
Formally Verifiable Networking
Anduo Wang∗ Limin Jia∗ Changbin Liu∗

Boon Thau Loo∗ Oleg Sokolsky∗ Prithwish Basu†
University of Pennsylvania∗ BBN Technologies†

{anduo,liminjia,changbl,boonloo,sokolsky}@seas.upenn.edu, pbasu@bbn.com

ABSTRACT
This paper proposes Formally Verifiable Networking
(FVN), a novel approach towards unifying the design,
specification, implementation, and verification of net-
working protocols within a logic-based framework. In
FVN, formal logical statements are used to specify the
behavior and the properties of the protocol. FVN uses
declarative networking as an intermediary layer between
high-level logical specifications of the network model
and low-level implementations. A theorem prover is used
to statically verify the properties of declarative network
protocols. Moreover, a property preserving translation
exists for generating declarative networking implemen-
tations from verified formal specifications. We further
demonstrate the possibility of designing and specifying
well-behaved network protocols with correctness guar-
antees in FVN using meta-models in a systematic and
compositional way.

1. INTRODUCTION
In recent years, there has been growing interest in the

formal verification of network protocol design and im-
plementation. On the theoretical front, algebraic mod-
els such as metarouting [9] are used to formalize routing
protocols with convergence guarantees. Concurrently,
several practical software tools and testing platforms have
been proposed to facilitate the verification of existing
networked systems. These include runtime verification
platforms (e.g. [20]) that provide mechanisms for check-
ing at runtime that a system does not violate expected
properties; and model-checking tools (e.g. [5, 13, 19])
that use a collection of algorithmic techniques for check-
ing temporal properties of system instances based on ex-
haustive state space exploration.

At one extreme, practical tools based on runtime veri-
fication or model checking are applied to actual protocol
implementations. However, they are in general not com-
plete. Any runtime verification scheme will incur addi-
tional runtime overheads, and subtle bugs may require a
long time to be encountered. On the other hand, model-
checking suffers from the state explosion problem, where
the large state space persistent in network protocols often
prevents complete exploration of the huge system states.
While the heuristics used in exploration maximize the
chances of detecting property violations, they are typ-
ically inconclusive and restricted to small network in-
stances and temporal properties.

At the other extreme, formal models such as metarout-
ing use a correct-by-construction approach: the verifica-
tion of convergence is done once for the idealized alge-

bra, and any routing protocol that implements the algebra
is correct. The monotonicity requirements imposed by
the idealized model limits the range of permissible pro-
tocols, and are unlikely to be adopted by actual routing
protocol implementations.

In this paper, we aim to bridge the gap between formal
verification of network protocols designs and the veri-
fication of actual implementations. Our proposed For-
mally Verifiable Networking (FVN) framework uses for-
mal logical statements to specify the behavior and the
properties of network protocols, and abstract network
meta-models such as metarouting. The specified formal
properties can be fed to a mechanized theorem prover
such as PVS [17] or Coq [2] for static verification.

One advantage of using modern theorem proving tech-
niques is that the logics of those provers can express
properties beyond temporal properties that the majority
of the model-checking techniques are bound to. Another
advantage is that it is sound and complete: once a prop-
erty is verified, it holds for all instances of the protocols.
However, FVN does not exclude other incomplete tech-
niques, such as model checking. In fact, one overarching
goal of FVN is to smoothly integrate a variety of verifi-
cation techniques for different classes of properties.

One important piece of the design of FVN is the use
of declarative networking [16, 15], a declarative logical
framework for protocol implementation. We utilize the
Network Datalog (NDlog) declarative networking lan-
guage as the intermediary layer between high-level log-
ical specifications of the network model and low-level
implementations. NDlog naturally bridges formal net-
work models and protocol implementations. In one di-
rection, NDlog programs can be automatically translated
into logical statements that capture the semantics of the
NDlog program and can be fed directly into existing tools
for verification. Conversely, the verified logical specifi-
cations can be used to generate NDlog programs for exe-
cution via a property-preserving translation.

