in two different ways. First, a compo-
sition can create overlays, either from scratch where each module contains the code
implementing each overlay, or incrementally where the new overlay is built on existing
ones, e.g., by adding new overlays over existing ones, or bridging overlays via identi-
fied gateways. Creating overlays incrementally requires the composition specifications
to refer to existing overlays by their unique identifiers. Second, a composition can also
modify overlays, which involves replacing existing modules with new ones, and this
requires connectors to indicate that they are replacing existing composition links.

Given the above mechanisms, we outline how layering and bridging can be achieved
by compiling modules and connectors, and provide a detailed process description and
examples in Section 5. The first step is to perform basic checks to ensure all the links
are legal, based on the attribute constraints and physical node constraints. E.g., one
cannot layer one overlay over another if they are configured for completely disjoint
sets of nodes. Two overlays cannot be bridged if their bridge connector does not per-
mit tunneling and the two overlays do not share any common node. Once validated,
Mozlog rules for composition and all required overlay code are uploaded to relevant
nodes for execution.

3.2.1. Layering
Layering of a control or data plane over another overlay’s data plane is achieved

by ensuring that every protocol uses logical addresses — rather than being bound to
physical addresses. At runtime MOSAIC will bind (or rebind) the upper layer’s logical
address to the underlay address. These bindings are stored in a separate table that can
be updated to facilitate dynamic changes to layering.

MOSAIC allows the control plane of one overlay network to layer over another
overlay’s control plane, accessing its internal state. Here, each overlay exports the state
of its composable components, in the form of database logical views (query results
presented as a named table). An example of such state is a distributed hash table’s
contents, which can be modeled as a relation with tuples associating keys and values.
Importantly, accessing a neighboring protocol’s state can be done within the overlays’
specification language — there is no “impedance mismatch” between languages, and
interoperability issues are minimal.

3.2.2. Bridging
Depending on requirements, bridging can be done either pre-configured or on-

demand in MOSAIC.

• Pre-configured method. When the composition specification involves bridging
multiple overlays, forwarding state is created on designated gateways based on
the bridge connectors indicated in the composition specifications. When a sender
sends a packet whose destination contains an address of an overlay in which the

9

sender does not participate, MOSAIC routes the packet to the gateway, which
then continues to forward the packet along the bridged overlay. In addition to a
static gateway, the sender can also use a pre-configured anycast service [16, 10]
to select and route packets to one of the overlay nodes, preferably close in terms
of network distance to the sender.

• On-demand method. The sender utilizes source routing to explicitly describe
the data path to the destination via designated gateways among different overlays
found in the specification. Alternatively, the gateway holds address translation
state that uniquely identifies the flow between the sender and the receivers, it
performs indirection. The on-demand mechanism enables user-driven dynamic
bridging. We will describe examples of such compositions in Section 6 using the
Mozlog language.

3.3. Dynamic compositions

MOSAIC exploits Mozlog’s declarative model to facilitate dynamic overlay compo-
sition: since network definitions in MOSAIC separate specification from implementa-
tion, the system can (assuming the right constraints are met) freely replace either the IP
or an existing overlay underneath one overlay network with a second overlay network
— i.e., it can layer networks. For example, the protocol used in RON is a modified
link-state protocol, which is general enough to operate on any connected graph. The
original RON implementation assumes IPv4 as a substrate, and hence it is hard-coded
to use publicly routable IP addresses. In MOSAIC, protocols are written with a network-
agnostic addressing scheme, so a RON overlay can instead use addresses from one or
more lower-level overlay networks, provided they are reachable from one another. This
allows MOSAIC to dynamically switch an existing overlay’s underlay based on the net-
work conditions, e.g., an executing overlay that utilizes IP can dynamically layer itself
over RON when routing losses are high, or further switch to an epidemic forwarding
strategy when the network is disconnected.

Dynamic overlay switching in MOSAIC is achieved by changing the binding be-
tween an upper overlay’s logical addresses and the underlying network and its (lower-
level) addresses. This technique is overlay-agnostic. However, we must be careful
to preserve application and overlay semantics. In particular, if dynamically switching
maintains the same endpoints on route requests (as RON, above, does), then the switch
is permissible. Likewise, if the lower overlay state is not visible to the layers above, and
all endpoints provide the same functionality (e.g., in a content distribution network),
then the switch is also permissible. In other cases, we would need to re-architect the
overlays and possibly the application to redistribute state over the new underlay, and to
be tolerant of transient states.

4. The Mozlog Language

Having described MOSAIC’s basic composition framework, we next present the
Mozlog declarative networking language that is generated from the composition speci-
fications. As with previous declarative networking languages [22, 21], Mozlog is based

10

on the Datalog [34] query language, and extends Datalog in novel ways to support
composition.

As background, each Datalog rule has the form p :- q1, q2, ..., qn., which can
be read informally as “q1 and q2 and ... and qn imply p”. Here, p is the head of the
rule, and q1, q2,...,qn is a list of literals that constitutes the body of the rule. Literals are
either predicates with attributes (which are bound to variables or constants), or boolean
expressions that involve function symbols (including arithmetic) applied to attributes.
Predicates in Datalog are typically relations, although in some cases they may represent
functions.

Datalog rules can refer to one another in a cyclic fashion to express recursion. The
order in which the rules are presented in a program is semantically immaterial; like-
wise, the order predicates appear in a rule is not semantically meaningful. Commas
are interpreted as logical conjunctions (AND). The names of predicates, function sym-
bols, and constants begin with a lowercase letter, while variable names begin with an
uppercase letter.

Mozlog is a distributed variant of traditional Datalog, primarily designed for ex-
pressing distributed recursive computations common in network protocols. We illus-
trate Mozlog using a simple example of two rules that compute all pairs of reachable
nodes:

r1 reachable(@S,D) :- link(@S,D).
r2 reachable(@S,D) :- link(@S,Z), reachable(@Z,D).

The rules r1 and r2 specify a distributed transitive closure computation, where rule
r1 computes all pairs of nodes reachable within a single hop from all input links, and
rule r2 expresses that “if there is a link from S to Z, and Z can reach D, then S can
reach D.” By modifying this simple example, we can construct more complex routing
protocols, such as the distance vector and path vector routing protocols.

Mozlog supports a location specifier in each predicate, expressed with @ symbol
followed by an attribute. This attribute is used to denote the source location of each
corresponding tuple. For example, all reachable and link tuples are stored based on
the @S address field. The output of interest is the set of all reachable(@S,D) tuples
stored at node S, representing reachable pairs of nodes from S to D.

In this Section, we highlight the Mozlog language itself. We provide details of
the compilation process from composition specification to Mozlog and use cases in
Section 5, and discuss implementation details in Section 7. We focus on key language
features necessary to support overlay composition in Sections 4.1-4.4 and cover some
related features in Section 4.5.

4.1. Addressing

Mozlog has two distinctive features for addressing nodes in the network. First, a
location specifier is decoupled from the data tuple so that tuples can be accessed from
multiple logical overlay networks that the host belongs to. Second, because multiple
overlays are selected and composed dynamically, location specifiers are not bound to
IP addresses anymore. Instead, each location specifier is associated with a runtime type
which is bound to an overlay.

11

4.2. Decoupling Location from Data

Mozlog predicates have the following syntax:

predicate[@Spec](Attrib1, Attrib2, ...)

In the absence of any location specifier, predicate is assumed to refer to local data. In
this case, the rule body is executed as a Cartesian product across all input tables. For
example, in the following rule,

a1 alarm@R(L,N) :- periodic(10), cpuLoad(L), nodeName(N),
monitorServer(R), L > 20.

periodic is a built-in local event that will be triggered every 10 seconds. The predicates
cpuLoad, nodeName, and monitorServer are local tables. The rule specifies that for every
10 seconds, if the CPU load is above the threshold 20, an alarm event containing the
current load L and host name N will be sent to the monitoring server R.

Decoupling data from its location enhances interoperability and reusability, as well
as dynamic re-binding of addresses. Multiple overlays can interoperate (i.e., exchange
state) by sending network-independent data tuples in a common data representation.
Moreover, since these rules are rewritten in a location-independent fashion, they can
be reused on different network types (e.g., i3, RON, or IP). Finally, since it does not
bind addresses to data, the language is friendly to mobility, where host movement (and
hence a resulting change in its IP address) does not invalidate its local tables.

4.2.1. Runtime Types for Location Specifiers
Another Mozlog feature involves adding support for runtime types to location spec-

ifiers. This feature is necessary for dynamically composing multiple overlays at run-
time. Location specifiers are denoted by an [oID::]nID element, where oID is an op-
tional overlay identifier, and nID is a mandatory overlay node identifier. For exam-
ple, consider i3 and RON overlays with identifiers i3 oid and ron oid respectively.
i3 oid::0x123456789I denotes an i3 node with identifier 0x123456789I, and ron oid

::12.34.56.78 denotes a RON node with IP address 12.34.56.78. In the absence of
any overlay identifier, IP is assumed.

