An Open-source and Declarative Approach Towards
Teaching Large-scale Networked Systems Programming

Harjot Gill

Taher Saeed Qiong Fei

Zhuoyao Zhang Boon Thau Loo

University of Pennsylvania
{gillh, taher,giongfei, zhuoyao,boonloo}@cis.upenn.edu

ABSTRACT

This paper describes our experiences at the University of
Pennsylvania in developing course projects for a large ad-
vanced undergraduate and first year graduate course in net-
worked systems. Students work in teams to develop sub-
stantial networked systems programming projects (>10000
lines of code) using network simulator 3 (ns-3), an emerg-
ing open-source network simulator that is aimed at replac-
ing the popular ns-2 simulator. Projects are developed in
layers, where students build upon earlier assignments, first
developing a protocol for Internet Protocol (IP) routing, fol-
lowed by a distributed hash table (DHT) overlay network,
and finally, a keyword-based search engine. One novelty of
our assignments is the use of ns-3 in a large class setting,
where students navigate through hundreds of thousands of
lines of existing code before adding their extensions. In ad-
dition, selected groups develop the final project using declar-
ative networking, a novel declarative framework that allows
protocols to be rapidly synthesized using a high-level logic
language into ns-3 implementations.

1. INTRODUCTION

The University of Pennsylvania has offered in the past
four years, an implementation-oriented networked systems
course titled Networked Systems [13]. This paper describes
our experiences in the fall semester of 2010, at teaching net-
worked systems programming to a large class of 80+ stu-
dents using ns-3, an emerging open-source network simula-
tor. To our best knowledge, we are one of the first to attempt
using the ns-3 platform for course projects that span net-
work and application-layer protocols in a large class setting.
Moreover, in the final project, we also experimented for a
subset of students, the use of declarative networking [7], an
innovative declarative approach towards building network-
ing protocols.

1.1 Course Description

The Networked Systems course is cross-listed between our
Computer and Information Sciences (CIS) and Telecommu-
nications (TCOM) department, and is primarily geared to-
wards advanced undergraduates or first-year graduate stu-
dents. The course satisfies a project requirement for under-

graduates, and is considered a technical elective for graduate
students.

Throughout the semester, students cover a range of topics,
ranging from networking fundamentals (Internet architec-
ture, end-to-end systems design, IP routing, Transport layer,
congestion control, quality of service, mobility), network
programming techniques (event-driven vs thread-based pro-
gramming, asynchronous network programming, performance
measurement techniques), to emerging topics in application
layer overlay networks. An overlay network is a virtual net-
work of nodes and logical links that is built on top of an
existing network with the purpose of implementing a net-
work service that is not available in the existing network.
Examples of overlay networks on today’s Internet include
commercial content distribution networks such as Akamai,
peer-to-peer (p2p) applications for file-sharing [5], content-
based routing [1], and telephony [19], as well as a wide range
of experimental prototypes running on the PlanetLab [16]
global testbed.

The focus on the two latter topics differentiates this from
typical networking courses, and comes at the expense of cov-
ering networking fundamentals at a faster pace, requiring
students to read up topics in the textbook on their own (if
they do not already have taken an undergraduate networking
course).

Prior knowledge (at the level of undergraduate operating
systems or networking course) is preferred but not required.
However, given the scale of the programming assignments
and the popularity of the class, students are advised to take
the class only if they have had prior experiences in build-
ing large software systems. The class typically has an en-
rollment of around 80 students, making it one of the largest
CIS/TCOM course at our university. In any given year, there
are typically 50% CIS masters students, 30% TCOM mas-
ters students, and 20% undergraduates.

1.2 Motivation

In designing this course, one of the main challenges is in
choosing an appropriate platform on which students can de-
velop their course projects. Given that networking and dis-
tributed systems are mature topics, we were surprised to note
that none of the existing options available to us are particu-
larly satisfying.

