
Declarative Reconfigurable Trust Management

William R. Marczak1 David Zook2 Wenchao Zhou1

Molham Aref2 Boon Thau Loo1

1 Univ. of Pennsylvania, {wrm,wenchaoz,boonloo}@seas.upenn.edu
2 LogicBlox, {david.zook,molham.aref}@LogicBlox.com

ABSTRACT
In recent years, there has been a proliferation of declara-
tive logic-based trust management languages and systems
proposed to ease the description, configuration, and enforce-
ment of security policies. These systems have different trade-
offs in expressiveness and complexity, depending on the se-
curity constructs (e.g. authentication, delegation, secrecy,
etc.) that are supported, and the assumed trust level and
scale of the execution environment. In this paper, we present
LBTrust, a unified declarative system for reconfigurable trust
management, where various security constructs can be cus-
tomized and composed in a declarative fashion. We present
an initial proof-of-concept implementation of LBTrust using
LogicBlox, an emerging commercial Datalog-based platform
for enterprise software systems. The LogicBlox language
enhances Datalog in a variety of ways, including constraints
and meta-programming, as well as support for programmer-
defined constraints on the meta-model itself – meta-constraints
– which act to restrict the set of allowable programs. LB-
Trust utilizes LogicBlox’s meta-programming and
meta-constraints to enable customizable cryptographic, par-
titioning and distribution strategies based on the execution
environment. We present use cases of LBTrust based on
three trust management systems (Binder, D1LP, and Secure
Network Datalog), and provide a preliminary evaluation of
a Binder-based trust management system.

1. INTRODUCTION
Trust management is an essential and important compo-

nent of security and it is pervasive in computer systems.
Trust management is broadly defined as the process of for-
mulating access control policies and security credentials, de-
termining whether particular sets of credentials satisfy the
relevant policies, and deferring trust to third parties [8].
Over the years, logical ideas and tools have been used to ex-
plain and improve trust management, particularly to imple-
ment access control in a multi-user distributed environment.
Several declarative logic-based languages (e.g. Binder [12],

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2009.
4th Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA.

Cassandra [7], D1LP [15], SD3 [13]) have been proposed to
ease the process of expressing, analyzing, and encoding se-
curity policies.

These proposals have different tradeoffs in expressiveness
and complexity, depending on the security constructs (e.g.
authentication, delegation, speaks-for, etc.) that are sup-
ported, as well as the trust level and distribution of their
assumed environments. At the minimum, Binder (one of
the simplest languages) supports the logical says operator
for authentication, where principals that assert facts must
first validate their identity in a secure fashion.

Other trust management systems have explored additional
security constructs for secrecy [3] and encrypted facts [17],
ensuring that only authorized principals can interpret facts
in distributed settings. In order to differentiate principals
based on their capabilities, one can further incorporate the
notions of speaks-for [14] and restricted delegation [15] into
the language, which allow principals to delegate the respon-
sibility of selected policy decisions to other principals.

All in all, there is an inherent tradeoff between expres-
siveness and complexity across these spectrum of languages,
and while each language may be intriguing in isolation, one
would not want to combine them all indiscriminately. In-
terestingly, it has been shown previously [2, 4] that dis-
tributed trust management languages share similarities to
data integration languages (e.g. Tsimmis [10] as observed
by Abadi et al. [2]) and the distributed Datalog languages
proposed for declarative networking [9], by supporting the
notion of context (location) to identify components (nodes)
in distributed systems, indicating that ideas and methods
from the database community may be applicable to pro-
cessing security policies. These similarities provide the pos-
sibility of unifying these declarative languages to create an
integrated system.

In this paper, we present LBTrust, a unified declarative
system for reconfigurable trust management, where various
logical security constructs can be customized and composed
using a variant of the Datalog language. We present an ini-
tial proof-of-concept implementation of LBTrust using Log-
icBlox [16], an emerging commercial Datalog-based plat-
form for enterprise software systems. The LogicBlox lan-
guage provides several enhancements to Datalog, includ-
ing constraints and meta-programming. LogicBlox’s meta-
programming is based on a meta-model similar to the re-
cently proposed Evita Raced [11]), which features a boot-
strapped meta-circular compiler implemented in Datalog.
Unlike Evita Raced, LogicBlox also supports applying
programmer-defined constraints to the meta-model itself –

meta-constraints – which act to restrict the allowable pro-
grams. LBTrust utilizes LogicBlox’s meta-programming and
meta-constraints to enable customizable cryptographic, par-
titioning and distribution strategies based on the deployed
environment.

Using LBTrust, we first demonstrate that a variety of se-
curity primitives for authentication, confidentiality, integrity,
speaks-for, and restricted delegation (used in D1LP) can be
supported. Based on these primitives, we present a detailed
use case of LBTrust to support the Binder [12] trust manage-
ment system. We further demonstrate the use of LBTrust to
implement Secure Network Datalog [4, 19], a secure declar-
ative networking language that unifies Binder and with the
Network Datalog language used in declarative networking.
Finally, we show an initial evaluation of the performance
overhead of LBTrust based on LBTrust’s implementation of
Binder.

Because it is a unified declarative platform, LBTrust pro-
vides a basis for comparison across different trust manage-
ment systems, and potentially provides avenues for better
analyzing security properties across these various languages.