At runtime, MOSAIC examines the location specifier of each tuple and routes it
along the appropriate network. To illustrate the flexibility of our addressing scheme,
consider the CPU load monitoring example from Section 4.1. Rule a1 can be rewritten
as a2, in which the monitoring server R refers to an i3 key generated as a hash of its
name N instead of an IP address:

a2 alarm@R(L, N) :- periodic(10), cpuLoad(L), nodeName(N), serverName(SN),
L > 20, Key = f_sha1(SN), R = i3_oid::Key.

4.3. Data and Control Plane Integration

Overlay composition requires the integration of the data and control planes of mul-
tiple overlays. To achieve this, Mozlog enables declarative specification of the data
plane behavior. Given an overlay oid, oid.send and oid.recv event predicates specify
the data forwarding algorithm. We will describe how these send and recv events are

12

generated within the dataflow execution framework later in Section 7. Focusing on the
language feature now, we illustrate this feature via an example based on the data plane
of an RON overlay ron oid.

snd ron_oid.send@Next(Dest,Pkt) :- ron_oid.send(Dest, Pkt),
ron_oid.RT(Dest, Next),
localAddr(Local), Local != Dest.

rcv ron_oid.recv(Pkt) :- ron_oid.send(Dest, Pkt), localAddr(Local),
Local = Dest.

The table ron oid.RT denotes the RON routing table. Rule snd expresses that for all
non-local Dest addresses, the data packet (Pkt) is sent along the next hop (Next) which
is determined via a join with RON’s routing table (ron oid.RT) using Dest as the join
key. These packets are then received via the rule rcv at node (Dest), which generates
an oid.recv(Pkt) event at Dest.

In Mozlog, the send and recv predicates are usually not directly used by other rules,
but rather automatically invoked by the MOSAIC runtime engine when the location
specifier type of a tuple matches the overlay. As a result, one can bridge the data
planes of different overlays together, or layer the control plane of one overlay network
over the data plane of another. We provide more details in Section 5.

4.4. Modularity and Composability

To support overlay composition, Mozlog supports Composable Virtual Views (CViews).
The CView is a language construct for defining rule groups that, when executed to-
gether, perform a specific functionality.

4.4.1. CView Syntax and Usage
The syntax of CViews is as follows:

viewName[@locSpec](K1,K2,...,Kn, &R1,&R2,...,&Rm)

Each CView predicate has an initial set of attributes K1,K2,...Kn which are already
bound to input values read from another predicate (intuitively, these are like input pa-
rameters to a function call). The remaining attributes, &R1,&R2,...,&Rm, represent the
return values from invoking the predicate given the input values. This is akin to the
use of input binding restrictions [33], a well-studied problem in the data integration
literature, which were used to pass data into queriable Web forms to retrieve relation
results.

We illustrate using a view definition for the following CView predicate ping(Src,

Dest, &RTT):

def ping(Src, Dest, &RTT) {
p1 this.Req@Dest(Src,T) :- this.init(Src,Dest), T = f_now().
p2 this.Resp@Src(T) :- this.Req(Src,T).
p3 this.return(RTT) :- this.Resp(T), RTT = f_now()-T.

}

13

Any rule that must compute the RTT between two nodes can simply include the
ping predicate in the rule body. Here, this is a keyword used to express the context of
the CView. All predicates beginning with this are valid only locally within the ping

CView. There are two new built-in events/actions: this.init and this.return. Rule
p1, upon receiving event this.init along with the query keys Src and Dest, takes the
current timestamp T, and passes the data to the host Dest as a ping request. After the
destination node receives it in rule p2, a ping response event is immediately sent back
to the source with the timestamp. In rule p3, the source node calculates the round trip
time based on the timestamp and issues a this.return action that finishes the query
processing.

4.4.2. Composition and Resource Sharing
CViews are a natural abstraction for composing control plane functionalities over

different overlays. We provide an example to show how to construct trigger sampling
in i3 by composing Chord and RON using their respective CView definitions. We con-
sider the Chord lookup, whose CView is defined as follows: chord.lookup@Ldmk(Key,
&DestID, &DestAddr).

Given a query on Key, the CView returns the lookup result: the Chord ID (DestID)
and the network address (DestAddr) of the destination. In addition, RON maintains
several CViews to export the current pair-wise EWMA latency, bandwidth and loss
rate measurement results. The latency CView is:

ron.latency(Src, Dest, &EWMA_RTT)

When an i3 client tries to locate a private trigger that relays its traffic, it can leverage
the RON measurement results and find the best private trigger.

s1 bestPT(KeyAddr, K, RTT) :- periodic(SAMPLE_INTERVAL),
i3.underlay(LocalAddr), K = f_randID(),
chord.lookup@LANDMARK(K, &_, &KeyAddr),
ron.latency(LocalAddr, KeyAddr, &RTT).

s2 trigger@KeyAddr(NodeID, LocalAddr) :- periodic(TRIGGER_REFRESH_INTERVAL),
node(NodeID),
i3.underlay(LocalAddr),
bestPT(KeyAddr, _, _).

The rules s1-s2 are used by a local node LocalAddr to compute a private trigger
with the lowest RTT from itself. Note that attributes denoted by “ ” represent vari-
ables which are inconsequential to the output derived in the rule head, and are omitted
for simplicity. Periodically, every SAMPLE INTERVAL seconds, LocalAddr picks a ran-
dom node and obtains a sample RTT. The sampling is performed by rule s1 using the
chord.lookup CView predicate to locate a node KeyAddr corresponding to a random
identifier K. Then the ron.latency CView predicate obtains the RTT measurement be-
tween LocalAddr and KeyAddr. The use of CViews allows us to perform multiple dis-
tributed operations (Chord lookup, followed by RON measurement) all within a single
rule. Based on the sampling result stored in bestPT, rule s2 periodically refreshes the
current best trigger at the node KeyAddr.

14

To summarize, the advantages of CViews are as follows. First, CViews promote
code reuse and enable functionality composition between different overlays (as with
the shared ping CView). Second, CViews abstract details of asynchronous event-driven
programming. In the ping example, nodes are no longer required to maintain pending
state for every ping message that was sent out: the compiler automatically takes care
of that. This avoids the tedious churn and failure detection rules often required in
other declarative languages. This enhances readability and makes the code even more
concise: the use of CViews reduced the number of lines in the Mozlog version of Chord
by 8 rules (from 43 to 35).

4.5. Legacy Application Support

Mozlog also supports a built-in tun predicate specifically reserved for represent-
ing tunneled traffic via the tun virtual network device. This allows legacy applications
listening on the tun device to seamlessly tunnel traffic through MOSAIC overlay com-
positions. The tun predicate has the following schema: tun(IPPkt [,SrcIP, DestIP,

Protocol, TTL]). IPPkt represents the IP packet that is being tunneled. In addition,
the IP header fields SrcIP, DestIP, Protocol and TTL are optionally extracted and in-
cluded as additional attributes when they are required in Mozlog rules. The following
rules demonstrate the tun predicate for tunneling via a point-to-point and i3 overlay
respectively:

p2p_tun tun@Peer(Pkt) :- tun(Pkt), Peer = "12.34.56.78:1086".
i3_tun tun@Peer(Pkt) :- tun(Pkt, Src, Dest), Key = f_sha1(Dest),

Peer = i3_oid::Key.

Rule p2p tun sets up a point-to-point UDP tunnel between the local node and the
remote node listening at the UDP address 12.32.56.78:1086. This allows legacy appli-
cations at two end-points to communicate via a UDP tunnel implemented by MOSAIC.
Similarly, in rule i3 tun, a tunnel is set up via the i3 overlay. All packets generated by
the legacy application are sent via this rule to a remote legacy application running at
the i3 node with logical address Key generated using the SHA-1 hash of the destination
tunneling address. See Section 7.2 for implementation details.

5. Compiling Compositions

This section describes how the MOSAIC compiler automatically translates compo-
sition specifications into Mozlog rules. We first define the following reserved tables
stored at each node, which are used in the composition process later:

• netAddress(OID,Addr) tracks all current addresses Addr of the overlays OID

in which the local node participates. If a node n has a publicly reachable IP
address, a default entry is added as netAddress(0,current ip), where 0 is a
reserved ID for the Internet. OID can also refer to a bridged network, in which
case Addr can refer to a source routing address (See Section 5.3). Other overlay
specific addresses are maintained by the corresponding overlay modules.

15

• underlay(OID,Addr) is used in layering. It stores the mapping from an over-
lay’s OID to its current underlay’s runtime address Addr at the local node for each
deployed overlay. By updating this table, one can switch the underlay being
used.