In the first three years of offering the course, we used a
popular Java-based package called Fishnet [4], that provides
a simple software environment for developing, testing, and
running network protocols. While easy to use, a common
student complaint was that the system was not representative
of real-world software, i.e., it does not have a software struc-
ture that resembles the actual TCP/IP stack. Another option
is the use of custom simulators, which usually require teach-
ing assistants to develop from-scratch implementations that
are tailored towards specific course projects. This approach
leads to reinventing basic functionalities that may not be eas-
ily reusable across projects, and likely to suffer from the lack
of realism.

Network simulator 2 [11] is another commonly used plat-
form, but has become increasingly complex to use in recent
years. This requires a steep learning curve for students if
the projects are to span multiple layers of the network stack,
hence is not feasible within the timeframe of a semester. Fi-
nally, one can use a router emulation platform [3], but this is
more appropriate for projects that involve router configura-
tion and is limited to projects at the IP layer.

1.3 Organization

The rest of the paper is organized as follows. In Section 2,
we describe the ns-3 simulator, justifications of our choice,
as well as describe some of our modifications to the code
base to ease the software engineering process of students.
Section 3 presents detailed project description and experi-
ences. Finally, we conclude in Section 4.

2. NETWORK SIMULATOR 3

In the fall semester of 2010, we experimented with the
use of the network simulator 3 (ns-3) [12]. The ns-3 project
started in 2006, and is intended as an eventual replacement
of the popular ns-2 simulator. It is currently under active
development in the open-source community, and currently
has over 500K lines of code!. Prior to our class, there has
been attempts [21] at using ns-3 in a class setting, but not at
the scale (in terms of class size and scope of projects) that
we have attempted.

2.1 Advantages of ns-3

In selecting an appropriate platform, we decided on ns-3,
since it meets the following criteria:

Realistic environment: The ns-3 platform implements
the existing network stack (interfaces/devices, link, network,
transport, application). Hence, students can relate course
materials (such as the Internet architecture, local area net-
works and inter-networking) to the actual software platform
that they are building their projects on. The platform also
exposes students to challenges of networked systems pro-
gramming, which comes in the form of BSD-like sockets,

IBased on a line count performed on the v0.9 release we used for
our class projects

IP addresses, multiple interfaces per-node, and handles real-
world effects introduced by asynchrony, message losses and
reordering.

Well-organized and reusable code base: One of our
concerns in picking a realistic platform is the complexity of
the code base that will result in a steep learning curve for
students. Fortunately, ns-3 achieves a good balance between
realism and complexity. Despite its realistic environment,
the ns-3 code is well organized. In fact, the entire code base
can be explained within a lecture (conducted by the TAs).
ns-3 is based on a complete rewrite of the ns-2 simulator.
It consists of an extensible framework, achieved via the use
of modern C++ design patterns, such as component object
model and factory design patterns. As a result, students are
able to quickly understand the code and make modifications
of their own, particularly in adding layers over existing pro-
tocols, replacing one protocol with another at one particular
layer in the network stack.

Combining simulations and actual implementations:
ns-3 has support for both simulation and emulation via the
use of sockets. Students often found it easier to first sim-
ulate their protocols for a large number of nodes in a re-
peatable fashion to uncover protocol errors, and then de-
ploy their implementations (with minimal changes except
switching to an implementation mode) on an actual set of
physical machines to study actual performance. This is not
unlike the strategy adopted by systems and networking re-
searchers/practitioners, and we aim to have our course projects
closely mirror this process.

Ease of configuration and testing: We require that our
platform runs on commodity PCs with no changes to un-
derlying operating system, hence making it easy for sys-
tem administrators to support these courses even when the
class size is large, or when there are multiple project courses
within the department. The default ns-3 emulation mode
uses raw sockets, which requires sudo access to run on in-
structional machines (a problematic request with systems
administrators). As a result, we rewrote the emulation plat-
form using regular OS sockets, which allows a simple tog-
gling between simulation and implementation without hav-
ing to rewrite code. For testing purposes, ns-3 generates
pcap traces, which allows one to use standard tools such as
Wireshark [22] to analyze traffic traces for debugging pur-
poses.