2. BACKGROUND

2.1 Datalog
We first provide a short review of Datalog, following the

conventions in Ramakrishnan and Ullman’s survey [18]. A
Datalog program consists of a set of declarative rules. Each
rule has the form p <- q1, q2, ..., qn., which can be read
informally as “q1 and q2 and ... and qn implies p”. Here, p
is the head of the rule, and q1, q2, ..., qn is a list of literals
that constitutes the body of the rule. A literal is a possibly
negated atom. An atom is a predicate applied to a list of
terms, each of which is either a constant or a variable. The
names of predicates, function symbols, and constants begin
with a lowercase letter, while variable names begin with an
uppercase letter. Negation may not occur in the head of
a rule, and in the body it must be safe – every variable
occurring in a negated literal must also occur somewhere in
a non-negated literal. Also, for readability, solitary variables
– those which occur just once in a rule – are often replaced
with an underscore ().

Each predicate occurring in the head of a rule is called
intensional, while all the other predicates are called exten-
sional. A Datalog program takes as input a model (an as-
signment of values) of the extensional predicates and de-
rives a minimal model of the intensional predicates consis-
tent with the logical meaning of the rules.

LogicBlox (and most Datalog implementations) provide
built-in functions for equality, arithmetic, and aggregation
(totaling and counting), as well as built-in predicates for
common types (numbers and strings). Also, it easily can be
shown that an arbitrary nesting of negation, conjunction,
and disjunction may be used in the body of a rule. Such
a rule may be translated into strict Datalog rules by (1)
translating the body into Disjunctive Normal Form (DNF),
and (2) splitting the original rule into a separate rule for
each resulting alternative, duplicating the original head. We
use a left-arrow (<-) for logical implication, a comma (,) for
conjunction, a semicolon (;) for disjunction, a bang (!) for
negation, and parentheses for grouping.

2.2 Logic-based Trust Management
To illustrate logic-based trust management languages [1],

we provide an example language based on Binder [12]. Binder
expresses access control policies in a multi-user distributed
environment. A Binder program is a set of Datalog-style
logical rules. In addition, Binder has the notion of a context
– a component in a distributed environment – and a distin-
guished operator called says. For instance, in Binder we can
write:

b1: access(P,O,read) <- good(P).
b2: access(P,O,read) <- bob says access(P,O,read).

The says operator implements a common logical construct
in authentication [14], where we assert “p says s” if the
principal p supports the statement s. The above rules b1

and b2 can be read as “any principal P may access any ob-
ject O in read mode if P is good or if bob says that P may
do so”. The says operator abstracts from the details of au-
thentication.

A principal in Binder refers to a component in a dis-
tributed environment. Each principal has its own local con-
text where its rules reside. Binder assumes an untrusted net-
work, where different components can serve different roles,
running distinct sets of rules. Because of the lack of trust
among nodes, a component does not have control over rule
execution at other nodes. Instead, Binder allows separate
programs to interoperate correctly and securely via the ex-
port and import of rules and derived tuples across contexts.
For example, rule b2 can be a local rule that is executing in
the context of principal alice, which imports derived access

tuples from the principal bob into its local context via bob

says access(p,o,read) in its rule body.
Binder specifies an asymmetric key signature scheme, such

as RSA, for the “says” construct. In a hostile world, “says”
may require this, but in a more benign world, one may wish
to trade some security for efficiency, and configure “says”
to simply append cleartext principal headers to messages.
Somewhere in between, the use of cryptographic signatures
may be applied only to certain important messages, or when
communicating with specific principals. Binder does not
provide any leverage in deciding how this tradeoff should be
made.

In addition to constructs for authentication, declarative
trust management systems often feature security constructs
for integrity, secrecy, and delegation. The D1LP [15] lan-
guage further supports constructs that implement distributed
vote-based agreement, where a fact in the rule head is de-
rived only when k-out-of-n principals in a rule body predi-
cate derive a similar fact concurrently. We will revisit LB-
Trust’s support for these security constructs in Section 4.

3. LB-TRUST ARCHITECTURE
LBTrust is implemented using LogicBlox, a commercial

platform for building enterprise-scale corporate planning and
pricing applications, which feature analyses requiring aggre-
gation across very large data sets, combined with simulation
and modeling techniques.

LogicBlox contains a Datalog-based logic programming
language enhanced with a variety of features, including func-
tional dependencies, aggregation functions, schema constraints,
static type-checking, tuple-generation, temporal logic sup-
port, predicate partitioning, distributed computation, and

meta-programming. LogicBlox further allows application-
defined libraries of custom predicates to be imported, such
as the cryptographic functions required for implementing
certain security constructs. Also essential for these con-
structs is LogicBlox’s support for applying schema constraints
to the meta-model, which we call meta-constraints. To set
the stage for presenting LBTrust’s implementation of various
security constructs, this section explains LogicBlox’s facili-
ties for supporting schema constraints, meta-programming,
and distributed computation.

3.1 Execution Environment
LogicBlox utilizes a bottom-up semi-näıve fixpoint [18] ex-

ecution model for executing Datalog programs. LogicBlox
provides a query interface for submitting a program for com-
pilation and execution within a workspace. A workspace in
LogicBlox is essentially a database instance which contains a
set of predicate definitions1 and a set of active rules (similar
to continuous queries). Within a designated workspace, the
LogicBlox API allows an application to query and modify
the data defined by the workspace, including adding/removing
facts and rules. When predicate data is modified, the active
rules are incrementally recomputed.

