
The Case for a Unified Extensible Data-centric
Mobility Infrastructure

Yun Mao
University of Pennsylvania
maoy@cis.upenn.edu

Boon Thau Loo
University of Pennsylvania

boonloo@cis.upenn.edu

Zachary Ives
University of Pennsylvania
zives@cis.upenn.edu

Jonathan M. Smith
University of Pennsylvania
jms@cis.upenn.edu

ABSTRACT
We present a unified, extensible data-centric mobility infras-
tructure based on declarative networks and composable dis-
tributed views over network, router, and host state. Declar-
ative networks are a recent innovation for building extensi-
ble network architectures using declarative languages. The
data-centric approach both improves flexibility over existing
solutions, and is extensible to meet the demands of future
mobile applications and services. We demonstrate the flexi-
bility of distributed queries used in declarative networks by
specifying and implementing mobile services, e.g., overlay-
based solutions for host mobility, customizable routing, ser-
vice discovery and composition, and location-based services.
A prototype based on the P2 declarative networking system
has been implemented, with which we evaluated two overlay-
based mobility schemes (ROAM and DHARMA).

1. INTRODUCTION
The Internet’s role is changing dramatically, from a means

of connecting together PCs and servers to a ubiquitous,
over-the-air communications medium interconnecting mo-
bile personal devices, environmental sensors, and Web ser-
vices. Broadband wireless MANs are being deployed in
many cities, and emerging technologies (e.g., WiMAX) are
built into many communications devices, as well as laptops.

As new services (voice, video, emergency response, etc.)
are being deployed on the wireless infrastructure, there have
been increased demands on the Internet for efficient routing
among mobile and wired nodes, location of proximity-based
services, and wide-area service discovery and composition.
To address these demands, a variety of special-purpose pro-
tocols and overlay networks [11, 16] have been developed,
focusing on flexible naming and addressing of mobile hosts,
locating proxies and home agents of mobile hosts, and sup-
porting location-based services.

In this paper, we present a new point in this design space

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiArch’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-784-1/07/0008 ...$5.00.

that aims to achieve extensibility in mobility infrastructures
based on the application of database techniques to the net-
working domain. We propose a unified, extensible data-
centric mobility infrastructure that allows for (1) extensible
capabilities for logical naming of data in the form of views1,
(2) unified declarative queries for distributed data manage-
ment and state acquisition. We argue that our approach
will make it much easier to combine existing services, choose
among alternatives, and deploy new services.

Logical-physical data model separation and distributed
data acquisition and transformation are the cornerstones of
the modern database field [5, 10, 4]. Hence, we propose
that a declarative, database-inspired mobility infrastructure
using query languages is an ideal interface to these capabil-
ities. Declarative languages provide both optimization and
strong static verification possibilities, and declarative query
languages focus on distributed data acquisition and trans-
formation. Moreover, because such languages allow for very
general definitions and are concise, they are much more ex-
tensible over time. Views can be composed, new queries
and requests can be deployed, and new optimization or pro-
cessing techniques can be invented and deployed without
breaking compatibility. Such properties differentiate our ap-
proach from work on Active Networks [15], which typically
used general programming models and only had a limited
treatment of distributed coordination and data acquisition.

Our mobility infrastructure uses declarative networks [9,
8] to build extensible network architectures that achieve a
good balance of flexibility, performance and safety. Declar-
ative networks are specified using Network Datalog (NDlog),
which is a distributed recursive query language used for
querying network graphs stored in databases. NDlog queries
are executed using a distributed query processor to imple-
ment the network protocols, and continuously maintained
as distributed views over existing network and host state.