Moreover, when NDlog is used in conjunction with
expressive logics (e.g. linear logic), FVN can provide
a better model for soft-state, and more importantly, the
promise to directly produce system models for model
checking tools.

FVN leverages two bodies of work that in conjunction
has significantly lowered the barriers of adoption of for-
mal reasoning techniques in networking research. First,
there has been significant progress on the understanding
of logic-based techniques for bridging the specification
and implementation divide. In addition to metarouting
and declarative networking, there are now logical frame-

1

works for reasoning about forwarding planes [12]. Sec-
ond, modern theorem provers come with powerful proof
engines that support a large portion of automated proof
exploration which enable the proof of non-trivial diffi-
culty problems with relatively modest human effort. Be-
sides the built-in proof support, modern provers provide
well-designed interfaces for customizing domain specific
proof search strategies that can be further automated via
user defined decision procedure, and integration with
model-checkers, boolean satisfiability (SAT) solving and
satisfiability modulo theories (SMT) [25].

2. OVERVIEW
We first present an overview of FVN framework, fol-

lowed by a brief background on declarative networking.

2.1 FVN Framework
Figure 1 shows an overview of the FVN framework,

which consists of the following four main components:
design, specification, verification, and implementation.
In the initial design phase, a network designer devel-
ops an abstract network model for the network protocol,
and descriptions of the desired properties of the proto-
col, possibly informally. In practice, this step may be
optional, but having such a model is often useful both
from the implementation standpoint, and for verifying
one’s protocol design. In fact, a formal specification of
the model is desirable at the design phase for verifying
the model itself. We will provide an example based on
metarouting in Section 3.3.

Properties
(Invariants)

Network
meta-model

Design

Logical
specification

NDlog
specification

Specification

Protocol
execution

Implementation
Theorem
proving

Model
checking

Verification ...

1 2

3

4

5 78

6

Figure 1: Overview of FVN

After initial design, the designer writes down formal
logical specification for properties of concern (arc 1), and
verifies that the implementation indeed satisfies these
properties. This is the place where declarative network-
ing is relevant. Instead of verifying a low-level imple-
mentation, we use NDlog as an intermediary language
that properties are verified against. The benefit of using
NDlog has two folds: first, NDlog is in itself declarative,
and there is a natural synergy between the formal logical
specification of properties and NDlog programs; second,
robust tools [18] are available for generating low-level
implementation from NDlog programs (arc 7).

Due to the synergy between NDlog programs and logic,
there exists a two-way translation between NDlog pro-
gram and logical specifications (arc 3 and 4). In FVN,
a protocol designer has the choice of either generating
NDlog programs directly, and then compiling NDlog pro-

grams into its logical specifications (arc 4) via an auto-
matic tool and verifying properties in an theorem prover
(arc 5); or first generating the logical specifications of the
protocol’s design (arc 1 and 2) and verifying the design
using a theorem prover (arc 5), and then automatically
generating the corresponding NDlog program from the
verified logical specification (arc 3).

Ultimately, we envision that FVN will serve as a uni-
fying framework, that uses formal logics as the spec-
ification language for properties, and eventually incor-
porate a number of different verification techniques, all
of which share the specification language. For instance,
aside from static verification using theorem provers, FVN
can also take advantage of model-checking tools once it
uses expressive logics such as linear logic for specify-
ing protocols in the style of state transitions. We de-
scribe these opportunities (particularly arcs 6 and 8) in
Section 4.

2.2 Background on Declarative Networking
Declarative networks are specified using Network Dat-

alog (NDlog), which is a distributed recursive query lan-
guage used for querying network graphs. Declarative
networking programs are compiled into distributed ex-
ecution plans that are based on the Click [14] execution
model. When executed, these declarative networks per-
form efficiently relative to imperative implementations.
We present an example NDlog program that implements
the path-vector protocol.
r1 path(@S,D,P,C):-link(@S,D,C), P=f_init(S,D).
r2 path(@S,D,P,C):-link(@S,Z,C1), path(@Z,D,P2,C2),

C=C1+C2, P=f_concatPath(S,P2),
f_inPath(P2,S)=false.

r3 bestPathCost(@S,D,min<C>):-path(@S,D,P,C).
r4 bestPath(@S,D,P,C):-bestPathCost(@S,D,C),

path(@S,D,P,C).

