
Declarative Constraint Optimization in Distributed Systems

Changbin Liu
University of Pennsylvania

3330 Walnut St, Philadelphia
PA, USA

changbl@cis.upenn.edu

Boon Thau Loo
University of Pennsylvania

3330 Walnut St, Philadelphia
PA, USA

boonloo@cis.upenn.edu

1. INTRODUCTION
In distributed systems management, operators often have

to configure system parameters that optimize performance
objectives given constraints in the deployment environment.
This position paper 1 presents our recent work on a declara-
tive optimization platform that enables constraint optimiza-
tion problems (COP) to be declaratively specified and incre-
mentally executed in distributed systems.

Traditional approaches in implementing COPs use imper-
ative languages like C++ [2] or Java [1]. This often results
in multi-thousand lines of code, that are difficult to maintain
and customize. Moreover, due to scalability issues and man-
agement constraints imposed across administrative domains,
it is often necessary to execute a COP in a distributed setting,
where multiple local solvers coordinate with each other and
each one handles a portion of the whole problem to together
achieve a global objective.

Central to our optimization platform is the integration of
a declarative networking [9] engine with an off-the-shelf con-
straint solver [2]. We have applied our platform to two use
cases. First, in mesh networks, policies on wireless channel
selection [7, 6] are declaratively specified and optimized, in
order to reduce network interference and maximize through-
put, while not violating constraints such as refraining from
channels owned exclusively by the primary users. Second,
in automated cloud resource orchestration [8], we use our op-
timization framework to declaratively control the creation,
management, manipulation and decommissioning of cloud
resources, in order to realize customer requests, while con-
forming to operational objectives of the cloud service providers
at the same time. Beyond these two use cases, we envision
our platform has a wide-range of potential applications, for
example, optimizing distributed systems for load balancing,
robust routing, scheduling, and security.

2. DECLARATIVE LANGUAGE
Our optimization platform uses the Colog declarative pol-

icy language, which allows operators to concisely model dis-
tributed system resources and formulate management deci-
sions as declarative programs with specified goals and con-
straints. Compared to traditional imperative alternatives,
Colog results in orders of magnitude reduction in code size,
and is easier to understand, debug and extend.

Given the space constraints, we refer the reader to [7, 6,
8] for details on the language, complete examples, and use

1If possible, we would like to give an oral presentation on our
work. If time permits, we can also include a short demon-
stration of our system.

cases. Here, we present some high level intuitions on the
language.

Colog declarative policy language is based on Datalog, a
recursive query language used in the database community
for querying graphs. Our choice of Datalog as a basis for
Colog is driven by Datalog’s conciseness in specifying depen-
dencies among system states, especially distributed system
states that exhibit recursive properties. Its root in logic pro-
vides a convenient mechanism for Colog to extend traditional
Datalog with constructs expressing COP formulations in the
form of policy goals and constraints. Moreover, there exists
distributed Datalog engines used in declarative networking
that facilitate distributed COP computations. Colog spec-
ifications are compiled into execution plans executed by a
distributed query engine integrated with constraint solving
modules.

In Colog, regular Datalog rules are used to generate inter-
mediate tables used by the solver. This is specified as regular
Datalog rules of the form p :- q1, q2, ..., qn, resulting
in the derivation of p, whenever the rule body (q1 and q2

and ... and qn) is true. We adopt standard Datalog termi-
nology, and refer to each term within a rule (e.g. q1, q2) as
a predicate, and the corresponding derivation obtained (e.g.
p) during rule body execution is referred to as tuples.

Language extensions. Two reserved keywords goal and
var specify the optimization goal and variables used by the
constraint solver, respectively. Constraint rules of the form
p -> q1, q2, ..., qn, denotes the logical meaning that
whenever p is true, then the rule body (q1 and q2 and ...

and qn) must also be true to satisfy the constraint. Unlike
a Datalog rule, which derives new values for a predicate, a
constraint restricts a predicate’s allowed values, hence rep-
resenting an invariant that must be maintained at all times.
These are used by the solver to limit the search space when
computing the optimization goal. Using Colog, it is easy
to customize policies simply by modifying the goals, con-
straints, and adding additional derivation rules.