2.2 Course-Related Customizations

In addition to the addition of user-level sockets, we have
made modifications to the ns-3 code base, to provide some
initial code (approximately 5000 lines) that eases the process
of students in designing and implementing their projects.

We provide an ns-3 application which serves as the main
simulation program that executes scenarios to test students’
project implementations. This application takes as input topol-
ogy and scenario files, which students use to set up net-
works configured using the Inet topology generator [6], con-

trol nodes joining and leaving the network, and allow selec-
tively turning on of logging information in different simu-
lated nodes/modules, and inject network traffic. Appendix A
shows a basic scenario file which we released to students
initially, and they were allowed to extend it (e.g. add new
application modules to stress test their implementations).
As an alternative to running the entire simulation using
the scenario file, we provide an interactive command prompt
which allows students to interactively enter scenario com-
mands while the simulation is in progress. Students found
this feature extremely useful when debugging their proto-
cols. Toggling between simulation and actual implementa-
tion is achieved simply by turning on a runtime flag that uses
actual sockets (instead of ns-3 simulated sockets), and run-
ning our driver program on multiple physical machines.

3. COURSE PROJECTS

In the first project, students develop IP routing protocols,
and in the second project, students build an application layer
peer-to-peer keyword search engine that uses the implemen-
tation from the first project. Students are given 3.5 weeks
to complete each project, with an intermediate checkpoint
in the middle of each project to ensure that students stay on
track. At the end of each project, students have to demon-
strate their system primarily in ns-3 simulation mode. For
extra credits, students can run the actual implementation on a
number of physical machines in our departmental local clus-
ter.

The first project was released to students on the 4th week
of class, and due on the 7th week?. The second project was
released after the midterm on the 10th week, and due on the
13th week of class, two weeks before the final. To synchro-
nize our course schedule with the projects, we opted to defer
the coverage of traditional topics such as link-layer proto-
cols (Ethernet, 802.11) and quality of service (QoS) rout-
ing until the later part of the semester. We also minimize
the coverage of topics related to the physical layer (given
that there are other classes at Penn that cover these topics
in greater detail), and instead opted for spending more time
on application-layer protocols. This decision turns out to be
popular with students, who are able to relate course material
to application-layer protocols (e.g. p2p search and Akamai),
and also directly apply these concepts into their project im-
plementations.

For both projects, students actively posted on our course
newsgroup with questions that were addressed either by the
teaching staff or other students. We asked students to re-
frain from posting on the ns-3 official mailing lists to avoid
flooding the list with numerous code questions.

In the rest of this section, we describe each of our projects
in greater detail.

3.1 Project 1: Routing Protocol

2The entire semester spans 15 weeks (excluding the week of finals).

In project 1, students implement two basic capabilities:
neighbor discovery and routing. In neighbor discovery, each
node has to determine its set of neighbors by periodically
polling its network interfaces for the IP addresses of neigh-
bors that are connected to it. As the topology changes, the
set of neighbors of each node has to be updated in a timely
fashion.

Given the neighborhood information at each node, the next
part of the project involves implementing the link-state and
distance-vector routing protocols. Link-state and distance-
vector are typically used for computing routes within an ISP
(or administrative domain), and are commonly known as
OSPF (Open Shortest Path First) and RIP (Routing Infor-
mation Protocol) in commercial implementations.

These protocols compute between any two nodes the path
with least hop count. One of the challenging aspects of this
project is the integration of the neighbor discovery and rout-
ing modules into the existing ns-3 framework. For instance,
to do a neighbor discovery, each node would have to invoke
a discovery message which involves a 1-hop UDP broadcast
message on each of its interfaces. The routing protocol has
to be compatible with the route advertisement framework of
ns-3, and computed routes have to be used to instantiate for-
warding tables used in ns-3.