The program takes as input link(@S,D,C) tuples, where
each tuple represents an edge from the node itself (S) to
one of its neighbors (D) of cost C. NDlog supports a loca-
tion specifier in each predicate, expressed with “@” sym-
bol followed by an attribute. This attribute is used to
denote the source location of each corresponding tuple.
For example, link tuples are stored based on the value of
the S field.

Rules r1-r2 recursively derive path(@S,D,P,C) tuples,
where each tuple represents the fact that there is a path
P from S to D with cost C. Rule r1 computes one-hop
reachability trivially given the neighbor set of S stored
in link(@S,D,C). Rule r2 computes transitive reachability
as follows: if there exists a link from S to Z with cost C1,
and Z knows about a path P2 to D with cost C2, then transi-
tively, S can reach D via the path f concatPath(S,P2) with
cost C1+C2. Note that r1-r2 also utilize two list manipu-
lation functions to maintain path vector: P= f init(S,D)

initializes a path vector with two elements S and D, while
f concatPath(S,P2) prepends S to path vector P2. To pre-
vent computing paths with cycles, an extra predicate
f inPath(P,S)=false is used in rule r2, where f inPath(P,S)

returns true if S is in the path vector P.
Rules r3-r4 take as input hop tuples generated by rules

r1-r2, and then derive the hop along the path with the

2

minimal cost for each source/destination pair. The pro-
gram outputs the set of bestPath(@S,D,P,C) tuples, each
of which stores the shortest path P from S to D.

3. VERIFICATION IN FVN
To demonstrate FVN’s verification mechanisms con-

cretely, we show the verification of NDlog programs (arc
4) in Section 3.1 via examples, and discuss the genera-
tion of NDlog programs from verified specifications (arc
3) in Section 3.2 where verified component-based spec-
ifications can be directly translated into executable ND-
log programs. In Section 3.3, we demonstrate that the
network meta-model itself can be formally specified in
design phase, by using metarouting as our driving exam-
ple. While we use PVS as the theorem prover, the meth-
ods are general, and other theorem provers such as Coq
will work similarly.

3.1 NDlog Verification
One method to carry out the formal verification pro-

cess, proposed by Wang et al. [22], is to automatically
compile declarative networking programs written in ND-
log into formal specifications recognizable by a theorem
prover. This translation is depicted by arc 4 in Figure 1.

The verification is made possible by the natural map-
ping from NDlog rules to PVS axioms. We provide the
following high-level intuitions behind the translation from
NDlog to PVS formalizations. The translation leverages
the proof-theoretic semantics of Datalog [1], the set of
NDlog rules defining a predicate is equivalent to an in-
ductively defined data type in PVS 1. For instance, the
following inductive definition in PVS is logically equiv-
alent to rule r1 and r2 from Section 2.2.
path(S,D,(P: Path),C): INDUCTIVE bool =

(link(S,D,C) AND P=f_init(S,D)) OR
(EXISTS (C1,C2:Metric) (P2:Path) (Z:Node):
link(S,Z,C1) AND path(Z,D,P2,C2) AND C=C1+C2
AND P=f_concatPath(S,P2) AND f_inPath(S,P2)=FALSE)

The universal quantifiers over the attributes of path

(i.e. S,D,P,C) are implicitly embedded and existential
quantifiers such as C1 and C2 are explicitly stated. Next,
the protocol designer specifies high-level properties of
the protocol directly as theorems in the theorem prover.
For instance, the route optimality property in the path-
vector protocol can be expressed as follows:
bestPathStrong: THEOREM

FORALL (S,D:Node)
(C:Metric) (P:Path): bestPath(S,D,P,C) =>

NOT (EXISTS (C2:Metric) (P2:Path):
path(S,D,P2,C2) AND C2<C)

The above theorem states that P is the optimal path
from S to D with cost C implies that there does not exist
another path P2 from S to D with cost lower than C.

