Analyzing BGP Instances in Maude

Anduo Wang! Carolyn Talcott> Limin Jia®> Boon Thau Loo' Andre Scedrov!

1 University of Pennsylvania
2 SRI International
3 Carnegie-Mellon University
{anduo, boonloo}@cis.upenn.edu clt@csl.sri.com
liminjia@cmu.edu scedrov@math.upenn.edu

Abstract. Analyzing Border Gateway Protocol (BGP) instances is a crucial step
in the design and implementation of safe BGP systems. Today, the analysis is a
manual and tedious process. Researchers study the instances by manually con-
structing execution sequences, hoping to either identify an oscillation or show
that the instance is safe by exhaustively examining all possible sequences. We
propose to automate the analysis by using Maude, a tool based on rewriting logic.
We have developed a library specifying a generalized path vector protocol, and
methods to instantiate the library with customized routing policies. Protocols can
be analyzed automatically by Maude, once users provide specifications of the
network topology and routing policies. Using our Maude library, protocols or
policies can be easily specified and checked for problems. To validate our ap-
proach, we performed safety analysis of well-known BGP instances and actual
routing configurations.

Keywords: Maude, BGP gadgets, Inter-domain routing, Convergence analysis

1 Introduction

The Internet today runs on a complex routing protocol called the Border Gateway Pro-
tocol or BGP in short. BGP enables Internet-service providers (ISP) world-wide to ex-
change reachibility information to destinations over the Internet, and simultaneously,
each ISP acts as an autonomous system that imposes its own import and export routing
policies on route advertisements exchanged among neighboring ISPs.

Over the past few years, there has been a growing consensus on the complexity and
fragility of BGP routing. Even when the basic routing protocol converges, conflicting
policy decisions among different ISPs have led to route oscillation and slow conver-
gence. Several empirical studies [17] have shown that there are prolonged periods in
which the Internet cannot reliably route data packets to specific destinations due to
routing errors induced by BGP. In response, the networking community has proposed
several alternative Internet architectures [24] and policy constraints (or “safety guide-
lines”) that guarantee protocol convergence if universally adopted [[1049U1317012122].

One of the key requirements for designing new routing architectures and policy
guidelines is the ability to study BGP network instances. These instances can come in
the form of small topology configurations (called “gadgets’), which serve as examples
of safe systems, or counterexamples showing the lack of convergence. They can also

2 Anduo Wang Carolyn Talcott Limin Jia Boon Thau Loo Andre Scedrov

come from actual internal router (iBGP) and border gateway (eBGP) router configu-
rations. Today, researchers and network operators analyze these instances by manually
examining execution sequences. This process is tedious and error-prone.

The main contribution of this paper is that we present an automated tool for ana-
lyzing BGP instances, and thus relieve researchers and network operators of manual
analysis. Our tool uses Maude [4], a language and tool based on rewriting logic. We
encode in Maude the BGP protocol as a transition system driven by rewriting rules.
Consequently, we can use the high-performance rewriting engine provided by Maude
to analyze BGP instances automatically. Our tool can simulate execution runs, as well
as exhaustively explore all execution runs for possible divergence.

More specifically, we developed a set of Maude libraries specifying a generalized
path vector protocol that is common to all BGP instances. The generalized path vector
protocol utilizes a set of unspecified routing policy functions. These unspecified func-
tions serve as the interface for specific routing policies which are formalized as Stable
Path Problems (SPP) [14]. To use our library, users only need to input the network
topology and customize routing policies functions in the form of SPP. We illustrate the
use of our tool by analyzing various BGP instances.

The rest of the paper is organized as follows. Section [2] briefly reviews BGP and
Maude tool. Section [3]introduces the Maude library that we have developed, as a basis
for customizing SPP instances. In Sectionfd] we discuss how to use this library to specify
a variety of BGP instances. In Section[5] we illustrate how to use the library to analyze
these instances. The complete list of Maude code in our library is described in appendix
[Al and the details of specifying BGP instances are shown in appendix [BJ[C]

2 Background

We explain the background of our tool. First we briefly review BGP. Next we discuss
the basics of Maude, the language and tool, in which our tool is built.

2.1 BGP

BGP assumes a network model in which routers are grouped into various Autonomous
Systems (AS) administrated by Internet Server Provider (ISP). An individual AS ex-
changes route advertisements with neighboring ASes using the path-vector protocol.
Upon receiving a route advertisement, a BGP node may choose to accept or ignore the
advertisement based on its import policy. If the route is accepted, the node stores the
route as a possible candidate. Each node selects among all candidate routes the best
route to each destination based on its local route rankings. Once a best route is selected,
the node advertises it to its neighbors. A BGP node may choose to export only selected
routes to its neighboring ASes based on its export policy.

BGP systems come in two flavors: external BGP (eBGP), which establishes routes
between ASes; and internal BGP (iBGP), which distributes routes within an AS. At
the AS-level, a BGP system can be viewed as a network of AS nodes running eBGP.
Each AS is represented by one single router node in the network (its internal structure
ignored), and its network state includes its neighbors (ASes), selected best path and a

Analyzing BGP Instances in Maude 3

routing table. Route advertisements constitute the routing messages exchanged among
them. Within an AS, a BGP system can be viewed as a network of two kinds of net-
work nodes running iBGP: gateway routers and internal routers whose network states
are similar to eBGP routers. iBGP allows internal routers to learn external routes (to
destinations outside the AS) from gateway routers.

We model both eBGP and iBGP systems as network systems with two components:
routing dynamics and routing policies. Routing dynamics specify how routers exchange
routing messages, and how they update their network states accordingly. Routing poli-
cies are part of the static configuration of each router, by which the ISP operator ex-
presses his local traffic interests and influences route decisions.

In our library, we adopt the use of Stable Paths Problems (SPP) [[14] as the formal
model of routing policies. An instance of the SPP S is a tuple (G, o0, P, A), where G
is a graph, o is a specific destination node [ﬂ P is the set of permitted (usable) paths
available for each node to reach o, and A is the ranking functions for each node. For
each node v, AV is its ranking function, mapping its routes to natural numbers (ranks),
and PV are its permitted paths, the set of available paths to reach o. A path assignment
is a function 7 that maps each network node v € V to a path 7(v) € PY. A path
assignment is stable if each node u selects a path 7(u) which is (1) the highest ranked
path among its permitted paths, and (2) is consistent with the path chosen by the next-
hop node. Consistency requires if 7(u) = (uv) P then for the next-hop node v, we must
have 7 (v) = P. A solution to the SPP is a stable path assignment.

In this paper, we are interested in analyzing BGP convergence (safety) property
in the SPP formalism. A BGP system converges and is said to be safe, if it produces
stable routing tables, given any sequence of routing message exchanges. We can study
BGP convergence by analyzing its SPP representation: SPP instance for a safe BGP
system converges to a solution in all BGP executions. Note that, the existence of an
SPP solution does not guarantee convergence.

