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Abstract—Increased demand for cloud computing services has
ushered power management schemes into the frontlines of data
center research. Meanwhile, market penetration of intermittent
renewable energy sources (e.g., wind and solar) is on the rise.
While clean and abundant, their intermittency is troubling for
utility companies, requiring power balancing reserves to be
deployed at anytime to precisely match consumer demand with
energy availability. However, a transformative redesign of our
power grid is looming, calling for the use of dynamic energy
pricing to resolve this issue by possibly shaping demand. Data
centers, being significant consumers with the ability to adjust
power utilization in real-time (e.g., by migrating its jobs to
and from other locations), are ideal candidates to participate
in dynamic pricing markets.

We propose a collaborative cost optimization framework by
coupling utilities with data centers via dynamic pricing. We
develop models describing the information exchange framework
for utilities and data centers and employ a distributed constraint
optimization solver, Cologne, to negotiate a mutually optimal
price. An evaluation of our system has been performed using real
intermittent-energy-generation trace data. Modeling the dynamic
price over this trace, we show that our technique could reduce a
participating data center’s costs by 75%. On the side of utilities,
we further show that consumer power demand can be shaped to
reveal a 17% improvement on average.

I. INTRODUCTION

The computing flexibility afforded by Infrastructure-as-a-
Service (IaaS) has accelerated the adoption of cloud-based
solutions. In order to address this growing demand for com-
puting services, data center operations have scaled in both
power density and geographical presence. In fact, some large-
scale data centers even replicate services across multiple
distant locations to ensure availability [1]. To generate a stable
revenue stream, data centers must therefore redouble their
efforts towards reducing total operational costs. These costs,
however, are a direct consequence of energy consumption,
which has grown at an alarming rate over the past several
years [2], [3], [4]. Indeed, studies as recent as 2011 have shown
that today’s data centers consume roughly 2.2% to 3.5% of
total U.S. electricity use [4].

Meanwhile, a sea change in our nation’s power distribution
network should not be ignored by data center operations. The
next-generation Smart Grid proposes to combat the current
electrical grid’s inefficiencies [5]. Chief among these inef-
ficiencies is the absence of inexpensive large-scale energy
storage, forcing electricity to be generated and consumed
at the same rate. This unfortunate property requires precise

amounts of electricity to be generated (or shed) at all times
to match the customers’ load. An imbalance in the form of
either surplus or deficiency can overload grid components,
culminating in service disruptions and even major outages.
The lack of storage also hinders the rate of green energy (e.g.,
wind and solar) penetration because their intermittency cannot
be easily regulated or predicted. As a result, utility operators
must face the volatility of increasing green energy integration
by continuously deploying fast-reacting power reserves to
maintain grid balance – currently a necessary overhead.

Improving energy efficiency is therefore a shared problem
between both electric utilities and data centers. Data cen-
ters have the unique properties of being (1) major energy
consumers with malleable and migratable workloads and (2)
geographically distributed across different energy generation
sources (e.g., Amazon Web Services has a multitude of data
centers across continents). We envision a unification frame-
work between data centers and electric utilities to enable
mutual cost reductions. To realize such a framework, we
assume that utilities can transfer dynamic real-time pricing
(RTP) signals to their customers based on energy availability
and demand (load) [6], [5]. In response, a geographically
distributed data center could scale up or down energy usage
by migrating large units of work to and from distant locations
[7], [8], [9].

However, the negotiation of workload migration among
multiple data center locations, each drawing power from a
different electric utility, is nontrivial. In this paper, we propose
the following vision and contributions:

• A dynamic pricing negotiation mechanism to determine
energy use within a data center such that electric utilities
can ensure that its energy is being used effectively.

• To realize the dynamic energy pricing, we propose a
constraint optimization formulation concerning multiple
data center locations. This optimization problem executes
on the Cologne [10] platform, which solves both cen-
tralized and distributed constraint optimizations using a
declarative language. Each data center will use real-time
pricing information to dynamically adjust its own energy
usage via workload migrations (Section V). Our joint-
optimization solution optimizes costs at utilities and data
centers simultaneously.

