
SecureBlox: Customizable Secure
Data Processing

William R. Marczak* , Shan Shan Huang†, Martin Bravenboer†,
Micah Sherr‡, Boon Thau Loo‡, Molham Aref†

*University of California, Berkeley †LogicBlox, Inc ‡University of Pennsylvania

2

Introduction

● Many large-scale networked information systems

● Security is hard because:

● Depends on execution environment

– Administrative boundaries
– Assumptions of attacker's capabilities
– Computation/bandwidth constraints

● Need reconfigurability
● Security is cross-cutting

● No one-size-fits-all set of constructs

3

Our Solution: SecureBlox

● SecureBlox: an extensible distributed query processor built on top of
a Datalog engine

● Applicable to any Datalog engine

● We use the commercial LogicBlox engine

● Security community uses Datalog (Abadi et al, DeTreville et al, etc.)

● High-level declarative recursive query languages: a promising new
framework for distributed systems

● Declarative Networking (Loo et al)

● Cloud Computing (Alvaro et al)

● etc.

4

Our Solution: SecureBlox

● Keep application & security languages unified

● Improves program understanding
● Formal reasoning

● Elegant decoupling of security logic from application logic

● Facilitates highly reconfigurable security

● Programmers focus on “what” properties to enforce, rather than
“how” to instrument their code

● Security specified as automatic rewrites of application logic

● Integrity constraints express security invariants

5

Outline

● Background: LogicBlox
● SecureBlox Architecture
● A taste of SecureBlox

● Constraints
● Meta-Programming

● Evaluation
● Conclusion

6

Background: LogicBlox (LB) Architecture

DatalogLB: Datalog + integrity constraints + static
type system + user-defined functions.

Runtime

Workspace

data

fixpoint
evaluation

DatalogLB
Compiler

type-based
constraint
checking

runtime
constraint
checking

fail!

installed rules

constraint
violation

error

DatalogLB

Program

query result

7

Background: LogicBlox (LB) Architecture

Workspace: Local DB instance with table definitions,
installed rules (continuous queries), and constraints.

Runtime

Workspace

data

fixpoint
evaluation

DatalogLB
Compiler

type-based
constraint
checking

runtime
constraint
checking

fail!

installed rules

constraint
violation

error

DatalogLB

Program

query result

8

Background: LogicBlox (LB) Architecture

Queries and updates executed to a fixpoint in an
ACID transaction. Constraint failure leads to abort.

Runtime

Workspace

data

fixpoint
evaluation

DatalogLB
Compiler

type-based
constraint
checking

runtime
constraint
checking

fail!

installed rules

constraint
violation

error

DatalogLB

Program

query result

9

SecureBlox Architecture

● Queries: DatalogLB program that represents the distributed
system/protocol

● Custom security policies: DatalogLB program that operates
on the queries at compile-time; called a “meta-program”

● System/protocol and security in same declarative language

Meta
Compiler

 queries

custom
security
policies

modified
queries

+
security

constructs

query result

Cloud

Remote LB
Workspace

constraint
violation

error

Distributed
Query

Processing

Local Workspace

compilation
error

SecureBlox SecureBloxLB Platform

10

SecureBlox Architecture

● Meta compiler runs fixpoint to transform queries based on
security policies

● Rewritten queries and security policies disseminated to all
principals at compile-time

● Principal: entity in the distributed computation

Meta
Compiler

 queries

custom
security
policies

modified
queries

+
security

constructs

query result

Cloud

Remote LB
Workspace

constraint
violation

error

Distributed
Query

Processing

Local Workspace

compilation
error

SecureBlox SecureBloxLB Platform

11

SecureBlox Architecture

Meta
Compiler

 queries

custom
security
policies

modified
queries

+
security

constructs

query result

Cloud

Remote LB
Workspace

constraint
violation

error

Distributed
Query

Processing

Local Workspace

compilation
error

SecureBlox SecureBloxLB Platform

● Each principal has his/her own LB workspace – each principal
may reside in any part of the network

● Updates from the principal's workspace, and other workspaces,
trigger transactions; constraint violation implies (local) abort

● Transactions send updates to other workspaces

12

Outline

● Background: LogicBlox
● SecureBlox Architecture
● A taste of SecureBlox

● Constraints
● Meta-Programming

● Evaluation
● Conclusion

13

Exporting Paths with Authorization

Alice Bob

“Export paths by appending
links to imported paths”

“Sign all path advertisements
using digital signatures”

“Require that path advertisements
have valid signatures”

“Require that paths be advertised
by an authorized source”