In fact, our goal for students was to be able to replace
any of the existing ns-3 routing protocols (e.g. OLSR [2]
and AODV [15]) with their project implementations, and all
transport protocols (e.g. TCP) and network applications that
use these routing protocols have to continue working cor-
rectly as before.

As extra credits, students implement extra routing proto-
cols (such as those used in mobile ad-hoc networks and delay
tolerant networks), path-vector protocol (used as a basis for
inter-ISP routing), performance metric-based routing, and an
incremental Dijkstra algorithm that provides fast recompu-
tation of routing entries at each node whenever the topology
changes.

3.2 Project 2a: P2P DHT-based Search

In the next project, students implement a peer-to-peer search
engine (PSearch) that runs over their implementation of the
Chord DHT [20]. A DHT (distributed hash table) is an over-
lay network that provides a scalable lookup facility, i.e. given
akey K, determining the node that stores the K can be achieved
in O(log(n)) hops while requiring each node to maintain
only O(log(n)) state, where n is the number of nodes in the
network. Given that churn handling in DHT (i.e. repairing
DHT routing tables in the presence of nodes joining or leav-
ing the network, or node failure) is a challenging process, we
simplified the project requirement by omitting node failures
in the regular part of the project.

Students have to read the Chord paper on their own to im-
plement the protocol. The Chord overlay is built as a layer
over project 1’s routing protocol implementation. Students
are allowed to choose either the distance vector or link state

protocols that they developed in project 1 as the underlying
routing protocol. If neither works, they are allowed to fall-
back on using one of ns-3’s default routing protocols (e.g.
OLSR).

In addition to building the DHT, the project introduces
students to the concept of layering in a network — the fact that
a packet sent between two Chord nodes who are logically
neighbors may traverse multiple IP hops is a concept that
students appreciate much better once they have worked on
the project.

PSearch is next developed as an additional layer over Chord
as a p2p search engine, and used to build a DHT-based search
engine [9] that provides a “google-style” search interface for
retrieving all documents that matches a set of input key-
words. Scalable lookups are performed based on inverted
indices that are published and stored in the DHT, where the
publishing key is the hash of each keyword (for the corre-
sponding inverted index).

Specifically, given a set of search terms T1,72,...,Tn,
each search is executed as a distributed query that will use
Chord as a routing substrate for retrieving the inverted in-
dexes for all the search terms, and then performing a set in-
tersection to retrieve the set of documents that contains all
keywords.

As extra credits, students implemented more sophisticated
ranking algorithms for searching, enhanced their implemen-
tations to support large inverted indices that cannot be fit
into a single IP packet, churn handling in the presence of
node failures, a Chord-based distributed file system, as well
as implemented various overlay networks covered in class
that provide support for resilient routing, mobility, and mul-
ticast at the application layer.

3.3 Project 2b: Declarative Networking

As the second option in project 2, we allow volunteer
groups who did well in project 1, to explore the use of declar-
ative networking techniques to implement the Content Ad-
dressable Networks (CAN) [18] DHT. Declarative network-
ing is an exciting and novel framework that has been pro-
posed in the past few years in the networking community.
It uses a distributed database query language for specify-
ing protocols that can be implemented in only a few lines of
high-level logical statements. For example, traditional rout-
ing protocols can be expressed in a few lines of code [10],
and the Chord DHT in 47 lines of code [8]. When compiled
and executed, these declarative networks perform efficiently
relative to imperative implementations, while achieving or-
ders of magnitude reduction in code size. Appendix B pro-
vides one example to illustrate the declarative networking
language.