• We evaluate the feasibility and applicability of our frame-
work in a real world setting, using actual energy load
and generation data sets from a major utility, Bonneville
Power Administration (Section VI).



II. MOTIVATION

The renewable energy market abounds in the Pacific North-
west region of the U.S., which has spawned the construction of
many large-scale data centers in the area. The power utilities
that support these data centers integrate a heterogeneous set
of renewable resources. For instance, the Bonneville Power
Administration (BPA, www.bpa.gov) has a set of 30+
hydroelectric dams, thermal plants, and wind fleets across
four states. Recently, BPA announced it had integrated 4711
MW of nameplate (max capacity) wind energy. However, due
to wind’s intermittency, BPA must balance the deficiency or
surplus stemming from imperfect prediction models in real-
time using a fleet of ten dedicated hydroelectric dams, i.e., its
balancing reserves. To support this operation, BPA charges the
connected wind farms an integration cost, inherently resulting
in higher prices for wind energy [11].
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Fig. 1. BPA’s Balancing (Incremental/Decremental) Reserve Deployment

BPA’s grid operators must quickly ramp up generation from
their incremental hydro balancing reserves to match consumer
load to reconcile an unexpected wind deficiency. On the other
hand, to compensate for excessive wind energy, operators must
shed the surplus through its decremental balancing reserves,
e.g., water can be spilled over the hydroelectric dams instead
of being passed through the turbines. While spilling has been
a practical decrementing strategy, it is far from optimal: Wind
energy would be offsetting the already green hydroelectric-
ity, and spilling could further induce gas bubble trauma on
protected fish populations [12].

We have analyzed BPA’s balancing reserve deployment over
a 1-week period in July 2012, which is shown in Figure 1(a).
Observations are acquired at 5-minute intervals, and the oscil-

lations highlight the complicated relationship between match-
ing demand and green energy generation. We observe that
incremental and decremental reserves were deployed 808 times
and 1883 times, respectively. In further analysis displayed
in Figure 1(b), we plot the cumulative distribution function
(CDF) over the amount of power |MW | balanced for each
type of deployment. We can see that their distributions are
quite skewed. For example, |100| MW balancing constitutes
half of the deployments. The higher frequency of decremental
deployment also translates to wasted excess energy, resulting
in abundant opportunities for data centers to utilize this
surplus, if offered by the utility at a lower price.

We observe that while energy distribution may experience
a localized skew (as shown in BPA’s experience), it is likely
the case that across geographic regions, the overall energy
distribution stays fairly constant over time. Assuming that a
fraction of power can be manipulated at each data center,
then collectively, we can curtail a substantial amount of
balancing reserve deployment. For instance, if excess wind
energy is generated at one utility, then it could dynamically
lower energy prices to local data centers in lieu of deploying
decremental reserves. Similarly, if the wind subsides or if
consumer demand increases unexpectedly, then an increase in
energy prices may incentivize the local data centers to offload
some power usage to other data centers.

In their 2009 work, Höelzle and Barroso estimated that a
typical data center draws approximately 20 MW of power [1].
Taking into consideration that data centers can only control
a fraction of its energy intake, they may not initially seem
capable of curtailing balancing reserve deployments. However,
in regions such as the Pacific Northwest, a high concentration
of massive-scale data centers (e.g., Google Dalles, Facebook
Prineville, Amazon, and Yahoo!) has been constructed to
take advantage of the abundance of green energy. These
data centers are much larger than average. For instance, one
building at Facebook Prineville consumes 28 MW, and it is
projected to require a total of 78 MW to support all three
planned buildings [13]. Google Dalles has also been estimated
to consume anywhere from 50 MW to 103 MW [14]. As data
centers continue to grow in power density, we believe they
can cooperate with utilities to offset a significant percentage
of balancing reserve deployments.
Towards dynamic pricing: In order to adjust demands based
on energy availablity, we propose the use of a dynamic pricing
mechanism that requires us to model the expected demand
shifts of data centers whenever they are subjected to a new
price from the utility company. While the high-level idea is
straightforward, realizing the pricing model for both the utility
companies and data centers is nontrivial. In particular, the
following challenges need to be addressed:
• Workload dependencies. Essentially, the energy con-