3.2 Constraints
Unlike a rule, which calculates new values for a predi-

cate, a schema constraint – such as a referential integrity
constraint [5]) – restricts a predicate’s allowed values. Log-
icBlox adds schema constraints to Datalog by means of the
special predicate fail(). If any rule defines fail() to be
true, then the evaluation of the Datalog program fails by
terminating with an error.

For example, a schema constraint for the Binder pro-
gram given above might require that any value occurring
in the first argument of the access predicate also occur in
the principal predicate. This constraint can be expressed
as a rule:

fail() <- access(P,O,M), !principal(P).

This rule defines fail() to be true if, for any assignment
of values to the variables P, O, and M, the atom access(P,O,M)

is true but principal(P) is false.
Constraints expressed using fail() can often be un-intuitive.

So as a notational convenience LogicBlox supports a posi-
tive form for constraints, indicated with a right arrow (->).
If F1 and F2 are arbitrary nestings of conjunction, disjunc-
tion and negation, then the logical meaning of F1 -> F2. is
fail() <- F1, !(F2). For example, the positive form of the
constraint given above is:

access(P,O,M) -> principal(P).

Typically every argument of access would be constrained:

access(P,O,M) -> principal(P), object(O), mode(M).

Informally, this may be read as “for any values of P, O

and M, whenever access(P,O,M), then require principal(P)

and object(O) and mode(M)”. In fact, in LogicBlox, a type

1A predicate definition declares both the logical attributes of
a predicate, such as its name and arity; and also the physical
attributes for the purposes of cost-based optimizations, such
as the predicate’s data storage format, data location, and
population density statistics.

is considered to be a unary predicate (representing a set
of values). Hence, in LogicBlox, this kind of schema con-
straint acts as a type declaration. The use of types and
type-checking (statically, and dynamically when rules are
added to workspaces) ensures that only type-safe LogicBlox
programs are executed.

3.3 Meta-Programming
The basis of the LogicBlox meta-programming feature is

a special set of predicates called the meta-model, whose (im-
plicit) type declarations expressed as constraints are shown
in Figure 1. Each LogicBlox workspace stores an active ta-
ble that contains all the rule identifiers of active rules within
the workspace. When a rule R is added to the workspace’s
active rules, it is translated into a set of facts (e.g. rule,
head, body, etc.) in the meta-model, and its rule id is stored
in the active table.

rule(R) ->.

head(R,A)-> rule(R), atom(A).

body(R,A)-> rule(R), atom(A).

atom(A)-> .

functor(A,P)-> atom(A), predicate(P).

arg(A,I,T)-> atom(A), int(I), term(T).

negated(A)-> atom(A).

term(T)-> .

variable(X)-> term(X).

vname(X,N)-> variable(X), string(N).

constant(C)-> term(C).

value(C,V)-> constant(C), string(V).

predicate(P)-> .

pname(P,N)-> predicate(P), string(N).

Figure 1: The Meta-Model

The significance of the meta-model is that programmer-
defined rules may refer to the meta-model. For example, an
active rule may perform reflection (i.e. query for the pro-
gram’s structure) by referring to meta-model predicates in
its body. Or, a rule may perform code generation (adding
or rewriting existing rules) by referring to the meta-model
in its head. If the evaluation of a rule puts new facts into
the meta-model, then those new facts turn into a new rule
which must itself be evaluated.

A special case of reflection is a schema constraint that
refers to meta-model predicates (a meta-constraint). While
meta-constraints are usefully generally for imposing integrity
constraints similar to those in databases, they are particu-
larly useful in the context of LBTrust for expressing security
restrictions. To illustrate, assume we wanted to require that
a principal may only read predicates to which they have been
granted access. Datalog (without constraints) provides no
way to enforce this requirement, because there is no way to
prohibit an attempted access.

To support this restriction in LBTrust, we first define an
owner predicate that associates a rule with the principal that
added that rule, and an access predicate that represents
access rights to a predicate. Note that we leverage predicate,
a meta-model predicate that contains a unique entry for each
predicate defined in the workspace (including predicate).

owner(R,P) -> rule(R), principal(P).
access(U,P,M) ->

principal(U), predicate(P), mode(M).

With our schema defined, we then apply the following
meta-constraint, which provides our desired prohibition. It
says that for any principal U who owns a rule with predicate
P in the body, there must be a fact in the access predicate
granting U the right to read P.

owner(U, [| A <- P(T2*), A*. |]) ->
access(U,P,read).

The above example illustrates that meta-programming is
facilitated in LogicBlox by the introduction of the quoted
code term – a rule or atom surrounded by the code-quotes:
[|, and |]. Inside the code-quotes is a code pattern that
matches one or more rules. The star (*) represents the
Kleene star – a repetition of the pattern preceding it. The
capital letters in the pattern are meta-variables – variables
that represent pieces of code, and can occur in non-standard
places, like functors and atoms. The types of the meta-
variables are determined by their position in the pattern.
The LogicBlox compiler translates the code inside the code-
quotes into a conjunction of atoms on the meta-model rep-
resenting the quoted code. For example, the above meta-
constraint translates into:

owner(U,R1), rule(R1), body(R1,A1),
atom(A1), functor(A1,P) ->

access(U,P,read).

The variables R1 and A1 are freshly generated by the trans-
lation. Note that the meta-variable P occurs outside the
quoted code – its value is unquoted in-place into the pat-
tern, without any special unquoting operator.

3.4 Partitioning
Partitioning is a mechanism for logically separating facts

based on their attributes. In trust management systems,
data is partitioned by principal, with each partition typically
called a principal’s context. A context stores all facts local to
a principal, and communication between contexts represents
communication between principals.