Distributed COP. Colog can be executed in a distributed
setting. At a high level, multiple solver nodes execute a local
COP, and then iteratively exchange COP results with neigh-
boring nodes until a stopping condition is reached. The dis-
tributed COP program is written using distributed variant
of Datalog used in declarative networking, where a location
specifier @ denotes the source location of each corresponding
tuple. This allows us to write rules where the input data
spans multiple nodes, a convenient language construct for
formulating distributed optimizations.



3. COMPILATION AND EXECUTION
To execute Colog programs in a distributed setting, COPE

integrates Gecode [2], an off-the-shelf constraint solver and
the RapidNet declarative networking engine [3] for commu-
nicating policy decisions among different solver nodes.

RapidNet was originally designed as a platform for execut-
ing declarative networks [9]. We adopted its usage in order to
leverage its distributed Datalog engine. This allows us to ex-
ecute the derivation rules in Colog programs using standard
query processing techniques involving database operators,
such as joins (variable matching in rule body), aggregation
(e.g. SUM, MAX), selection filters, and rule head renaming.

Whenever solving a COP, Colog programs are compiled
into executable code in RapidNet, which invokes Gecode’s
high-performance constraint solving modules. Our compi-
lation process maps Colog’s goal, var, and constraints into
equivalent COP primitives in Gecode. These modules are
invoked either as a one-time program, periodically (via peri-
odic timer events generated from Colog rules), or in a con-
tinuous fashion triggered by incremental maintenance [10] as
the body predicates are updated.

Gecode adopts the standard branch-and-bound searching
approach to solve the optimization while exploring the space
of variables under constraints. In addition to these con-
straints, rules that use solver results as input are rewritten
into constraints to further prune the search space.

One of the interesting aspects of Colog, from a query pro-
cessing standpoint, is our integration of RapidNet (an in-
cremental bottom-up distributed Datalog evaluation engine)
and Gecode (a top-down goal-oriented constraint solver).
This integration allows us to implement a distributed solver
that can perform incremental and distributed constraint op-
timizations.

To execute distributed COPs, Colog uses RapidNet for
executing distributed Datalog rules, which already provides
a runtime environment for implementing these rules. At a
high level, each distributed rule or constraint (with multiple
distinct location specifiers) is rewritten using a localization
rewrite [9] step. This transformation results in rule bodies
that can be executed locally, and rule heads that can be
derived and sent across nodes. The beauty of this rewrite
is that even if the original program expresses distributed
properties and constraints, this rewrite process will realize
multiple local COP operations at different nodes, and have
the output of COP operations via derivations sent across
nodes.

4. REPRESENTATIVE USE CASES
Wireless channel selection [7, 6]. Our first example
is wireless channel selection in mesh networks. Colog is
used to address the problem of assigning wireless channels
to multi-radio multi-channel nodes to reduce interference
based on the one-hop interference model [12]. In this model,
any two adjacent links are considered to interfere with each
other if they both use channels whose frequency bands are
closer than a certain threshold. This is equivalent to classic
graph coloring problem [5]. Moreover, Colog can be eas-
ily modified to support the more complex two-hop interfer-
ence model [12], which is often considered a more accurate
measurement of interference in wireless deployments such as
IEEE 802.11. This model considers interference that results
from any two links using similar channels within two hops
of each other. In addition, COPE can flexibly declare more