14

Exporting Paths with Authorization

Alice

path

Bob

“Export paths by appending
links to imported paths”

“Sign all path advertisements
using digital signatures”

1

“Require that path advertisements
have valid signatures”

“Require that paths be advertised
by an authorized source”

15

Exporting Paths with Authorization

Alice

path
path signature

Bob

“Export paths by appending
links to imported paths”

“Sign all path advertisements
using digital signatures”

1

2 “Require that path advertisements
have valid signatures”

“Require that paths be advertised
by an authorized source”

16

Exporting Paths with Authorization

Alice

path
path signature

Bob

path
path signature

“Export paths by appending
links to imported paths”

“Sign all path advertisements
using digital signatures”

1

2

3

“Require that path advertisements
have valid signatures”

“Require that paths be advertised
by an authorized source”

17

Exporting Paths with Authorization

Alice

“Require that path advertisements
have valid signatures”

“Require that paths be advertised
by an authorized source”

path
path signature

Bob

path
path signature

“Export paths by appending
links to imported paths”

“Sign all path advertisements
using digital signatures”

1

2

3

4

18

Exporting Paths with Authorization

Alice

path
path signature

Bob

path
path signature

“Export paths by appending
links to imported paths”

“Sign all path advertisements
using digital signatures”

1

2

3

4

5

“Require that path advertisements
have valid signatures”

“Require that paths be advertised
by an authorized source”

19

Exporting Paths with Authorization

Alice

path
path signature

Bob

path
path signature

“Export paths by appending
links to imported paths”

“Sign all path advertisements
using digital signatures”

1

2

3

4

5

Application logic Security Logic

“Require that path advertisements
have valid signatures”

“Require that paths be advertised
by an authorized source”

20

Exporting Paths (Application Logic)

“whenever there is a link from self to X, and a
path from self to Y, export a path to X from X to Y”

path(X,Y) <- link(self,X), path(self,Y).

21

Exporting Paths (Application Logic)

path(X,Y,self) <- link(self,X), path(self,Y,A), authorized(A).

“whenever there is a link from self to X, and a
path from self to Y imported from A, and A is
authorized, export a path to X from X to Y”

path_sig(X,Y,Sig) <- path(X,Y,self), rsa_sign...

“whenever I export a path to X, generate an RSA
digital signature for the path and export to X”

22

Exporting Paths with Authorization

Alice

“Require that path advertisements
have valid signatures”

“Require that paths be advertised
by an authorized source”

Bob

path(X,Y,self) ←
 link(Z,X), path(Z,Y,A),
 authorized(A).

path_sig(X,Y,Sig) ←
 path(X,Y,self), rsa_sign...

1

2 4

5

“Export paths by appending links
to imported paths”

“Sign all path advertisements using
digital signatures”

23

Exporting Paths with Authorization

Alice

“Require that path advertisements
have valid signatures”

“Require that paths be advertised
by an authorized source”

Bob

path(X,Y,self) ←
 link(Z,X), path(Z,Y,A),
 authorized(A).

path_sig(X,Y,Sig) ←
 path(X,Y,self), rsa_sign...

1

2 4

5

“Export paths by appending links
to imported paths”

“Sign all path advertisements using
digital signatures”

Good: Security (2) written in same language as application (1)

24

Exporting Paths with Authorization

Alice

“Require that path advertisements
have valid signatures”

“Require that paths be advertised
by an authorized source”

Bob

path(X,Y,self) ←
 link(Z,X), path(Z,Y,A),
 authorized(A).

path_sig(X,Y,Sig) ←
 path(X,Y,self), rsa_sign...

1

2 4

5

“Export paths by appending links
to imported paths”

“Sign all path advertisements using
digital signatures”

Problem (Code duplication): Authenticate other predicates?
i.e., link_sig(X,Y,Sig) link(X,Y,self), rsa_sign...←

25

Exporting Paths with Authorization

Alice

“Require that path advertisements
have valid signatures”

“Require that paths be advertised
by an authorized source”

Bob

path(X,Y,self) ←
 link(Z,X), path(Z,Y,A),
 authorized(A).

path_sig(X,Y,Sig) ←
 path(X,Y,self), rsa_sign...

1

2 4

5

“Export paths by appending links
to imported paths”

“Sign all path advertisements using
digital signatures”

Problem (Entanglement of security & application logic): New argument to path is
part of security logic, but requires change to application logic (rule 1).