sumption of each data center is related to its workload.
One common way of shifting the workload is to migrate
jobs between locations, which is limited by a few factors.
First, each data center might have a certain capacity that
limits the number of jobs running on it. For example, in
Hadoop, this capacity is better presented as the number
of available map/reduce slots. Second, to perform a
migration, a data center would encounter extra energy
cost caused by, for instance, data transfer. Third, each
job might have confidential restrictions that makes them



trust only a subset of the data centers. All these factors
increase the complexity of the model.

• Price-demand shifts. When modeling the action of a
utility, a tiny price change might not be sufficient to
trigger the data centers to make the expected energy shift.
On the other hand, a significant price change might be
too aggressive and lead to overheads triggered by load
shifts across data centers. Therefore, a proper scheme to
generate a new price is not straightforward to achieve.

III. RELATED WORK

Several related works address intermittent energy integration
within data centers. For instance, Stewart and Shen consider
data center architectures that are equipped with onsite inter-
mittent renewable sources [15]. They propose fine grained
request-driven workload profiling and scheduling to maximize
the use of available renewable energy. Goiri, et al. propose a
number of scheduling techniques, such as GreenSlot [16] and
GreenHadoop [17], which aim to maximize the total solar
energy consumption by scheduling jobs based on a prediction
on the available energy. Liu, et al. study workload and cooling
management for a data center collocated with a solar microgrid
[18]. They evaluate their optimization models over interactive
and batch jobs and showed their scheduling algorithm can
reduce non-renewable energy costs. These efforts, however,
focus on integrating green energy sources that are collocated
within the data center.

Green energy-efficient scheduling techniques for distributed
data centers have been previously investigated. For instance,
Le, et al. [19] propose a request distribution policy for
Internet services to minimize the brown energy consumption.
Similarly, Chen, et al. [20] presented a centralized scheduler
that migrates workloads across data centers in a manner that
minimizes brown energy consumption while ensuring the jobs’
timeliness. Existing work in this direction, however, aims
at optimizing the energy consumption from the consumer
perspective only.

Several related efforts address data center’s cost reduction
through energy pricing. In Blink [21], the authors employ rapid
active/inactive state switching (via PowerNap [22]) over a set
of servers to adapt to variable power constraints. Rao, et al.
seek to minimize overall costs for multiple data centers located
in disparate energy marketing regions [23]. Akoush et al.’s
Free Lunch architecture for cloud data centers shares several
aspects of our goals [8]. The authors argue for either pausing
virtual machine (VM) executions or migrating VMs between
sites based on local and remote energy availability. Differing
from prior work, our effort considers workload migration in
a distributed data center environment for power adaptation,
and moreover supports a coupling with utilities to mutually
negotiate optimal prices.

In Liu, et al.’s geographical load balancing [9], the authors
propose distributed algorithms for minimizing aggregated
costs by solving for an optimal number of active servers per
data center and a load balancing policy. HP Labs recently
revealed the Net-Zero Energy Data Center, which can shape
its demand based on supply [24]. Aikema, et al. studied the
feasibility of using data centers as ancillary services (e.g.,
reserves) [25]. Chiu, et al. argue for an integration of utilities
and data-center operations by showing mutual cost benefits
given low-cost workload migration [26].

Moreover, Qureshi et al. [27] present a trace-driven analysis
of the energy cost that data centers can save through distributed
energy market pricing. The simulation in [27] used a heuristic
traffic routing scheme that maps workloads to data centers
with the cheapest electric price. Our research also advocates
for promoting distributed energy market pricing. However, we
further propose closely integrating data centers and electric
utilities via a closed-loop interaction to achieve a dynamic
pricing scheme and a load distribution that optimize both
parties’ objectives.