For example, Figure (1| presents an SPP in-

stance called the Disagree “gadget”. The per- [n1n2 no] . [n2 n1no]
node ranking functions are A'([n1 n2 no0]) = [n1 n0] [n2 n0]
1, AY([n1 nol) = 2, A3([n2 nl1 no]) = 1, v

and A?([n2 n0]) = 2. The permitted paths for @

each node are listed besides the corresponding
node. The order in which the paths are listed
is based on the ranking function: Nodes prefer
higher ranked routes, e.g. node n1 prefers route [n1 n2 n0O] over [nl n0]. Disagree
has two stable path assignment solutions: ([nl n2 n0], [n2 n0]) and ([n2 nl
n0], [nl n0]).However, Disagree is not guaranteed to converge because there ex-
ists an execution trace where route assignments keep oscillating. Consider the execution
where node n1 and n2 update and exchange routing messages in a synchronized man-
ner, and their network states oscillate between two unstable path assignments ([nl
n0]) ([n2 n0]) and ([nl n2 n0] [n2 nl nO]) forever.

Fig. 1: Disagree Gadget.

* Assuming the Internet is symmetric, we can study its routing behavior by studying routing to
a single destination.

4 Anduo Wang Carolyn Talcott Limin Jia Boon Thau Loo Andre Scedrov

2.2 Rewriting Logic and Maude

Rewriting logic [19] is a logical formalism that is based on two simple ideas: states of
a system can be represented as elements of an algebraic data type, and the behavior of
a system can be given by transitions between states described by rewrite rules. By al-
gebraic data type, we mean a set whose elements are constructed from atomic elements
by application of constructors. Functions on data types are defined by equations that
allow one to compute the result of applying the function. A rewrite rule has the form
t = t' if ¢ where t and t’ are patterns (terms possibly containing variables) and ¢ is a
condition (a boolean term). Such a rule applies to a system state s if ¢ can be matched
to a part of s by supplying the right values for the variables, and if the condition ¢ holds
when supplied with those values. In this case the rule can be applied by replacing the
part of s matching ¢ by ¢’ using the matching values for variables in ¢'.

Maude [4] is a language and tool based on rewriting logic [[18]]. Maude provides
a high performance rewriting engine featuring matching modulo associativity, com-
mutativity, and identity axioms; and search and model-checking capabilities. Given a
specification .S of a concurrent system, Maude can execute this specification and allows
one to observe possible behaviors of the system. One can also use the search function-
ality of Maude to check if a state meeting a given condition can be reached during
the system’s execution. Furthermore, one can model-check S to check if a temporal
property is satisfied, and if not, Maude will produce a counter example. Maude also
supports object-oriented specifications that enable the modeling of distributed systems
as a multiset of objects that are loosely coupled by message passing. As a result, Maude
is particularly amenable to the specification and analysis of network routing protocols.

3 A Maude Library for Encoding BGP Protocols

This section presents our Maude library for analyzing BGP instances. This library pro-
vides specification of the protocol dynamics that are common to BGP instances, and
defines a routing policy template in terms of the Stable Path Problem (SPP) so that net-
work designers can customize it to analyze a specific instance. Our library also provides
support for detecting route oscillation.

[BGP system [Maude interpretation

Network nodes (Router) objects

Routing messages Terms of type Msg

Global Network Multiset of router objects and terms representing messages
Protocol dynamics Local rewriting rules

Global network behaviors|Concurrent rewrites using local rules

Route oscillation support [A Logger object recording the histories of route assignments
and rewriting rules updating the Logger object

Table 1: Overview and Interpretation of Maude Library

Analyzing BGP Instances in Maude 5

Our library is organized into a hierarchy of Maude modules. Table [T| presents the
correspondence between concepts in BGP protocols and the Maude code. We first show
how our library represents a single network state of BGP system (Section[3.1)). Then we
explain how to capture the dynamic behavior of a local BGP router using rewrite rules.
In doing so, the global network behaviors can be viewed as concurrent applications of
the local rewriting rules (Section [3.2). Finally, we discuss the component in the library
that detects route oscillation (Section [3.3).

3.1 Network State

A network state is represented by a multiset of network nodes (routers) and routing
messages used by routers to exchange routing information. Each network node is rep-
resented by a Maude object, whose attributes consist of its routing table, best path and
neighboring table. We omit the detailed Maude sort definitions, but provide an example
encoding of the network node n1 in Disagree gadget show in Figure|l|as follows.

[nl : router |
routingTable: (source: nl,dest: nO,pv:(nl n0),metric: 2),
bestPath: (source: nl,dest: nO,pv: (nl n0),metric: 2),
nb: (mkNeigh(n0,2) mkNeigh(n2,1))]

The constructor for anode is [_:_|_, _, _1. The first two elements (n1: router) specify
the node’s id n1, and its object class router. The next three elements are the attributes.
At a given state, the routing table attribute constructed from routingTable:_contains
nl’s current available routes. Each routing table entry stores the routing information
for one particular next-hop. Here, the routing table attribute only contains one entry
(source: nl, dest: n0O, pv:(nl n0), metric: 2).Thisrouteis specified by
its source (source: nl), destination (dest: n0), the path vector that contains the
list of nodes along the path (pv: (nl n0)), and the cost of the route (metric: 2).
This route is also used for the best path attribute, constructed from bestPath:_, which
contains n1’s current best path. The last attribute is the neighbor table, constructed from
nb:_. To extract a node’s local neighbor table from the network topology, we further
introduce an operator mkNeigh. The first argument of mkNeigh is the identifier of the
neighboring node, and the second argument the metric associated with the link to that
node. Node n1 has two neighbors, node n0, the cost to which is 2 (mkNeigh (n0, 2));
and node n2, the cost to which is 1 (mkNeigh (n2,1)).

Besides router objects, the second part of a network state is routing messages in
the network. Typically, network nodes exchange routing information by sending each
other routing messages carrying newly-learned routes. In our library, a routing message
is constructed from sendPacket (-, -, -, -, -) . For example, in the Disagree gadget, the
initial routing message sent by node n1 to its neighbor n2 is represented by message
term: sendPacket (nl,n2,n0,2,nl n0). This message carries n1’s routes to des-
tination n0 with path vector n1 n0 at cost 2. In general, the first two arguments of
sendPacket (_, _, -, -, -) denote the sender’s identifier (node n1), and the receiver’s
identifier (node n2) respectively. The rest of the arguments specify the identifier of the
destination (node n0), the metric representing the cost of the route (2), and the path
vector of the routing path (n1 n0).

6 Anduo Wang Carolyn Talcott Limin Jia Boon Thau Loo Andre Scedrov

3.2 Protocol Dynamics

We now show how to specify network system dynamics in Maude. By modeling a BGP
system as a concurrent system consisting of router objects (and the routing messages),
to specify the global BGP evolution, we only need to specify the local rewrite rules
governing the state transition of each BGP router.