We explore this option on a pilot basis, to have a better un-
derstanding of the effectiveness of getting students to learn
about a protocol by implementing using high-level declar-
ative abstractions. Students utilized the RapidNet declara-
tive networking engine [17], which takes as input high-level

declarative protocol specifications, which are then compiled
into ns-3 code. Our choice of CAN instead of Chord for this
option is due to the fact that there already exists a declarative
Chord implementation.

3.4 Evaluation

Student feedback from the use of ns-3 has been overwhelm-
ingly positive. The course ratings improved by 18.6% com-
pared to the previous year, and was the top performing TCOM
course (both in terms of highest enrollment and highest teach-
ing ratings) in Fall 2010. Moreover, we are encouraged by
the performance of students in our class. Students worked in
groups of 3-4, and with the exception of 2-3 groups, almost
all groups have complete (or near complete) implementa-
tions of both projects. In addition, several groups completed
at least one extra credit, with the best group completing 10
extra credits (5 each for each project). On average, groups
wrote 7000 and 6000 lines of code for project 1 and 2 re-
spectively. Two groups volunteered for the declarative net-
working option in the second project.

We briefly summarize some interesting observations we
made in the class:

Open source experience: One of our biggest concerns
going into the semester is the daunting 500K lines of code
that students have to navigate. To reduce this overhead, we
pointed students to a few directories that they should focus
on. On hindsight, we found this concern largely unfounded
and very beneficial. Students were able to use modern soft-
ware development tools such as Eclipse to step through large
code bases. Code clarifications on our newsgroup were quickly
answered. The fact that an open source implementation has
existing routing protocol implementations (e.g. OLSR and
AODV) proved tremendously helpful, as students can read
existing implementations to understand the appropriate in-
terfaces before adding their own implementations. This pro-
cess also closely mirrors the real world, where engineers of-
ten have to understand and modify an existing complex code
base.

Group dynamics: To ensure that all students contribute
equally to the project in a collaborative fashion, we made it
mandatory that students use the subversion repository right
from the beginning of project 1. In addition to allowing
students to work concurrently on different aspects of the
project, subversion also provides a useful mechanism via its
logs that provides evidence of each student’s participation.
We further require that each individual filled in a group eval-
uation form describing the contributions of each teammate.
This form was filled in after the midterm and final where no
discussions were permitted, and used as a basis for adjusting
students’ final grades based on their contributions.

Declarative networking: One of the pleasant surprises
this semester was the success of the two volunteer groups in
implementing the CAN DHT using the RapidNet declarative
networking engine. Despite some initial difficulties due to
the learning curve of Datalog, both groups completed func-

tional CAN implementations in 40+ lines of code, with one
group completing additional enhancements to the protocol
outside the scope of the project. This is despite the fact that
these students do not have prior knowledge of declarative
networking, and most have not seen Datalog before. In fact,
students that used RapidNet were generally positive about
their experiences, and once they have mastered the language,
would like to use it for prototyping future protocols.

4. CONCLUSION

In this paper, we describe our experiences at introducing
large-scale programming assignments on networked systems
using the ns-3 platform. Our course has been a great suc-
cess, receiving very positive feedback from students. Within
a span of 7 weeks, students successfully completed the de-
velopment of an IP routing protocol, a complex DHT and
a p2p keyword search engine on an open-source platform.
Moreover, two groups developed a DHT in 40+ rules using
a declarative networking engine that we incorporated into
ns-3.

Encouraged by our use of declarative networking tech-
nologies, as a longer term agenda, we plan to introduce the
use of declarative networking into the networking curricu-
lum from the ground up, as a higher level abstraction for
explaining protocol behavior, and develop complete projects
based on this framework.

Material and Source Code Detailed project descriptions
(including code documentation for our ns-3 extensions) are
available for viewing at [14]. Further materials, including
initial release code for students, solutions and grading scripts,
are available to instructors upon request.