IV. OVERVIEW

Figure 2 presents an overview of our proposed system.
The system is designed for a cloud environment consisting
of multiple geographically distributed data centers connected
via dedicated backbone networks or the Internet. Each data
center receives power supply from a nearby utility. As shown
in the gray boxes, our system includes two major components:
a controller and pricing modules embedded within the utilities.
The controller communicates with all pricing modules to
inform the current power usage of the data centers and to
receive new energy prices. Moreover, the controller monitors
and manages all data centers to determine if the overall power
cost can be reduced via job migrations. Each pricing module
receives energy shift requests from its utility and interacts with
the controller to determine a new power price.
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Fig. 2. Architecture

To determine concrete job migration strategies, we use
Cologne [10], an optimization platform that enables constraint
optimization problems (COPs) to be declaratively specified
and incrementally executed in distributed systems. Cologne
can flexibly support a wide range of policy-based optimiza-
tions in distributed systems (e.g., cloud [28] and wireless
networks [29]), and results in orders of magnitude less
code compared to imperative implementations. Cologne uses
the Colog declarative language, which combines distributed
Datalog (used in declarative networking with language con-
structs for specifying goals) and constraints used in COPs.
To execute Colog programs in a distributed setting, Cologne
integrates Gecode [30], an off-the-shelf constraint solver, and
the RapidNet declarative networking engine [31], [32] for
communicating policy decisions among various solver nodes.

Cologne can be deployed in either a centralized or dis-
tributed mode. In the centralized mode (our proposed system
currently adopts this mode), all data centers are configured
by one centralized Cologne instance (our controller), which
performs optimizations by taking as input the system states
gathered in the network. Due to scalability issues and man-
agement requirements imposed across administrative domains,



Cologne can also execute a COP in a distributed setting. In
the distributed deployment mode, there would be multiple
Cologne instances, typically one for each data center to com-
municate with its neighbors. Multiple local solvers coordinate
with each other and each handles a partial problem to solve
the global objective. Note that while we employ a centralized
deployment mode here, the architecture can be easily extended
to a fully distributed mode.

In the next section, we demonstrate the centralized deploy-
ment scenario and briefly discuss distributed solving.

V. SYSTEM DESIGN — THE CENTRALIZED CASE

We first present our formulations which optimize data center
costs, followed by the pricing module for power utilities. Then
we describe how the two interact with each other to achieve
collaborative optimizations. Since data center workload energy
consumption is at the scale of mega-Watts, without loss
of generality, the energy overhead incurred by running our
optimization system is negligible.

A. Optimization for Data Centers
The optimization for data centers can be formulated as

a constraint optimization problem. We assume there are n
data centers. Each data center i (1 ≤ i ≤ n) is issued a
price Pi for power from a nearby utility. In total, m jobs are
running within the n data centers, and each job j is currently
located at data center Dj (1 ≤ j ≤ m). Additionally, job
j is characterized by an energy consumption Ej , an input
data size Sj , and a resource requirement Rj . Here, Rj could
be defined as, for instance, the number of compute machines
required for a typical Hadoop job. Each data center i has a
maximum resource capacity of Ci. This capacity restriction
prevents from migrating excessive jobs to any data center.
We further consider the energy incurred due to data transfers
during migration. We assume that both the source and the
destination data centers would consume energy to handle a
job migration, and the energy consumption rate is ER per
unit of data.

Given the above inputs, the output is a job assignment Aji

that minimizes the overall power cost of all data centers, where
Aji = 1, if job j is assigned to data center i, and Aji = 0
otherwise. This can be formulated as follows:

minimize Cost =
∑

1≤i≤n

(
(RunPoweri+MigPoweri)×Pi

)
(1)

subject to : ∀ 1 ≤ i ≤ n,

RunPoweri =
∑

1≤j≤m

Aji × Ej (2)

MigPoweri = MigToPoweri +MigFromPoweri (3)

MigToPoweri =
∑

1≤j≤m,Dj 6=i

Aji × ER× Sj (4)

MigFromPoweri =
∑

1≤j≤m,Dj=i

(1−Aji)× ER× Sj (5)

∑
1≤j≤m

Aji ×Rj ≤ Ci (6)