26

Exporting Paths with “says”

Principal A supports
the fact: path(Z,Y)

“says” authentication construct from formal security community

path(X,Y) <- link(Z,X), A says path(Z,Y), authorized(A).

27

Exporting Paths with Authorization

Alice

[hard-coded into runtime]

“Require that paths be advertised
by an authorized source”

Bob

path(X,Y) ←
 link(Z,X), A says path(Z,Y),
 authorized(A).

[hard-coded into runtime]

1

2 4

5

“Export paths by appending links
to imported paths”

“Sign all path advertisements using
digital signatures”

“Require that path advertisements
have valid signatures”

28

Exporting Paths with Authorization

Alice

[hard-coded into runtime]

“Require that paths be advertised
by an authorized source”

Bob

path(X,Y) ←
 link(Z,X), A says path(Z,Y),
 authorized(A).

[hard-coded into runtime]

1

2 4

5

“Export paths by appending links
to imported paths”

“Sign all path advertisements using
digital signatures”

“Require that path advertisements
have valid signatures”

Good: Avoids code duplication, entanglement

29

Exporting Paths with Authorization

Alice

[hard-coded into runtime]

“Require that paths be advertised
by an authorized source”

Bob

path(X,Y) ←
 link(Z,X), A says path(Z,Y),
 authorized(A).

[hard-coded into runtime]

1

2 4

5

“Export paths by appending links
to imported paths”

“Sign all path advertisements using
digital signatures”

Problem (“says” modeled outside of language): Can't reconfigure 2 and 4

“Require that path advertisements
have valid signatures”

30

Exporting Paths with Authorization

Alice

[hard-coded into runtime]

“Require that paths be advertised
by an authorized source”

Bob

path(X,Y) ←
 link(Z,X), A says path(Z,Y),
 authorized(A).

[hard-coded into runtime]

1

2 4

5

“Export paths by appending links
to imported paths”

“Sign all path advertisements using
digital signatures”

What does “require” mean?

“Require that path advertisements
have valid signatures”

31

Exporting Paths with “says”

● “Require” == integrity constraints

● Problem (Entanglement): “says” abstraction solves this

● Problem (“says” modeled outside of language): model “says”
abstraction in the language

● Problem (Code Duplication): write “says” logic “for all
authenticated predicates P”

32

Integrity Constraints

● Logical implication that always holds in a consistent
instance

link(X,Y) -> node(X), node(Y).

“whenever there is a link from X to Y, require
that X and Y are both in the 'node' set”

33

Integrity Constraints

● Logical implication that always holds in a consistent
instance

● “<-” generates new facts if RHS true; “->” causes
abort if LHS true and RHS false

link(X,Y) -> node(X), node(Y).

“whenever there is a link from X to Y, require
that X and Y are both in the 'node' set”

34

Meta-Model: Rules as Data

[VLDB09, CIDR09]

rule(rule_id).
head(rule_id, pred_id).
body(rule_id, pred_id).
pred(pred_id, name).
arg(pred_id, position, expr_id).
var(expr_id, name).

35

Meta-Model: Rules as Data

path(X,Y) <- link(Z,X), path(Z,Y).

[VLDB09, CIDR09]

arg(1,1,1)
arg(1,2,2)
arg(2,1,3)
arg(2,2,4)
arg(3,1,5)
arg(3,2,6)

var(1,”X”)
var(2,”Y”)
var(3,”Z”)
var(4,”X”)
var(5,”Z”)
var(6,”Y”)

rule(1)
head(1,1)
body(1,2)
body(1,3)

pred(1,”path”)
pred(2,”link”)
pred(3,”path”)

rule(rule_id).
head(rule_id, pred_id).
body(rule_id, pred_id).
pred(pred_id, name).
arg(pred_id, position, expr_id).
var(expr_id, name).

36

A Reconfigurable “Says”

‘{

 sig[P](self[],T,S,V*) <-
 says[P](self[],T,V*),
 privkey[] = K,
 rsa_sign[P](K,S,V*).

 says[P](T,self[],V*) ->
 sig[P](T,self[],S,V*),
 pubkey(T,K),
 rsa_verify[P](K,S,V*).

 }

 <-- predicate(P),
 auth_pred(P).

37

A Reconfigurable “Says”

‘{

 sig[P](self[],T,S,V*) <-
 says[P](self[],T,V*),
 privkey[] = K,
 rsa_sign[P](K,S,V*).

 says[P](T,self[],V*) ->
 sig[P](T,self[],S,V*),
 pubkey(T,K),
 rsa_verify[P](K,S,V*).

 }

 <-- predicate(P),
 auth_pred(P).