S. ACKNOWLEDGMENTS

We would like to thank Penn graduate students Cheng
Huang, Changbin Liu, and Wenchao Zhou for giving valu-
able feedback on our projects, and participating in the de-
sign and implementation of the lab demonstrations. The de-
velopment of the RapidNet declarative networking engine is
funded in part by NSF grants CAREER CNS-084552, CCF-
0820208, and 11S-0812270.

APPENDIX
A. EXAMPLE SCENARIO FILE

We show below a basic scenario file that we released to
students at the start of project 1. This scenario starts a num-
ber of nodes, invokes the link state (LS) routing protocol,
and then tests the protocol using an application-layer traffic
generator. More details of scenario configurations are avail-
able at [14].

Note that in the scenario configuration, we refer to nodes
by node numbers, e.g 0,1,2. However, once the topology is
initialized, our driver program assigns to each node multiple
IP addresses. The reason why each node requires multiple IP
addresses is that we wanted to emulate actual deployments

where a router may participate (and inter-connect) different
subnets. Our driver program then will select one of the IP
addresses as the unique identifier of the node for the purpose
of route computations in project 1.

Turn on traffic traces for LS module on all nodes.
LS VERBOSE TRAFFIC ON

Turn on all traces for LS module on node 1

LS VERBOSE ALL ON

Turn on traffic traces for APP module on all nodes.
APP VERBOSE TRAFFIC ON

Turn on all traces for APP module on node 1

APP VERBOSE ALL ON

e S S S

Advance Time pointer by 15 seconds.
#Allow the routing protocol to stabilize.
TIME 15000

Start traffic flow from node 1 to all the nodes.
1 APP TRAFFIC START =

Advance time by 100 milliseconds.
TIME 100

Stop Traffic flowing from node 1 to all the nodes
1 APP TRAFFIC STOP =«

Send PING from node 1 to node 8 (its neighbor).
1 LS PING 8 hellol!

Advance Time by 10 milliseconds.

TIME 10

Bring down link between node 1 and 8
LINK DOWN 1 8

1 LS PING 8 hello2!

TIME 10

Bring up link between node 1 and 8
LINK UP 1 8

1 LS PING 8 hello3!

TIME 10

Bring down all links of node 1
NODELINKS DOWN 1

1 LS PING 8 hellod!

TIME 10

Bring up all links of node 1
NODELINKS UP 1

1 LS PING 8 hello5!

TIME 10

Send application level PING from node 1 to node 8.
1 APP PING 8 appHellol!
TIME 4000

Dump Link State Routing Table.
1 LS DUMP ROUTES

Dump Link State Neighbor Table.
1 LS DUMP NEIGHBORS

Quit the simulator.
QUIT

B. DECLARATIVE NETWORKING

The high level goal of declarative networks is to build ex-
tensible network architectures that achieve a good balance of
flexibility, performance and safety. Declarative networks are
specified using Network Datalog (NDlog), which is a dis-
tributed recursive query language used for querying network
graphs. NDlog queries are executed using a distributed query
processor to implement the network protocols, and continu-
ously maintained as distributed views over existing network
and host state. Declarative queries such as NDIog are a nat-
ural and compact way to implement a variety of routing pro-

tocols and overlay networks. To illustrate, the following two
NDlog rules compute all pairs of reachable nodes:

rl reachable (@S,D) :- link (@S,D).

r2 reachable(@S,D) :- 1link(@S,Z), reachable(@Z,D).

Query reachable (@S,D) .

The rules r1 and -2 specify a distributed transitive clo-
sure computation, where rule r1 computes all pairs of nodes
reachable within a single hop from all input links, and rule
r2 expresses that “if there is a link from s to z, and z can
reach b, then s can reach o.” By modifying this example, it
has been shown in previous work [10] that we can construct
more complex routing protocols, such as the distance vector
and path vector routing protocols.