• forward(OID,Addr) is used in bridging. It specifies that all packets designated
for overlay OID are to be sent to the designated gateway with address Addr.

5.1. Compilation Steps
To create an overlay network composition from scratch, the MOSAIC compiler

takes as input a composition specification as presented in Section 3.1, and then gener-
ates Mozlog rules that bridge and layer the appropriate overlay modules.

Algorithm 5.1 Pseudocode for composition process

1 input: spec as the composition specification
2

3 / / L a y e r i n g
4 for l in spec.composition.links :
5 match l with
6 L a y e r i n g top ove r bottom :
7 i f not top.nodelist ⊆ bottom.nodelist :
8 r a i s e E x c e p t i o n (” node s e t s a r e wrong f o r l a y e r i n g ”)
9 l a y e r i n g (top , bottom)

10

11 / / b r i d g i n g
12 for l in spec.composition.links :
13 match l with
14 B r i d g i n g f irst With second by type v i a gw as name :
15 / / b r i d g i n g two o v e r l a y s
16 a s s e r t (gw ∈ f irst.nodelist and gw ∈ second.nodelist)
17 b r i d g i n g (f irst ,second ,gw , type ,name)

Algorithm 5.1 is pseudocode that illustrates this process. For ease of exposition, we
base the translation on an abstract syntax of the composition specifications presented
in Appendix B. This abstract syntax can be constructed by processing the earlier
XML-based input in Appendix A. For instance, spec.composition.module in the ab-
stract syntax refers to the corresponding child element module within the composition
element of the XML tree.

In our pseudocode, we use a pattern matching syntax (keyword match) to exam-
ine and extract composition information. For instance, given a composition link l, a
bridging-based link matches an initial keyword “Bridging”, followed by the first over-
lay, the second overlay, and the gateway gw.

Lines 4-9 perform a check on the layering configuration, followed by the actual
layering itself. For each layering link in the input specifications, the main constraint to
be met is that the overlay nodes are also members of the underlay network. Here, we
check that the nodes in the underlay network are a superset of nodes in the overlay. We

16

use the pattern matching syntax to extract the overlay as top and the underlay as bottom
for any links that involve layering. Line 9 performs the actual task of bridging after
constraint checks are performed. This involves calling additional functions layering,
shown as Algorithm 5.2 in Section 5.2.

Lines 11-16 check that all constraints are met for composition links that involve
bridging multiple modules, followed by the actual bridging itself. If two modules are
bridged via a gateway, this gateway node must belong to the node list of both modules.
After the check is performed, the actual bridging is performed by invoking the bridging

function, shown as Algorithm 5.3 in Section 5.3.
After the compilation, the rules are shipped to the corresponding physical nodes

for deployment. To modify an existing network composition, most of the procedures
remain the same except that the node membership sets of existing overlays are ob-
tained by querying the directory service, and modified Mozlog rules are uploaded to
the physical nodes to implement the new composition.

5.2. Layering

Algorithm 5.2 Pseudocode for layering-related rule generation

1 function layering(top, bottom):
2 input: overlay top, overlay bottom / / l a y e r top ove r bottom
3 output: rules for layer bindings
4 for n in top.nodelist :
5 i f top.oid /∈ n.deployed : / / ne twork top i s n o t d e p l o y e d on node n
6 code = f e t c h (top.codeurl)
7 addRule (n , code)
8 addRule (n , "underlay(top.oid, Addr) :-
9 netAddress(bottom.oid, Addr).")

10 e l s e :
11 u p d a t e R u l e (n , "underlay(top.oid, Addr) :-
12 netAddress(bottom.oid, Addr)")

Layering of a control or data plane over another overlay’s data plane is achieved
through the use of the underlay table describing bindings from each overlay node to
its current runtime underlay address. Abstracting the bindings into a table provides a
simple mechanism for switching overlays: MOSAIC can simply update the underlay

table — changing both the underlay protocol and node address accordingly.
Given a composition specification with layering links, Mozlog rules are generated

to implement the layering. Algorithm 5.2 shows the pseudocode for rule generation.
The function addRule(n,r) is used to add a rule r to the node n. If executed at the
composition service, this means that all generated rules have to be shipped from the
service to be instantiated at each corresponding node.

If the overlay top is not deployed on the node n, we first add the overlay Mozlog
implementation to the code to be deployed on node n (Lines 6-7), then bind the address
of network bottom to the underlay table entry that belongs to network top (Line 8).
Note that symbols in italic fonts, including n, top.oid, and bottom.oid are constants

17

when added into the rule. If top is deployed, then there should be a rule that binds its
underlay table already. We update that rule to the new binding (Lines 11-12).

We illustrate using an example where there are two RON overlays, layered over
IP and i3. Based on the specifications, at every node, there are two instances of RON
executing (ron oid1 and ron oid2), and one instance of i3 (i3 oid). The following
Mozlog rules b1 and b2 are generated to build the two networks:

b1 underlay(ron_oid1, U) :- netAddress(0, U).
b2 underlay(ron_oid2, U) :- netAddress(i3_oid, U).

Since ron oid1 utilizes IP for routing, rule b1 takes as input netAddress(@N,0,U),
based on the executing node’s default IP address. On the other hand, ron oid2 routes
over i3, hence its underlay tuple stores the address of the underlying i3 oid node re-
trieved from the local netAddress table.

Note that the layering association is not static. A deployed, running overlay net-
work can switch the underlying network from one to another by updating its underlay
table entries at runtime. This enables dynamic overlay composition. We will discuss
an example of dynamic switching in Section 6.

Next, the rule to update the netAddress table is generated for the newly created
overlay. Because the rule is overlay specific, it is not automatically generated by the
compiler, but provided by the overlay programmers. For example, consider the i3
and RON overlays with identifiers i3 oid and ron oid respectively. In i3, its overlay
address is the SHA-1 hash of the node’s public key K (as shown in rule d1).

d1 netAddress(i3_oid, A) :- publicKey(K), A = i3_oid::f_sha1(K).

On the other hand, in RON, since its routable address is tightly coupled with its
underlay, its address is its own underlay address (typically the IP address that RON
uses) annotated with the overlay id as shown rule d2:

d2 netAddress(ron_oid, A) :- underlay(ron_oid,U), A = ron_oid::U.

Finally, data plane forwarding rules may also need to be slightly changed. We up-
date the RON forwarding rules snd and rcv from Section 4.3 in the context of layering:

snd ron_oid.send@Next(Dest,Packet) :- ron_oid.send(Dest, Packet),
ron_oid.RT(Dest, Next),
underlay(ron_oid, Local),
Local != Dest.

rcv ron_oid.recv(Packet) :- ron_oid.send(Dest, Packet),
underlay(ron_oid, Local),
Local = Dest.

The local address stored in localAddr is replaced by underlay(ron oid,Local),
where Local is the current underlay address of the overlay ron oid. Note that while
the above rules achieve the same functionality as the previous two rules in Section 4.3,
they are more flexible in allowing packets to route over underlays that can be switched
at runtime.

18

Algorithm 5.3 Pseudocode for bridging-related rule generation

1 function bridging(f irst, second, bridgetype,gw, bn):
2 input: overlay f irst, overlay second, gateway gw, bridge name bn
3 output: bridging related rules
4

5 gwAddr = d n s l o o k u p (gw)
6

7 for n in f irst.nodelist :
8 i f n 6= gw :
9 i f b r i d g e t y p e =” on−demand ” :

10 addRule (n , "netAddress(bn, Addr) :-
11 netAddress@gwAddr(second.oid, SecondGWAddr),
12 netAddress(f irst.oid, FirstNodeAddr),
13 Addr = sr::[SecondGWAddr, FirstNodeAddr].”)
14 e l s e : / / pre−c o n f i g u r e d method
15 addRule (n , "forward(second.oid, FirstGWAddr) :-
16 netAddress@gwAddr(first.oid, FirstGWAddr).")
17

18 for n in second.nodelist :
19 i f n 6= gw :
20 i f b r i d g e t y p e =” on−demand ” :
21 addRule (n , "netAddress(bn, Addr) :-
22 netAddress@gwAddr(f irst.oid, FirstGWAddr),
23 netAddress(second.oid, SecondNodeAddr),
24 Addr=sr::[FirstGWAddr, SecondNodeAddr].")
25 e l s e : / / pre−c o n f i g u r e d method
26 addRule (n , "forward(f irst.oid, SecondGWAddr) :-
27 netAddress@gwAddr(second.oid, SecondGWAddr).")