Declarative queries such as NDlog are a natural and com-
pact way to implement a variety of routing protocols and
overlay networks. For example, traditional routing protocols
can be expressed in a few lines of code [9], and the Chord [14]
distributed hash table in 47 lines of code [8]. When compiled
and executed, these declarative networks perform efficiently
relative to imperative implementations. The orders of mag-
nitude reduction in code size significantly increases program-
mer productivity. Moreover, these declarative specifications

1In database terminology, a view is a virtual or logical table
composed of the result set of a query.

allow mobile services to be easily composed, and added to
the infrastructure. While declarative networking concepts
apply generally to a variety of networked environments, the
wireless access and network mobility environment presents
a compelling use case for these ideas. Examples include:

Flexible addressing and naming: Many mobile address-
ing and naming schemes are currently supported through
indirection, which maps names to addresses in a location-
sensitive way. We can generalize these capabilities by com-
posing and then customizing these indirection requests as
declarative queries, which can also take into account other
types of relevant data, e.g., subscriber status or system load.
These queries are maintained continuously as distributed
views. Mobile hosts can then periodically query these views
in order to select proxies as they move in the network.

Customizable routing: Mobile environments greatly in-
crease the heterogeneity and complexity of networks. The
need for better management and diagnosis tools, as well
as adaptive and self-healing routing protocols, requires dis-
tributed acquisition of network state and data. Declarative
routing [9] protocols are a natural fit in this environment,
and can be used to specify additional constraints for session
requirements and network state.

Declarative service specifications: Service discovery and
composition will become increasingly necessary to support
transcoders and location-based services. This is naturally
supported by storing service descriptions as relational ta-
bles, which are queried and composed by mobile hosts.

Security: With the proliferation of mobile devices and
wireless communication networks, security and intrusion de-
tection are increasingly important. Such services require
correlation of state and activity distributed across a multi-
tude of subnetworks and hosts. A variety of network mon-
itoring services can be deployed as distributed queries, and
data-centric views offer a natural way for enforcing access
control [1]. Our unified data-centric framework permits the
easy integration of declarative networks with network mon-
itoring queries. Moreover, static analysis techniques [7] can
be applied to ensure that only queries that terminate are
permitted.

Contributions and Organization: Section 2 presents an ar-
chitectural overview of the extensible data-centric mobility
infrastructure based on the P2 declarative networking sys-
tem, and introduces the NDlog query language. Section 3
shows the flexibility of the mobility infrastructure in speci-
fying flexible proxy location, customizable routing, and ser-
vice discovery and composition. Section 4 demonstrates the
performance of our approach, showing initial evaluation re-
sults on the Emulab testbed for two overlay-based mobility
schemes (ROAM [16], previously implemented over the In-
ternet Indirection Infrastructure (i3) [13], and DHARMA [11])
implemented using the P2 System. Section 5 concludes the
paper with a discussion of future research directions.

2. SYSTEM OVERVIEW
Figure 1 illustrates the proposed mobility infrastructure

at a conceptual level. The nodes in the mobility infrastruc-
ture can either be routers or overlay nodes in an existing
communication infrastructure. These nodes provide a vari-
ety of services on behalf of mobile hosts, including discovery

Receiver (R)

Sender (S)

sProxy

rProxy

Query

Figure 1: An overview of the mobility infrastructure.

and assignment of nearby nodes as home agents (or proxies)
for routing data, adaptive routing among different mobile
hosts based on session requirements, location-based services,
service discovery and composition, and network monitoring
within the infrastructure.

These services are supported in our system as distributed
queries, specified in the NDlog query language used in declar-
ative networking. NDlog queries can either be initiated by
a mobile host (e.g. for locating nearby services or home
agents), or executed continuously at the infrastructural-level
(e.g. maintaining the network state of an overlay that sup-
ports mobility, tracking the location of mobile hosts, moni-
toring of network state, etc.).

As an example, in Figure 1, the mobile host (S) issues
a query to discover a nearby proxy node (sProxy), and a
route is established (via the execution of a declarative rout-
ing [9] query) to the proxy on the receiving side (rProxy).
The route can be computed based on the bandwidth require-
ments of the session, and maintained for the duration of the
session.

2.1 Infrastructure Node

Figure 2: Components of an infrastructure node.