NDlog supports a location specifier in each predicate, ex-
pressed with ¢ symbol followed by an attribute. This at-
tribute is used to denote the source location of each corre-
sponding tuple. For example, all reachable and 1ink tuples
are stored based on the e¢s address field. The output of inter-
est (indicated by the rule ouery) is the set of all reachabie (s, D)
tuples, representing reachable pairs of nodes from s to b.
Note that the ouery rule is not mandatory, in which case,
all derived output tuples will be continuously computed and
maintained in the network.

C. REFERENCES

[1] BALAKRISHNAN, H., KAASHOEK, M. F., KARGER,
D., MORRIS, R., AND STOICA, I. Looking Up Data
in P2P Systems. Communications of the ACM, Vol. 46,
No. 2 (2003).

[2] CLAUSEN, T., AND JACQUET, P. Optimized link state
routing protocol (olsr). In RFC 3626 (Experimental)
(2003).

[3] DYNAGEN. http://www.dynagen.org/.

[4] FISHNET.
http://www.cs.washington.edu/education/
courses/cse461l/04au/fishnet-intro.pdf.

[5] GNUTELLA. http://www.gnutella.com.

[6] INET TOPOLOGY GENERATOR.
http://topology.eecs.umich.edu/inet/.

[7] Loo, B. T., CONDIE, T., GAROFALAKIS, M., GAY,
D. E., HELLERSTEIN, J. M., MANIATIS, P.,
RAMAKRISHNAN, R., ROSCOE, T., AND STOICA, I.
Declarative Networking. In Communications of the
ACM (CACM) (2009).

[8] Loo, B. T., CONDIE, T., HELLERSTEIN, J. M.,
MANIATIS, P., ROSCOE, T., AND STOICA, I.
Implementing Declarative Overlays. In Proceedings of
ACM Symposium on Operating Systems Principles
(2005).

[9] Loo, B. T., HELLERSTEIN, J. M., HUEBSCH, R.,
SHENKER, S., AND STOICA, I. Enhancing P2P
File-Sharing with an Internet-Scale Query Processor.
In Proceedings of VLDB Conference (2004).

[10] Loo, B. T., HELLERSTEIN, J. M., STOICA, 1., AND
RAMAKRISHNAN, R. Declarative Routing: Extensible
Routing with Declarative Queries. In Proceedings of

ACM SIGCOMM Conference on Data Communication
(2005).

[11] NETWORK SIMULATOR 2.
http://www.isi.edu/nsnam/ns/.

[12] NETWORK SIMULATOR 3. http://www.nsnam.org/.

[13] NETWORKED SYSTEMS.
http://www.cis.upenn.edu/~boonloo/cis553/.

[14] NETWORKED SYSTEMS PROGRAMMING PROJECTS
IN NS-3.
http://netdb.cis.upenn.edu/cis553projects.

[15] PERKINS, C. E., AND ROYER, E. M. Ad hoc
on-demand distance vector routing. In Proceedings of
the 2nd IEEE Workshop on Mobile Computing
Systems and Applications (New Orleans, LA, 1999).

[16] PLANETLAB. Global testbed.
http://www.planet-lab.org/.

[17] RAPIDNET DECLARATIVE NETWORKING ENGINE.
http://netdb.cis.upenn.edu/rapidnet/.

[18] RATNASAMY, S., FRANCIS, P., HANDLEY, M.,
KARP, R., AND SHENKER, S. A Scalable Content
Addressable Network. In Proc. of the ACM SIGCOM
Conference (Berkeley, CA, August 2001).

[19] SKYPE. Skype P2P Telephony. http://www.skype.com.

[20] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK,
M. F., AND BALAKRISHNAN, H. Chord: A Scalable
P2P Lookup Service for Internet Applications. In
SIGCOMM (2001).

[21] WANG, A., AND JIANG, W. Research of Teaching on
Network Course Based on NS-3. In First International
Workshop on Education Technology and Computer
Science (2009).

[22] WIRESHARK. http://www.wireshark.org.