19

5.3. Bridging
Algorithm 5.3 shows the pseudocode for bridging two overlays named first and

second via a gateway node gw. In the pseudocode, we assume that the gateway gw

is reachable by the Internet which serves as the management channel, hence its ad-
dress gwAddr can be retrieved via DNS lookup on gw. Note that since gw participates in
both networks, it has two overlay nodes with addresses firstGWAddr and secondGWAddr,
one for each participating overlay that it bridges. As a result, at node gw, it main-
tains two netAddress entries for each one of its participating overlay node, i.e. entries
netAddress(first.oid, firstGWAddr) and netAddress(second.oid, secondGWAddr).
In addition, each node maintains a netAddress entry for the overlay it participates in.
For instance, a node firstNodeAddr in the first overlay will include an entry netAddress(

first.oid, firstNodeAddr) in its local netAddress table.
We focus on explaining the pseudocode from the perspective of the first overlay

(lines 7-16). The explanation for the second overlay is symmetrical. We first describe
the Mozlog rule generated for the on-demand method (lines 9-13). Recall from Sec-
tion 3.2.2 that in the on-demand method, source routing is used to create an explicit path
from a node in one network to another node in a bridged network, via an intermediate
gateway node. Our generated Mozlog rule (lines 10-13) distinguishes local predicates
at each node n from remote predicates at the gateway (indicated by @gwAddr).

Unlike the pre-configured case discussed below, since source routing is used, no
explicit forwarding state need be maintained. Instead, the main goal is to set up the
appropriate netAddress entries for the new bridge such that source routes can be later
created in order to route to nodes within the bridge networks. Mozlog supports a source
routable address type of the form sr::[gateway, dest], which explicitly describes the
data path to dest via an intermediate gateway node. All nodes will automatically han-
dle the forwarding of such messages to the next recipient in the path as specified in the
source route. For instance, at overlay first, its netAddress table for the bridge bn main-
tains a source address sr::[SecondGWAddr,FirstNodeAddr], which indicates that in or-
der for a node in the second overlay to reach the node with address FirstNodeAddr in
the first overlay, the packet has to first traverse to the gateway node SecondGWAddr in the
second overlay, before the packet can be sent to the destination node FirstNodeAddr.

In the pre-configured method (lines 14-16), the address of the gateway gw for over-
lay oid is stored in a local forward table at each node. For instance, at the first over-
lay, its local forward(second.oid, firstGWAddr) table indicates that in order to route
to the overlay second, the packet has to be first routed to gw node, specifically the
firstGWAddr overlay node on the gateway that is also participating in the first overlay.
When the packet reaches firstGWAddr, it is then forwarded to the appropriate node in
overlay second based on the destination address stored in the packet. Unlike the earlier
on-demand method, no source routing is required.

6. Composition Examples

MOSAIC can support flexible overlay compositions including bridging, layering
and hybrid compositions. We present two examples, one that revisits the mobile VoIP
example introduced in Section 1, and a second that illustrates dynamic composition.
Appendix A gives an XML composition specification based on the first example.

20

overlay id address
alice net alice internal ip

br1 sr::[alice gateway ip, alice internal ip]
br2 sr::[ron oid::alice gateway ip, alice internal ip]

i3 oid i3 oid::alice id

Table 1: netAddress table at Alice

overlay id address
0 alice gateway ip

alice net alice gw internal ip
ron oid ron oid::alice gateway ip

Table 2: netAddress table at Alice’s gateway

6.1. VoIP between Alice and Bob

Consider the example of Section 1. An overlay composition can solve the problem.
Suppose there is a publicly available i3 overlay network, and Alice uses her gateway
node at home to form a private RON network with Bob and her other friends. Alice and
Bob agree on the composition specification shown in Figure 4. Based on the overlay
specification, MOSAIC generates the Mozlog rules to compose overlays together.

Because Alice’s situation mirrors Bob’s, we use Alice’s rules and network state
to explain the composition process. First, at Alice’s gateway, we configure the RON
overlay network over IP as:

c1 underlay(ron_oid,A) :- netAddress(0,A).

We then use bridging to create publicly reachable addresses br1 and br2 as shown
in Table 1. br1 bridges the internal network AliceNet with the public IP network, and
br2 bridges AliceNet with the RON network.

Finally, we layer i3 over the bridged networks we created. Because Alice wants to
have reliability for VoIP, we choose the bridging overlay with br2 as i3’s underlay. The
composition rule deployed at the Alice node is as follows:

c2 underlay(i3_oid,A) :- netAddress(br2,A).

When Bob initiates a VoIP call to Alice, he first uses Alice’s i3 ID to look up
her public trigger, and sends traffic to Alice via i3’s indirection path. After they have
located each other, they switch to the i3 shortcut data path as the underlay network
specifies, which is layered on top of RON and can traverse internal networks (e.g.,
those behind NATs) using source routing along the gateways.

6.2. Dynamic Composition of Chord over IP and RON

To illustrate dynamic composition, we use the Chord DHT to show the benefit of
dynamically switching the underlying data path from IP to RON. In Chord, temporary
network failures may create non-transitive connectivity between the nodes, possibly

21

creating problems such as invisible nodes, routing loops and broken return paths [11].
Instead of altering the DHT protocol, an alternative is to layer Chord over a resilient
routing protocol such as RON that eliminates non-transitivity. Layering Chord over
RON can be viewed as trading scalability for performance.

Ch d

Chord

Chord

RON

switchUnderlay (ron_oid)

rule s1

IP

RON

IPswitchUnderlay(0)

rule s1
rule s2

IPswitchUnderlay(0)

Figure 5: Dynamic composition of Chord over two different underlays (IP and RON).

The following rules define two types of layering: Chord over IP and Chord over
RON (See Figure 5):

s1 underlay(chord_oid,A) :- netAddress(OID,A), switchUnderlay(OID).
s2 underlay(ron_oid,A) :- netAddress(0,A).

In s1-s2, we added a switchUnderlay(OID) predicate to switch Chord’s underlay
to that indicated by the OID variable. This switchUnderlay can itself be triggered by an
event sent from the administrator based on changes to the overlay specifications. Rule
s1 indicates that Chord uses IP as the underlying address when OID is 0, and RON when
OID is ron oid. Rule s2 defaults RON to use IP at all times. To switch between the two
layering schemes, one only needs to generate switchUnderlay accordingly.

Dynamic switching is useful because the trade-off between scalability and perfor-
mance is at the discretion of the Chord administrators, who can make decisions based
on network conditions, requirements, etc. If a new overlay providing both resiliency
and scalability (e.g. SOSR [14]) becomes available, one can switch Chord’s underlay
from RON to the new one to further improve scalability. Unlike restarting Chord from
scratch, dynamic switching preserves existing state in the network such as key/value
pairs without disrupting the DHT lookup service. Once the Chord underlay network
address is changed on a node, the stabilization process will propagate it to the node’s
successors, predecessor and other nodes that have it in its finger table. We present our
experimental evaluation of this example in Section 8.3.

7. Implementation

The MOSAIC platform builds on the P2 [21] declarative networking system, adding
significant new functionalities. The P2 planner and dataflow engine have been re-
vised to generate execution plans that accommodate new language features of Mozlog:
specifically, those related to runtime support for dynamic location specifier, data plane
forwarding, and interactions with legacy applications.

22

MOSAIC takes a Mozlog program, compiles it into distributed P2 dataflows [21],
and deploys it to all nodes that participate in the overlay. A single node may host mul-
tiple overlay networks at the same time. P2 dataflows resemble the execution model of
the Click modular router [18], which consists of elements that are connected together
to implement a variety of network and flow control components. In addition, P2 ele-
ments include database operators such as joins, aggregation, selections, and projections
that are directly generated from queries. Each local dataflow participates in a global,
distributed dataflow across the network, with messages flowing among elements at dif-
ferent nodes, resulting in updates to local tables. The local tables store the state of
intermediate and computed query results, including structures such as routing tables,
the state of various network protocols, and data related to their resulting compositions.
The distributed dataflows implement the operations of various network protocols. The
flow of messages entering and leaving the dataflow constitute the network packets gen-
erated during query execution.

7.1. Dataflow Execution

Network In

Mux TimedPullPush
0Queue

Overlay
Recv

Unwrap

Receive
Demux

TimedPullPush
0

Round
Robin

LocSpec
Demux

Overlay
Send Wrap

QueueNetwork Out IP

overlay

local

Figure 6: System dataflow & dynamic location specifiers.

Figure 6 shows a typical execution plan generated by compiling Mozlog rules. Sim-
ilar to P2 dataflows, there are several network processing elements (Network In and
Network Out) that connect to individual rule strands (inside the gray box) that corre-
spond to compiled database operators. Here, we focus on our modifications, and the
interested reader is referred to [21] for details on the dataflow framework.

23

To implement dynamic location specifiers and overlay forwarding on the data plane,
we modify the planner to automatically generate three additional MOSAIC elements
shown in bold in the dataflow: OverlayRecvUnwrap, OverlaySendWrap, and LocSpecDemux.
The elements OverlayRecvUnwrap and OverlaySendWrap are used for de-encapsulation
and encapsulation of tuples from overlay traffic.