The mobility infrastructure utilizes the P2 declarative net-
working system to process NDlog queries to implement the
mobile services. The P2 system runs on a set of infrastruc-
ture nodes, and queries can execute in distributed fashion
across these nodes. Figure 2 shows the components of a
single infrastructure node based on the fully-distributed ex-
ecution model. We provide a high-level description of the P2
system2. There are two main components in P2: the plan-
ner, and the dataflow engine. The P2 planner takes as in-

2Interested readers should see references [9, 8] for details on
query planning, optimizations, and the dataflow framework.

put NDlog queries, which are compiled into execution plans
(dataflows), and then executed using P2’s dataflow engine.
Unlike traditional database execution plans, P2 dataflows
are suitable for implementing network protocols, and share
a similar execution model with the Click modular router [6],
which consists of elements that are connected together to im-
plement a variety of network and flow control components.
In addition, P2 elements include database operators (such as
joins, aggregation, selections, and projects) that are directly
generated from the queries.

Each local dataflow participates in a global, distributed
dataflow, with messages flowing among dataflows executed
at different nodes, resulting in updates to local tables, or
query results that are returned to the mobile hosts that
issued the queries. The local tables store the state of in-
termediate and computed query results, which include the
network state of various network protocols in support of
mobility, stored state of mobile hosts, and location-based
service descriptions. The distributed dataflows implement
the operations of various network protocols in support of
mobility. The flow of messages entering and leaving the
dataflow constitute the network messages generated during
query execution.

2.2 NDlog Query Language
Datalog is a recursive query language primarily used in

the database community for querying graph structures. We
provide a short review of Datalog, following the conventions
in Ramakrishnan and Ullman’s survey [12]. A Datalog pro-
gram consists of a set of declarative rules and a query3.

A Datalog rule has the form p :- q1, q2, ..., qn., which
can be read informally as q1 and q2 and ... and qn implies
p”. Here, p is the head of the rule, and q1, q2,...,qn is a list
of literals that constitutes the body of the rule. Literals are
either predicates applied to fields (variables and constants),
or boolean expressions that involve function symbols (in-
cluding arithmetic) applied to fields. We sometimes refer to
these fields as attributes. The rules can refer to each other
in a cyclic fashion to express recursion. The order in which
the rules are presented in a program is semantically imma-
terial. The commas that separate the predicates in a rule
are logical conjunctions (AND); the order in which predi-
cates appear in a rule body also has no semantic significance
(though implementations typically employ a left-to-right ex-
ecution strategy). The query specifies the output of interest.
We can convert the query into a view simply by giving it a
name; other queries can use this view as if it were a table.

The predicates in the body and head of traditional Data-
log rules are relations, and we will refer to them interchange-
ably as predicates, relations, or tables. Each relation has a
primary key, which consists of a set of fields that uniquely
identifies each tuple within the relation. In the absence of
other information, the primary key is the full set of fields in
the relation.

The names of predicates, function symbols, and constants
begin with a lower-case letter, while variable names begin
with an upper-case letter. Most implementations of Datalog
enhance it with a limited set of function calls (which start
with “f ” in our syntax), including boolean predicates, arith-

3Since these programs are commonly called “recursive
queries” in the database literature, we will use the term
“query” and “program” interchangeably when we refer to a
Datalog program.

metic computations, and simple list operations. Aggregate
constructs are represented as functions with field variables
within angle brackets (<>). We will not consider negated
predicates since they are not supported by NDlog.

Network Datalog (NDlog) is a distributed variant of tradi-
tional Datalog, primarily designed for expressing distributed
recursive computations common in network protocols. We
illustrate NDlog using a simple example of two rules that
computes all-pairs of reachable nodes:

r1 reachable(@S,D) :- link(@S,D).
r2 reachable(@S,D) :- link(@S,Z), reachable(@Z,D).
Query reachable(@S,D).

The rules r1 and r2 specify a distributed transitive clo-
sure computation, where rule r1 computes all pairs of nodes
reachable within a single hop from all input links, and rule r2

expresses that “if there is a link from S to Z, and Z can reach
D, then S can reach D.” By modifying this simple example,
we can construct more complex routing protocols, such as
the distance vector and path vector routing protocols. See
[9] for more details.