In order to support partitioning, the predicate predicate
in the meta-model is higher-order, meaning that it takes a
predicate as an argument. In general, consider a predicate
p with n arguments where t1(X1) denotes the type of X1:

p(X1, ..., Xn) -> t1(X1), ..., tn(Xn).

To partition p based on the first attribute X1, one can
rewrite the above as follows:

p’[X1](X2, ..., Xn) -> t1(X1), ..., tn(Xn).

p’ is a higher-order predicate, where for a given x1, p’[xi]
refers to all p predicates whose first argument has value x1.2

The partitioning of p does not change the set of data that
can be stored in p, but instead partitions the data into sub-
sets (the p’ predicates). A regular Datalog rule of the form
p’[X1](X2, ..., Xn) <- p(X1, ..., Xn) can be used to ini-
tialize p’ partitions based on the input table p.

2This general rewrite technique for partitioning is generally
known as currying in the functional programming world,
a generic logical transformation that uses one of the argu-
ments as the partitioning argument.

3.5 Distribution
In a distributed setting, principals may reside on different

nodes, and the execution of security policies may result in an
exchange of rules, similar to Binder’s transfer of rules across
contexts. In LogicBlox, logical partitioning and distribu-
tion are separated, hence providing location transparency,
where a multi-principal security policy can be distributed
in a customized fashion based on the deployed execution
environment (e.g. single vs multiple principals per physical
host).

To support distribution, LogicBlox introduces a special
meta-model predicate predNode which is used to customize
the location of a predicate P:

predNode(P,N) -> predicate(P), node(N).

So if the application were to associate each value of X1

with a node using some predicate:

locX1(X1,N) -> t1(X1), node(N).

Then the application could distribute the subsets of p using
the placement rule:

predNode(p’[X1],N) <- locX1(X1,N).

This rule takes each value of X1, looks up its associated
network node N, and then places the corresponding subset of
p’ on N. Using these techniques, which combine meta-model
predicates with currying, a LogicBlox application can use
ordinary Datalog rules to partition and distribute the data
in its predicates.

4. SECURITY PRIMITIVES IN LBTRUST
In this section, we demonstrate how various security prim-

itives can be customized and supported by LBTrust. This
is by no means intended to be an exhaustive coverage of
the possibilities. Our main goal here is to illustrate the key
language features of LBTrust, and highlight the flexibility
and compactness of LBTrust in supporting various security
primitives. We will build upon these primitives in our next
section when we present case studies of languages enabled
by LBTrust.

4.1 Authentication
Authentication is a central component of security, where

the identity of a principal is established and verified. Au-
thentication is essential for authorization, where an authen-
ticated principal is granted access to perform actions on
shared resources. Practically all logic-based trust manage-
ment languages provide some language support for express-
ing authentication, typically via the says operator described
in Section 2, which associates a principal with a statement.
In each case, the semantics of says are hardwired into the
system as an add-on to the logic programming language.
In LBTrust, however, the says concept is configured in the
same language as the policy, using features not specifically
designed to support security concerns – except for crypto-
graphic primitives used to implement various authentication
schemes.

The simplest way to associate a principal with every fact
in a predicate P(T*) is to add an extra argument representing
the principal who said the fact: P(U,T*). In LBTrust, we
represent says(U1,U2,R) as a meta-predicate that associates

a Datalog rule (R) with both the source principal who said
the rule (U1), and the destination principal to whom the rule
is said (U2). Note that while communication occurs in the
form of rules, we can also communicate facts (rules with an
empty body). We define the says predicate below.

says0: says(U1,U2,R) -> prin(U1), prin(U2), rule(R).
says1: active(R) <- says(_,me,R).

Rule says0 is a type declaration for says. The says1 rule
automatically moves any rule R said to the local princi-
pal (indicated by the me keyword), into the built-in meta-
predicate active, which automatically activates R.

Using the says predicate, authorization may be imple-
mented with some simple meta-constraints. The following
constraints restrict read and write access to predicates re-
spectively.

says(U,me [| A <- P(T*), A*. |]) -> mayRead(U,P).
says(U,me [| P(T*) <- A*. |]) -> mayWrite(U,P).

4.1.1 Authenticated Communication
To enable communication between principals, we intro-

duce the export predicate as well as additional meta-rules
and meta-constraints. The following rules implement rule
export using the RSA authentication scheme (rsasign and
rsaverify).

exp0: export[U1](U2,R,S) -> prin(U1), prin(U2),
rule(R), string(S).

exp1: export[U2](me,R,S) <- says(me,U2,R),
rsasign(R,S,K), rsaprivkey(me,K).

Consider a local principal me that wishes to export rule
R to another principal U2 via the says predicate. Rule exp0

declares the type definitions of the export predicate that will
be used for exporting the rule R with its signature to the
destination principal U2. export has a placement policy that
assigns the location of each partition to match the location
of the corresponding principal.

Rule exp1 calculates the appropriate RSA signature S us-
ing the private key of the local principal, and copies the rule
into the destination principal’s partition of the export pred-
icate. The following rules would then run at the destination
principal (U2), to import received rules. Note that in this
case, me refers to principal U2.

exp2: says(U,me,R) <- export[me](U,R,S).
exp3: says(U,me,R) -> export[me](U,R,S),

rsapubkey(U,K), rsaverify(R,S,K).