At the top of the figure, the Mux multiplexes incoming tuples received locally or
from the network. These tuples are processed by the OverlayRecvUnwrap element that
extracts the overlay payload for all tuples of the form overlay.recv(Packet), where
Packet is the payload with type tuple. Since the payload may be encapsulated by
multiple headers (for layered overlays), this element needs to be “unwrapped” until
the payload is retrieved. The Packet payload is used as input to the dataflow via the
ReceiveDemux element, which itself is then used as input to various rule strands for
execution.

Executing the rule strands results in the generation of output tuples that are sent to a
LocSpecDemux element. This element checks the runtime type of the location specifier,
and then demultiplexes as follows:

• Tuples tuplename(F1, F2, ..., Fn) are local tuples and sent to the Mux.

• Tuples tuplename@IPAddr(F1, F2, ..., Fn) are treated as regular IP-based tu-
ples and sent to the network directly.

• Tuples tuplename@oid::ovaddr(F1, F2, ..., Fn) are designated for overlay net-
work oid with address ovaddr. A new event tuple oid.send(ovaddr, tuplename(F1,

F2, ..., Fn)) which denotes the send primitive of the overlay network oid

is generated (see Section 4.3). This new tuple is reinserted back to the same
dataflow to be forwarded based on the overlay specification.

7.2. Legacy Support
We use the tun device to provide overlay tunnels between legacy applications at

the network layer. The tun predicate is reserved for legacy support, and tuples using it
are treated differently from ordinary tuples in the dataflow. Each special predicate has
a rule strand in the dataflow, between the ReceiveDemux element and the RoundRobin

element (see Figure 6). Two elements Tun::Tx and Tun::Rx are inserted in the tun rule
strand right after ReceiveDemux. Tun::Rx reads IP packets from the tun device, gener-
ates the tun tuple, and sends to the next element in the rule strand; Tun::Tx receives a
tun tuple, formats it as an IP packet and writes to the tun device.

For each end host, it takes a private IP address from 1.0.0.0/8 to avoid conflicts with
other public IP networks. After a legacy application sends a packet to an address in the
tun network, the kernel redirects it to MOSAIC, where the Tun::Rx element generates
a tun tuple. Currently there is an address translation rule that uses a special mapping
table to translate the private IP address to the overlay address. This can be extended
in the future to use any name resolution service by combining DNS request hijack-
ing [15]. After address translation, the packet tunneling rules such as the rule i3 tun of
Section 4.5 deliver the IP packet to the destination via the corresponding overlays. Af-
ter the tun tuple is delivered to the remote node, it is redirected to the tun device by the
element Tun::Tx, and finally the tunneled packet is received by the legacy application.

24

To support a legacy overlay that is not implemented in MOSAIC, we build an
adapter for the overlay to interact with MOSAIC via the send and recv primitives. The
adapter redirects the legacy.send tuple from the dataflow to the overlay, and injects
the legacy.recv tuple upon overlay’s packet reception. Because the legacy overlays
are built on IP, they can only be bridged with other overlays or used as substrates un-
derneath other networks, but cannot be layered on top of another overlay for either the
control or the data plane.

7.3. Compilation of CViews

The Mozlog-to-NDlog translator rewrites and expands all CView rules into NDlog
rules, which can then be compiled into dataflow strands using the P2 planner. The
compilation process involves a query rewrite that takes as input all CView predicates,
and expands them into multiple NDlog rules based on their view definitions.

Since this process resembles function call compilation, we reuse the terms caller
and callee. A rule that takes an input CView predicate is the caller. The set of rules
based on the view definition (e.g., rules p1-p3 in Section 4.4) comprises the operations
of the callee.

In a typical C compiler, the caller maintains a stack, pushing local variables (exe-
cution context) and the return address before a call. Similarly, for each CView input
predicate viewName[@locSpec] (K1,...,Kn, &R1,...,&Rm), the execution context is all
the bound variables K1,...,Kn and the variables that appear in the rule body before the
CView term. The expanded rules are executed, and the local variables are stored in
a designated internal context table. This local state is stored for the duration of view
execution. Each expanded set of rules replaces the this prefix in the original view defi-
nition with a query context identifier CID that uniquely identifies the current invocation
of the view, and a return address RetAddr of the caller. When the caller has finished
executing all the rules for the view, the results are returned to the caller (RetAddr).

We use the following ping CView presented in Section 4.4 to demonstrate the
CView compilation process. The following rules show the compilation result from
the ping module. All predicates within the CView are appended with two fields, CID as
the query context identifier and LVReturnAddr as the return address to the caller.

ping_p1 ping_pingReq(@RI,NI,T,CID,LVReturnAddr):-
ping_init(@NI,RI,CID,LVReturnAddr), T = f_now().

ping_p2 ping_pingResp(@RI,T,CID,LVReturnAddr):-
ping_pingReq(@NI,RI,T,CID,LVReturnAddr).

ping_p3 ping_return(@LVReturnAddr,Delay,CID):-
ping_pingResp(@NI,T,CID,LVReturnAddr), Delay = f_now()- T.

Suppose the caller rule is

r1 pingResult(@NI,RI,Delay):- periodic(@NI,E,2),
RI=DESTADDR, ping(@NI, RI, &Delay).

25

Rule r1 periodically measures the RTT to the destination node RI. The translation
result is showed as follows:

r1_cxt r1_ctxt(@NI,CID,E,RI) :- periodic(@NI,E,2),
RI=DESTADDR,
CID = f_rand().

r1_init ping_init(@NI,RI,CID,NI) :- r1_ctxt(@NI,CID,E,RI).
r1_return pingResult(@NI,RI,Delay):- r1_ctxt(@NI,CID,E,RI),

ping_return(@NI,Delay,CID).

First, a table r1 ctxt is generated to store query identifiers and query context
(bound variables before the CView term) locally. Second, rule r1 cxt generates a
unique query identifier CID and saves the context variables (NI, E, RI). Then, rule
r1 init invokes the ping CView, and finally rule r1 return takes the return tuple
from the ping CView, which is joined with the saved context, and emits the result
pingResult.

8. Evaluation

In this section, we present the evaluation of MOSAIC on a local cluster and on
PlanetLab. First, we validate that Mozlog specifications for declarative networks, com-
positions, tunneling and packet forwarding are comparable in performance to native
implementations. Second, we use our implementation to demonstrate feasibility and
functionality, using actual legacy applications that run unmodified on various com-
posed overlays using MOSAIC. Third, we evaluate the dynamic composition capabili-
ties of MOSAIC.

In all our experiments, we make use of a declarative Chord implementation which
consists of 35 rules. Our i3 implementation uses this Chord and adds 16 further rules.
We also implement the RON overlay in 11 rules. Both i3 and RON can be used by
legacy applications via the tun device, as described in Section 4.5.

8.1. LAN Experiments
To study the overhead of MOSAIC, we measured the latency and TCP throughput

between two overlay clients within the same LAN. The experiment setup was on a
local cluster with eight Pentium IV 2.8GHz PCs with 2GB RAM running Fedora Core
6 with kernel version 2.6.20, which are interconnected by gigabit Ethernet. While
the local LAN setup and workload is not typical of MOSAIC’s usage, it allows us to
eliminate wide-area dynamic artifacts that may affect the measurements. We measured
the latency using ping and TCP throughput using iperf.

In the experiments, we use the tun device to provide legacy application support for
network layer overlays. MTU was reduced to 1250 bytes to avoid fragmentation when
headers were added. The measurement results are shown in Table 3 for the following
test configurations:
DirectIP: Two nodes communicate via direct IP, where iperf can fully utilize the
bandwidth of the Gigabit network. This serves as an indication of the best latency and
throughput achievable in our LAN.

26

test latency(ms) throughput (KByte/s)
DirectIP 0.10 97994

OpenVPN 0.30 13951
MozTun 0.50 8353

RON 0.71 5796
i3 1.31 3299

Table 3: Overhead comparison in LAN

OpenVPN: OpenVPN [1] is a widely used tunneling software system. Using Open-
VPN version 2.0.9, we set up a point-to-point tunnel via UDP between two cluster
nodes and disabled encryption and compression. The performance results provide a
baseline for the overhead using the tun device virtualization. Compared to DirectIP,
the latency increases by around 0.2ms, and the TCP throughput drops by a factor of
more than 6. This overhead is inevitable for all overlay networks supporting legacy
applications using the tun device, including those hosted on MOSAIC.
MozTun: We set up a static point-to-point tunnel in MOSAIC between two cluster
nodes. MozTun and OpenVPN essentially have the same functionality except that
MozTun is implemented in MOSAIC. The additional overheads in throughput and la-
tency are solely from the MOSAIC dataflow processing overhead bounded by CPU ca-
pacity. In MozTun, the latency increased 0.20ms over OpenVPN, which is negligible
when executed over wide-area networks.
RON: We ran the RON network using MOSAIC and utilize two nodes to run the mea-
surements. Since RON does not provide any benefit in our LAN setting as there are
no failures, the comparison to MozTun is used to show the extra overhead for rule
processing in our implementation.
i3: Six nodes were set up as i3 servers, using Chord to provide lookup functionality.
The remaining two nodes were selected as i3 clients. A packet sent by the source i3
client to the destination i3 client went through the public trigger of the destination,
which was hosted on the i3 server of another cluster node. Since it introduced a level
of indirection plus extra rule processing overhead, i3 added the most cost among the 5
configurations studied.