A BGP node’s dynamics can be captured by various equivalent state transitions. To
reduce search space in analysis, we adopt a one-state transition: for each BGP node N,
when it receives routing messages from a neighbor s, N computes the new path from
the received message, updates N’s routing table and re-selects best path accordingly, and
finally sends out routing messages carrying its new best path information if a different
best path is selected. This state transition is encoded as a single rewrite rule of the
following form:

rl [route-update]
sendPacket (S, N, D, C, PV)
[N : router | routingTable: RT, bestPath: Pb, nb: NB]
=>
if (case 1) then best path re-selects (promotion)
else (if (case 2) then best path remains same
else (if (case 3) then best path re-selection (withdraw)
else error processing
fi) fi) fi.
Here, r1 is the identifier of this rule, and route—update is the name of this rule.
Rule r1 is fired when the left-hand side is matched; that is, when a node N consists of
routingTable RT, bestPath Pb, and neighboring table NB receives a route advertisement
message from neighbor s. The result of applying the rule is shown on the right-hand
side: the routing message is consumed, and attributes of router N are updated. Based
on the result of the re-selected bestPath attribute, there are three different cases for N to
update its state as specified in the three branches. Next, we explain these three cases.

Best path promotion. In any case, node N needs to first compute the new path based on
its neighbor S’s message asserting that S can reach D via a path pv. We define a function
newPath that takes a routing message and the neighbor table as arguments, and returns
the new path by first prepending N to the path announced by s, setting the new path
attribute according to the local ranking function lookUpRank, and then imposing the
import policy by modifying the path metric according to BGP routing policy configura-
tion (import function). Here import and 1ookUpRank are unspecified routing policy
functions. Together with export that we will introduce shortly, they constitute our li-
brary’s specification interface for defining BGP routing policy. To specify a particular
BGP instance’s routing policy, the user only needs to specify import, lookUpRank
and export accordingly.

The first branch (case 1) is specified below. The newly computed path is compared
with the current bestPath pb, if the new one is preferred over the old value Pb, the
bestPath attribute will be updated to this new path. Furthermore, if the export policy
allows, the new best path value will be re-advertised to all of N’s neighbors by sending
them routing messages.

Analyzing BGP Instances in Maude 7

if getDest (newPath (sendPacket (S,N,D,C,PV),NB))==getDest (Pb) and
prefer? (newPath (sendPacket (S,N,D,C,PV),NB),Pb)==true

then

([N : router |
routingTable: updatedRT (newPath (sendPacket (S,N,D,C,PV),NB),RT),
bestPath: newPath (sendPacket (S,N,D,C,PV),NB),
nb: NB]

multiCast (NB, export (newPath (sendPacket (S,N,D,C,PV),NB))))

Here the new state of N is obtained by updating the old routingTable attribute
RT (updateRT function), and updating the bestPath attribute by setting it to the new
value of bestPath. The updateRT function recursively checks the routing table, and
for each next-hop entry, it either inserts the new path (newPath (. ..)) if no available
route is presented; or replaces the old value with the new path. To complete the state
transition, for all N’s neighbors, routing messages carrying the new path are generated
by multicast function. To impose the export routing policy, before sending the new
best path, export is applied to the new path to filter out the routes which are intended
to be hidden from neighbors. Similar to import, export is to be instantiated by the
user when analyzing a particular BGP instance. If the export routing policy prohibits the
new path to be announced, export will transform it to emptyPath, whichmulticast
will not generate any message.

Best path remains the same. In the second branch (case 2),anew pathnewPath(...)
is computed from the received message as before. However, the new path is no better
than the current bestPath pb. But the next-hop node of the new path and pb are differ-
ent, implying that the new path is just an alternative pathﬂfor N to reach the destination.
As aresult, the current bestPath value Pb is unchanged, and only the routingTable
will be updated with this alternative path (newPath (.. .)). No routing messages will
be generated:

if getDest (newPath (sendPacket (S,N,D,C,PV),NB))==getDest (Pb) and
getNext (newPath (sendPacket (S,N,D,C,PV),NB))=/=getNext (Pb) and
prefer? (Pb, newPath (sendPacket (S,N,D,C,PV),NB))==true

then

[N : router |
routingTable: updateRT (newPath (sendPacket (S,N,D,C,PV),NB),RT),
bestPath: Pb,
nb: NB]

Best path withdraw. The same as in the second branch, in case 3, the newly computed
path newPath (. ..) is worse than the current bestPath pb, but it is now routed through
the same next-hop s as current bestPath Pb. The fact that S now sends a less preferred
path indicates that the previous learned route Pb is no longer available at S. Therefore,
we need to withdraw Pb by dropping Pb from routing table, shown as follows:

if getDest (newPath (sendPacket (S,N,D,C,PV),NB))==getDest (Pb) and
getNext (newPath (sendPacket (S,N,D,C,PV),NB))==getNext (Pb) and

> Different next-hop implies the route is learned from a different neighbor.

8 Anduo Wang Carolyn Talcott Limin Jia Boon Thau Loo Andre Scedrov

prefer? (Pb, newPath (sendPacket (S,N,D,C,PV),NB))==true
then
([N : router |
routingTable: updateRT (newPath (sendPacket (S,N,D,C,PV),NB),RT),
newBest (newPath (sendPacket (S,N,D,C,PV),NB),
updateRT (newPath (sendPacket (S,N,D,C,PV),NB),RT)),
nb: NB]
multiCast (NB, export (newBest (newPath (sendPacket (S,N,D,C,PV),NB),
updateRT (newPath (sendPacket (S,N, D, C,PV),NB),
RT))))

Here, updateRT replaces (therefore removes) the outdated pb with the new path
(newPath (...)),and newBest function re-computes the best path from newPath (. ..
and the remaining paths in routing table. As in case 1, to complete the state transition,
the newly selected best path is sent to its neighbors by multicCast (...).

3.3 Route Oscillation Detection Support

Our library also provides extra definitions to help detect route oscillation. Our method
is based on the observation that if route oscillation occurs during network system evo-
lution, there is at least one path assignment (at a given state for a BGP system, we
define the path assignment to be the collection of best paths currently selected by all
network nodes) that is visited twice. Therefore, we use the following simple heuristic:
we maintain a record of all path assignments for all visited states in BGP execution, and
check for recurring path assignment. Note that a path assignment (best path attribute of
router object) only constitutes a sub-set of the entire system state (the router ob-
jects attributes and routing messages), consequently our heuristic based on this partial
system state can have false positives: our analysis may report a false route oscillation
when two states are identical only in path assignments, but not the entire system states.
Nevertheless, our heuristic is sound and is still helpful in detecting all potential route
oscillation: when route oscillation occurs, a recurring path assignment state must occur.

More concretely, in our Maude library, we create a global logger object to keep track
of the history of path assignments. For each snapshot of the network state, i.e. whenever
a network node makes a local state transition and updates its best path attribute, the
logger object is synchronized to create a new path assignment entry that corresponds to
the updated best path. We then provide a function that checks for recurring entries in
the list of visited path assignments, which can be used directly in Maude’s exhaustive
search to detect route oscillation.