Rule exp2 copies the received rule from the export predi-
cate into the local says predicate. Finally, exp3 verifies the
signature of the new rule using the source principal’s public
key.

4.1.2 Alternative Authentication Schemes
Because the signature generation and verification has been

defined in a Datalog rule, it is easy to replace the RSA
scheme above with an alternate scheme. To illustrate, we
demonstrate signing each message with a message authenti-
cation code (MAC), typically a 160-bit SHA-1 cryptographic
hash of the message data and a secret key shared between
the two communicating principals. The choice of an alterna-
tive signature generation scheme is often a tradeoff between

security and performance. For example, MAC is computa-
tionally less expensive but requires the use of shared sym-
metric keys among principals that wish to communicate.
Also, the use of a symmetric key to generate a rule signature
implies that the signature will only be verifiable at princi-
pals that have the same key as the signer. The following
rules implement an HMAC-SHA1 signature scheme.

exp1’: export[U2](me,R,S) <- says(me,U2,R),
hmacsign(R,K,S), sharedsecret(me,U2,K).

exp3’: says(U,me,R) -> export[me](U,R,S),
sharedsecret(me,U,K), hmacverify(R,S,K).

Interestingly, only two rules (exp1’ and exp3’) need to be
modified, while the trust policies that utilize the says predi-
cate remain unchanged, demonstrating the ease with which
new authentication schemes can be enabled by LBTrust.

4.1.3 Confidentiality and Integrity
LBTrust can support confidentiality, ensuring rules cannot

be interpreted by unauthorized principals in a distributed
setting, and integrity, ensuring data is not corrupted. This
requires the addition of built-in predicates representing vari-
ous encryption and integrity schemes such as checksums and
cryptographic hashes.

4.2 Delegation
Often-times in security, it is useful to establish a chain

of trust among different principals. This is particularly use-
ful for performing delegation, where different principals may
choose to assign capabilities to other principals, either for
performance, accessibility, or security reasons. For example,
a principal may delegate the authority to associate princi-
pals with public keys to a certificate authority. Or a credit
card issuer may wish to delegate authority to a credit rating
agency to associate a credit score with an individual.

An early version of delegation is the speaks-for construct.
Adopting the definition based on Lampson’s security survey
paper [14], speaks-for works as follows. Consider a state-
ment of the form “principal U1 speaks for principal U2.”
The logical meaning behind “speaks for” is that if U1 says
something, then U2 says it too. So for example, alice can
say that bob speaks for her by activating the following meta-
rule, which activates any rule R said by bob.

sf0: active(R) <- says(bob,me,R).

A speaks-for rule is a special case of delegation where a
principal delegates all authority to another principal. In
practice, it is useful to restrict this delegation to a spe-
cific predicate. To ease the specification of complex delega-
tion policies, LBTrust defines a delegates predicate whose
type declaration is shown in del0. In the example below,
delegates(U1,U2,P) denotes that U1 delegates the responsi-
bility of deriving predicate P to U2 – essentially expressing
the speaks-for construct where U2 speaks for U1 with respect
to P.

del0: delegates(U1,U2,P) -> prin(U1), prin(U2),
predicate(P).

del1: active([| active(R) <- says(U2,me,R),
R = [| P(T*) <- A*. |]. |]) <-

delegates(me,U2,p).

The del1 meta-rule defines the says predicate in terms
of the delegates predicate: whenever a delegation fact is
added, the appropriate speak-for rule is automatically gen-
erated.

4.2.1 Delegation Depth and Width
Sometimes it is useful to restrict delegation authority [15].

For instance, we may restrict one or both of the depth – the
maximum permitted length of the delegation chain – and
the width – the set of principals allowed to be part of the
chain.

The following meta-rules declare and enforce a delDepth

predicate. The inferredDelDepth predicate takes the origi-
nally specified delegation depths and infers new depth re-
strictions. The base case is when a principal U1 delegates
to U2 with depth limitation N=0. In this case, as expressed
by meta-constraint dd4, any delegation by U2 conflicts with
the limitation. The recursive case, as expressed by the rule
defining inferredDelDepth, is when U1 delegates to U2 with
a depth limitation of N > 0. In this case, if U2 delegates to
some other principal U3, then a new limit of N-1 is inferred
between U2 and U3. Similar meta-rules can be formulated to
enforce delegation width restrictions.

dd0: delDepth(U1,U2,P,N) -> prin(U1), prin(U2),
predicate(P), int[64](N).

dd1: inferredDelDepth(U1,U2,P,N) -> prin(U1),
prin(U2), predicate(P), int[64](N).

dd2: inferredDelDepth(me,U,P,N) <-
delDepth(me,U,P,N).

dd3: says(me,U,[|
inferredDelDepth(me,U,P,N-1). |]) <-

inferredDelDepth(me,U,P,N),
delegates(me,U,P), N>0.

dd4: inferredDelDepth(_,me,P,0) ->
!delegates(me,_,P).

An interesting case arises if a non-conforming delegation
exists before a delegation depth restriction is added. The
rule dd3 will propagate an inferred delegation depth of 0 to
the principal with the non-conforming delegation, causing a
violation of the dd4 constraint. However, none of the princi-
pals in the delegation chain up to that point will be aware
of the violation.