“For all predicates that I want to be
authenticated (auth_pred)”

(Universally quantify over predicates)

38

“For all predicates that I want to be
authenticated (auth_pred)”

(Universally quantify over predicates)

A Reconfigurable “Says”

‘{

 sig[P](self[],T,S,V*) <-
 says[P](self[],T,V*),
 privkey[] = K,
 rsa_sign[P](K,S,V*).

 says[P](T,self[],V*) ->
 sig[P](T,self[],S,V*),
 pubkey(T,K),
 rsa_verify[P](K,S,V*).

 }

 <-- predicate(P),
 auth_pred(P).

“Whenever I say a predicate P,
generate a signature.”

39

“For all predicates that I want to be
authenticated (auth_pred)”

(Universally quantify over predicates)

A Reconfigurable “Says”

‘{

 sig[P](self[],T,S,V*) <-
 says[P](self[],T,V*),
 privkey[] = K,
 rsa_sign[P](K,S,V*).

 says[P](T,self[],V*) ->
 sig[P](T,self[],S,V*),
 pubkey(T,K),
 rsa_verify[P](K,S,V*).

 }

 <-- predicate(P),
 auth_pred(P).

“Whenever I say a predicate P,
generate a signature.”

“Whenever I import a predicate
P said by principal T, ensure the
signature is valid for principal T”

40

Exporting Paths with Authorization

Alice

T says Path fact to me ->
 valid signature with T's pub key

T says Path fact to me ->
 T is “authorized”.

Bob

export the path fact <-
 append link to imported path

signature for a path fact <-
 I say a path fact
 sign fact with my private key

1

2 4

5

“Sign all path advertisements using
digital signatures”

“Export paths by appending links
to imported paths”

“Require that paths be advertised
by an authorized source”

“Require that path advertisements
have valid signatures”

Generated by meta-rule on previous slide

41

A Reconfigurable “Says”

● See paper for:
● Tunable authentication, encryption
● Anonymity

● Not just “says!”
● Authorization
● “Delegation” of access rights

42

Outline

● Background: LogicBlox
● SecureBlox Architecture
● A taste of SecureBlox

● Constraints
● Meta-Programming

● Evaluation
● Conclusion

43

Secure Path Vector Protocol
pathvar(P) -> .
path[P,Src,Dst]=C -> pathvar(P), node(Src), node(Dst), int[32](C).
pathlink[P,H1]=H2 -> pathvar(P), node(H1), node(H2).
bestcost[Src,Dst]=C -> node(N1), node(N2), int[32](c).
link(N1,N2) -> node(N1), node(N2).

path[P,self[],U]=1, pathlink[P,Me]=N <-
 link(Me,N), prin_node[self[]]=Me,
 prin_node[U]=N.

says[`path](self[],U,P,N,N2,C+1),
says[`pathlink](self[],U,P,H1,H2),
says[`pathlink](self[],U,P,N1,Me) <-
 pathlink[P,H1]=H2, link(Me,N),
 path[P,Me,N2]=C, bestcost[Me,N2]=C,
 prin_node[U]=N, prin_node[self[]]=Me,
 N!=N2, !pathlink[P,N]=_.

● Based on declarative path vector protocol [SIGCOMM 05]

● Still using “says” abstraction. Any implementation of “says”
can be used here

44

Evaluation: Performance Snapshot
Evaluation of Path Vector Protocol running on 32 machines in a local
cluster with various implementations of “says”

Fixpoint latency of a Declarative Networking [SIGCOMM 05] path-vector routing protocol.
Performance is comparable to Declarative Networking implementation.

45

Evaluation: Performance Snapshot
Evaluation of Path Vector Protocol running on 32 machines in a local
cluster with various implementations of “says”

Fixpoint latency of a Declarative Networking [SIGCOMM 05] path-vector routing protocol.
Performance is comparable to Declarative Networking implementation.

See paper for parallel hash join, anonymous join

46

Conclusion and Future Work

● Contributions:
● SecureBlox architecture: reconfigurable security
● Static meta-programming framework
● Case studies & eval: parallel hash join, anonymous

distributed join
● Future work:

● New programming model, i.e. secure MapReduce
● Formally reason about security properties (theorem

proving, model checking)

SecureBlox: Customizable Secure
Data Processing

William R. Marczak* , Shan Shan Huang†, Martin Bravenboer†,
Micah Sherr‡, Boon Thau Loo‡, Molham Aref†

*University of California, Berkeley †LogicBlox, Inc ‡University of Pennsylvania

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