Given the above theorem, one can utilize PVS to carry
out the proof process interactively. PVS, and other inter-
active theorem provers, provide some degree of automa-
tion to aid the process of proof construction.
1The equivalence of NDlog’s proof-theoretic semantics and op-
erational semantics guarantees that FVN is sound in the sense
that, the correctness property established by FVN corresponds
precisely to the operational semantics of NDlog execution.

The bestPathStrong theorem takes 7 proof steps. We
omit the details of the proof process. The main take-
aways is that PVS requires only a fraction of a second
to carry out the actual proof, and built-in commands are
available to mechanically advance the proof. When the
proof is completed, it covers all instances of the network.
In addition to the route optimality property above, refer-
ence [22] demonstrates additional proofs, for instance,
the presence of count-to-infinity loops in the distance-
vector protocol.

3.2 Verified Code Generation
The previous approach requires one to specify proto-

cols in NDlog prior to verification. In this section, we
demonstrate that reverse translation: given a conceptual
network model at design phase, logical specifications are
generated from the network model. This process corre-
sponds to arc 2 in Figure 1. Once the logical specifi-
cations are verified, they are translated into NDlog pro-
grams for execution (arc 3).

We further observe that component-based network
models are particularly amenable to the generation of
NDlog programs from verified specifications. When for-
malized as logical specifications for verification, there is
a straightforward translation to NDlog programs for exe-
cution (see Section 3.2.2).
3.2.1 Component-based BGP Model

As our driving example, we demonstrate FVN’s facil-
ity for generating executable NDlog programs from veri-
fied logical specifications based on a component concep-
tual model of routing protocols, with a focus on policy-
based routing in BGP. Note that while our treatment of
the model itself in this section is conceptual, one can for-
malize and verify this model itself at design phase, as we
demonstrate in Section 3.3.

We adopt Griffin’s BGP model [8, 7] which views BGP
protocol as a series of route transformations. Each trans-
formation is represented by a component that takes as
input received routes, performs internal transformation
based on the component specifications, and produces the
output routes.

activeAS AS W sends route
update to AS U

export importpvt
R1 R2

pt

U,W,T

bestRoute
R0(R0’) R3

AS U recomputes the best route R0’ and
exports to neighbors at the next time iteration

Figure 2: BGP model as a se-
ries of route transformations.

Component tc

t1I1
O1

t2

t3

I2

O3

O2

Figure 3: Example tc

Figure 2 shows an overview of the BGP model. At
the top level, the BGP protocol is decomposed into three
components: activeAS, pt, and bestRoute. The triggering
component activeAS(U,W,T) specifies that at time T, AS W

advertises its current best routes R0 to each neighbor AS
U. The peer-transformation component pt(U,W,R0,R3,T)

3

represents the route propagation between neighboring AS
U and W, such that AS W advertises its route to its neigh-
bor U at time T. The input routes of peer-transformation
are denoted by R0 and output routes by R3. Finally, in the
bestRoute component, AS U recomputes/selects its best
route based on attributes such as path length and local
preferences in all route advertisements R3. In the next
iteration T+1, the same process repeats itself when trig-
gered by the activeAS(U,W,T+1) event.

The above conceptual model is captured using the fol-
lowing PVS definition:
bgp(U,W,R0,R3,T): INDUCTIVE bool =

EXISTS (R1,R2): activeAS(U,W,T) AND
pt(U,W,R0,R3,T) AND bestRoute(W,T,R0)

The peer-transformation pt component can be further
decomposed into three sub-component (export, pvt, and
import). The export(U,W,R0,R1,T) component species that
AS W applies a filter to input route R0, which is then ad-
vertised to its neighbor U as route R1. The actual route
advertisement is performed by the sub-component
pvt(U,W,R1,R2,T), which implements the path vector pro-
tocol by propagating the exported route R1 from W to node
U. The propagated route is received as R2 at AS U. Upon
receiving this route, AS U applies its import policies via
sub-component import which transforms R2 into R3.