NDlog supports a location specifier in each predicate, ex-
pressed with @ symbol followed by an attribute. This at-
tribute is used to denote the source location of each cor-
responding tuple. For example, all reachable and link tu-
ples are stored based on the @S address field. The output
of interest is the set of all reachable(@S,D) tuples, repre-
senting reachable pairs of nodes from S to D. In addition,
we can bind the query output using constants, e.g. “Query
reachable(@a,D)” outputs nodes reachable from a.

3. QUERIES FOR MOBILITY
In this section, we provide three example classes of useful

queries in support of mobility: proxy location, customizable
routing, and service discovery and composition. This is not
intended to be an exhaustive coverage of the possibilities
of our proposal, but rather an illustration of the ease with
which NDlog queries can be used for implementing mobile
services that can be easily composed and enhanced for var-
ious aspects of mobility.

3.1 Proxy Location
In our first example, a mobile host issues an NDlog query

to locate a nearby infrastructure node that serves as its
proxy node either for routing data, or for providing sup-
port for location-based services. The examples are based on
ROAM [16] and DHARMA [11].

3.1.1 ROAM
ROAM is built on top of i3 [13], a rendezvous-based over-

lay network that provides a level of indirection between
senders and receivers. In i3, instead of explicitly sending
a packet to a destination, each packet is associated with
an identifier; this identifier is then used by the receiver to
achieve delivery of the packet. This indirection mechanism
is implemented with the use of triggers. In our system, each
trigger(@PI,P,NI) condition is encoded in a tuple, which is
stored at the infrastructure node PI; it specifies to route mes-
sages on behalf of mobile host NI with identifier P. A mobile
host with identifier P and address NI needs to update its
trigger only when its address changes. The following rules
i1-i7 are issued by a mobile host for selecting the closest
infrastructure node as its proxy.

#define SIZE 5
#define S_RATE 60
i1 randomKeys(@NI,K) :- periodic(@NI,E,0,SIZE),

K=f_randID().
i2 lookup(@LI,K,NI,E) :- periodic(@NI,E1,S_RATE),

randomKeys(@NI,K),
landmark(@NI, LI),
E=f_rand().

i3 pendingPing(@NI,R,RI,E1,T) :-
lookupResults(@NI,K,R,RI,E), T=f_now().

i4 pingReq(@RI,NI,E) :- lookupResults(@NI,K,R,RI,E).
i5 pingRTT(@NI,R,RI,RTT) :-

pingResp(@NI,SI,E),
pendingPing(@NI,R,RI,E,T), RTT=f_now()-T.

i6 leastRTT(@NI,E,min<RTT>) :-
periodic(@NI,E,S_RATE),
pingRTT(@NI,R,RI,RTT).

i7 proxy(@NI,R,RI) :- lowestRTT(@NI,E,RTT),
pingRTT(@NI,R,RI,RTT).

Query proxy(@NI,R,RI).

The i3 overlay utilizes a DHT to provide the mapping from
identifiers to hosts. Our rules assume that the declarative
overlay implementation of the Chord DHT (referred to as
P2-Chord [8]) is executed on all infrastructure nodes.

Rule i1 periodically4 generates SIZE number of random
keys stored in randomKeys table using the built-in function
f randID that will return a 160-bit random identifier. Ev-
ery S rate seconds, rule i2 generates lookup(@LI,K,NI,E) re-
quests from the mobile host NI to its landmark node LI,
one for each random key K generated in rule i1. A unique
event identifier E is associated with each lookup. Based on
the lookup results obtained from P2-Chord, rules i3-i4 will
result generate pingReq request tuples to all infrastructure
nodes in the lookup results.