Logger object. The global logger is represented by an object pa of Logger class which
has one attribute history. At a given state, this attribute contains a list (history) of
path assignments, each entry of which contains the snapshot of the network’s collection
of best paths in a visited state.An example logger object for the disagree gadget is the
following:

{pa : Logger | history: ({[nl n2 n0] [n2 nO]}
{[nl n2 n0] [n2 nl nO0l}

Analyzing BGP Instances in Maude 9

{[nl n2 n0] [n2 noOl}
{[nl n0] [n2 n01})}

The above logger records four snapshots of the Disagree’s best paths. For example,
the first path assignment {[n1 n2 n0] [n2 n0]} denotes the network latest state
where node 1’s best pathto 0 is [n1 n2 n0] and node 2’s best path is [n2 n0]. And
line 4 {[n2 n0] [n2 nO0]} records Disagree’s path assignment at its initial (oldest)
state. Note that, this object content actually exhibits route oscillation (line 1 and line 3)
described in Section

Synchronized logging. To log all path assignment changes, we only need to slightly
modify the single rewrite rule for route update, such that whenever the rule is fired to
apply local state transition for some node, the global object pa is synchronized and its
path assignment is updated to reflect changes in the local node’s best path attribute,
shown as follows:

rl [route-update-logging]
sendPacket (S, N, D, C, PV)
[N : router | routingTable: RT, bestPath: Pb, nb: NB]
{ pa : Logger | history: HIS }
=>
%% first branch: bestPath re-selects (promotion)
if ... then
{ pa : Logger | history:
historyAppend (updateAt (index (N),
[getPV (newPath (sendPacket (S,N,D,C,PV),NB)) 1,
head (HIS)),HIS)})
else ... fi

On the left-hand side, two objects: a router N and the global logger pa are matched
to trigger the transition. As described in[3.2] in the first branch of route update where
the node’s best path attribute is set to newPath (. ..), the logger pa updates its path
assignment attribute as follows: First, it creates a new path assignment entry to record
newPath (...) by function updateAt (...). Then, the new entry updateAt (...)
is inserted into the list of previous path assignments HIS by function historyAppend.
Here, the new path assignment entry updateAt (...) is computed by updating the
latest path assignment entry head (HIS) with newPath (. ..). The rest of branches 2
and 3 are modified similarly.

Route oscillation detection. A network state is now a multiset of router objects, routing
messages, and one global logger object. The function detectCycle detects re-curring
path assignments, as follows:

eq detectCycle([N : router | routingTable: RT,
bestPath: Pb,nb: NB] cf)
= detectCycle (cf)
eq detectCycle (message cf) = detectCycle (cf)
eq detectCycle({ pa : Logger | history: HIS } cf)
= containCycle? (HIS)

10 Anduo Wang Carolyn Talcott Limin Jia Boon Thau Loo Andre Scedrov

The first two equations ignore router objects and routing messages in the network
state, and the last equation examines logger pa by function containCycle? to check
for recurring path assignment entries in HIS. We will revisit the use of detectCycle
to search for route oscillation in Section

4 Specifying BGP Instance

Given a BGP instance with its network topology and routing policies, we show how to
specify the instance as a SPP in our library. We discuss examples for both eBGP and
iBGP.

4.1 eBGP instance

An eBGP instance can be directly modeled by an SPP instance S = (G, o0, P, A): G, 0
specifies the instance’s network topology, and P, A specifies the resulting per-node route
ranking function after applying the eBGP instance’s routing policies. Our library pro-
vides Maude definitions for each SPP element.

Network topology. An eBGP instance’s initial network state is generated from its
network topology, which is represented by a list of network nodes and links. Our li-
brary declares two constants t op—Nodes and top-BGP to represent network nodes and
links. For example, to specify the topology of the Disagree gadget, the user defines
top-Nodes, top-BGP as follows:

eq top-Nodes = nl n2
eq top-BGP = (nl,n0 : 2) (nl,n2 : 1) (n2,nl : 1) (n2,n0 : 2)

Here, n0 is the identifier of the destination node (o). Each link is associated with
its cost. Based on the value of top-Nodes and top-BGP that are input by the user, our
library automatically generates Disagree’s initial state by init-config function:

eq gadget = init-config (top-Nodes, top-BGP)

The resulting gadget is a network state which consists of the two network router
objects n1, n2, the four initial routing messages, and the initial logger pa, as shown in
Section @ In this initial state, the three attributes of each network node — the routing
table and best-path and neighbor tables are computed as follows: init-config parses
the BGP links in network topology (top-BGP), for each link (ni,nj : M), a new
routing table entry for nj with cost M is created, and if nj == no0, then set ni’s best
path to the one-hop direct path ni n0, and its routing tables containing this one-hop
direct route; otherwise if there is no direct link from ni to n0, set ni’s best path and the
routing table to emptyPath. Initial routing messages and logger pa are computed in a
similar manner.

Analyzing BGP Instances in Maude 11

Routing policy. The route ranking function /A and permitted paths P are the result of
applying three BGP policies functions: import, export and lookUpRank. As we have
discussed in Section[3] import, export, lookUpRank are three user-defined functions
that serve as the specification interface for routing policies.

Functions import and lookUpRank are used to compute new routing paths from a
neighbor’s routing message: import filters out un-wanted paths, and 1ookUpRank as-
signs a rank to the remaining permitted paths. Note that the metric value 1ookUpRank
(N PV) assigned by lookUpRank also determines the route’s preference in route se-
lection. export is used to filter out routes the router would like to hide.

As an example, the policy functions for Disagree are defined as follows.

eq export (P) =P . eq import (P) =P
eq lookUpRank (nl n2 nO) = 1 . eq lookUpRank (nl n0) = 2
eq lookUpRank (n2 nl nO) = 1 . eq lookUpRank (n2 n0) = 2

The first line says Disagree does not employ additional import/export policies.
Whereas the second and third line asserts that Disagree’s two nodes prefers routes
through each other: For example the second line encodes node nl1’s ranking policy
that it prefers path (n1 n2 n0) (with higher rank 1) through n2 over the direct path
(n1 noO) (rank 2).

4.2 iBGP Instance

Our appendix |C| shows our SPP encoding of iBGP instances. The main differences
between an iBGP and eBGP instances are: (1) iBGP network topology distinguishes
between internal routers and gateway routers. Gateway routers runs eBGP to exchange
routing information with (gateway routers of) other ISPs, while simultaneously running
iBGP to exchange the external routing information with internal routers in the AS. (2)
iBGP routing policy utilizes a separate IGP protocol to select best route. Internal to an
AS, the ISP uses its own IGP protocol to compute shortest paths among all routers. The
shortest path distance between internal routers and gateway routers are used in iBGP
route selection: iBGP policy requires the internal routers to pick routes with shortest
distance to its gateway router.

As a result, iBGP requires encoding two types of topologies: a signaling topology
for gateway routers and internal routers to exchange routes within the AS, and a physical
topology on which the IGP protocol is running. Further, an additional destination router
denoting the special SPP destination o is added as an external router which is connected
with all gateway routers. In our library, we implement and run separately in Maude an
IGP protocol (for computing all-pairs shortest paths) and pass the resulting shortest path
distances to iBGP protocol.

5 Analysis

To analyze BGP instances, our library allows us to (1) execute the Maude specification
to simulate possible execution runs; and (2) exhaustively search all execution runs to
detect route oscillation.