4.2.2 Delegation Thresholds
Another delegation variant is the use of threshold struc-

tures. An unweighted threshold structure will authorize
some operation if any k out of n principals concur. For
example, a bank may consider a customer’s credit okay if
at least three credit bureaus do. This is easily expressed in
LBTrust using the count aggregation:

wd0: creditOK(C) -> customer(C).
wd1: creditOK(C) <-

creditOKCount(C,N), N >= 3.
wd2: creditOKCount(C,N) <- agg<<N = count(U)>>

pringroup(U,creditBureau),
says(U,me, [| creditOK(C). |]).

It is also straightforward to generalize these rules to han-
dle more sophisticated threshold structures such as weighted
delegation, where different credit bureaus have different re-
liability factors assigned to them. Rule wd2 above would be
modified to use the total aggregation.

5. CASE STUDIES
In this section, we focus on how LBTrust can leverage the

basic security constructs presented in the previous section
to implement trust management languages. We focus on
two case studies: Binder and the Secure Network Datalog
(SeNDlog) language used in declarative networking.

5.1 Binder
As described in Section 2.2, Binder is a logic-based trust

management system, which extends Datalog with the says

construct and the notion of communication across contexts.
Each component, or principal in the distributed system has
a local Binder context. Binder contexts correspond to Log-
icBlox workspaces described in Section 3. To authenticate
facts asserted by principals, Binder uses certificates signed
with the private key of the sending principal. Certificates
are imported by prefixing the says operator with a public
key representing the context to import from. In our imple-
mentation of Binder, we use the says predicate defined in
Section 4.

To illustrate, the LBTrust equivalent to the Binder rule
b2 presented in Section 2.2 is:

bex1’: access(P,O,read) <-
says(bob,me,[|access(P,O,read)|]),
pubkey(bob,rsa:3:c1ebab5d).

Top-down to Bottom-up Rewrite: Most practical ac-
cess control languages, including Binder, utilize a top-down
(or backward-chaining) evaluation strategy. Specific requests
are made as goals, which are then resolved against the se-
curity policies, hence minimizing the disclosure of sensitive
information. This suggests that LBTrust needs to support
top-down evaluation. One possible approach that we are ex-
ploring is converting a “pull” request in the body of a rule
into two “pushes”. The following meta-rules express this
automatic conversion:

pull0: says(me,X,[|request(R).|]) <-
active([| A <-says(X,me,R), A*. |]),
X!=me.

pull1: says(me,X,R) <-
says(X,me,[|request(R).|]).

Rule pull0 matches any rule R that has says in the body,
and dispatches a request to X. Rule pull1 responds to a
request with the desired data.

5.2 Secure Network Datalog
SeNDlog [4, 19] is a unified declarative language for net-

work specifications and security policies, which combines the
Network Datalog language used in declarative networking[9]
with Binder. Similar to Binder, SeNDlog allows different
principals or contexts to communicate via import and ex-
port of tuples. To differentiate from local predicates, an im-
port predicate from a principal N is quoted using “N says”,
whereas an export predicate of the form “p@X” in a rule head
indicates the predicate p is exported to the principal X from
the context where it is derived. We illustrate SeNDlog us-
ing the following two rules, s1-s2, that compute all pairs of
reachable nodes in a network:

At S:
s1: reachable(S,D) :- neighbor(S,D).
s2: reachable(Z,D)@Z :- neighbor(S,Z),

W says reachable(S,D).

Rule s1-s2 are executed in the context of node S. Rule s1

takes neighbor tuples as input to compute one-hop reachable

tuples. Rule s2 specifies a distributed transitive closure com-
putation, expressing that “if Z is a neighbor of S, and S can
reach D, then Z can also reach D.” Unlike an ordinary tran-
sitive closure computation, the above SeNDlog program is

authenticated (via the use of “says”) and distributed via the
use of import and export predicates. By modifying this sim-
ple example, one can easily construct more complex secure
networking protocols, such as an authenticated path-vector
protocol.

Given the says predicate described in Section 4, the LB-
Trust equivalent of the above SeNDlog rules is as follows:

lc1: neighbor(S,D) -> prin(S), prin(D).
lc2: reachable(S,D) -> prin(S), prin(D).

ls1: reachable(me,D) <- neighbor(me,D).
ls2: says(me,Z,[|reachable(Z,D).|]) <-

neighbor(me,Z),
says(W,me,[|reachable(me,D).|]).

Using LogicBlox’s support for distribution described in
Section 3.5, one can customize the locations of principals by
using the following rules:

ld1: loc(P,N) -> prin(P), node(N).
ld2: predNode(export[P],N) <- loc(P,N).

Rule ld1 defines the predicate loc which indicates the
mapping between principals and physical nodes. And rule
ld2 utilizes the built-in system predicate predNode to as-
sign the physical locations of the export predicate accord-
ing to the loc predicate, indicating the physical destinations
of communication between principals. Users can easily en-
force various distribution plans by modifying the loc table.
Note that distribution is not required for the neighbor and
reachable tables since they are only used locally at each node
(and hence no partitioning is strictly necessary).

6. PRELIMINARY EVALUATION
A prototype of the LBTrust system is currently being de-

veloped. LBTrust leverages the LogicBlox runtime system,
which has been enhanced to support meta-programmability,
meta-constraints and cryptographic capabilities. We are still
in the process of adding partitioning and distribution ca-
pabilities to LogicBlox, which will be useful for enforcing
security policies in a distributed fashion.