Each infrastructure node responds to the ping requests
with pingResp tuples that are sent back to the mobile host.
Upon receiving the pingResp, rule i5 computes the round-
trip-time (RTT) from the mobile host to the infrastructure
node. All the computed RTTs are then used in rule i6-i7

for selecting the closest proxy node. The selected proxy
with address RI and identifier R (denoted by proxy(@NI,R,RI)

tuple) will be maintained at the mobile host NI. With an
additional rule “i8 trigger(@RI,R,NI) :- proxy(@NI,R,RI)”,
the mobile host NI can insert a trigger tuple at its selected
proxy node RI storing its address and identifier. All packets
to NI are then routed to the indirection node RI which then
forwards them to NI via this trigger.

3.1.2 DHARMA
DHARMA [11] can also be used to select a nearby proxy

node. Unlike ROAM’s DHT, DHARMA uses a number of
designated portal servers, nodes that store information on
other nodes in the infrastructure.

#define R_RATE 5
d1 agentMsg(@PI,NI) :- periodic(@NI,E,R_RATE),

portal(@NI,PI).
d2 pingResp(@RI,NI,E) :- pingReq(@NI,RI,E).

We consider a simple example with one portal server PI,
stored on every infrastructure node NI as a portal(@NI,PI)

4The periodic(@N,E,T,K) event relation is a built-in relation
that represents a stream of event tuples generated at node N
every T seconds (up to an optional K times) with a random
event identifier E. If K is omitted, the stream is generated
infinitely.

tuple. Rule d1 is executed at all infrastructure nodes, and
will result in the generation of periodic heartbeats
(agentMsg(@PI,NI) tuples) to the portal server PI. Rule d2

generates a pingResp in response to a ping request.

d3 agentList(@PI,NI) :- agentMsg(@PI,NI).
d4 agentCandidates(@MI,AI,E) :-

requestProxy(@PI,MI,S,E),
agentList(@PI,AI), f_coinFlip(S)=1.

Rules d3-d4 are executed on the portal server. Rule d3

stores all incoming agentMsg(@PI,NI) tuples in a
agentList(@PI,NI) table, hence maintaining the list of all
candidate infrastructure nodes NI. These tuples will time-
out unless the respective infrastructure nodes periodically
refresh their entries via regular agentMsg messages. Rule d4

is generated in response to a mobile host request for candi-
date proxies (via a requestProxy tuple).

#define P_INTERVAL 5
#define S_RATE 0.2
d5 requestProxy(@PI,NI,S_RATE,E) :-

periodic(@NI,E,P_INTERVAL),
portal(@NI,PI).

d6 pendingPing(@NI,AI,E,T) :-
agentCandidates(@NI,AI,E), T=f_now().

d7 pingReq(@AI, NI, E) :- agentCandidates(@NI,AI,E).
d8 pingRTT(@NI,SI,RTT) :- pingResp(@NI,SI,E),

pendingPing(@NI,SI,E,T), RTT=f_now()-T.
d9 leastRTT(@NI,E,min<RTT>) :-

periodic(@NI,E,P_INTERVAL),
pingRTT(@NI,RI,RTT).

d10 leastRTTNode(@NI,RI,RTT) :- leastRTT(@NI,E,RTT),
pingRTT(@NI,RI,RTT).

d11 proxy(@NI,RI) :- lowestRTT(@NI,E,RTT),
pingRTT(@NI,RI,RTT).

Query proxy(@NI,RI).

The above rules d5-d11 are executed by a mobile host
seeking to locate a nearby proxy node. Rule d5 results in
the mobile host periodically generating a requestProxy tuple
to the portal server, which will return 20% (determined by
S RATE) of the nodes from its agentList table as potential
proxy candidates. Similar to the earlier ROAM rules, d6-d11
computes the closest proxy node RI, which is maintained at
the mobile host NI.

3.1.3 Flexible Proxy Selection
The NDlog query language enables higher-level concepts

to be easily encoded by making minor modifications to the
above rules. This enables user-customizable proxy selec-
tions. For example, by replacing min with min-k, we can
select the top-k nodes to get multiple proxies per mobile
host. We can also adopt different criteria: instead of se-
lecting the closest RTT node, we can select the least loaded
node as long as it is within a RTT bound. We can also limit
our proxy selection to nodes that provide certain services
within their location (e.g. transcoding services described in
Section 3.3).