12 Anduo Wang Carolyn Talcott Limin Jia Boon ThauLoo Andre Scedrov

5.1 Network Simulation

Network initialization. For any analysis, we need to first generate a BGP instance’s ini-
tial network state. For a given BGP instance, we have shown how to generate its initial
state gadget from its network topology and routing policy, as described in section {4}
For example, the initial state generated for Disagree is as follows:

{pa : Logger | history:{[nl n0] [n2 nO]}}

[n1 : router | routingTable: (source: nl, dest: nO,
pv:(nl n0), metric: 2),
bestPath: (source: nl, dest: n0O,

pv:(nl n0), metric: 2),
nb: (mkNeigh(n0,2) mkNeigh(n2,1))]
[n2 : router | ...]
sendPacket (n1,n0,n0,n2,nl n0) sendPacket (nl,n2,n0,n2,nl n0)
sendPacket (n2,n0,n0,n2,n2 n0) sendPacket (n2,nl,n0,n2,n2 n0)

This state consists of Disagree’s initial logger object pa that holds the initial path assign-
ment [n1 nO0] [n2 nO], two router objects n1, n2, and four initial routing messages.

Execution. Unlike many formal specification paradigms used in static network analy-
sis, a Maude specification is executable. To explore one possible execution run from a
given initial state gadget, we can directly use Maude’s rewrite and frewrite (fair
rewriting) commands. For example, we could tell Maude to execute the Disagree gadget
with the following command: frew gadget . This command terminates and returns
the following final state:

{pa : Logger |

history: ({[nl n0] [n2 nl n0l} ... {[nl n0] [n2 nO0l})}
[n1 : router |...

bestPath: (source: nl,dest: nO,pv:(nl n0),metric: 2), ...]
[n2 : router |...

bestPath: (source: n2,dest: nO,pv: (n2 nl nO),metric: 1),...]

Note that this final state corresponds to one of the stable path assignments of Disagree
described in Section [2, where node n1 sets its best path to [n1 n0], and node n2 sets
its best path to [n2 nl no0].

On the other hand, with the rew command which employs a different rewriting strat-
egy, divergence scenario is simulated and route oscillation is observed in the simulation.
This is because frewrite employs a depth-first position-fair rewriting strategy, while
rewrite employs a left-most, outer-most strategy that coincides with the execution
trace that leads to divergence.

5.2 Route Oscillation Detection

While Maude commands frew/rew explore a small portion of possible runs of the
instance, the search command allows us to exhaustively explore the entire execution
space. To exhaustively search BGP execution for route oscillation, we only need to first

Analyzing BGP Instances in Maude 13

input the BGP instance’s network topology and routing policy to generate the corre-
sponding initial state, as described in Section[d} and then use the search command to
automatically search for oscillation. For example, for Disagree, we run:

search [1] gadget =>+ X such that detectCycle(X) = true

Here, gadget is Disagree’s initial state, and =>+ X tells Maude to search for any reach-
able network state x such that at that state, the logger pa contains recurring path assign-
ment (detectCycle (X)=true). search command exhaustively explores Disagree
runs and returns with the first Disagree state that exhibits oscillation:

{pa : Logger | history: ({[nl n2 n0] [n2 nOl}
{[nl n2 n0] [n2 nl nOl}
{[nl n2 n0] [n2 noOl}
{[nl n0] [n2 n0l1})}

[nl : router |...] [n2 : router |...]

Here, the resulting path assignment content in pa exhibits an oscillation (line 1, line 3).
In general, Maude allows us to exhaustively search for violation of a safety property
P by running the following command:

search initialNetwork =>+ X:Configuration such that P (X) == false.

which tells Maude to exhaustively search for a network state X that violates P along
all possible execution traces from the initial state initialNetwork. If Maude returns
with No solution, we can conclude property P holds for all execution traces.

5.3 Case Studies

We have analyzed well-known eBGP instances, including good gadget, bad gadget,
disagree [[14]. In addition, we analyze two iBGP configuration instances: a 9-node iBGP
gadget [8] that is known to oscillate, and a 25-node configuration randomly extracted
from the Rocketfuel [23]] dataset. Rocketfuel is a well-known dataset on actual iBGP
configurations that are made available to the networking community. Given that an ISP
has complete knowledge of its internal router configurations, the Rocketfuel experiment
presents a practical use case for using our tool to check an actual BGP configuration
instance for safety.

For each BGP instance, we simulate its possible executions using rewriting com-
mands (Simulation), and check for route oscillation using exhaustive search (Exhaus-
tive). We summarize our analysis results are as follows:

We have carried out these analysis on a laptop with 1.9 GB memory and 2.40GHz
dual-cores running Debian 5.0.6. The version of Maude is Maude 2.4. While route os-
cillation detection explores the entire state space of the instance execution, the analysis
time for rewriting based execution are measured for only one possible terminating exe-
cution (that converges to a stable path assignment).

Here we summarize findings from our case studies. Single-trace simulation is help-
ful in finding permanent routing oscillation. When simulating the execute trace that

14 Anduo Wang Carolyn Talcott Limin Jia Boon Thau Loo Andre Scedrov

| [Disagree [Bad Good 9-node iBGP [25-node iBGP

Simulation |2 NA 4 20 31
Exhaustive|2,10,No |181,641,No [10997,37692,Yes|20063,52264,No [723827,177483,Yes
Table 2: Summary of BGP analysis in Maude. In the first row, each entry shows the simulation
time in milliseconds. In the second row, for each entry, the first value denotes exhaustive search
time in milliseconds, the second denotes number of states explored, and the third on whether our
tool determines the instances to be safe (“Yes”) or unsafe (“No”).

diverges, Maude does not terminate (e.g., in executing Bad gadgetEl). However, simula-
tion can miss temporary oscillations which are only manifested on a particular executing
trace. When Maude terminates, single-trace simulation time increases when network
size grows. On the other hand, exhaustive search always provides a solid safety proof.
For instances of similar network size, the search time for a safe instance (good) is con-
siderably longer than that of an unsafe instance (bad). For instances of different sizes,
as network size grows, exhaustive search time grows exponentially. Nevertheless, even
for the 25-node scenario, exhaustive search can be completed in 12 minutes. As future
work, we are going to scale our analysis technique to larger networks.

6 Related Work

Maude is a widely used tool for a variety of protocol analysis. In addition to our use
of Maude for analyzing BGP instances, there is also a huge literature of using Maude
for other complex systems, such as security protocols [[L1] , real-time systems [20], and
active networking [3].

Theorem proving and model checking techniques have been applied to formal ver-
ification of network protocols. For instance, in [3]], a routing protocol standard is for-
malized in the SPIN model checker and HOL theorem prover, where SPIN is used to
check convergence of small network instances, and HOL is used to generalize the con-
vergence proof for arbitrary network instances. Their work focuses on basic intra-AS
routing protocols such as the distance-vector protocol, and does not consider policy in-
teractions that occur in inter-AS routing protocols such as BGP. However, while our
proofs are automated by Maude’s built-in simulation and exhaustive search capabili-
ties, we are restricted to analyzing specific network instances. As future work, we plan
to generalize our instance-based proofs towards more general properties on BGP stabil-
ity, by leveraging Maude’s connection with existing theorem provers such as PVS [21]].

