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1 Introduction
In recent years, cloud computing have become a popular
computing paradigm, where computation is moved away
from personal computers or an individual application server
to a “cloud” of computers in the network. Users of the cloud
only need to be concerned with the computing service be-
ing asked for, as the underlying details of how it is achieved
are hidden. This method of distributed computing is done
through pooling all computer resources together and being
managed by software rather than a human. The popular ap-
plication of cloud computing have primarily been for the de-
ployment of web applcations by end users, e.g., Amazon’s
elastic compute cloud [1], and the Google/IBM’s academic
cluster computing initiative [2].

In this paper, we study an important use of cloud comput-
ing: that of performing compute-intensive tasks within an
Internet-scale enterprise network. Our main driving applica-
tion is an Internet-scale Cloud Computing Platform (ICCP)
developed by a Fortune-500 company for massively parallel
simulations within the company. ICCP has been operational
for many years, and currently is deployed “live” on tens of
thousands of machines that are globally distributed at vari-
ous data centers. With ICCP, engineers no longer have to
manually setup simulation machines, or determine where and
when to schedule their simulation jobs. By pooling together
machines all over the enterprise network, resources are used
more efficiently as computers can be consolidated to be used
for more tasks.

We present an initial analysis of job execution traces obtained
over a 18 month period collected from tens of thousands of
machines at ICCP. From our ICCP traces, we observe that
despite only utilizing less than 40% of compute resources on
average, the ICCP is not designed to handle flash crowds.
There have been severe cases of slow turnaround of jobs dur-
ing peak times, primarily caused by high priority jobs pre-
empting lower priority jobs. The introduction of high prior-
ity jobs tend to be bursty, isolated to particular sites, and can
last for several hours up-to-a-week.

Using a trace-driven simulator, we evaluate the potential ben-
efits of selectively restarting suspended jobs based on current
job suspend time and available resources. As cloud comput-
ing environments mature, there will be a need for the sys-
tem to gracefully handle multiple classes of jobs with dif-
ferent priorities and SLAs. The ICCP deployment today is
estimated to involve hundreds of physical pools distributed
globally at different data centers with varying wide-area net-

work characteristics, utilizing tens of thousands of heteroge-
neous multi-core compute machines. At any moment, there
are thousands of concurrent jobs, and in aggregate, hundreds
of millions of jobs per year. To our best knowledge, this is
one of the first efforts at empirically understanding the in-
frastructure requirements of a cloud computing platform that
is operational at a global scale.

2 Architecture and Motivation
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Figure 1: CDF of job suspension time

ICCP is designed as a hierarchical system consisting of mul-
tiple sites at different geographically locations. Each site
consists of multiple physical pools, each consisting of thou-
sands of multi-core machines. Each site is managed by a
virtual pool manager, and each pool by a physical pool man-
ager. Users submit jobs to a particular site, and the virtual
pool manager will assign the job to a physical pool based
on resource availability. The physical pool manager then de-
cides which machine to allocate to execute the job. The re-
quirements of the job (e.g. OS and memory requirements)
may dictate which machine gets assigned to the job.

ICCP utilizes a priority-based queuing system, in which
there are multiple job queues of different priority level, and
weighted-fair queueing is used to ensure proportional shar-
ing. In addition, queues can also be specified based on job
requirements. In ICCP, a job is first submitted by a user to
a particular queue. The virtual pool manager assigns the job
to one of the physical pools in a round-robin fashion. The
physical pool manager then assigns the job to an available
machine. High priority jobs are allowed to preempt lower
priority jobs that are running on a machine that the higher
priority job requires. Once a job is on a machine, the job will
stay on the machine until it completes its task. This results
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in low priority jobs being suspended for long periods of time
depending on how long higher priority jobs take to complete.

To illustrate the impact of high priority jobs on lower priority
ones, Figure 1 shows the CDF of job suspension time (in
seconds) collected from a large site with 20 physical pools,
for a time period of roughly 10 weeks or 100,000 minutes.
We focus on this particular period where a large number of
job suspension occured due to the presence of high-priority
jobs. We note that 20% of all jobs are suspended for more
than 5000 seconds, and the median suspension time is 275
seconds. In addition, we observe a long-tailed distribution of
jobs that require more than 100k seconds to complete.

3 Initial Observations
Given that overall system utilization is only 40%, better tech-
niques need to be developed to ensure faster turnaround of
jobs. Unlike prior work on priority scheduling in distributed
systems, the ICCP environment (like recent cloud computing
platforms) exhibit different job characteristics. For example,
in our traces, higher priority jobs tend to be bursty and hence
job suspension happens in burst. Since this phenomenon can
last for several hours to up-to a week, we can detect such
situations and adapt our job scheduling to improve utility of
low-priority jobs with little or no adverse impact to high pri-
ority jobs. Furthermore, when global resources are spread
out across multiple data centers, it is not practical for any
scheduler to make perfect scheduling decisions. As a result,
uneven utilization at various pools would exist.

One solution that we are currently exploring is the selective
restarts (rescheduling) of suspended jobs at remote pools.
Without a-priori knowledge on the execution time of each
job, one challenge is in figuring out the appropriate restart
threshold, which is the duration time a job has been sus-
pended before a restart is initiated.
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Figure 2: Number of suspended jobs over time

We utilize a trace-driven event-based simulator that takes as
input job traces from ICCP collected a 18 month period, and
replay these traces with different restart thresholds. We fo-
cus on the simple case of restarting jobs within a single site,

and limit our analysis to the 10 week time window presented
in the previous section. Figure 2 show the number of sus-
pended jobs for various restart thresholds. Suspend-Restart-
K restarts a job whenever its suspended time has exceeded K
seconds, while Suspend-No-Restart do not restart jobs, i.e.
suspended jobs resume execution when all higher priority
jobs have completed execution.

We note that whenever restarts are not carried out, many jobs
are suspended and stay suspended for long periods of time (as
indicated by Suspend-No-Restart), resulting in their starva-
tion even when resources are available in other pools. On the
other hand, naı̈vely restarting suspended jobs immediately
(Suspend-Restart-0) reduces the number of suspended jobs
to zero, but decreases overall system throughput. In between
these extremes, as the restart threshold is increases from 14
minutes to 22 minutes, the number of suspended jobs de-
creases marginally. In both cases, the number of suspended
jobs and the average job suspension times are significantly
lower compared to Suspend-No-Restart.

4 Ongoing Work
Our initial observations suggests the benefits of restarts even
with the use of a fixed restart threshold. We are currently ex-
perimenting with heuristics for adaptively setting the thresh-
old that increases with the number of restarts per job, while
putting a cap on the maximum number of restarts per job.
Concurrently, we are exploring techniques to predict the ex-
ecution time of each job based on historical information and
temporally correlating with the execution times of recent
jobs. We intend to exploit the global distribution of ICCP
machines to restart jobs at remote data centers while respect-
ing administrative domain privileges across different admin-
istrative domains and the availability of input data.

Beyond job restarts, our overall research agenda centers on
dynamic and adaptive algorithms that will improve aggregate
utility by adapting to job behaviors at a global scale. To this
end, we are exploring other aspects of scheduling jobs for
improving overall turnaround time. For example, executing
redundant jobs at multiple locations to tradeoff compute re-
sources for job latency and assigning higher priority to jobs
that are close to completion (or in later stages of a workflow).
We also intend to incorporate job deadlines, where redundant
executions and restarts become more aggressive as deadline
approaches.
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