Again, the series of route transformation is capture by
the following PVS definition in a straightforward way:
pt(U,W,R0,R3,T): INDUCTIVE bool = export(U,W,R0,R1,T)

AND pvt(U,W,R1,R2,T) AND import(U,W,R2,R3,T)

In a top-down fashion, one can further define the
sub-components of pt, i.e. the export and import com-
ponents which specifies the export and import policies
for filtering routes, and the pvt component for the actual
path-vector protocol itself.

Reference [23] provides details on the PVS specifi-
cations and example proofs of various properties BGP,
which includes the Disagree scenario [8, 7] in the pres-
ence of policy conflicts, and generalization of the proofs
to an arbitrary large network via induction.
3.2.2 NDlog Program Generation

We next describe the translation steps required to
generate property preserving NDlog programs from
component-based network models. We consider an
atomic component t with a list of inputs I, and list of
outputs O, and any additional constraints and assignments
are denoted by C1(I,O), C2(I,O),... For ease of notation,
we denote the set of all constraints in the component as
CT(I,O). Here, we assume that all inputs I are themselves
generated from one input component, and all outputs are
sent to one output component. The PVS specification of
this component is given by:
t(I,O):INDUCTIVE bool = CT(I,O)

The equivalent NDlog rule is as follows:
t_out(O) :- t_in(I), CT(I,O)

The basic idea is to specify component t as a rule that
takes as input a t in(I) predicate in the rule body, and
derives t out(O) in the rule head, whenever all additional
constraints and assignments in CT are satisfied.

The above translation works for a single component
that is connected with one other input and output compo-
nent. The translation can however be easily generalized
to a component connected to multiple input and output
components. In this case, each input component will
generate one t in(I) predicate in the rule body, and for
each output component, a NDlog rule is generated with
the corresponding rule head denoting the output.

Given a component with sub-components, one can re-
cursively define the rules in a top-down fashion. Con-
sider the compositional component tc shown in Figure 3
that consists of three subcomponents t1,t2,t3, each of
which has additional constraints C1, C2, and C3. The PVS
definitions are as follows:
tc(I1,I2,O3): INDUCTIVE bool = EXISTS (O1,O2):
t1(I1,O1) AND t2(I2,O2) AND t3(O1,O2,O3)

t1(I,O): INDUCTIVE bool = C1(I,O)
t2(I,O): INDUCTIVE bool = C2(I,O)
t3(I,O’,O): INDUCTIVE bool = C3(I,I’,O)

The equivalent NDlog rules are as follows:
t1_out(O1) :- t1_in(I1), C1(I1,O1).
t2_out(O2) :- t2_in(I2), C2(I2,O2).
t3_out(O3) :- t1_out(O1), t2_out(O2), C3(O1,O2,O3).

To annotate the above NDlog program with the appro-
priate location specifiers for each predicate, additional
predicate schema information is required as input for the
translation process. Reference [23] validates distributed
executions of translated NDlog programs implementing
a path-vector protocol with export and import policies
within a local cluster environment, and observe delayed
convergence in the presence of policy conflicts.

3.3 Meta-Theoretic Model
Section 3.2 demonstrates that verified NDlog pro-

grams can be generated from a conceptual BGP model.
However, the model itself is not formally specified and
checked. To develop complex models in a systematic
and compositional way with correctness guarantee, one
would like to also formally specify the network model
and verify the model directly at design phase.

FVN aims to provide a meta-theoretic framework for
specifying new formal network models at the design
stage. Once verified, it can be used to generate logical
specifications for additional verification, and NDlog pro-
grams for implementation. To illustrate this process, we
demonstrate a subset of FVN’s built-in network meta-
model based on metarouting [9]. Our goal here is to
demonstrate the use of FVN to define new routing proto-
cols given the built-in meta-model. Detailed description
and formalism is available in reference [24].
3.3.1 Background on Metarouting

Metarouting is an algebraic framework for specify-
ing routing protocols in a restricted fashion such that
the protocols are guaranteed to converge. Metarouting
provides base algebras as the atomic building blocks, to-
gether with composition operators that generate complex
protocol algebras from existing ones.