We provide a preliminary evaluation of the current LB-
Trust prototype. Our evaluation consists of a micro bench-
mark, in which two principals alice and bob each execute a
Binder rule. Together, the two principals export and import
authenticated facts from each other’s context via the says

construct. In addition to plaintext transfer (which requires
no signature), we measure the performance overhead of two
authentication schemes using the customizable authentica-
tion rules described in Section 4: (1) RSA which utilizes
1024-bit RSA signatures given an input fact, and (2) HMAC
(keyed-Hash Message Authentication Code) that generates
a 160-bit SHA-1 cryptographic hash from the input fact and
a secret key.

Figure 2 shows the query execution time for each experi-
mental run, where each run consists of an increasing number
of messages being exported and imported between alice and
bob during rule execution. Each message results in a sig-
nature generation and verification when exported and im-
ported. The experiment was carried out on quad-core ma-
chines with Intel Xeon 2.33GHz CPUs and 4GB RAM run-
ning Fedora Core 6 with kernel version 2.6.20. Our results
validate that LBTrust can support various authentication
schemes in a similar fashion as Binder. Moreover, LBTrust

50

100

150

200

250

300

Ex
ec
ut
io
n
Ti
m
e
(s
)

RSA
HMAC
Plaintext

0

0 1 2 3 4 5 6 7 8 9 10

Number of Messages (k)

Figure 2: Execution Time over Number of Messages

achieves an expected linear increase in execution time as
the number of messages transferred increases. The observed
performance differences are also as expected: compared to
Plaintext where no authentication is used, HMAC incurs a
slight increase in execution time. RSA is the most expensive
due to the use of public key cryptography.

7. CONCLUSION
In this paper, we present LBTrust, a unified declarative

system for reconfigurable trust management, where various
security constructs can be customized and composed in a
declarative fashion.

Our work is proceeding along several fronts. Our immedi-
ate task involves prototyping a variety of recently proposed
logic-based trust management systems in LBTrust, and uti-
lizing our system as a basis for comparison and analyzing
the security properties of these systems. We conjecture that
having a unifying declarative platform will facilitate cross-
language analysis and performance comparisons, and enable
us to rapidly prototype new systems with novel security
properties.

Second, traditional database optimizations such as magic-
sets [6] can potentially bridge the top-down evaluation ap-
proach used in access control, versus the typical bottom-up
continuous evaluation of network protocols. We hope to
explore the use of a query optimizer to adaptively choose
between two different approaches.

Third, we are currently adding provenance support to
LBTrust. In addition to reasoning about delegation and
chains of trust, provenance is useful for analyzing deriva-
tions of security policies, runtime verification, and dynamic
type checking.

8. REFERENCES
[1] M. Abadi. Logic in Access Control. In Symposium on

Logic in Computer Science, June 2003.

[2] M. Abadi. On Access Control, Data Integration and
Their Languages. Computer Systems: Theory,
Technology and Applications, A Tribute to Roger
Needham, Springer-Verlag:9–14, 2004.

[3] M. Abadi and B. Blanchet. Analyzing security
protocols with secrecy types and logic programs. In
POPL, 2002.

[4] M. Abadi and B. T. Loo. Towards a Declarative
Language and System for Secure Networking. In
NetDB, 2007.

[5] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[6] F. Bancilhon, D. Maier, Y. Sagiv, and J. Ullman.
Magic Sets and Other Strange Ways to Implement
Logic Programs. In SIGMOD, 1986.

[7] M. Y. Becker and P. Sewell. Cassandra: Distributed
Access Control Policies with Tunable Expressiveness.
In 5th IEEE International Workshop on Policies for
Distributed Systems and Networks, 2004.

[8] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
Trust Management. In Proc. of the 17th Symposium
on Security and Privacy, pages 164–173. IEEE
Computer Society Press, Los Alamitos, 1996.

[9] Boon Thau Loo et. al. Declarative Networking:
Language, Execution and Optimization. In SIGMOD,
June 2006.

[10] S. Chawathe, H. Garcia-Molina, J. Hammer,
K. Ireland, Y. Papakonstantinou, J. D. Ullman, and
J. Widom. The TSIMMIS Project: Integration of
heterogeneous information sources. In 16th Meeting of
the Information Processing Society of Japan, Tokyo,
Japan, 1994.

[11] T. Condie, D. Chu, J. M. Hellerstein, and P. Maniatis.
Evita raced: Metacompilation for declarative
networks. In VLDB, 2008.

[12] J. DeTreville. Binder: A logic-based security language.
In IEEE Symposium on Security and Privacy, 2002.

[13] T. Jim. SD3: A Trust Management System With
Certified Evaluation. In IEEE Symposium on Security
and Privacy, May 2001.

[14] B. Lampson, M. Abadi, M. Burrows, and E. Wobber.
Authentication in Distributed Systems: Theory and
Practice. ACM TOCS, 1992.

[15] N. Li, B. N. Grosof, and J. Feigenbaum. Delegation
Logic: A logic-based approach to distributed
authorization. ACM TISSEC, Feb. 2003.

[16] LogicBlox Inc. http://www.logicblox.com/.

[17] K. Minami and D. Kotz. Secure context-sensitive
authorization. In PERCOM, 2005.

[18] R. Ramakrishnan and J. D. Ullman. A Survey of
Research on Deductive Database Systems. Journal of
Logic Programming, 23(2):125–149, 1993.

[19] W. Zhou, Y. Mao, B. T. Loo, and M. Abadi. Unified
Declarative Platform for Secure Networked
Information Systems. In ICDE, 2009.