3.2 Customizable Routing
Our next example shows a customizable version of the

basic path vector protocol [9]. The query computes the
best paths among all infrastructure nodes. The query takes
as input link(@S,D,C) tuples, where each link from node S

to node D denotes connectivity between two infrastructure
nodes; messages can be routed from S to D at cost C.

bp1 path(@S,D,D,P,C) :- link(@S,D,C), P=f_init(S,D).
bp2 path(@S,D,Z,P,C) :- link(@S,Z,C1),

path(@Z,D,Z2,P2,C2),
C=f_compute(C1,C2),
P=f_concatPath(S,P2).

bp3 bestPathCost(@S,D,AGG<C>) :- path(@S,D,Z,P,C).
bp4 bestPath(@S,D,P,C) :- bestPathCost(@S,D,C),

path(@S,D,Z,P,C).
Query bestPath(@S,D,P,C).

Rules bp1 and bp2 compute all possible paths, and rules
bp3 and bp4 compute all-pairs best paths, which are stored
as bestPath tuples at each source node S for source routing.
We have left the aggregation function AGG unspecified. By
changing AGG and the function f compute used for computing
the path cost C, the above query can generate best paths
based on any metric including link latency, loss rates, avail-
able bandwidth and node load. For example, if the query is
used for computing the shortest paths, f sum is the appro-
priate replacement for f compute, and min is the replacement
for AGG. The above query can be further restricted by the
current sender and receiver proxies of the communicating
devices, and the routes between these two proxies is main-
tained as a continuous query, and adapted based on link
updates.

We can extend the query by adding constraints based
on the session requirements, by introducing an additional
session predicate to the rules above. For example, we can
restrict the set of paths to those with costs below a loss or
latency threshold K by adding a session(@S,K) predicate,
and a constraint C<K to the rules bp1 and bp2.

3.3 Service Discovery and Composition
The proxy location query described in Section 3.1 is an in-

stance of service discovery, in which a nearby routing proxy
is located. Once a proxy node is identified, a mobile host
can issue additional queries via its proxy to locate desired
resources within its vicinity. In addition, the use of a declar-
ative framework eases the composition of services. For ex-
ample, one can query for multiple services within the infras-
tructure, and then construct a path (either an explicit path
presented Section 3.2, or a series of triggers supported by
i3) along all intermediate service points.

In our final example, we build upon the earlier ROAM
example, to demonstrate service discovery and composition
with the use of i3 triggers. Here a sender SI performs a
discovery of a transcoder, and then forwards all packets to
the transcoder before being delivered to their receivers RI.
Our example is presented with flexibility and composability
of our infrastructure in mind. While our example is based
on i3 and ROAM, our infrastructure does not preclude sup-
porting other discovery and composition mechanisms.

t1 leastLoad(@PI,SI,min<L>) :- proxy(@SI,P,PI),
transcoders(@PI,TI,TID,L).

t2 bestTranscoder(@SI,TI,TID) :-
transcoders(@PI,TI,TID,L),
leastLoad(@PI,SI,L).

Query bestTranscoder(@SI,TI,TID).

Each transcoder TI inserts a trigger, stored as a
trigger(@PI,TID,TI) tuple at the infrastructure node PI that
owns the identifier TID. These triggers are further regis-
tered in the transcoders table of nearby proxy nodes. The
rules t1-t2 are used by a sender SI to locate a least loaded
transcoder TI with identifier TID registered at S’s proxy PI.

When a sender SI wishes to send a packet to a mobile
host NI supported by a trigger with identifier RID, a series of
identifiers (TID,RID) is required to first forward each packet
to the transcoder (TID), which then reroutes the packet to
the mobile host (RID). We omit the (few) NDlog rules for
forwarding with triggers. The main takeaway is that i3’s
service composition mechanism via multiple triggers can be
easily supported by our infrastructure. In addition, we can
use the declarative interface to query and locate the triggers
themselves during service discovery.