Arye et al. [2] has attempted a similar formalization of eBGP gadgets in SPP using
the Alloy [l]] tool. Our approach differs from theirs in the overall goal of the formaliza-
tion: Ayre et al. uses Alloy to synthesize eBGP instances that exhibit certain behaviors
such as divergence, whereas our approach takes an eBGP instance as input and analyzes
it via simulation runs and exhaustive search. Our overall goal is to provide an easy-to-
use library in Maude that eases the entire process of specifying and analyzing a BGP

® Bad gadget always diverges and does not have any stable path assignment, therefore, when
we simulate bad gadget with rewriting, Maude does not terminate, and we do not record the
statistics.

Analyzing BGP Instances in Maude 15

instance. Besides, in addition to eBGP gadgets, our library also supports iBGP instances
and handles iBGP route ranking generation based on a separate IGP protocol

On the practical front, recent advances in model checking network protocol systems
include MaceMC [16] and CMC [6] by imposing constraints on network implementa-
tions. While our analysis technique also uses state exploration of network instances, the
major difference is that our method is aimed at analysis in the design phase instead of
on actual implementation. Moreover, unlike checking a given implementation, our for-
mal specifications of routing protocols and policies are extensible, and can be further
customized to refine the analysis of various network properties.

7 Conclusion and Future Work

This paper presents our development of a Maude library for specifying and analyz-
ing BGP instances. Our work aims to automate an important task for network de-
signers when designing BGP protocols and safe policy guidelines. Our library uses
Maude’s object-based specification language and enables the user to easily generate
Maude specification by only requiring them to define the network topology and routing
policies. To validate the feasibility of our library, we explored a variety of well-known
BGP gadgets and an actual BGP instance obtained from the Rocketfuel dataset, and
demonstrated the use of Maude’s analysis capabilities to detect possible divergence. All
Maude code described in this paper is available at http://netdb.cis.upenn.
edu/discotecll.

In addition to integrating our framework with the PVS theorem prover, our ongoing
work includes: (1) more case studies on BGP instances and recent guidelines to explore
the limits of our library, leading to possible extensions of our Maude library; and (2)
releasing our tool for network designers to use.

Acknowledgment The authors would like to thank Yiging Ren and Wenchao Zhou
for their valuable help in generating the iBGP instances (from the Rocketfuel dataset)
used in our analysis. This research is funded in part by NSF grants (IIS-0812270,
CNS-0830949, CNS-0845552, TC-0905607, and CPS-0932397), AFOSR Grant No.
FA9550-08-1-0352 and ONR Grant No. N00014-10-1-0365.

References

1. Alloy. http://alloy.mit.edu/community/}

2. M. Arye, R. Harrison, and R. Wang. The Next 10,000 BGP Gadgets: Lightweight Modeling
for the Stable Paths Problem. Princeton COS598D course project report.

3. K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal verification of standards for distance
vector routing protocols. J. ACM, 49(4):538-576, 2002.

4. M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott. All
About Maude: A High-Performance Logical Framework. Springer, 2007.

5. G. Denker, J. Meseguer, and C. Talcott. Formal specification and analysis of active networks
and communication protocols: The maude experience. DARPA Information Survivability
Conference and Exposition,, 2000.

http://netdb.cis.upenn.edu/discotec11
http://netdb.cis.upenn.edu/discotec11
http://alloy.mit.edu/community/

16

6.

7.

e}

10.

11.

12.
13.

14.

15.
16.

17.
18.
19.
20.

21.
22.

23.

24.

A

Anduo Wang Carolyn Talcott Limin Jia Boon Thau Loo Andre Scedrov

D. Engler and M. Musuvathi. Model-checking large network protocol implementations. In
NSDI, 2004.

N. Feamster, R. Johari, and H. Balakrishnan. Implications of Autonomy for the Expressive-
ness of Policy Routing. In ACM SIGCOMM, Philadelphia, PA, August 2005.

. A. Flavel and M. Roughan. Stable and flexible iBGP. In ACM SIGCOMM, 2009.
. L. Gao, T. G. Griffin, and J. Rexford. Inherently Safe Backup Routing with BGP. In [EEE

INFOCOM, 2001.

L. Gao and J. Rexford. Stable internet routing without global coordination. In SIGMETRICS,
2000.

A. Goodloe, C. A. Gunter, and M.-O. Stehr. Formal prototyping in early stages of protocol
design. In Proc. ACM WITS 05, 2005.

T. G. Griffin. The stratified shortest-paths problem. In COMSNETS, Jan. 2010.

T. G. Griffin, A. Jaggard, and V. Ramacandran. Design principles of policy languages for
path vector protocols. In ACM SIGCOMM, Aug. 2003.

T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths problem and interdomain
routing. IEEE Trans. on Networking, 10:232-243, 2002.

T. G. Griffin and G. Wilfong. On the correctness of IBGP configuration. SIGCOMM °02.
C. Killian, J. Anderson, R. Jhala, and A. Vahdat. Life, death, and the critical transition:
Finding liveness bugs in systems code. In NSDI, 2007.

C. Labovitz, G. Malan, and F. Jahanian. Internet Routing Instability. TON, 1998.

Maude. http://maude.cs.uiuc.edu/l

J. Meseguer. Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical
Computer Science, 96(1):73-155, 1992.

P. C. Olveczky and J. Meseguer. Real-time maude: A tool for simulating and analyzing
real-time and hybrid systems. Electr. Notes Theor. Comput. Sci., 36, 2000.

PVS Specification and Verification System. http://pvs.csl.sri.com/|

M. Schapira, Y. Zhu, and J. Rexford. Putting BGP on the right path: A case for next-hop
routing. In HotNets, Oct. 2010.

N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with Rocketfuel. In
SIGCOMM’02.

L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao, S. Shenker, and I. Stoica. HLP:
A Next-generation Interdomain Routing Protocol. In SIGCOMM, 2005.

Details of Maude Code

A.1 Network State

Maude provides a built-in sort Configuration for the global state of a concurrent
object-based system. In our library, we model BGP system state by defining two sub-
sorts of Configuration: Msg and Network. Msg is the type for routing messages,
and Network the type for the collection network nodes. To construct the Network
Configuration from the constituting network nodes, we further introduce sort Node.
Node is a sub-sort of Object, and is the type of each network node (routers) in the
BGP system.

sorts Msg Network

subsorts Network Msg < Configuration
sort Node

subsort Node < Object

http://maude.cs.uiuc.edu/
http://pvs.csl.sri.com/

Analyzing BGP Instances in Maude 17

Given the above sorts, we can represent a BGP system state by a multiset of routing
messages terms (of sort Msg) and network nodes terms (of sort Node). We will show
how to construct terms representing routing messages and network nodes later in this
section.

Router Object To distinguish a network node object from other Maude objects, we
introduce a special Cid (class identifier) called Router. With Router Cid, we introduce
the constructor of a network node (router) object. In Maude, op is the keyword defining
constructors:

op Router : 0Oid .
op [_:_|_,_,_] : Oid Router RoutingTable BestPath Nb -> Node

The constructor [_:_|_,_, -] takes five arguments: The first two are a unique identi-
fier (of sort 0id) and a class identifier (the Cid constant Router). The 0id denotes
the node’s unique name in the network, the class identifier denotes the class type of the
node. The last three arguments are object attributes: routing table (of sort Rout ingTable),
best path (of sort BestPath), and neighboring table (of sort Nb). Given the argument
terms, a router object term (of sort Node) is constructed. Next we discuss a Node ob-
ject’s three attributes.