In summary, the overhead of MOSAIC is respectable: the throughput of MOSAIC’s
point-to-point tunneling (MozTun) is comparable to that obtained by using well-known
tunneling software (OpenVPN). In the extreme case (the additional level of indirection
of i3 with tunneling), the additional latency (1.2ms) incurred is negligible for an ap-
plication running on wide-area networks. Later, in Section 8.2, we will validate the
performance of a composed overlay on the Planetlab testbed.

8.2. Wide-area Composition Evaluation

We deployed MOSAIC on PlanetLab to understand the wide-area performance ef-
fects of using the system. We purposely chose a composed overlay including i3, RON,
source routing, and tunneling for legacy applications (all implemented within MOSAIC
in 69Mozlog rules) to bring the Alice example from the introduction and Section 6.1 to
a resolution.

27

Our experimental setup is as follows. As our end-host, we used a Linux PC in
New Jersey with a high speed cable modem connection (4Mbps downstream speed)
as the gateway node, which performed NAT for a Thinkpad X31 laptop. The laptop
functioned as our server, using Apache to serve a 21MB file. The file was downloaded
from a machine in Utah with a modified version of wget that records the download
throughput.

These two nodes in New Jersey and Utah, plus three additional nodes (two on the
East Coast of the US, and one on the West Coast of the US), were used to form a private
RON network. We further selected 44 PlanetLab nodes, mostly in the US, to run i3.
During the experiment, we validated the functionality of resilient routing provided by
RON by manually injecting network failures via changing the firewall rules on the
gateway to block the downloader’s traffic 30 seconds after wget was started; then we
unblocked the traffic after another 30 seconds. For the purposes of comparison with the
best case scenario, we repeated the same test using direct IP communication. Note that
direct IP loses all the benefits of our composed overlay (no resilience, NAT, or mobility
support), but achieves the best possible performance. Since our server was behind a
NAT, in the direct IP experiment, we had to manually set up a TCP port forwarding
rule on the gateway node to reach the Apache server. We repeated multiple runs of the
experiments and observed no significant differences.

Figure 7 shows the throughput of the download over time for MOSAIC and Di-
rectIP. Network failures were injected 30 seconds after experiment start, and removed
after 30 additional seconds. We make the following observations. First, MOSAIC’s
performance over the wide area is respectable. Despite implementing the entire com-
posed overlay (including legacy support for applications using MOSAIC) in Mozlog,
we incurred only 20% additional overhead compared to using direct IP, while achiev-
ing the benefits of mobility, NAT support and resilient routing. The majority of the
overhead comes from the extra packet headers for the composed overlay protocols—an
overhead that is repaid with significant functionality. Second, with respect to the func-
tionality of our composed overlay, we were able to achieve successful downloads from
a server behind a NAT using MOSAIC. In addition, resilient routing was achieved: the
RON network periodically monitored the link status and recovered from routing fail-
ures. Hence, during the period where we injected the routing failures, MOSAIC was
able to make a quick recovery from failure, as is shown by the sustained throughput.
On the other hand, DirectIP suffered a failure (and hence a drop of throughput to zero)
during the 30-60 second period. Overall, MOSAIC finished the download in a shorter
time despite lower throughput, due to the resiliency of RON.

8.3. Dynamic Overlay Composition

In our final experiment, we evaluate the dynamic composition capabilities of MO-
SAIC. Our setup consists of an 8-node cluster, where each node has a hardware config-
uration similar to the setup in Section 8.1.

As a baseline prior to the dynamic switching experiment, we made static com-
parisons between two composed networks: we executed Chord-over-IP and Chord-
over-RON on our cluster, which consists of the Chord overlay on top of IP and RON
respectively. Our network size is 16, where each machine executed two instances of the

28

composed overlay nodes. In the steady state, each node periodically issues a lookup re-
quest. A lookup is accurate if the results of the lookup are correct, i.e., the results point
to the node whose key is the closest successor of the lookup key. Based on this defi-
nition, we compute the lookup accuracy rate, which is the fraction of accurate lookups
over the duration of each experimental run at every 1 minute interval. Network link
failures are emulated by changing the firewall settings in the cluster to drop packets
between the selected nodes.

Figure 8 shows our evaluation results over a period of 20 minutes, with the first
link failure at the 7th minute, then the second link failure at the 10th minute, and the
failures recovered at the 16th minute. When the first link failure occurred, we observed
that lookup accuracy of Chord-over-IP dropped to 93%. The accuracy further dropped
to 86% when the second link failure occurred, only to recover when network connec-
tivity was reestablished. On the other hand, Chord-over-RON continued to sustain high
lookup accuracy (> 99%) even in the face of network failures, due to its ability to find
alternative routes quickly.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140

th
ro

ug
hp

ut
 K

B
/s

elapsed time (second)

Mosaic
Direct IP

Figure 7: Throughput comparison between overlay composition in Mosaic vs direct IP connection during
network failure.

Having compared the composed overlays separately, we next evaluate MOSAIC’s
dynamic switching capability, where we started with Chord-over-IP, and then switched
our composition to Chord-over-RON after 7 minutes. This dynamic switching is achieved
by merely changing the underlay address of Chord from IP to RON, as described in
Section 6. Figure 9 shows the resulting lookup accuracy over a period of 15 minutes.
We observe that during the process of switching its underlay from IP to RON, Chord
continued to sustain high lookup accuracy, demonstrating that MOSAIC is able to per-
forming dynamic switching seamlessly.

9. Related Work

Composing a plurality of heterogeneous networks was proposed in Metanet [41],
and also examined in Plutarch [8]. One of the implementation examples to connect

29

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
lo

ok
up

 a
cc

ur
ac

y

time (minute)

chord over IP
chord over RON

Figure 8: Lookup accuracy comparison between
Chord over IP and Chord over RON.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

time (minute)

lo
ok

up
 a

cc
ur

ac
y

chord over IP
chord over RON

Figure 9: Chord lookup performance during dy-
namic underlay network switching from IP to
RON.

multiple networks together is AVES [30]. Oasis [24] and OCALA [15] provide legacy
support for multiple overlays. Oasis picks the best single overlay for performance.
OCALA proposes a mechanism to stitch (similar to MOSAIC’s bridge functionality)
multiple overlay networks at designated gateway nodes to leverage functionalities from
different overlays. Some projects focus on application level service composition, with
different emphases, such as adaptive configuration based on network conditions [12],
fault tolerance and personalization [27] and performance and QoS awareness in P2P
environments [13].

In contrast, MOSAIC’s primary focus is on overlay network specification and com-
position within a single framework. As a result, MOSAIC is complementary to OCALA
and Oasis. MOSAIC’s use of a declarative language results in more concise overlay net-
work specification and composition, whose performance is quite comparable to native
code. MOSAIC also provides support for layering in addition to bridging. Finally, MO-
SAIC is not limited to IP-based networks, supports dynamic composition, and routing
primitives such as unicast and multicast. These benefits result in better extensibility
and evolvability of MOSAIC over existing composition systems.

Another class of composition work is Web service composition, as surveyed by
Milanovic and Malek [28]. Each Web service serves like a remote procedure call over
HTTP or HTTPS, and provides a relatively basic functionality, which is described with
additional pieces of information, either by a semantic annotation of what it does and/or
by a functional annotation of how it behaves. The industry standard specification is
Web Service Definition Language (WSDL) [6]. A complicated application logic is
built by composing multiple Web services together, which is described separately in
a flow specification, such as Business Process Execution Language for Web Services
(BPEL4WS) [3]. The process of obtaining the composition flow is either manual or in
some cases can be assisted by an AI planning software in the context of semantic Web.

Compared with network service composition, the major difference is that Web ser-
vices are best described with request/response models, where usually only a single
entity is involved in utilizing a service (the service may still be provided by multi-
ple providers). On the other hand, network services are based on send/receive models,
where two (a sender and a receiver) or more (in the case of multicast/broadcast) entities

30

participate in the process. Goal-based AI planning work and automatic composition in
Web services may provide a viable path towards automatic network composition.