∀ 1 ≤ j ≤ m :
∑

1≤i≤n

Aji = 1 (7)

Equation (1) is the optimization objective for a data center,
which seeks to minimize energy costs aggregated over all n
locations. For each data center i, Equation (2) computes the
power to run its jobs, RunPoweri. Equation (3) computes the
power to migrate jobs to and from a data center i, denoted
by MigPoweri, which is the sum of MigToPoweri (Equa-
tion (4)) and MigFromPoweri (Equation (5)). MigToPoweri
is accounted for every job j whose destination data center i
differs from its source location Dj (i.e., Dj 6= i), whereas
MigFromPoweri is for every job j that originally locates at i
(i.e., Dj = i) but the new destination differs from i (i.e., not
Aji). Constraint (6) specifies that each data center cannot run
jobs whose aggregate resource requirement exceeds its capac-
ity. Finally, Constraint (7) ensures that each job is assigned
to exactly one data center. We next present specifications of
above formulations in the Colog declarative language.

goal minimize C in cost(C).
var assign(Jid,Did,V) forall toAssign(Jid,Did).

r1 toAssign(Jid,Did) <- dc(Did,Price,Capacity),
job(Jid,Power,Size,Did1,Resource).

r2 runPower(Did,SUM<P>) <- assign(Jid,Did,V),
job(Jid,Power,Size,Did1,Resource),
P==V*Power.

r3a migToPower(Did, SUM<P>) <- assign(Jid,Did,V),
job(Jid,Power,Size,Did1,Resource),
Did != Did1,
P==V*ER*Size.

r3b migFromPower(Did, SUM<P>) <- assign(Jid,Did,V),
job(Jid,Power,Size,Did1,Resource),
Did == Did1,
P==(1-V)*ER*Size.

r4 cost(SUM<C>) <- dc(Did,Price,Capacity),
runPower(Did,Power1),
migToPower(Did,Power2),
migFromPower(Did,Power3),
C==(Power1+Power2+Power3)*Price.

r5 totalLoad(Did,SUM<L>) <- assign(Jid,Did,V),
job(Jid,Power,Size,Did1,Resource),
L==V*Resource.

c1 totalLoad(Did,L) -> dc(Did,Price,Capacity),
L<=Capacity.

r6 totalAssign(Jid,SUM<V>) <- assign(Jid,Did,V).
c2 totalAssign(Jid,V) -> V==1.

In the above Colog rules, goal defines the optimization
objective, which is minimizing the overall cost Cost(C). The
output of this program are variables assign(Jid, Did, V)

that correspond to Aji, meaning assigning job Jid to data
center Did. The variable V is boolean, informing a decision if
its value is 1. Similarly, rule r2 corresponds to Equation (2),
and rules r3a and r3b to Equations (4) and (5), respectively.
Rule r4 derives the optimization goal by aggregating the
running and migration power obtained from rules r2 and r3,
respectively. Rules r5 and c1 together impose the capacity
constraint in Equation (6). Finally, rules r6 and c2 ensures that
each job is assigned only once, as constrained by Equation (7).
Extensions: An important advantage of Colog is its



extensibility. The above simple model can be extended with
extra rules to consider new factors. For instance, due to
confidentiality (or performance requirements), some jobs may
be constrained to run only within certain data centers, thus
being migrated to other locations would be prohibited. We
can achieve this simply by adding one Colog rule, below:

r7 trust(Jid,Did,V) -> assign(Jid,Did,V1), V1<=V.

In rule r7, trust(Jid,Did,V) is a table storing confiden-
tiality information. V is a boolean value indicating whether
job Jid trusts data center Did. The rule imposes a constraint
ensuring that job assignment is possible only if the job trusts
the destination data center (V1<=V).