9. DEMONSTRATION PROPOSAL
Our demonstration consists of a multi-user file system

with access control capabilities implemented using a com-
bination of Binder’s authentication and D1LP’s delegation
constructs, enabled by LBTrust. To facilitate our presenta-
tion, we will utilize a visualization tool used in LogicBlox to
display a table of the values of various predicates and rules
stored at each principal, as well as a graphical visualizer
that illustrates communication between principals. Our im-
plementation of the partitioning and distribution features
mentioned in this paper is still ongoing. Our demonstra-
tion will instead be constrained to a setting where the file
system runs on a single on-site laptop. Multiple principals
will share a single LBTrust workspace under the control of a
single LBTrust instance. While the setting is simplified, the

demonstration showcases two important aspects of LBTrust:
its meta-programmability and reconfigurable capabilities for
enforcing security policies declaratively.

In our file system, each principal maintains a number of
files owned by other principals. We assume the files are not
necessarily stored on their owners’ machines. This assump-
tion typically holds in a distributed setting where principals
may reside on different physical machines. Although our
demo will be restricted to a single machine, we will emulate
a distributed system via horizontal partitioning of permis-
sions and access control policy facts among different princi-
pals. Since our special partitioning syntax is not yet imple-
mented, we will represent a predicate’s partition by adding
an additional argument. Meta-constraints will be used to
enforce the partition, and protect application and security
predicates from unauthorized modification.

When a file access request is received, the owner of the
file has the authority to grant or reject the request based
on his access control policy stored in his permission table.
For simplicity, we will present our example here based on
a pre-defined permission table. In practice, the table itself
can also be defined in terms of a number of other rules.

Figure 3(a) shows a typical workflow diagram of a princi-
pal requesting read access to a file, where principal Requester
asks for a file F owned by principal FileOwner. Requester first
sends a request to FileStore, namely the principal where F is
stored. FileStore then refers to FileOwner to check whether
Requester is permitted to read the file, and FileOwner will
make the decision according to its local permission table.
As long as the read access is granted, FileStore returns the
file content to Requester and finishes the read operation.

Example Rules Using the Binder language described in
Section 5.1, the following rules implement access control
policies in a file system:

f1: file(F) -> .
f2: filename(F,S) -> file(F), string(S).
f3: filedata(F,S) -> file(F), string(S).
f4: fileowner(F,O) -> file(F), prin(O).
f5: filestore(F,P) -> file(F), prin(P).
f6: file(F) -> filename(F,_), filedata(F,_),

fileowner(F,_), filestore(F,_).

m1: message(M) -> .
m2: message:id(M,N) -> message(M), int[64](N).
m3: message:fname(M,F) -> message(M), string(F).
m4: message:data(M,D) -> message(M), string(D).
m5: request(R) -> message(R).
m6: response(R) -> message(R).

dfs1: permission(P,X,F,M) -> prin(P), prin(X),
file(F), mode(M).

dfs2: says(me,U,[|
response(R), message:fname(R,S) <- A*. |]),
fileName(F,S), fileowner(F,O) ->

says(O,me,[| permission(O,U,F,read) |]).

In the above LBTrust program, we present an extension
to a user-defined type file in rules f1-f6, and enumerate the
types of messages exchanged when reading a file in m1-m6.
Rules dfs1 and dfs2 enforce that principals only respond to
authorized read requests. Note that we omit rules used to
initiate and respond to read requests, as well as rules used
to query the file owner for permissions. Write access control
is implemented using a similar approach. We consider the

http://www.logicblox.com/

Requester FileStore

FileOwner AccessManager

Requester FileStore

FileOwner

①

② ③

④

①

② ⑤

⑥

③

④

(a) (b)

Figure 3: Workflow of Read Access in File System

problem of locating the physical machine where each file
resides to be an orthogonal search problem.

Access Control with Delegation As an enhancement to
the above program, one can incorporate the notion of del-
egation of access control in a distributed file system. We
make a revision to the previous example as follows: as the
FileOwner may have limited knowledge on the trustworthi-
ness of other principals, it further refers to the AccessManager

that is trusted to decide whether a principal is permitted
to perform operations on a specific file. As shown in Fig-
ure 3(b), the FileOwner delegates the authority of making
access control decisions to a trusted AccessManager.

Specifying delegation demands a security construct used
in prior work on delegation logic [15]. In our demonstration,
we use a slight modification of the user-composed security
predicate delegates presented in Section 4.2. The file owner
would delegate his permission predicate to accessMgr using
the following rule:

delegates(me,accessMgr,[|permission(me,_,F,_).|]) <-
fileowner(F,me).

As our demonstration is confined to a single workspace,
we do not suffer from the drawback described in Section 4.2,
and can easily enforce delegation depth constraints. We will
show delegations with depth restrictions (AccessManager is
not allowed to further delegate permission), and threshold
restrictions (FileOwner permits a file access request only if
the permission is confirmed by more than three AccessManagers).

	Introduction
	Background
	Datalog
	Logic-based Trust Management

	LB-Trust Architecture
	Execution Environment
	Constraints
	Meta-Programming
	Partitioning
	Distribution

	Security Primitives in LBTrust
	Authentication
	Authenticated Communication
	Alternative Authentication Schemes
	Confidentiality and Integrity

	Delegation
	Delegation Depth and Width
	Delegation Thresholds

	Case Studies
	Binder
	Secure Network Datalog

	Preliminary Evaluation
	Conclusion
	References
	Demonstration Proposal