In contrast to the declarative networking concept [22, 21], on which it is built, MO-
SAIC not only uses the declarative language to do quick prototyping of new overlay
protocols, but also achieves interoperability among existing overlays by using simple
yet flexible query-style interfaces between networks. This allows the system to provide
automation in composing different networks together to implement a combination of
multiple features. The Mozlog language provides new features to support composition,
as well as legacy application support. Finally, the MOSAIC runtime system perfor-
mance is optimized by both novel compiler-based techniques and careful engineering
efforts so that query executions are up to 10 times faster than P2.

System Domain Composition Abstraction Dynamic
MOSAIC Overlay and IP Layer,Bridge High (declarative) Yes

Web services WWW applications Layer,Bridge Varies No
Oasis Overlay Bridge Low No

OCALA Overlay Bridge Low No

Table 4: Comparison of related work.

Table 4 compares MOSAIC against 3 representative systems along the dimensions
of domain (layer in the software stack), composition (layering vs bridging or both),
level of abstraction in the composition specification language, and whether the com-
positions can be dynamically adapted at runtime. With the exception of Web services
composition, all of the systems that have surveyed target the overlay networks at the
application layer. In a clean-slate Internet design, MOSAIC has the advantage that it
can be deployed at the IP layer as well. Oasis and OCALA do not support layering,
while MOSAIC and most Web service composition frameworks allow both layering
and bridging of components. In terms of language abstractions, MOSAIC is the most
declarative, via the use of Mozlog. WSDL is also a highly declarative language used
in Web service compositions, although the range of abstractions can vary greatly in
Web services. Finally, MOSAIC provides dynamic runtime adaptation of compositions
based on changing network and application conditions. This feature is not present in
the other systems.

10. Conclusions and Future Work

MOSAIC is an extensible infrastructure that enables the specification and dynamic
composition of new overlay networks. MOSAIC provides declarative networking: it
uses a unified declarative language (Mozlog) to specify new overlay networks, and
a novel runtime to enable composition in both the control and data planes. We have
demonstrated MOSAIC’s composition capabilities via deployment and measurement on
both a local cluster and the PlanetLab testbed, and showed that the performance over-
head of MOSAIC is respectable compared to native implementations, while achieving
the benefits of overlay composition.

31

This paper extends our previous work [26] as follows. First, in Section 4.4, we
introduce the notion of Composable Virtual Views (CViews), which enables one to
modularize Mozlog rules into component networks and features for reuse. Using ex-
amples such as the Chord DHT, we describe the syntax and usage of CViews. Sec-
ond, in Section 7.3 , we describe the extension of MOSAIC to support CViews, via a
rewrite process that translates CViews into regular Mozlog rules for execution. Third,
in Section 5.1, we have included a detailed description of the compilation process, from
composition specifications to declarative Mozlog programs for execution. Finally, in
Appendices A and B, based on the composition scenario described in Section 6, we
provide an example composition specification in XML, and its corresponding abstract
syntax that is used as input to the compilation process.

This paper makes the following contributions:

• A novel network architecture (MOSAIC) that enables new overlay networks to
be implemented, selected, and dynamically composed based on application re-
quirements.

• The declarative programming language called Mozlog that concisely specify
high-level network protocol specifications. The language is used for implement-
ing component overlay networks, and also is a basis for implementing the com-
position “glue code” among different overlay networks.

• A MOSAIC prototype implementation that compiles composition specifications
into Mozlog, which are further used to generate efficient distributed dataflow-
based implementations. The source code of the Mozlog compiler and the dataflow
engine is available under an open-source license at http://trac.research.
att.com/trac/mosaic.

• Experimental results in a local cluster and the PlanetLab testbed that validate
MOSAIC’s capabilities in enable dynamic and flexible compositions.

One promising avenue for future work is in further exploring the ability to per-
form automated network composition, namely, given application requirements, net-
work properties and constraints, can the composition service automate the process of
forming a composition? MOSAIC provides a framework towards enabling such a capa-
bility, but substantial research is required to fully realize automated composition.

Acknowledgments

This material is based upon work supported in part by NSF CAREER CNS-0845552,
NSF CNS-0721845, IIS-0513778, and IIS-0477972. Yun Mao was supported in part
by the Olga and Alberico Pompa Professorship of Engineering and Applied Science.

Appendix A. Composition Specification Example

The following XML specification is based on the Alice-and-Bob composition presented in
Section 6. The first part of the specification consists of bindings, that are used to initialize the IP

32

addresses of various subnets (AliceSubNet and BobSubNet), and regular hosts that serve either
as gateway nodes (AliceBW and BobGW) or regular host (AlicePC).

These bindings are then used as a basis for creating new or using existing modules. These
modules essentially represent overlay networks components. For instance, the specifications
below creates a new module for AliceNet and BobNet, and adds gateway nodes AliceGW and
BobGW to an existing RON overlay identified by ron oid. The RON overlay also includes a
URL to a known location storing the implementation code for the overlay.

Finally, these modules are connected together via link specifications which compose mod-
ules either by layering or bridging. In this example, AliceNet and RON are bridged together via
the AliceGW gateway, while BobNet and RON are bridged via the BobGW gateway. In addition,
the i3 overlay is layered over RON, which itself is layered over IP (default with 0 as identifier).

<mosaic>
<bindings>
<subnet>
<name>AliceSubNet</name>
<ip>10.1.1.0</ip>
<mask>255.255.255.0</mask>

</subnet>
<subnet>
<name>BobSubNet</name>
<ip>10.2.1.0</ip>
<mask>255.255.255.0</mask>

</subnet>
<node><name>AliceGW</name>
<ip id="AliceSubNet">10.1.1.1</ip>
<ip id="0">123.45.67.8</ip>

</node>
<node> <name>AlicePC</name>
<ip id="AliceSubNet">10.1.1.12</ip>

</node>
<node><name>BobGW</name>
<ip id="0">234.56.78.1</ip>

</node>
</bindings>
<composition>
<module oid="AliceNet" Name="IP" type="Existing" />
<module oid="BobNet" Name="IP" type="Existing" />
<module oid="ron_1" name="RON" type="Extend">
<nodelist>
<node>AliceGW</node>
<node>BobGW</node>

</nodelist>
<codeurl>http://www.mosaic-system.net/ron/v1</codeurl>

</module>
<module oid="i3_1" name="i3" type="Extend">
<nodelist>
<node>AliceGW</node>
<node>BobGW</node>

</nodelist>
<codeurl>http://www.mosaic-system.net/i3/v1</codeurl>

</module>

<link type="bridge" name="AliceBridge">
<first>AliceNet</first>
<second>ron_1</second>

33

<gateway>AliceGW</gateway>
<type>on-demand</type>

</link>
<link type="bridge" name="BobBridge">
<first>BobNet</first>
<second>ron_1</second>
<gateway>BobGW</gateway>
<type>on-demand</type>

</link>
<link type="layer">
<top>i3_1</top>
<bottom>ron_1</bottom>

</link>
<link type="layer">
<top>ron_1</top>
<bottom>0</bottom>

</link>
</composition>

</mosaic>

Appendix B. Abstract Syntax of Composition Specification

spec ::= Spec(bindings,composition)
bindings ::= binding | binding, bindings
binding ::= subnet | node
subnet ::= Subnet(NAME,ADDR,MASK)
node ::= Node(NAME, addrlist)
gateway ::= node
addrlist ::= ADDR | ADDR, addrlist
composition ::= Composition(modules, links)
modules ::= module | module, modules
module ::= existing | new | extend
existing ::= Existing(NAME, OID)
codeurl ::= URL
new ::= New(NAME, OID, nodelist, [gateway], [codeurl])
extend ::= Extend(NAME, OID, nodelist)
nodelist ::= node | node, nodelist
links ::= link | link, links
link ::= layering | bridging
layering ::= Layering OID Over OID
bridging ::= Bridging OID With OID By BRIDGETYPE Via NAME As NAME

Figure B.10: Abstract syntax of composition specification

Figure B.10 shows the abstract syntax of the composition specification, that is used as a
basis for representing the inputs to the composition algorithms in Section 5. We refer to terms
in Italic as type identifiers, and terms in CAPS as primitive types. In particular, NAME (string),

34

ADDR (network address), OID (overlay ID), MASK (network mask), BRIDGETYPE (either
“on-demand” or “pre-defined” as two ways of bridging) and URL are primitive types.

The specifications are divided into bindings and composition. Bindings are used for initial-
izing the name and address of each participating host in the composition. They can also refer to
a group of nodes (subset). Each node is identified by its label (NAME) and IP address (ADDR),
whereas each subnet additionally includes a network mask (MASK).