As a further enhancement, we can enhance existing queries
to support late binding [2]. An NDlog query can be sent
along with each packet, which will be routed based on the
service requests indicated in the NDlog query. Support for
late bindings require additional NDlog rules for publishing
and propagating service descriptions among infrastructure
nodes to create routing tables based on service attributes.
This provides a flexible data delivery mechanism that allows
applications to track rapid change (e.g., user or network mo-
bility) and support changing service updates.

4. PRELIMINARY EVALUATION

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

sample size (k)

su
cc

es
s

ra
te

DHARMA
ROAM

Figure 3: Success rate vs sample size for proxy location

using DHARMA and ROAM. The success rate is the

probability of a mobile host picking a proxy that is within

the same routing domain.

In this section, we present a preliminary evaluation of our
proposed infrastructure using the P2 system on the Emu-
lab [3] testbed. We focus our evaluation on the proxy lo-
cation queries (see Section 3.1) for ROAM and DHARMA.
Our experimental setup on Emulab consists of 50 nodes or-
ganized into 11 routing domains interconnected in a star
topology. On each Emulab node, we run 4 P2 processes, for
200 emulated nodes in total.

In our first experiment, we execute the rules of Section 3.1.2
that implement the DHARMA overlay network. We first
randomly pick one node to be the portal server maintain-
ing a list of current live home agents. The remaining nodes
then periodically report their status to the portal server. In
steady state, we randomly pick one of the Emulab nodes as
a mobile host. This mobile host issues a query to the portal
server, which triggers additional rules (see Section 3.1.2) to
select k nodes as samples, and then locates the closest node
(in terms of network latency) from these sample nodes as
the proxy. If the chosen proxy is within the same routing
domain as the mobile host, the proxy location “succeeds.”

Figure 3 shows the success rate of DHARMA as the sam-
ple size increases. For any given sample size, we execute

the proxy selection query from 1000 randomly selected lo-
cations in the network. As expected, when the sample size
increases, the success rate increases. When the sample size
is as large as the number of infrastructure nodes (200), all
nodes are sampled, and hence the closest proxy is guaran-
teed to be within the domain. Sampling only 10% of the
nodes, DHARMA achieves a success rate of 85%.

In our second experiment, we execute P2-Chord [8] on
all infrastructure nodes for proxy selection. After start-
ing a 200-node Chord network, each mobile host executes
the proxy selection queries (as described in Section 3.1.1)
by repeatedly sampling the infrastructure nodes via Chord
lookups. The closest node in network distance is then se-
lected as the proxy. Figure 3 shows the corresponding suc-
cess rate of ROAM as the sample size increases. As before,
we iterate the proxy selection process from 1000 randomly
selected network locations. ROAM’s performance is roughly
that of DHARMA. When the sample size is 20 nodes, the
probability of picking a close proxy is 81%. ROAM has a
slightly worse success rate than DHARMA for small k, be-
cause the node identifiers are not uniformly distributed for
the small 200-node Chord network. As the number of Chord
nodes increases, the identifier space will be more evenly
distributed, and the performance of ROAM will approach
DHARMA. ROAM has the advantage that it avoids the use
of a centralized portal server.

The results on Emulab show that we can implement
DHARMA and ROAM to perform effective location of prox-
ies that map to nearby locations. As shown in Section 3.1,
these specifications can be written in a few NDlog rules each,
significantly easing the process of deploying new mobility-
based solutions. Comparisons between DHARMA and ROAM
are not the point of this paper, rather our experiences with
two suggests that our infrastructure can be used to rapidly
develop and deploy multiple concurrent mobility-based schemes.

5. CONCLUSIONS AND FUTURE WORK
We have presented the case for a unified extensible data-

centric mobility infrastructure based on declarative network-
ing. Using examples, we showed that the data-centric ap-
proach both improves flexibility and is extensible to meet
the demands of future mobile applications and services.