Metarouting uses abstract routing algebra as the math-
ematical model for routing. An abstract routing algebra

4

A is denoted by a tuple A: A = 〈Σ,�,L,⊕,O, φ〉. Σ
is the set of paths in the network totally ordered by �.
Intuitively, the preference relation is used by the rout-
ing protocol algorithm to select the most desirable path;
L is a set of labels describing links between immediate
neighbors. Note that the labels may denote complicated
policies associated with the corresponding link; ⊕ is a
mapping from L×Σ to Σ, which is the label application
operation that generates new paths by concatenating ex-
isting paths and adjacent links; O is a subset of Σ called
origination that represents the initial routes stored at net-
work nodes; Finally φ is a special element in Σ denoting
prohibited paths that will not be propagated.

The semantics of routing algebra is given by four ax-
ioms on maximality, absorption, monotonicity, and iso-
tonicity. The maximality and absorption axioms describe
the behavior of prohibited path as the least preferred path
that is closed under path concatenation; monotonicity
imposes the restriction that a path becomes less preferred
when it “grows” (i.e. path concatenation occurs), and iso-
tonicity states that the preference relation over two paths
is preserved when concatenated with the same link.

Unlike previous combinatorial models [8], the routing
algebra identifies and proves that the properties of mono-
tonicity and isotonicity are sufficient conditions for net-
work convergence. Convergence verification of routing
protocols implementation are hence reduced to proofs of
monotonicity and isotonicity of the routing algebra.

Based on abstract routing algebra, metarouting further
defines a set of base (atomic) algebras and composition
operators which serve as the building blocks in the con-
struction of routing algebras. For instance, metarouting
provides instances of base algebras for adding link costs
(addA) during path concatenation, and for specifying lo-
cal preferences (lpA) used in route selection. These al-
gebras are then used by composition operators such as
the lexical product operator that models lexicographical
comparisons of multiple attributes in route selection.

3.3.2 Example Protocol Formalization
Given the above basic framework, a protocol designer

formalizes a routing protocol in terms of the metarout-
ing algebras, and prove that the above four axioms hold
for the protocol. This is tedious work: mistakes in the
hand-written proofs yield faulty designs, which defeat
the purpose of formal modeling. FVN instead uses a the-
orem prover to automatically check that the protocol is
correctly formalized.

Our encoding uses a module system called theory in-
terpretation in PVS [21]. An analogy of module sys-
tems is the use of .h files and .c files in C. We first en-
code the abstract metarouting algebra as abstract signa-
tures in a PVS theory called routeAlgebra (a .h file). The
routeAlgebra theory contains the type declarations of the
abstract algebra, based on the tuple A that we introduced
earlier: A: sig (Σ), prefRel (�), label (L), labelApply

(⊕), org (O), prohibitPath (φ). The routeAlgebra the-
ory also contains additional definitions for maximality,

absorption, monotonicity, and isotonicity axioms.
Next, the network designer instantiates an algebra in-

stance as an implementation of the abstract routeAlgebra,
similar to definition of a .c file). In order for the instantia-
tion to be valid, the designer must carry out the proofs for
the above four axioms. Using PVS, network designers
are freed from such tedious low-level proof obligations.
The proof obligations are automatically discharged for
all the base algebras developed in [24].

Furthermore, it is straightforward to encode the com-
position operators provided in [9]. Again, the proofs that
protocols obtained from composing two well-behaved
protocols using those composition operations satisfy all
the necessary axioms are automatically discharged by
PVS’s type checker.

To provide a flavor of the formalism, we show the code
snippet of a route selection policy used in a BGP system.
The route selection is defined in terms of the lexical prod-
uct composition operator as follows:
BGPSystem: THEORY = lexProduct[LP, RC]

lexProduct is the pre-defined PVS theory that formalize
the lexical product composition operation. BGPSystem will
first compare local preference (LP) between two routes.
In the event of a tie in the local preference values, the
cost of each route will be compared next (RC).