A composition is comprised of modules (i.e. component overlay) and links that compose
overlays together. Each module specification can either refer to an existing overlay component
(Existing), extend an existing component by adding more nodes (Extend), or be created entirely
from scratch (New). When a new overlay component is created, it is initialized with the name of
a component (NAME), a unique identifier (OID), a list of nodes participating in the component
(nodelist), an optional default gateway (node), and an optional URL that references the code
that implements the component. Each link specification refers to either layering, or bridging.
Here, the layering specification layers one module over another, while the bridging specification
bridges one module with another via a specified gateway node.

References

[1] OpenVPN: Building and Integrating Virtual Private Networks.
http://www.openvpn.net.

[2] David Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris. Re-
silient Overlay Networks. In Proceedings of ACM Symposium on Operating Sys-
tems Principles (SOSP), 2001.

[3] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland,
Johannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug
Smith, Satish Thatte, Ivana Trickovic, and Sanjiva Weerawarana.
Business Process Execution Language for Web Services. 2003.
http://www.ibm.com/developerworks/library/specification/ws-bpel/.

[4] Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and Ion
Stoica. Looking Up Data in P2P Systems. Communications of the ACM, Vol. 46,
No. 2, February 2003.

[5] Hari Balakrishnan, Karthik Lakshminarayanan, Sylvia Ratnasamy, Scott Shenker,
Ion Stoica, and Michael Walfish. A Layered Naming Architecture for the Inter-
net. In Proceedings of the ACM SIGCOMM Conference on Data Communication,
2004.

[6] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weer-
awarana. Web Services Description Language (WSDL) 1.1. 2001.
http://www.w3.org/TR/wsdl.

[7] D. Clark, C. Partridge, J. C. Ramming, and J. Wroclawski. A Knowledge Plane
for the Internet. In Proceedings ACM SIGCOMM Conference, Karlsruhe, Ger-
many, August 2003.

35

[8] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield. Plutarch: An
Argument for Network Pluralism. In Proceedings of ACM SIGCOMM Workshop
on Future Directions in Network Architecture (FDNA), 2003.

[9] John R. Douceur and Jon Howell. Distributed directory service in the farsite file
system. In Proceedings of the 7th symposium on Operating Systems Design and
Implementation (OSDI’06), pages 321–334, Seattle, Washington, 2006.

[10] M. Freedman, K. Lakshminarayanan, and D. Mazieres. OASIS: Anycast for any
service. In Proceedings of the 3rd Symposium on Networked Systems Design and
Implementation (NSDI’06), 2006.

[11] Michael J. Freedman, Karthik Lakshminarayanan, Sean Rhea, and Ion Stoica.
Non-Transitive Connectivity and DHTs. In Proceedings of the Second Workshop
on Real, Large Distributed Systems (WORLD’05), 2005.

[12] Xiaodong Fu, Weisong Shi, Anatoly Akkerman, and Vijay Karamcheti. Cans:
Composable, adaptive network services infrastructure. In Proceedings of the 3rd
USENIX Symposium on Internet Technologies and Systems (USITS’01), 2001.

[13] Xiaohui Gu, Klara Nahrstedt, and Bin Yu. Spidernet: An integrated peer-to-peer
service composition framework. In Proceedings of the 13th International Sympo-
sium on High-Performance Distributed Computing (HPDC-13), pages 110–119,
Honolulu, Hawaii, June 2004.

[14] Krishna P. Gummadi, Harsha Madhyastha, Steven D. Gribble, Henry M. Levy,
, and David J. Wetherall. Improving the reliability of internet paths with one-
hop source routing. In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI’04), 2004.

[15] Dilip Joseph, Jayanthkumar Kannan, Ayumu Kubota, Karthik Lakshmi-
narayanan, Ion Stoica, and Klaus Wehrle. OCALA: An architecture for sup-
porting legacy applications over overlays. In Proceedings of the 3rd Symposium
on Networked Systems Design and Implementation (NSDI’06), 2006.

[16] Dina Katabi and John Wroclawski. A framework for scalable global IP-anycast
(GIA). In Proceedings of the ACM SIGCOMM Conference on Data Communica-
tion, 2000.

[17] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay services. In
Proceedings of the ACM SIGCOMM Conference on Data Communication, 2002.

[18] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. The Click Modular Router. ACM Transactions on Computer Systems,
18(3):263–297, 2000.

[19] Boon Thau Loo. The Design and Implementation of Declarative Networks (Ph.D.
Dissertation). Technical Report UCB/EECS-2006-177, University of California
at Berkeley, 2006.

36

[20] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion
Stoica. Declarative Networking: Language, Execution and Optimization. In Pro-
ceedings of ACM SIGMOD International Conference on Management of Data,
June 2006.

[21] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy
Roscoe, and Ion Stoica. Implementing Declarative Overlays. In Proceedings of
ACM Symposium on Operating Systems Principles (SOSP), 2005.

[22] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ramakrishnan.
Declarative Routing: Extensible Routing with Declarative Queries. In Proceed-
ings of the ACM SIGCOMM Conference on Data Communication, Philadelphia,
PA, 2005.

[23] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas An-
derson, Arvind Krishnamurthy, and Arun Venkataramani. iplane: An information
plane for distributed services. In Proceedings of the 7th symposium on Operating
Systems Design and Implementation (OSDI’06), Nov 2006.

[24] Harsha V. Madhyastha, Arun Venkataramani, Arvind Krishnamurthy, and
Thomas Anderson. Oasis: An Overlay-Aware Network Stack. In Operating
Systems Review, pages 41–48, 2006.

[25] Yun Mao, Bjorn Knutsson, Honghui Lu, and Jonathan M. Smith. DHARMA:
Distributed Home Agent for Robust Mobile Access. In Proceedings of Annual
Joint Conference of the IEEE Computer Communications Societies (INFOCOM),
2005.

[26] Yun Mao, Boon Thau Loo, Zachary G. Ives, and Jonathan M. Smith. MOSAIC:
Unified Declarative Platform for Dynamic Overlay Composition. In Proceedings
of the 4th ACM International Conference on emerging Networking EXperiments
and Technologies (CoNEXT), 2008.

[27] Z. Morley Mao and Randy H. Katz. Achieving service portability using self-
adaptive data paths. In IEEE Communications Magazine special Issue on Service
Portability and Virtual Home Environment, Jan 2002.

[28] N. Milanovic and M. Malek. Current solutions for web service composition.
IEEE Internet Computing, 8(6):51–59, Nov 2004.

[29] Akihiro Nakao, Larry Peterson, and Andy Bavier. A Routing Underlay for Over-
lay Networks. In Proceedings of the ACM SIGCOMM Conference on Data Com-
munication, 2003.

[30] T. S. Eugene Ng, Ion Stoica, and Hui Zhang. A waypoint service approach to
connect heterogeneous internet address spaces. In Proceedings of the USENIX
Annual Technical Conference (USENIX’01), Boston, MA, June 2001.

37

[31] Larry Peterson, Scott Shenker, and Jon Turner. Overcoming the Internet Impasse
Through Virtualization. In Proceedings of ACM HotNets-III, 2004.

[32] PlanetLab. Global testbed. 2002. http://www.planet-lab.org/.

[33] Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries
using templates with binding patterns. In ACM Symposium on Principles of
Database Systems (PODS), 1995.

[34] Raghu Ramakrishnan and Jeffrey D. Ullman. A Survey of Research on Deductive
Database Systems. Journal of Logic Programming, 23(2):125–149, 1993.

[35] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Ratnasamy,
Scott Shenker, Ion Stoica, and Harlan Yu. Opendht: a public dht service and its
uses. In Proceedings of the ACM SIGCOMM Conference on Data Communica-
tion, 2005.

[36] Skype. Skype P2P Telephony. 2006. http://www.skype.com.

[37] Jonathan Smith. Application-private networks. In David Gries, Fred B. Schnei-
der, Andrew Herbert, and Karen Sparck Jones, editors, Computer Systems, Mono-
graphs in Computer Science, pages 273–277. Springer New York, 2004.

[38] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana.
Internet Indirection Infrastructure. In Proceedings of the ACM SIGCOMM Con-
ference on Data Communication, 2002.

[39] Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan, and Randy Katz.
OverQoS: An Overlay Based Architecture for Enhancing Internet QoS. In Pro-
ceedings of the 1st Symposium on Networked Systems Design and Implementation
(NSDI’04), 2004.

[40] Amin Vahdat and David Becker. Epidemic routing for partially-connected ad hoc
networks. Duke Technical Report CS-2000-06, 2000.

[41] J. T. Wroclawski. The Metanet. In Proceedings of Workshop on Research Direc-
tions for the Next Generation Internet, 1997.

[42] Shelley Q. Zhuang, Kevin Lai, Ion Stoica, Randy H. Katz, and Scott Shenker.
Host Mobility using an Internet Indirection Infrastructure. In Proceedings of
ACM/Usenix Mobisys, 2003.

38