This research is proceeding in several directions. First,
we are planning a full-fledged implementation using the P2
system, and we will evaluate performance of the system
on Emulab and Planetlab testbeds. Beyond proxy selec-
tion queries, we intend to support other aspects of mobil-
ity, including customizable routing among different mobile
devices, declarative service discovery and composition, inte-
grating distributed network monitoring queries with overlay-
based solutions for mobility, enforcing view-based access
control policies [1], and mobility prediction with prefetch-
ing and caching. We also intend to investigate the use of
multi-query optimization techniques to share among mul-
tiple overlay-based mobility schemes that can be deployed
concurrently in our system.

6. ACKNOWLEDGMENTS
This material is based upon work supported in part by

NSF NeTS-0721845, IIS-0477972 and IIS-0513778.

7. REFERENCES
[1] Abadi, M., and Loo, B. T. Towards a Language and

System for Secure Networking. In NetDB (2007).

[2] Adjie-Winoto, W., Schwartz, E., Balakrishnan,

H., and Lilley, J. The design and implementation of
an intentional naming system. In SOSP (1999),
pp. 186–201.

[3] Emulab. Network Emulation Testbed.
http://www.emulab.net.

[4] Halevy, A. Y., Ives, Z. G., Suciu, D., and

Tatarinov, I. Schema mediation in peer data
management systems. In Proceedings of IEEE
Conference on Data Engineering (2003).

[5] Huebsch, R., Hellerstein, J. M., Lanham, N.,

Loo, B. T., Shenker, S., and Stoica, I. Querying
the Internet with PIER. In Proceedings of VLDB
Conference (2003).

[6] Kohler, E., Morris, R., Chen, B., Jannotti, J.,

and Kaashoek, M. F. The Click Modular Router.
ACM Transactions on Computer Systems 18(3)
(2000), 263–297.

[7] Krishnamurthy, R., Ramakrishnan, R., and

Shmueli, O. A Framework for Testing Safety and
Effective Computability. J. Comp. Sys. Sci.
52(1):100-124 (1996).

[8] Loo, B. T., Condie, T., Hellerstein, J. M.,

Maniatis, P., Roscoe, T., and Stoica, I.

Implementing Declarative Overlays. In ACM
Symposium on Operating Systems Principles (2005).

[9] Loo, B. T., Hellerstein, J. M., Stoica, I., and

Ramakrishnan, R. Declarative Routing: Extensible
Routing with Declarative Queries. In Proceedings of
ACM SIGCOMM Conference on Data Communication
(2005).

[10] Madden, S., Franklin, M. J., Hellerstein, J. M.,

and Hong, W. Design of an acquisitional query
processor for sensor networks. In Proceedings of ACM
SIGMOD International Conference on Management of
Data (2003), pp. 491–502.

[11] Mao, Y., Knutsson, B., Lu, H., and Smith, J. M.

DHARMA: Distributed Home Agent for Robust
Mobile Access. In IEEE INFOCOM (2005).

[12] Ramakrishnan, R., and Ullman, J. D. A Survey of
Research on Deductive Database Systems. Journal of
Logic Programming 23, 2 (1993), 125–149.

[13] Stoica, I., Adkins, D., Zhuang, S., Shenker, S.,

and Surana, S. Internet Indirection Infrastructure.
In Proceedings of ACM SIGCOMM Conference on
Data Communication (2002).

[14] Stoica, I., Morris, R., Karger, D., Kaashoek,

M. F., and Balakrishnan, H. Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications.
In Proceedings of ACM SIGCOMM Conference on
Data Communication (2001).

[15] Tennenhouse, D., Smith, J., Sincoskie, W.,

Wetherall, D., and Minden, G. A Survey of
Active Network Research. In IEEE Communications
Magazine (1997).

[16] Zhuang, S. Q., Lai, K., Stoica, I., Katz, R. H.,

and Shenker, S. Host Mobility using an Internet
Indirection Infrastructure. In ACM/Usenix Mobisys
(2003).