The sub-components LP and RC can be further defined
as PVS theories. For example, the LP sub-component can
be specified as follows to impose route preferences based
on a lower local preference value:
LP: THEORY =
routeAlgebra
{{sig=lpA.SIG, label=lpA.LABEL,
labelApply(l:lpA.LABEL, s:lpA.SIG)=l,
prohibitPath=4, prefRel(s1, s2:int) = (s1<=s2)}}

The above definition species that LP is an instantiation
of the abstract theory routeAlgebra, and that LP inherits
from another pre-defined algebra instance lpA. In partic-
ular prefRel (�), which is used to specify a total ordering
of all routes, specifies a preference for smaller local pref-
erence values. Accordingly, sub-component RC can be
defined in terms of base algebra addA in a similar fashion.

By extending PVS specification logic with metarout-
ing theory, FVN can leverage PVS’s powerful type
checker and built-in proof engine to ensure routing
model consistency. As a result, the network designer can
focus on high-level protocol design (i.e. customize the
policies using existing base algebras, such as the sub-
components LP and RC shown above) and the conceptual
decomposition of their routing protocols, and shift the
low-level details of ensuring consistency of the derived
protocol model with respect to metarouting theory to the
proof engine.

4. DISCUSSION
To conclude, we outline our ongoing research efforts.

4.1 Network Models and Implementation
FVN uses NDlog as an intermediary layer between

high-level logical specifications of the network model
and low-level implementations. However, it is still up

5

to the network designer to define the conceptual network
model. Our initial effort in Section 3.3 demonstrates the
promise of using formal tools to automate the process of
defining and verifying a network model. We plan to ex-
pand upon this initial effort and explore a range of alter-
native meta-models in FVN. For example, metarouting,
as an idealized model for a constrained class of protocols,
cannot represent well behaved converging protocols that
violate monotonicity. FVN, by leveraging PVS’s proof
checker, can aid in the design and analysis of relaxed al-
gebraic models for a wider range of routing protocols.

In Section 3.2, we observe a natural mapping between
a component-based conceptual model of BGP and equiv-
alent NDlog programs. However, in the case of the
metarouting formalism in Section 3.3, the translation is
less clearly defined. We however are optimistic that
given the close logical relationships between metarout-
ing algebraic objects and declarative networking specifi-
cations, a property-preserving translation can be achieved.

Beyond routing, we are interested in exploring net-
work models based on component-based abstractions
(e.g. [14, 10]) that are also amenable to the translation
into NDlog programs for direct execution.

4.2 Modeling Soft-state
Soft-state [4] is central in the design of many network

protocol. Declarative networking incorporates soft-state
by allowing tuples in tables to timeout after a specified
lifetime. To reason about protocols with soft-state, Wang
et al. [22] utilize a rule rewrite strategy that translate soft-
state to hard-state rules via the introduction of explicit
timestamps and lifetime attributes to soft-state predicates.
The resulting encoding is heavy-weight and cumbersome
to prove, and consequently, non-ideal for reasoning about
eventual consistency of protocols.

We are currently exploring the use of linear logic [6]
as the semantics foundation for verification of NDlog
programs with soft-state data. To this end, we are inter-
ested in extending NDlog specification with linear logic
so that the semantics of soft-states can be explicitly mod-
eled. The characteristics of linear logic is that logi-
cal facts will be consumed once it is used in a proof.
Consequently, linear logic is known to be able to rea-
son about state transition and resource consumption el-
egantly, and have wide-applicability in security protocol
verification [3] and memory update models [11].

4.3 Combining Verification Techniques
An important aspect of this work is to develop a holis-

tic understanding of various verification techniques, and
develop a verification methodology that combines them
in the most effective manner.

Unlike model checking, theorem proving is complete,
and it is also more expressive in the types of properties
that it can express and verify. In terms of proof effort,
model checking typically requires less human interven-
tion compared to theorem proving. We however note that
typically two-thirds of the proof steps can be automated
by the theorem prover’s default proof strategies, and in

some cases, can be further automated [25].
An advantage of model checking over theorem prov-

ing is its ability to simulate runs of the protocols and ex-
plore all possible states to detect automatically if some
run will reach an undesirable state. The proof process
can be automated via integration with model checking to
explore the proof search space. Another useful method
to combine the two techniques is via a counter-example
approach. When verification fails, most model checkers
provide a counter-example (that is, a trace that illustrates
why the formula evaluates to false) to aid in the theorem
proving process.