RoutingTable and BestPath attributes. At a given state, the routing table and best path
attributes store node v’s available paths PV to reach destination 0, and its current best
path that ranks the highest among P respectively. They are constructed as follows:

op routingTable:_ : List{Path} -> RoutingTable
op bestPath:_ : Path —-> BestPath.

The sort Path and its constructors are defined as follows:

sort Path

op emptyPath : —-> Path [ctor]

op source:_,dest:_,pv:(_),metric:_
0Oid 0id ListOid Metric -> Path

There are two ways to construct a term of sort Path: a path is either an empty path
(emptyPath), or a path from a source node (0id) to a destination node (0id) via a
path vector (the list of intermediary nodes denoted by List{0id}) at some cost of sort
Metric. Sort Metric specify how paths are measured and compared. For example, a
path metric in the SPP formalism is its rank defined in A. We interpret the metrics over
Maude’s built-in natural numbers sort Nat:

sort Metric

subsorts Nat < Metric

Neighbor attribute. A node’s neighboring table holds its list of link information to reach
its direct neighbors:

sort Neighbor
op mkNeigh(_,_) : 0id Metric -> Neighbor.

Here the constructor mkNeigh (-, -) takes two arguments: the direct neighbor’s identi-
fier, and the cost (Metric) to reach this neighbor.

18 Anduo Wang Carolyn Talcott Limin Jia Boon ThauLoo Andre Scedrov

Example node object. The disagree gadget consists of two nodes n1,n2 and a spe-
cial destination n0. The two nodes are represented by two Router objects. We first
introduce their object identifiers:

ops n0 nl n2 : —-> 0id

At the initial state of BGP protocol execution, at node n1 (which is connected to two
neighbors n0, n2), the routing table contains one path [n1 n0] to reach n0, which is
also node n1’s best path:

[nl : router
|routingTable: (source: nl, dest: n0O, pv:(nl nO0), metric: 2),
bestPath: (source: nl, dest: nO, pv:(nl nO), metric: 2),

nb: (mkNeigh (n0,2) mkNeigh(n2,1))]

Routing Messages Besides Router objects, the second part of a network state are
routing messages in the network. Typically, network nodes exchange routing informa-
tion by sending each other routing messages carrying newly-learned routing paths. In
our library, it is specified as follows:

op sendPacket(_,_,_,_,_) : 0id 0id 0id Metric ListOid -> Msg

The first two 0id arguments denotes the sender’s Oid and the receiver’s Oid respec-
tively. The rest of the arguments specify the destination Oid, metrics of the advertised
path, and the path-vector (the list of network nodes along the path) of the routing path
the message carries.

For example, in the disagree gadget, the initial routing message sent by node n1 to
its neighbors n2 carrying its direct path to n0 are is: sendPacket (n1,n2,n0,2,nl
n0).

Protocol Dynamics In the following code snippet, we show the auxiliary functions
used in computing new network state.
To compute a new path, concat is defined as follows:

op concat : Oid 0Oid 0id Metric ListOid ListNeighbor -> Path
eq concat (s, N, D, C, PV, NB)
= (source: N, dest: D, pv: (N PV), metric: lookUpRank (N PV))

eq is a Maude keyword preceding equation definitions. Here the new path of N’s to
reach D is simply by prepending N to Pv: N PV. And the metric of (N PV) is determined
by N’s routing policy, i.e., route ranking AV implemented by function 1ookUpRank.
The definition of this function is specific to each BGP configuration instance, and is an
interface between the protocol dynamics and the routing policies. We will revisit the
specification of specific BGP instance’s routing policies by lookUpRank in appendix

Given the newly computed route, to update a node’s routing table, we use updateRT
as follows:

Analyzing BGP Instances in Maude 19

op updateRT : Path ListPath -> ListPath

eq updateRT (P, nil) = (P)
eq updateRT (P, (P’ RT)) =
if ((getDest (P) == getDest (P’)) and
(getNext (P) == getNext (P’)))

then (P RT)
else (P’ updateRT (P, RT)) fi

Note that, updateRT ensures that the routing table always keeps exactly one path from
one particular next-hop neighbor.

Finally, if the best path attribute of the node changes, we use multiCast to generate
routing messages:

op multiCast : ListNeighbor Path -> Configuration

eq multiCast ((NBentry NB’), (source: S, dest: D, pv:(PV), metric:

= sendPacket (S, getOid(NBentry), D, C, (PV))
multiCast (NB’, (source: S, dest: D, pv:(PV), metric: C))

For each neighbor NBent ry in N’s neighboring table, multiCast recursively generates
the routing message sendPacket (S, getOid (NBentry),D,C, (PV)). getOid is an
auxiliary-function that extracts the neighbor NBentry’s Oid.

A.2 Route Oscillation Detection Support

Logger object. The logger object consists of only one attribute: a history (list) of path
assignments, each entry of which corresponds to the list of best paths for all nodes in
the network at a given state. The Maude code for defining the logger object is shown
below.

sort Logger

op Logger : —-> Cid
op {_:_|_} : 0id Cid AttributeSet -> Logger
op history:_ : List{PathAssignment} —-> Attribute

op {_} : List{BP} -> PathAssignment

sort BP
op [_] : List{oid} -> BP

The first three lines declares a special Logger object, and the constructor of the Logger,
which takes three arguments, the first one is the identifier for the logger, similar to the
identifiers for the router objects; the second argument is the class identifier of logger
object; and the last one is the attribute of the logger. The next two lines declare the only
attribute of Logger, which is a list (history) of PathAssignment elements, each of
which denotes one path assignment in the network at a given state. A path assignment
is a list of best path selected by each node in the network. The last two lines defines each
entry in one path assignment, which is simply the best path for some network node: i.e.
the list of nodes in the best path. An example logger object for Disagree is as follows:

20 Anduo Wang Carolyn Talcott Limin Jia Boon Thau Loo Andre Scedrov
{pa : Logger | history: ({[nl n2 n0] [n2 n0l}
[nl n2 n0] [n2 nl nOl}
[nl n2 n0] [n2 nOl}
[n1 n0] [n2 nO1})}

Each line in the logger attribute records one snapshot of the best path assignment. And
each column records the evolution of a node’s best path assignment. For example, the
first column shows node n1’s best path updates.

B SPP encoding of eBGP Instances

Network topology. The network topology G, o is represented by three constants: no,
top-Nodes, top—-BGP:

op n0 : 0Oid
op top-Nodes : -> ListOid
op top-BGP : —-> Topology

n0 is the specific destination o, t op-Nodes the set of network nodes, and t op—BGP the
set of BGP links. Our library has pre-defined sort Topology to capture that a network
topology is a set of labeled network links:

sorts Link Topology
op (_,_:_) : 0id 0id Metric -> Link

subsort Link < Topology
op __ : Topology Topology —> Topology

The first line of Maude code declares Topology and Link; The second line says a
Link is constructed from its two end nodes, and the associated metric. The last two lines
specify how Topology is constructed: a topology is either a single link, or recursively
constructed from existing topologies.