constraints, e.g. impose regional policies on spectrum usage,
avoid channels with low SNR, ensure channel diversity along
each path.
Cloud resource orchestration [8]. Our second exam-
ple is cloud resource orchestration in the Follow-the-Sun [11]
cloud service, which aims to migrate VMs across geograph-
ical distributed data centers based on customer dynamics.
Here, the geographic location of the primary workload (i.e.,
the majority of customers using the cloud service) derives
demand shifts during the course of a day, and it is beneficial
for these workload drivers to be in close proximity to the
resources they operate on. The migration decision process
has to occur in real-time on a live deployment with min-
imal disruption to existing services. In this scenario, the
cloud infrastructure service aims to optimize for two par-
ties: enable service consolidation (for providers) to reduce
operating costs, and improve application performance (for
customers), while ensuring that customer SLAs of web ser-
vices (e.g. defined in terms of the average end-to-end expe-
rienced latency of user requests) are met. In addition, they
may be performed to reduce inter-data center communica-
tion overhead [13]. Since data centers in this scenario belong
to different cloud providers (similar to federated cloud [4]),
Colog are executed in a distributed setting, where each solver
node is responsible for controlling resources within their data
center.

5. REFERENCES
[1] Choco solver. http://www.emn.fr/z-info/choco-solver/.

[2] Gecode constraint development environment.
http://www.gecode.org/.

[3] RapidNet. http://netdb.cis.upenn.edu/rapidnet/.

[4] Campbell, R., Gupta, I., Heath, M., Ko, S. Y., Kozuch, M.,
Kunze, M., Kwan, T., Lai, K., Lee, H. Y., Lyons, M., Milojicic,
D., O’Hallaron, D., and Soh, Y. C. Open cirrus cloud
computing testbed: federated data centers for open source
systems and services research. In Proc. of HotCloud Workshop
(2009).

[5] Jain, K., Padhye, J., Padmanabhan, V. N., and Qiu, L. Impact
of interference on multi-hop wireless network performance. In
MobiCom (2003).

[6] Liu, C., Correa, R., Gill, H., Gill, T., Li, X., Muthukumar, S.,
Saeed, T., Loo, B. T., and Basu, P. PUMA: Policy-based
Unified Multi-radio Architecture for Agile Mesh Networking. In
The Fourth International Conference on COMmunication
Systems and NETworkS (COMSNETS) (2012).

[7] Liu, C., Li, X., Muthukumar, S. C., Gill, H., Saeed, T., Loo,
B. T., and Basu, P. A Policy-based Constraint-solving Platform
Towards Extensible Wireless Channel Selection and Routing. In
PRESTO: Proceedings of the ACM workshop on
Programmable routers for extensible services of tomorrow
(2010).

[8] Liu, C., Loo, B. T., and Mao, Y. Declarative Automated Cloud
Resource Orchestration. In ACM Symposium on Cloud
Computing (SOCC) (2011).

[9] Loo, B. T., Condie, T., Garofalakis, M., Gay, D. E.,
Hellerstein, J. M., Maniatis, P., Ramakrishnan, R., Roscoe,
T., and Stoica, I. Declarative Networking. In Communications
of the ACM (CACM) (2009).

[10] Mengmeng Liu, Nicholas Taylor, Wenchao Zhou, Zachary
Ives, and Boon Thau Loo. Recursive Computation of Regions
and Connectivity in Networks. In ICDE (2009).

[11] Van der Merwe, J., Ramakrishnan, K., Fairchild, M., Flavel,
A., Houle, J., Lagar-Cavilla, H. A., and Mulligan, J. Towards
a ubiquitous cloud computing infrastructure. In ”Proc. of the
IEEE Workshop on Local and Metropolitan Area Networks”
(2010).

[12] Yi, Y., and Chiang, M. Wireless Scheduling Algorithms with
O(1) Overhead for M-Hop Interference Model. In IEEE ICC
(2008).

[13] Zhang, Z., Zhang, M., Greenberg, A., Hu, Y. C., Mahajan, R.,
and Christian, B. Optimizing cost and performance in online
service provider networks. In NSDI (2010).

http://www.emn.fr/z-info/choco-solver/
http://www.gecode.org/
http://netdb.cis.upenn.edu/rapidnet/

	Introduction
	Declarative Language
	Compilation and Execution
	Representative Use Cases
	References