Extending NDlog with linear logic has the added ben-
efit that it would allow us to view the declarative net-
working specification as a set of transition rules that de-
termine the updates of the underlying routing tables. We
can leverage such transition system representation to di-
rectly interface with model checkers, hence providing an
additional verification mechanism for FVN.
Acknowledgments This work is partially supported by
NSF CAREER CNS-0845552, NSF CCF-0820208, and
AFOSR Grant No: FA9550-08-1-0352.

5. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[2] Y. Bertot and P. Castéran. Interactive theorem proving and program

development. Coq’Art: The calculus of inductive constructions, 2004.
[3] I. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. A

meta-notation for protocol analysis. CSFW, IEEE, 1999.
[4] D. D. Clark. The design philosophy of the DARPA internet protocols. In

SIGCOMM, 1988.
[5] D. Engler and M. Musuvathi. Model-checking large network protocol

implementations. In NSDI, 2004.
[6] J.-Y. Girard. Linear logic. Theoretical Computer Science, 1987.
[7] T. Griffin and G. Wilfong. An analysis of BGP convergence properties. In

SIGCOMM, 1999.
[8] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths problem

and interdomain routing. IEEE Trans. on Networking, 10:232–243, 2002.
[9] T. G. Griffin and J. L. Sobrinho. Metarouting. In ACM SIGCOMM, 2005.

[10] M. Handley, A. Ghosh, P. Radoslavov, O. Hodson, and E. Kohler.
Designing IP Router Software. In NSDI, 2005.

[11] L. Jia and D. Walker. ILC: A foundation for automated reasoning about
pointer programs. In ESOP, 2006.

[12] M. Karsten, S. Keshav, S. Prasad, and M. Beg. An axiomatic basis for
communication. In SIGCOMM, 2009.

[13] C. Killian, J. Anderson, R. Jhala, and A. Vahdat. Life, death, and the
critical transition: Finding liveness bugs in systems code. In NSDI, 2007.

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
Modular Router. ACM TOCS, 18(3):263–297, 2000.

[15] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica. Implementing Declarative Overlays. In ACM SOSP, 2005.

[16] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative
Routing: Extensible Routing with Declarative Queries. In ACM
SIGCOMM, 2005.

[17] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS:
Combining specification, proof checking, and model checking. In CAV,
1996.

[18] P2: Declarative Networking System. http://p2.cs.berkeley.edu.
[19] J. A. N. Perez, A. Rybalchenko, and A. Singh. Cardinality abstraction for

declarative networking applications. In CAV, 2009.
[20] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and

A. Vahdat. Pip: Detecting the Unexpected in Distributed Systems. In
NSDI, 2006.

[21] O. Sam and S. Natarajan. Theory Interpretations in PVS. Technical report,
2001.

[22] A. Wang, P. Basu, B. T. Loo, and O. Sokolsky. Declarative network
verification. In PADL, 2009.

[23] A. Wang, C. Liu, B. T. Loo, O. Sokolsky, and P. Basu. Verifiable
Policy-based Routing with DRIVER. Technical Report MS-CIS-09-12,
CIS Dept. University of Pennsylvania, 2009.

[24] A. Wang and B. T. Loo. Formalizing Metarouting in PVS. In Automated
Formal Methods (AFM), 2009.

[25] Yices: An SMT Solver. http://yices.csl.sri.com/.

6

	Introduction
	Overview
	FVN Framework
	Background on Declarative Networking

	Verification in FVN
	NDlog Verification
	Verified Code Generation
	Component-based BGP Model
	NDlog Program Generation

	Meta-Theoretic Model
	Background on Metarouting
	Example Protocol Formalization

	Discussion
	Network Models and Implementation
	Modeling Soft-state
	Combining Verification Techniques

	References