Another extension is to consider job timeliness. This can
be done by adding a constraint to prevent job migration if it
would result in the job missing its deadline. To achieve this, we
can add two attributes, running time and deadline to each job,
and add a location attribute to each data center. Furthermore,
we would measure the time delay caused by job migration via
multiplying some delay factor to the distance between source
and destination data centers. To better estimate the delay, we
could perform traffic analysis and compute the time based on
network status, which can also be expressed as Colog rules.
Distributed solving: Although centralized optimizations
would generally output a fair solution, the downside would be
its scalability (i.e., long running time for large-scale problems).
More importantly, sometimes a centralized controller might
not even exist due to autonomy issues, if some data centers
are unwilling to share confidential internal information. In
such cases, a distributed solution would be necessary. As
discussed in Section IV, Colog further enables distributed
constraint solving [10], and our Colog specifications here are
straightforward to be extended for distributed solving, which
we plan to realize in our future work.

B. Pricing Module for Power Utilities
We assume there are n utilities, one supporting each data

center. Each utility Ui has a power supply PSi (sources
including solar, hydro, wind, etc.), a power demand PDi by its
nearby data center, and it is currently pricing its energy at Pi.
Since balancing reserves incur operational cost for utilities,
having either energy surplus or shortage is undesirable. As
a result, one main objective for utilities is to minimize the
difference δ between power demand and supply. To achieve
this, an intuitive pricing scheme is to increase the energy
price under power shortage (δ > 0), and decreasing it if
under surplus (δ < 0). To avoid frequent pricing oscillations,
energy prices should stay stable within a certain time interval.
Typically, the interval is at the scale of hours [27].

We propose a linear model to determine a new energy price.
At utility Ui, the price for the next time interval is:

P
′

i = αi × δi + Pi = αi × (PDi − PSi) + Pi (8)

In Equation (8), the new price P
′

i is linear to the difference
δi between power demand PDi and supply PSi. Under this
model, if the current energy demand from the connected
data center is more than the available supply, the price will
accordingly rise by αi × (PDi − PSi), and vice versa. αi

(αi ≥ 0) is a linear coefficient specific to each utility. If α
is large, the new price will drastically differ, such that data

centers are strongly incentivized to shift their workloads. If α
is small, the price change might not be sufficient to trigger
a demand shift. Being a realistic price, any negative P

′

i will
be rounded to 0. Note that for simplicity, we use the linear
model between price and energy. We leave other possibilities
such as quadratic and logarithm models as interesting avenues
for future work.

C. System Interactions
The two aforementioned models collaborate in the following

fashion. Whenever a utility requests δ power to be shifted,
it exchanges information with its connected data center by
performing a few rounds of interactions. Specifically, a utility
first determines a new price based on the current energy price
and δ under the price model given in Equation (8). Then the
new price is sent to the centralized controller. Upon receiv-
ing the price, the controller computes the optimal cost via
generating job migration schedules, and returns the estimated
new energy consumption back to each corresponding utility.
Note that during this process, the controller only estimates
the energy consumption, i.e., it does not yet command data
centers to apply the migrations. If the new energy displacement
does not meet the expectation (i.e., δ), a new price will be
computed, and a new round will be initiated.

There are three termination conditions for this interaction:
(1) Reaching a maximum number of rounds, (2) The displace-
ment δ is met, or (3) The price generated in round i is the
same as in round i − 1. Upon termination, the job migration
schedules would be applied.

VI. EVALUATION

We have implemented our proposed system and performed
preliminary experiments based on the collaborative optimiza-
tion models. In our evaluation, we focus primarily on the
improvements (in terms of energy savings and meeting energy
demands) obtained through our optimization framework. In
all our experiments, we note that optimizations require low
overheads: on a commodity PC, even for the largest dataset,
the optimization completes within minutes and requires low
memory footprint.