Our Maude library automatically generates an eBGP instance’s initial state based
on its topology:

op gadget : —-> Configuration
eq gadget = init-config (top-Nodes, top—-BGP)

C SPP encoding of iBGP Instances

An iBGP configuration instance C' = (Gp, Gs, X) is defined by its physical topology
G p, signaling topology G g, and gateway (egress) BGP nodes X. G p represents the
underlying network topology that runs a separate IGP protocol, therefore we also call
G p the IGP topology. G s represents the network topology that runs iBGP. The iBGP
links in G g can be partitioned into three classes over, down, up: an over iBGP link
represents a vanilla iBGP link, a down iBGP link represents a iBGP session from a

Analyzing BGP Instances in Maude 21

iBGP reﬂecto node to its client, and an up link represents that from a client to its
reflector server. X represents the gateway (egress) BGP nodes from which external
routes (routes to destinations outside the AS) are learned.

While the eBGP instance is usually given in the form of SPP, we need one addi-
tional translation [15]] to transform iBGP instance into SPP. Because we are interested
in the behavior of an iBGP instance C' = (Gp, Gg, X) in distributing external routing
information learned from iBGP gateway routers, we define an iBGP instance’s corre-
sponding SPP representation S = (G, o, P, A) as follows: o is an additional network
node outside the iBGP instance, and it represents the external common destination; G
is the signaling topology G5 with the additional node o and (non-BGP) links between
o and egress nodes X; A is the function that computes IGP-distance. This is because,
within an AS, for a common external destination o, all routes’ AS-level metrics are
same, as a result, a route can uses its IGP-distance alone to decide its rank.

To automate an iBGP instance specification in Maude, for each iBGP instance C' =
(Gp,Gs, X), we provide additional Maude definitions to generate its SPP reorientation
(G, 0, P, A). We describe network topology G, o and routing policy A respectively.

Network topology. Similar to eBGP, iBGP network topology G, o is represented by
constants top—-BGP, nd. Rather than asking the user to manually input top-BGP as
in eBGP instance, our library generates top-BGP from iBGP signaling topology as
follows:

op top-iBGP-signal : —-> Topology
ops top—-Nodes top-Xset : —-> ListOid
eq top-BGP = addExternal (top-iBGP-signal, top-Xset, nd)

top-iBGP-signal, top-Xset stores the iBGP instance’s signaling topology G
and egress nodes X. Note that, while the metric of each link in an eBGP network
topology represents the associated link cost (e.g. the IGP distance between the two
nodes), the metric of link in signaling topology denotes its class: over, up, or down. So
our library further includes three metric constants:

ops up down over : —-> Metric

addExternal is a function that takes the external destination nd, egress nodes
top-Xset as input, and generates the network topology top-BGP by adding to the
signaling topology top—-iBGP-signal additional links between each egress node in
X and external destination o:

op addExternal : Topology ListOid 0Oid -> Topology
eq addExternal (top, (X Xset), D) =

addExternal (top, Xset, D) (X,D : 1)
eq addExternal (top, nil, D) = top

7 To solve scalability problem in full-mesh iBGP configuration, some iBGP nodes are elected
to be route reflectors that act as focal point in iBGP sessions: the reflectors form a smaller
full-mesh, and the rest of the nodes become their clients.

22 Anduo Wang Carolyn Talcott Limin Jia Boon ThauLoo Andre Scedrov

The resulting t op—BGP is then used to initialize network state as in eBGP instance.

Based on the above library support, to specify the network topology of iBGP in-
stance, the user only need to specify Gp, X by customizing constants top-Nodes,
top-iBGP-signal, top-Xset.Forexample, to specify a 6-node iBGP instance [,
we write:

eq top-Nodes = n0 nl n2 n3 n4 n5
eq top—-Xset = n3 n4 nb
eq top-iBGP-signal =

(n0,nl : over) (n0,n2 : over) (n0,n3 : down)
(nl,n0 : over) (nl,n2 : over) (nl,nd4d : down)
(n2,n0 : over) (n2,nl : over) (n2,n5 : down)
(

n3,n0 : up) (n4,nl : up) (n5,n2 : up)

Routing policy Like eBGP instance, routing policy A is given by customizing import,
export, and lookUpRank. But unlike eBGP instance where 1ookUpRank simply as-
signs each path its rank, iBGP routing policy is more complex.

An iBGP policy consists of two parts: First, a valid iBGP path consists of a set of
(can be empty) up links, which is followed by zero or one over link followed by a set
(can be empty) of down links. Second, for routes with same AS-level attribute, a node
always prefers routes with lower IGP distance, i.e., routes with shorter distance to a
egress node.

The first policy is achieved by imposing an export policy at each node, such that
only routing updates from a client will be exported to all neighbors. In Maude library,
this is achieved by defining export in the iBGP module as follows:

*+% for routes learned from internal nodes
**xx only allow routing path of the form:

* ok x ... up ... up (over) down down
eq export ((source: S, dest: D, pv:(S N N’ PV), metric: C)) =
if (getLinkMetric (S,N,top-iBGP) == over and
getLinkMetric (N,N’,top-iBGP) == over)

then emptyPath
else (source: S, dest: D, pv:(S N N’ PV), metric: C) fi

++% for routes learned from egress nodes, do nothing
eq export ((source: S, dest: D, pv:(S N), metric: C)) =
(source: S, dest: D, pv:(S N), metric: C)

The second iBGP policy is achieved by set a path’s rank to its IGP distance:

eq lookUpRank (PV) =
computeIGP (head (PV), last(front (PV)), top-IGP)

Here head (PV) is the source of the path PV, and last (front (PV)) is the egress node
head (PV) used to reach destination last (PV). And top-IGP is the underlying IGP
topology. The function computeIGP computes the IGP distance between the source
and the egress node according to the underlying IGP topology. In our Maude library,

Analyzing BGP Instances in Maude 23

we implement computeIGP by implementing a separate IGP protocol called shortest-
path protocol. In shortest-path protocol, the IGP distance between two nodes is the cost
of the shortest path between them.

Based on the above library support, to specify iBGP lookUpRank, the user only
needs to specify the underlying IGP topology G'p by providing proper definition of
top-1GP. For example, to specify the 6-node iBGP instance, we write:

eq top-IGP =
(n0,n3 : 10) (nO,nd4 : 5) (nl,n4d : 10)
(nl,n5 : 5) (n2,n5 : 10) (n2,n3 : 5)

Here the link metric 5, 10 specifies the IGP distance between neighboring nodes.

	Analyzing BGP Instances in Maude
	Introduction
	Background
	BGP
	Rewriting Logic and Maude

	A Maude Library for Encoding BGP Protocols
	Network State
	Protocol Dynamics
	Route Oscillation Detection Support

	Specifying BGP Instance
	eBGP instance
	Network topology.
	Routing policy.

	iBGP Instance

	Analysis
	Network Simulation
	Route Oscillation Detection
	Case Studies

	Related Work
	Conclusion and Future Work
	Acknowledgment

	Details of Maude Code
	Network State
	Router Object
	Routing Messages
	Protocol Dynamics

	Route Oscillation Detection Support

	SPP encoding of eBGP Instances
	Network topology.

	SPP encoding of iBGP Instances
	Network topology.
	Routing policy