A. Experiment Setup
Our experimental scenario is as follows: there are four data

centers owned by a single company, one of which receives
power supply from Bonneville Power Administration (BPA).
For the energy source, we make use of BPA’s published data
sets1. Figure 1(a) shows the errors between the predicted wind
power and the actual wind power, which serve as the utility’s
demand shift requested to its data center. The workload within
each data center is synthetically generated, consisting of 150
jobs in aggregate.
Experimental parameters. Using our model in Section V,
we define our parameters as follows. Initially, the jobs are
randomly assigned to these data centers. To reduce our op-
timization complexity, for each data center, we group jobs
into batches, where each batch contains 10 jobs on average,
consumes approximately 1-3 MW power and takes input of
size 1-5 GB. ER (energy rate, defined in Section V-A) is set to
0.1 MW/GB and the max number of system interaction rounds

1http://transmission.bpa.gov/business/operations/Wind (Data Set #5)



is set to 5. We impose a practical constraint that limits each
data center’s energy consumption to 20 MW of energy [1]. For
simplicity, we configure the resource utilization of each job to
be 1 unit. Each data center has enough physical resources to
accommodate at most 60 jobs. The initial price is set to 1, and
α is set to 0.5 for each data center.

B. Results and Discussion
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Fig. 3. Experiment Result

Figure 3(a) plots BPA’s expected power shift on an hourly
basis. In other words, it shows the target energy change that
BPA hopes that data centers can adapt to dynamically. At
hourly intervals, we define Improvement I (the percentage of
final energy shift from expected energy shift) for each data
center as follows:

I =
PDafter − PDinit

PE − PDinit
× 100% (9)

where PDinit is the initial power demand of the data center.
PE is the expected power from BPA (Figure 3(a)), and
PDafter is the eventual power demand after optimization.

Figure 3(b) shows the relationship between the computed
Improvement Ratio I% (left Y-axis in blue) and Price Ratio
(right Y-axis in red) for a single data center, after running the

optimization described in Section V. We define Price Ratio
as a ratio of the eventual energy price (after the optimization
rounds) divided by initial price. The axis has been inverted so
that the correspondence between pricing and expected power
shift can be easily juxtaposed.

We make the following observations from our figure. First,
we observe that the expected energy shift and price have an
inverse relationship. Whenever BPA has excess energy to spare
(shown by a large positive energy shift value in Figure 3(a)),
the price will consequently drop, in come cases to zero,
indicating that data centers have an incentive to consume as
much energy as possible.

On the other hand, when the expected power shift drops
drastically (to -666 MW close to July 9), the price is at its
highest (> 170). This triggers the data center to migrate jobs
to other data centers, in order to reduce energy costs. The
sharp increase in price is a consequence of using our linear
pricing model.

We note that each data center has a limit on its capacity
(due to BPA or other physical constraints), which consequently
limits its ability to make large energy consumption shifts.
For example, in our setting, each data center can consume
at most 20 MW of power. Hence, the absolute improvement I
is bounded by +/- 20 MW. As a result, when the target energy
shift is small, we observe a larger I , resulting in a lower price.
The converse is also true. When the target energy shift is large,
I is smaller (due to the 20 MW bound), and that results in a
higher price. The end result is an interesting complementary
relationship between I and price.
Summary of Results. Overall, by averaging I at the beginning
of each hour, we can observe a 17% improvement at each
hour. Based on our linear pricing models, the total energy
costs after the 5-day trace were 48.6 using our system, and
192.1 if data center workloads were not migrated. This results
in a 3.95× cost reduction ratio. Since this is only a preliminary
experiment considering the scenario for shifting energy on just
one data center, by considering more data centers and further
improving both models, we believe our system can achieve
promising performance in the future.

VII. CONCLUSION

In this paper, we present the use of dynamic pricing as a
mechanism for minimizing overall energy costs in data centers.
Our work is motivated by Bonneville Power Administration’s
experiences in the Pacific Northwest, where the use of inter-
mittent renewable energy often leads to unpredictable energy
availability.

We propose a novel approach that requires collaborative
optimizations across multiple data centers to balance their
energy requirements, achievable through distributed constraint
optimizations supported by Cologne. Our preliminary results
demonstrates the viability of this approach. Moving forward,
we are actively exploring how energy savings obtained from
our optimizations can be realized. For instance, to reduce
energy consumptions, one can reduce the number of compute
units used for running cloud analytics, by prioritizing jobs
based on deadlines [33]. This requires building an energy
profile for each cloud application. Other techniques include
migrating jobs (enqueued or currently executing) across data
centers, in order to balance energy usage across different data
centers.
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